apr_crypto.c revision 362181
1/* Licensed to the Apache Software Foundation (ASF) under one or more
2 * contributor license agreements.  See the NOTICE file distributed with
3 * this work for additional information regarding copyright ownership.
4 * The ASF licenses this file to You under the Apache License, Version 2.0
5 * (the "License"); you may not use this file except in compliance with
6 * the License.  You may obtain a copy of the License at
7 *
8 *     http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include <ctype.h>
18#include <stdio.h>
19
20#include "apu_config.h"
21#include "apu.h"
22#include "apr_pools.h"
23#include "apr_dso.h"
24#include "apr_strings.h"
25#include "apr_hash.h"
26#include "apr_thread_mutex.h"
27#include "apr_lib.h"
28
29#if APU_HAVE_CRYPTO
30
31#include "apu_internal.h"
32#include "apr_crypto_internal.h"
33#include "apr_crypto.h"
34#include "apu_version.h"
35
36static apr_hash_t *drivers = NULL;
37
38#define ERROR_SIZE 1024
39
40#define CLEANUP_CAST (apr_status_t (*)(void*))
41
42#define APR_TYPEDEF_STRUCT(type, incompletion) \
43struct type { \
44   incompletion \
45   void *unk[]; \
46};
47
48APR_TYPEDEF_STRUCT(apr_crypto_t,
49    apr_pool_t *pool;
50    apr_crypto_driver_t *provider;
51)
52
53APR_TYPEDEF_STRUCT(apr_crypto_key_t,
54    apr_pool_t *pool;
55    apr_crypto_driver_t *provider;
56    const apr_crypto_t *f;
57)
58
59APR_TYPEDEF_STRUCT(apr_crypto_block_t,
60    apr_pool_t *pool;
61    apr_crypto_driver_t *provider;
62    const apr_crypto_t *f;
63)
64
65typedef struct apr_crypto_clear_t {
66    void *buffer;
67    apr_size_t size;
68} apr_crypto_clear_t;
69
70#if !APU_DSO_BUILD
71#define DRIVER_LOAD(name,driver_name,pool,params,rv,result) \
72    {   \
73        extern const apr_crypto_driver_t driver_name; \
74        apr_hash_set(drivers,name,APR_HASH_KEY_STRING,&driver_name); \
75        if (driver_name.init) {     \
76            rv = driver_name.init(pool, params, result); \
77        }  \
78        *driver = &driver_name; \
79    }
80#endif
81
82static apr_status_t apr_crypto_term(void *ptr)
83{
84    /* set drivers to NULL so init can work again */
85    drivers = NULL;
86
87    /* Everything else we need is handled by cleanups registered
88     * when we created mutexes and loaded DSOs
89     */
90    return APR_SUCCESS;
91}
92
93APU_DECLARE(apr_status_t) apr_crypto_init(apr_pool_t *pool)
94{
95    apr_status_t ret = APR_SUCCESS;
96    apr_pool_t *parent;
97
98    if (drivers != NULL) {
99        return APR_SUCCESS;
100    }
101
102    /* Top level pool scope, need process-scope lifetime */
103    for (parent = apr_pool_parent_get(pool);
104         parent && parent != pool;
105         parent = apr_pool_parent_get(pool))
106        pool = parent;
107#if APU_DSO_BUILD
108    /* deprecate in 2.0 - permit implicit initialization */
109    apu_dso_init(pool);
110#endif
111    drivers = apr_hash_make(pool);
112
113    apr_pool_cleanup_register(pool, NULL, apr_crypto_term,
114            apr_pool_cleanup_null);
115
116    return ret;
117}
118
119static apr_status_t crypto_clear(void *ptr)
120{
121    apr_crypto_clear_t *clear = (apr_crypto_clear_t *)ptr;
122
123    apr_crypto_memzero(clear->buffer, clear->size);
124    clear->buffer = NULL;
125    clear->size = 0;
126
127    return APR_SUCCESS;
128}
129
130APU_DECLARE(apr_status_t) apr_crypto_clear(apr_pool_t *pool,
131        void *buffer, apr_size_t size)
132{
133    apr_crypto_clear_t *clear = apr_palloc(pool, sizeof(apr_crypto_clear_t));
