libzfs_import.c revision 235479
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2011 by Delphix. All rights reserved.
25 */
26
27/*
28 * Pool import support functions.
29 *
30 * To import a pool, we rely on reading the configuration information from the
31 * ZFS label of each device.  If we successfully read the label, then we
32 * organize the configuration information in the following hierarchy:
33 *
34 * 	pool guid -> toplevel vdev guid -> label txg
35 *
36 * Duplicate entries matching this same tuple will be discarded.  Once we have
37 * examined every device, we pick the best label txg config for each toplevel
38 * vdev.  We then arrange these toplevel vdevs into a complete pool config, and
39 * update any paths that have changed.  Finally, we attempt to import the pool
40 * using our derived config, and record the results.
41 */
42
43#include <ctype.h>
44#include <devid.h>
45#include <dirent.h>
46#include <errno.h>
47#include <libintl.h>
48#include <stddef.h>
49#include <stdlib.h>
50#include <string.h>
51#include <sys/stat.h>
52#include <unistd.h>
53#include <fcntl.h>
54#include <thread_pool.h>
55#include <libgeom.h>
56
57#include <sys/vdev_impl.h>
58
59#include "libzfs.h"
60#include "libzfs_impl.h"
61
62/*
63 * Intermediate structures used to gather configuration information.
64 */
65typedef struct config_entry {
66	uint64_t		ce_txg;
67	nvlist_t		*ce_config;
68	struct config_entry	*ce_next;
69} config_entry_t;
70
71typedef struct vdev_entry {
72	uint64_t		ve_guid;
73	config_entry_t		*ve_configs;
74	struct vdev_entry	*ve_next;
75} vdev_entry_t;
76
77typedef struct pool_entry {
78	uint64_t		pe_guid;
79	vdev_entry_t		*pe_vdevs;
80	struct pool_entry	*pe_next;
81} pool_entry_t;
82
83typedef struct name_entry {
84	char			*ne_name;
85	uint64_t		ne_guid;
86	struct name_entry	*ne_next;
87} name_entry_t;
88
89typedef struct pool_list {
90	pool_entry_t		*pools;
91	name_entry_t		*names;
92} pool_list_t;
93
94static char *
95get_devid(const char *path)
96{
97	int fd;
98	ddi_devid_t devid;
99	char *minor, *ret;
100
101	if ((fd = open(path, O_RDONLY)) < 0)
102		return (NULL);
103
104	minor = NULL;
105	ret = NULL;
106	if (devid_get(fd, &devid) == 0) {
107		if (devid_get_minor_name(fd, &minor) == 0)
108			ret = devid_str_encode(devid, minor);
109		if (minor != NULL)
110			devid_str_free(minor);
111		devid_free(devid);
112	}
113	(void) close(fd);
114
115	return (ret);
116}
117
118
119/*
120 * Go through and fix up any path and/or devid information for the given vdev
121 * configuration.
122 */
123static int
124fix_paths(nvlist_t *nv, name_entry_t *names)
125{
126	nvlist_t **child;
127	uint_t c, children;
128	uint64_t guid;
129	name_entry_t *ne, *best;
130	char *path, *devid;
131	int matched;
132
133	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
134	    &child, &children) == 0) {
135		for (c = 0; c < children; c++)
136			if (fix_paths(child[c], names) != 0)
137				return (-1);
138		return (0);
139	}
140
141	/*
142	 * This is a leaf (file or disk) vdev.  In either case, go through
143	 * the name list and see if we find a matching guid.  If so, replace
144	 * the path and see if we can calculate a new devid.
145	 *
146	 * There may be multiple names associated with a particular guid, in
147	 * which case we have overlapping slices or multiple paths to the same
148	 * disk.  If this is the case, then we want to pick the path that is
149	 * the most similar to the original, where "most similar" is the number
150	 * of matching characters starting from the end of the path.  This will
151	 * preserve slice numbers even if the disks have been reorganized, and
152	 * will also catch preferred disk names if multiple paths exist.