134
135    clear->buffer = buffer;
136    clear->size = size;
137
138    apr_pool_cleanup_register(pool, clear, crypto_clear,
139            apr_pool_cleanup_null);
140
141    return APR_SUCCESS;
142}
143
144#if defined(HAVE_WEAK_SYMBOLS)
145void apr__memzero_explicit(void *buffer, apr_size_t size);
146
147__attribute__ ((weak))
148void apr__memzero_explicit(void *buffer, apr_size_t size)
149{
150    memset(buffer, 0, size);
151}
152#endif
153
154APU_DECLARE(apr_status_t) apr_crypto_memzero(void *buffer, apr_size_t size)
155{
156#if defined(WIN32)
157    SecureZeroMemory(buffer, size);
158#elif defined(HAVE_MEMSET_S)
159    if (size) {
160        return memset_s(buffer, (rsize_t)size, 0, (rsize_t)size);
161    }
162#elif defined(HAVE_EXPLICIT_BZERO)
163    explicit_bzero(buffer, size);
164#elif defined(HAVE_WEAK_SYMBOLS)
165    apr__memzero_explicit(buffer, size);
166#else
167    apr_size_t i;
168    volatile unsigned char *volatile ptr = buffer;
169    for (i = 0; i < size; ++i) {
170        ptr[i] = 0;
171    }
172#endif
173    return APR_SUCCESS;
174}
175
176APU_DECLARE(int) apr_crypto_equals(const void *buf1, const void *buf2,
177                                   apr_size_t size)
178{
179    const unsigned char *p1 = buf1;
180    const unsigned char *p2 = buf2;
181    unsigned char diff = 0;
182    apr_size_t i;
183
184    for (i = 0; i < size; ++i) {
185        diff |= p1[i] ^ p2[i];
186    }
187
188    return 1 & ((diff - 1) >> 8);
189}
190
191APU_DECLARE(apr_status_t) apr_crypto_get_driver(
192        const apr_crypto_driver_t **driver, const char *name,
193        const char *params, const apu_err_t **result, apr_pool_t *pool)
194{
195#if APU_DSO_BUILD
196    char modname[32];
197    char symname[34];
198    apr_dso_handle_t *dso;
199    apr_dso_handle_sym_t symbol;
200#endif
201    apr_status_t rv;
202
203    if (result) {
204        *result = NULL; /* until further notice */
205    }
206
207#if APU_DSO_BUILD
208    rv = apu_dso_mutex_lock();
209    if (rv) {
210        return rv;
211    }
212#endif
213    *driver = apr_hash_get(drivers, name, APR_HASH_KEY_STRING);
214    if (*driver) {
215#if APU_DSO_BUILD
216        apu_dso_mutex_unlock();
217#endif
218        return APR_SUCCESS;
219    }
220
221#if APU_DSO_BUILD
222    /* The driver DSO must have exactly the same lifetime as the
223     * drivers hash table; ignore the passed-in pool */
224    pool = apr_hash_pool_get(drivers);
225
226#if defined(NETWARE)
227    apr_snprintf(modname, sizeof(modname), "crypto%s.nlm", name);
228#elif defined(WIN32) || defined(__CYGWIN__)
229    apr_snprintf(modname, sizeof(modname),
230            "apr_crypto_%s-" APU_STRINGIFY(APU_MAJOR_VERSION) ".dll", name);
231#else
232    apr_snprintf(modname, sizeof(modname),
233            "apr_crypto_%s-" APU_STRINGIFY(APU_MAJOR_VERSION) ".so", name);
234#endif
235    apr_snprintf(symname, sizeof(symname), "apr_crypto_%s_driver", name);
236    rv = apu_dso_load(&dso, &symbol, modname, symname, pool);
237    if (rv == APR_SUCCESS || rv == APR_EINIT) { /* previously loaded?!? */
238        apr_crypto_driver_t *d = symbol;
239        rv = APR_SUCCESS;
240        if (d->init) {
241            rv = d->init(pool, params, result);
242        }
243        if (APR_SUCCESS == rv) {
244            *driver = symbol;
245            name = apr_pstrdup(pool, name);
246            apr_hash_set(drivers, name, APR_HASH_KEY_STRING, *driver);
247        }
248    }
249    apu_dso_mutex_unlock();
250
251    if (APR_SUCCESS != rv && result && !*result) {
252        char *buffer = apr_pcalloc(pool, ERROR_SIZE);
253        apu_err_t *err = apr_pcalloc(pool, sizeof(apu_err_t));
254        if (err && buffer) {
255            apr_dso_error(dso, buffer, ERROR_SIZE - 1);
256            err->msg = buffer;
257            err->reason = apr_pstrdup(pool, modname);
258            *result = err;
259        }
260    }
261
262#else /* not builtin and !APR_HAS_DSO => not implemented */
263    rv = APR_ENOTIMPL;
264
265    /* Load statically-linked drivers: */
266#if APU_HAVE_OPENSSL
267    if (name[0] == 'o' && !strcmp(name, "openssl")) {
268        DRIVER_LOAD("openssl", apr_crypto_openssl_driver, pool, params, rv, result);
269    }
270#endif
271#if APU_HAVE_NSS
272    if (name[0] == 'n' && !strcmp(name, "nss")) {
273        DRIVER_LOAD("nss", apr_crypto_nss_driver, pool, params, rv, result);
274    }
275#endif
276#if APU_HAVE_COMMONCRYPTO
277    if (name[0] == 'c' && !strcmp(name, "commoncrypto")) {
278        DRIVER_LOAD("commoncrypto", apr_crypto_commoncrypto_driver, pool, params, rv, result);
279    }
280#endif
281#if APU_HAVE_MSCAPI
282    if (name[0] == 'm' && !strcmp(name, "mscapi")) {
283        DRIVER_LOAD("mscapi", apr_crypto_mscapi_driver, pool, params, rv, result);
284    }
285#endif
286#if APU_HAVE_MSCNG
287    if (name[0] == 'm' && !strcmp(name, "mscng")) {
288        DRIVER_LOAD("mscng", apr_crypto_mscng_driver, pool, params, rv, result);
289    }
290#endif
291
292#endif
293
294    return rv;
295}
296
297/**
298 * @brief Return the name of the driver.
299 *
300 * @param driver - The driver in use.
301 * @return The name of the driver.
302 */
303APU_DECLARE(const char *)apr_crypto_driver_name (
304        const apr_crypto_driver_t *driver)
305{
306    return driver->name;
307}
308
309/**
310 * @brief Get the result of the last operation on a context. If the result
311 *        is NULL, the operation was successful.
312 * @param result - the result structure
313 * @param f - context pointer
314 * @return APR_SUCCESS for success
315 */
316APU_DECLARE(apr_status_t) apr_crypto_error(const apu_err_t **result,
317        const apr_crypto_t *f)
318{
319    return f->provider->error(result, f);
320}
321
322/**
323 * @brief Create a context for supporting encryption. Keys, certificates,
324 *        algorithms and other parameters will be set per context. More than
325 *        one context can be created at one time. A cleanup will be automatically
326 *        registered with the given pool to guarantee a graceful shutdown.
327 * @param f - context pointer will be written here
328 * @param driver - driver to use
329 * @param params - array of key parameters
330 * @param pool - process pool
331 * @return APR_ENOENGINE when the engine specified does not exist. APR_EINITENGINE
332 * if the engine cannot be initialised.
333 * @remarks NSS: currently no params are supported.
334 * @remarks OpenSSL: the params can have "engine" as a key, followed by an equal
335 *  sign and a value.
336 */
337APU_DECLARE(apr_status_t) apr_crypto_make(apr_crypto_t **f,
338        const apr_crypto_driver_t *driver, const char *params, apr_pool_t *pool)
339{
340    return driver->make(f, driver, params, pool);
341}
342
343/**
344 * @brief Get a hash table of key types, keyed by the name of the type against
345 * a pointer to apr_crypto_block_key_type_t, which in turn begins with an
346 * integer.