153	 */
154	verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
155	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
156		path = NULL;
157
158	matched = 0;
159	best = NULL;
160	for (ne = names; ne != NULL; ne = ne->ne_next) {
161		if (ne->ne_guid == guid) {
162			const char *src, *dst;
163			int count;
164
165			if (path == NULL) {
166				best = ne;
167				break;
168			}
169
170			src = ne->ne_name + strlen(ne->ne_name) - 1;
171			dst = path + strlen(path) - 1;
172			for (count = 0; src >= ne->ne_name && dst >= path;
173			    src--, dst--, count++)
174				if (*src != *dst)
175					break;
176
177			/*
178			 * At this point, 'count' is the number of characters
179			 * matched from the end.
180			 */
181			if (count > matched || best == NULL) {
182				best = ne;
183				matched = count;
184			}
185		}
186	}
187
188	if (best == NULL)
189		return (0);
190
191	if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
192		return (-1);
193
194	if ((devid = get_devid(best->ne_name)) == NULL) {
195		(void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
196	} else {
197		if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0)
198			return (-1);
199		devid_str_free(devid);
200	}
201
202	return (0);
203}
204
205/*
206 * Add the given configuration to the list of known devices.
207 */
208static int
209add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path,
210    nvlist_t *config)
211{
212	uint64_t pool_guid, vdev_guid, top_guid, txg, state;
213	pool_entry_t *pe;
214	vdev_entry_t *ve;
215	config_entry_t *ce;
216	name_entry_t *ne;
217
218	/*
219	 * If this is a hot spare not currently in use or level 2 cache
220	 * device, add it to the list of names to translate, but don't do
221	 * anything else.
222	 */
223	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
224	    &state) == 0 &&
225	    (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
226	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
227		if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
228			return (-1);
229
230		if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
231			free(ne);
232			return (-1);
233		}
234		ne->ne_guid = vdev_guid;
235		ne->ne_next = pl->names;
236		pl->names = ne;
237		return (0);
238	}
239
240	/*
241	 * If we have a valid config but cannot read any of these fields, then
242	 * it means we have a half-initialized label.  In vdev_label_init()
243	 * we write a label with txg == 0 so that we can identify the device
244	 * in case the user refers to the same disk later on.  If we fail to
245	 * create the pool, we'll be left with a label in this state
246	 * which should not be considered part of a valid pool.
247	 */
248	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
249	    &pool_guid) != 0 ||
250	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
251	    &vdev_guid) != 0 ||
252	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
253	    &top_guid) != 0 ||
254	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
255	    &txg) != 0 || txg == 0) {
256		nvlist_free(config);
257		return (0);
258	}
259
260	/*
261	 * First, see if we know about this pool.  If not, then add it to the
262	 * list of known pools.
263	 */
264	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
265		if (pe->pe_guid == pool_guid)
266			break;
267	}
268
269	if (pe == NULL) {
270		if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
271			nvlist_free(config);
272			return (-1);
273		}
274		pe->pe_guid = pool_guid;
275		pe->pe_next = pl->pools;
276		pl->pools = pe;
277	}
278
279	/*
280	 * Second, see if we know about this toplevel vdev.  Add it if its
281	 * missing.
282	 */
283	for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
284		if (ve->ve_guid == top_guid)
285			break;
286	}
287
288	if (ve == NULL) {
289		if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
290			nvlist_free(config);
291			return (-1);
292		}
293		ve->ve_guid = top_guid;
294		ve->ve_next = pe->pe_vdevs;
295		pe->pe_vdevs = ve;
296	}
297
298	/*
299	 * Third, see if we have a config with a matching transaction group.  If
300	 * so, then we do nothing.  Otherwise, add it to the list of known
301	 * configs.
302	 */
303	for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
304		if (ce->ce_txg == txg)
305			break;
306	}
307
308	if (ce == NULL) {
309		if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) {
310			nvlist_free(config);
311			return (-1);
312		}
313		ce->ce_txg = txg;
314		ce->ce_config = config;
315		ce->ce_next = ve->ve_configs;
316		ve->ve_configs = ce;
317	} else {
318		nvlist_free(config);
319	}
320
321	/*
322	 * At this point we've successfully added our config to the list of
323	 * known configs.  The last thing to do is add the vdev guid -> path
324	 * mappings so that we can fix up the configuration as necessary before
325	 * doing the import.
326	 */
327	if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
328		return (-1);
329
330	if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
331		free(ne);
332		return (-1);
333	}
334
335	ne->ne_guid = vdev_guid;
336	ne->ne_next = pl->names;
337	pl->names = ne;
338
339	return (0);
340}
341
342/*
343 * Returns true if the named pool matches the given GUID.
344 */
345static int
346pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid,
347    boolean_t *isactive)
348{
349	zpool_handle_t *zhp;
350	uint64_t theguid;
351
352	if (zpool_open_silent(hdl, name, &zhp) != 0)
353		return (-1);
354
355	if (zhp == NULL) {
356		*isactive = B_FALSE;
357		return (0);
358	}
359
360	verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID,
361	    &theguid) == 0);
362
363	zpool_close(zhp);
364
365	*isactive = (theguid == guid);
366	return (0);
367}
368
369static nvlist_t *
370refresh_config(libzfs_handle_t *hdl, nvlist_t *config)
371{
372	nvlist_t *nvl;
373	zfs_cmd_t zc = { 0 };
374	int err;
375
376	if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0)
377		return (NULL);
378
379	if (zcmd_alloc_dst_nvlist(hdl, &zc,
380	    zc.zc_nvlist_conf_size * 2) != 0) {
381		zcmd_free_nvlists(&zc);
382		return (NULL);
383	}
384
385	while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT,
386	    &zc)) != 0 && errno == ENOMEM) {
387		if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) {
388			zcmd_free_nvlists(&zc);
389			return (NULL);
390		}
391	}
392
393	if (err) {
394		zcmd_free_nvlists(&zc);
395		return (NULL);
396	}
397
398	if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) {
399		zcmd_free_nvlists(&zc);
400		return (NULL);
401	}
402
403	zcmd_free_nvlists(&zc);
404	return (nvl);
405}
406
407/*
408 * Determine if the vdev id is a hole in the namespace.
409 */
410boolean_t
411vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id)
412{
413	for (int c = 0; c < holes; c++) {
414
415		/* Top-level is a hole */
416		if (hole_array[c] == id)
417			return (B_TRUE);
418	}
419	return (B_FALSE);
420}
421
422/*
423 * Convert our list of pools into the definitive set of configurations.  We
424 * start by picking the best config for each toplevel vdev.  Once that's done,
425 * we assemble the toplevel vdevs into a full config for the pool.  We make a
426 * pass to fix up any incorrect paths, and then add it to the main list to
427 * return to the user.
428 */
429static nvlist_t *
430get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok)
431{
432	pool_entry_t *pe;
433	vdev_entry_t *ve;
434	config_entry_t *ce;
435	nvlist_t *ret = NULL, *config = NULL, *tmp, *nvtop, *nvroot;
436	nvlist_t **spares, **l2cache;
437	uint_t i, nspares, nl2cache;
438	boolean_t config_seen;
439	uint64_t best_txg;
440	char *name, *hostname, *comment;
441	uint64_t version, guid;
442	uint_t children = 0;
443	nvlist_t **child = NULL;
444	uint_t holes;
445	uint64_t *hole_array, max_id;
446	uint_t c;
447	boolean_t isactive;
448	uint64_t hostid;
449	nvlist_t *nvl;
450	boolean_t found_one = B_FALSE;
451	boolean_t valid_top_config = B_FALSE;
452
453	if (nvlist_alloc(&ret, 0, 0) != 0)
454		goto nomem;
455
456	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
457		uint64_t id, max_txg = 0;
458
459		if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
460			goto nomem;
461		config_seen = B_FALSE;
462
463		/*
464		 * Iterate over all toplevel vdevs.  Grab the pool configuration
465		 * from the first one we find, and then go through the rest and
466		 * add them as necessary to the 'vdevs' member of the config.
467		 */
468		for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
469
470			/*
471			 * Determine the best configuration for this vdev by
472			 * selecting the config with the latest transaction
473			 * group.