347 *
348 * @param types - hashtable of key types keyed to constants.
349 * @param f - encryption context
350 * @return APR_SUCCESS for success
351 */
352APU_DECLARE(apr_status_t) apr_crypto_get_block_key_types(apr_hash_t **types,
353        const apr_crypto_t *f)
354{
355    return f->provider->get_block_key_types(types, f);
356}
357
358/**
359 * @brief Get a hash table of key modes, keyed by the name of the mode against
360 * a pointer to apr_crypto_block_key_mode_t, which in turn begins with an
361 * integer.
362 *
363 * @param modes - hashtable of key modes keyed to constants.
364 * @param f - encryption context
365 * @return APR_SUCCESS for success
366 */
367APU_DECLARE(apr_status_t) apr_crypto_get_block_key_modes(apr_hash_t **modes,
368        const apr_crypto_t *f)
369{
370    return f->provider->get_block_key_modes(modes, f);
371}
372
373/**
374 * @brief Create a key from the provided secret or passphrase. The key is cleaned
375 *        up when the context is cleaned, and may be reused with multiple encryption
376 *        or decryption operations.
377 * @note If *key is NULL, a apr_crypto_key_t will be created from a pool. If
378 *       *key is not NULL, *key must point at a previously created structure.
379 * @param key The key returned, see note.
380 * @param rec The key record, from which the key will be derived.
381 * @param f The context to use.
382 * @param p The pool to use.
383 * @return Returns APR_ENOKEY if the pass phrase is missing or empty, or if a backend
384 *         error occurred while generating the key. APR_ENOCIPHER if the type or mode
385 *         is not supported by the particular backend. APR_EKEYTYPE if the key type is
386 *         not known. APR_EPADDING if padding was requested but is not supported.
387 *         APR_ENOTIMPL if not implemented.
388 */
389APU_DECLARE(apr_status_t) apr_crypto_key(apr_crypto_key_t **key,
390        const apr_crypto_key_rec_t *rec, const apr_crypto_t *f, apr_pool_t *p)
391{
392    return f->provider->key(key, rec, f, p);
393}
394
395/**
396 * @brief Create a key from the given passphrase. By default, the PBKDF2
397 *        algorithm is used to generate the key from the passphrase. It is expected
398 *        that the same pass phrase will generate the same key, regardless of the
399 *        backend crypto platform used. The key is cleaned up when the context
400 *        is cleaned, and may be reused with multiple encryption or decryption
401 *        operations.
402 * @note If *key is NULL, a apr_crypto_key_t will be created from a pool. If
403 *       *key is not NULL, *key must point at a previously created structure.
404 * @param key The key returned, see note.
405 * @param ivSize The size of the initialisation vector will be returned, based
406 *               on whether an IV is relevant for this type of crypto.
407 * @param pass The passphrase to use.
408 * @param passLen The passphrase length in bytes
409 * @param salt The salt to use.
410 * @param saltLen The salt length in bytes
411 * @param type 3DES_192, AES_128, AES_192, AES_256.
412 * @param mode Electronic Code Book / Cipher Block Chaining.
413 * @param doPad Pad if necessary.
414 * @param iterations Number of iterations to use in algorithm
415 * @param f The context to use.
416 * @param p The pool to use.
417 * @return Returns APR_ENOKEY if the pass phrase is missing or empty, or if a backend
418 *         error occurred while generating the key. APR_ENOCIPHER if the type or mode
419 *         is not supported by the particular backend. APR_EKEYTYPE if the key type is
420 *         not known. APR_EPADDING if padding was requested but is not supported.
421 *         APR_ENOTIMPL if not implemented.
422 */
423APU_DECLARE(apr_status_t) apr_crypto_passphrase(apr_crypto_key_t **key,
424        apr_size_t *ivSize, const char *pass, apr_size_t passLen,
425        const unsigned char * salt, apr_size_t saltLen,
426        const apr_crypto_block_key_type_e type,
427        const apr_crypto_block_key_mode_e mode, const int doPad,
428        const int iterations, const apr_crypto_t *f, apr_pool_t *p)
429{
430    return f->provider->passphrase(key, ivSize, pass, passLen, salt, saltLen,
431            type, mode, doPad, iterations, f, p);
432}
433
434/**
435 * @brief Initialise a context for encrypting arbitrary data using the given key.