474			 */
475			best_txg = 0;
476			for (ce = ve->ve_configs; ce != NULL;
477			    ce = ce->ce_next) {
478
479				if (ce->ce_txg > best_txg) {
480					tmp = ce->ce_config;
481					best_txg = ce->ce_txg;
482				}
483			}
484
485			/*
486			 * We rely on the fact that the max txg for the
487			 * pool will contain the most up-to-date information
488			 * about the valid top-levels in the vdev namespace.
489			 */
490			if (best_txg > max_txg) {
491				(void) nvlist_remove(config,
492				    ZPOOL_CONFIG_VDEV_CHILDREN,
493				    DATA_TYPE_UINT64);
494				(void) nvlist_remove(config,
495				    ZPOOL_CONFIG_HOLE_ARRAY,
496				    DATA_TYPE_UINT64_ARRAY);
497
498				max_txg = best_txg;
499				hole_array = NULL;
500				holes = 0;
501				max_id = 0;
502				valid_top_config = B_FALSE;
503
504				if (nvlist_lookup_uint64(tmp,
505				    ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) {
506					verify(nvlist_add_uint64(config,
507					    ZPOOL_CONFIG_VDEV_CHILDREN,
508					    max_id) == 0);
509					valid_top_config = B_TRUE;
510				}
511
512				if (nvlist_lookup_uint64_array(tmp,
513				    ZPOOL_CONFIG_HOLE_ARRAY, &hole_array,
514				    &holes) == 0) {
515					verify(nvlist_add_uint64_array(config,
516					    ZPOOL_CONFIG_HOLE_ARRAY,
517					    hole_array, holes) == 0);
518				}
519			}
520
521			if (!config_seen) {
522				/*
523				 * Copy the relevant pieces of data to the pool
524				 * configuration:
525				 *
526				 *	version
527				 * 	pool guid
528				 * 	name
529				 *	comment (if available)
530				 * 	pool state
531				 *	hostid (if available)
532				 *	hostname (if available)
533				 */
534				uint64_t state;
535
536				verify(nvlist_lookup_uint64(tmp,
537				    ZPOOL_CONFIG_VERSION, &version) == 0);
538				if (nvlist_add_uint64(config,
539				    ZPOOL_CONFIG_VERSION, version) != 0)
540					goto nomem;
541				verify(nvlist_lookup_uint64(tmp,
542				    ZPOOL_CONFIG_POOL_GUID, &guid) == 0);
543				if (nvlist_add_uint64(config,
544				    ZPOOL_CONFIG_POOL_GUID, guid) != 0)
545					goto nomem;
546				verify(nvlist_lookup_string(tmp,
547				    ZPOOL_CONFIG_POOL_NAME, &name) == 0);
548				if (nvlist_add_string(config,
549				    ZPOOL_CONFIG_POOL_NAME, name) != 0)
550					goto nomem;
551
552				/*
553				 * COMMENT is optional, don't bail if it's not
554				 * there, instead, set it to NULL.
555				 */
556				if (nvlist_lookup_string(tmp,
557				    ZPOOL_CONFIG_COMMENT, &comment) != 0)
558					comment = NULL;
559				else if (nvlist_add_string(config,
560				    ZPOOL_CONFIG_COMMENT, comment) != 0)
561					goto nomem;
562
563				verify(nvlist_lookup_uint64(tmp,
564				    ZPOOL_CONFIG_POOL_STATE, &state) == 0);
565				if (nvlist_add_uint64(config,
566				    ZPOOL_CONFIG_POOL_STATE, state) != 0)
567					goto nomem;
568
569				hostid = 0;
570				if (nvlist_lookup_uint64(tmp,
571				    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
572					if (nvlist_add_uint64(config,
573					    ZPOOL_CONFIG_HOSTID, hostid) != 0)
574						goto nomem;
575					verify(nvlist_lookup_string(tmp,
576					    ZPOOL_CONFIG_HOSTNAME,
577					    &hostname) == 0);
578					if (nvlist_add_string(config,
579					    ZPOOL_CONFIG_HOSTNAME,
580					    hostname) != 0)
581						goto nomem;
582				}
583
584				config_seen = B_TRUE;
585			}
586
587			/*
588			 * Add this top-level vdev to the child array.