436 * @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If
437 *       *ctx is not NULL, *ctx must point at a previously created structure.
438 * @param ctx The block context returned, see note.
439 * @param iv Optional initialisation vector. If the buffer pointed to is NULL,
440 *           an IV will be created at random, in space allocated from the pool.
441 *           If the buffer pointed to is not NULL, the IV in the buffer will be
442 *           used.
443 * @param key The key structure to use.
444 * @param blockSize The block size of the cipher.
445 * @param p The pool to use.
446 * @return Returns APR_ENOIV if an initialisation vector is required but not specified.
447 *         Returns APR_EINIT if the backend failed to initialise the context. Returns
448 *         APR_ENOTIMPL if not implemented.
449 */
450APU_DECLARE(apr_status_t) apr_crypto_block_encrypt_init(
451        apr_crypto_block_t **ctx, const unsigned char **iv,
452        const apr_crypto_key_t *key, apr_size_t *blockSize, apr_pool_t *p)
453{
454    return key->provider->block_encrypt_init(ctx, iv, key, blockSize, p);
455}
456
457/**
458 * @brief Encrypt data provided by in, write it to out.
459 * @note The number of bytes written will be written to outlen. If
460 *       out is NULL, outlen will contain the maximum size of the
461 *       buffer needed to hold the data, including any data
462 *       generated by apr_crypto_block_encrypt_finish below. If *out points
463 *       to NULL, a buffer sufficiently large will be created from
464 *       the pool provided. If *out points to a not-NULL value, this
465 *       value will be used as a buffer instead.
466 * @param out Address of a buffer to which data will be written,
467 *        see note.
468 * @param outlen Length of the output will be written here.
469 * @param in Address of the buffer to read.
470 * @param inlen Length of the buffer to read.
471 * @param ctx The block context to use.
472 * @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if
473 *         not implemented.
474 */
475APU_DECLARE(apr_status_t) apr_crypto_block_encrypt(unsigned char **out,
476        apr_size_t *outlen, const unsigned char *in, apr_size_t inlen,
477        apr_crypto_block_t *ctx)
478{
479    return ctx->provider->block_encrypt(out, outlen, in, inlen, ctx);
480}
481
482/**
483 * @brief Encrypt final data block, write it to out.
484 * @note If necessary the final block will be written out after being
485 *       padded. Typically the final block will be written to the
486 *       same buffer used by apr_crypto_block_encrypt, offset by the
487 *       number of bytes returned as actually written by the
488 *       apr_crypto_block_encrypt() call. After this call, the context
489 *       is cleaned and can be reused by apr_crypto_block_encrypt_init().
490 * @param out Address of a buffer to which data will be written. This
491 *            buffer must already exist, and is usually the same
492 *            buffer used by apr_evp_crypt(). See note.
493 * @param outlen Length of the output will be written here.
494 * @param ctx The block context to use.
495 * @return APR_ECRYPT if an error occurred.
496 * @return APR_EPADDING if padding was enabled and the block was incorrectly
497 *         formatted.
498 * @return APR_ENOTIMPL if not implemented.
499 */
500APU_DECLARE(apr_status_t) apr_crypto_block_encrypt_finish(unsigned char *out,
501        apr_size_t *outlen, apr_crypto_block_t *ctx)
502{
503    return ctx->provider->block_encrypt_finish(out, outlen, ctx);
504}
505
506/**
507 * @brief Initialise a context for decrypting arbitrary data using the given key.
508 * @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If
509 *       *ctx is not NULL, *ctx must point at a previously created structure.
510 * @param ctx The block context returned, see note.
511 * @param blockSize The block size of the cipher.
512 * @param iv Optional initialisation vector.
513 * @param key The key structure to use.
514 * @param p The pool to use.
515 * @return Returns APR_ENOIV if an initialisation vector is required but not specified.
516 *         Returns APR_EINIT if the backend failed to initialise the context. Returns
517 *         APR_ENOTIMPL if not implemented.
518 */
519APU_DECLARE(apr_status_t) apr_crypto_block_decrypt_init(
520        apr_crypto_block_t **ctx, apr_size_t *blockSize,
521        const unsigned char *iv, const apr_crypto_key_t *key, apr_pool_t *p)
522{
523    return key->provider->block_decrypt_init(ctx, blockSize, iv, key, p);
524}
525
526/**
527 * @brief Decrypt data provided by in, write it to out.
528 * @note The number of bytes written will be written to outlen. If
529 *       out is NULL, outlen will contain the maximum size of the
530 *       buffer needed to hold the data, including any data
531 *       generated by apr_crypto_block_decrypt_finish below. If *out points
532 *       to NULL, a buffer sufficiently large will be created from
533 *       the pool provided. If *out points to a not-NULL value, this
534 *       value will be used as a buffer instead.
535 * @param out Address of a buffer to which data will be written,
536 *        see note.
537 * @param outlen Length of the output will be written here.
538 * @param in Address of the buffer to read.
539 * @param inlen Length of the buffer to read.
540 * @param ctx The block context to use.
541 * @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if
542 *         not implemented.
543 */
544APU_DECLARE(apr_status_t) apr_crypto_block_decrypt(unsigned char **out,
545        apr_size_t *outlen, const unsigned char *in, apr_size_t inlen,
546        apr_crypto_block_t *ctx)
547{
548    return ctx->provider->block_decrypt(out, outlen, in, inlen, ctx);
549}
550
551/**
552 * @brief Decrypt final data block, write it to out.
553 * @note If necessary the final block will be written out after being
554 *       padded. Typically the final block will be written to the
555 *       same buffer used by apr_crypto_block_decrypt, offset by the
556 *       number of bytes returned as actually written by the
557 *       apr_crypto_block_decrypt() call. After this call, the context
558 *       is cleaned and can be reused by apr_crypto_block_decrypt_init().
559 * @param out Address of a buffer to which data will be written. This
560 *            buffer must already exist, and is usually the same
561 *            buffer used by apr_evp_crypt(). See note.
562 * @param outlen Length of the output will be written here.
563 * @param ctx The block context to use.
564 * @return APR_ECRYPT if an error occurred.
565 * @return APR_EPADDING if padding was enabled and the block was incorrectly
566 *         formatted.
567 * @return APR_ENOTIMPL if not implemented.
568 */
569APU_DECLARE(apr_status_t) apr_crypto_block_decrypt_finish(unsigned char *out,
570        apr_size_t *outlen, apr_crypto_block_t *ctx)
571{
572    return ctx->provider->block_decrypt_finish(out, outlen, ctx);
573}
574
575/**
576 * @brief Clean encryption / decryption context.
577 * @note After cleanup, a context is free to be reused if necessary.
578 * @param ctx The block context to use.
579 * @return Returns APR_ENOTIMPL if not supported.
580 */
581APU_DECLARE(apr_status_t) apr_crypto_block_cleanup(apr_crypto_block_t *ctx)
582{
583    return ctx->provider->block_cleanup(ctx);
584}
585
586/**
587 * @brief Clean encryption / decryption context.
588 * @note After cleanup, a context is free to be reused if necessary.
589 * @param f The context to use.
590 * @return Returns APR_ENOTIMPL if not supported.
591 */
592APU_DECLARE(apr_status_t) apr_crypto_cleanup(apr_crypto_t *f)
593{
594    return f->provider->cleanup(f);
595}
596
597/**
598 * @brief Shutdown the crypto library.
599 * @note After shutdown, it is expected that the init function can be called again.
600 * @param driver - driver to use
601 * @return Returns APR_ENOTIMPL if not supported.
602 */
603APU_DECLARE(apr_status_t) apr_crypto_shutdown(const apr_crypto_driver_t *driver)
604{
605    return driver->shutdown();
606}
607
608#endif /* APU_HAVE_CRYPTO */
609