589			 */
590			verify(nvlist_lookup_nvlist(tmp,
591			    ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
592			verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
593			    &id) == 0);
594
595			if (id >= children) {
596				nvlist_t **newchild;
597
598				newchild = zfs_alloc(hdl, (id + 1) *
599				    sizeof (nvlist_t *));
600				if (newchild == NULL)
601					goto nomem;
602
603				for (c = 0; c < children; c++)
604					newchild[c] = child[c];
605
606				free(child);
607				child = newchild;
608				children = id + 1;
609			}
610			if (nvlist_dup(nvtop, &child[id], 0) != 0)
611				goto nomem;
612
613		}
614
615		/*
616		 * If we have information about all the top-levels then
617		 * clean up the nvlist which we've constructed. This
618		 * means removing any extraneous devices that are
619		 * beyond the valid range or adding devices to the end
620		 * of our array which appear to be missing.
621		 */
622		if (valid_top_config) {
623			if (max_id < children) {
624				for (c = max_id; c < children; c++)
625					nvlist_free(child[c]);
626				children = max_id;
627			} else if (max_id > children) {
628				nvlist_t **newchild;
629
630				newchild = zfs_alloc(hdl, (max_id) *
631				    sizeof (nvlist_t *));
632				if (newchild == NULL)
633					goto nomem;
634
635				for (c = 0; c < children; c++)
636					newchild[c] = child[c];
637
638				free(child);
639				child = newchild;
640				children = max_id;
641			}
642		}
643
644		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
645		    &guid) == 0);
646
647		/*
648		 * The vdev namespace may contain holes as a result of
649		 * device removal. We must add them back into the vdev
650		 * tree before we process any missing devices.
651		 */
652		if (holes > 0) {
653			ASSERT(valid_top_config);
654
655			for (c = 0; c < children; c++) {
656				nvlist_t *holey;
657
658				if (child[c] != NULL ||
659				    !vdev_is_hole(hole_array, holes, c))
660					continue;
661
662				if (nvlist_alloc(&holey, NV_UNIQUE_NAME,
663				    0) != 0)
664					goto nomem;
665
666				/*
667				 * Holes in the namespace are treated as
668				 * "hole" top-level vdevs and have a
669				 * special flag set on them.
670				 */
671				if (nvlist_add_string(holey,
672				    ZPOOL_CONFIG_TYPE,
673				    VDEV_TYPE_HOLE) != 0 ||
674				    nvlist_add_uint64(holey,
675				    ZPOOL_CONFIG_ID, c) != 0 ||
676				    nvlist_add_uint64(holey,
677				    ZPOOL_CONFIG_GUID, 0ULL) != 0)
678					goto nomem;
679				child[c] = holey;
680			}
681		}
682
683		/*
684		 * Look for any missing top-level vdevs.  If this is the case,
685		 * create a faked up 'missing' vdev as a placeholder.  We cannot
686		 * simply compress the child array, because the kernel performs
687		 * certain checks to make sure the vdev IDs match their location
688		 * in the configuration.
689		 */
690		for (c = 0; c < children; c++) {
691			if (child[c] == NULL) {
692				nvlist_t *missing;
693				if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
694				    0) != 0)
695					goto nomem;
696				if (nvlist_add_string(missing,
697				    ZPOOL_CONFIG_TYPE,
698				    VDEV_TYPE_MISSING) != 0 ||
699				    nvlist_add_uint64(missing,
700				    ZPOOL_CONFIG_ID, c) != 0 ||
701				    nvlist_add_uint64(missing,
702				    ZPOOL_CONFIG_GUID, 0ULL) != 0) {
703					nvlist_free(missing);
704					goto nomem;
705				}
706				child[c] = missing;
707			}
708		}
709
710		/*
711		 * Put all of this pool's top-level vdevs into a root vdev.
712		 */
713		if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
714			goto nomem;
715		if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
716		    VDEV_TYPE_ROOT) != 0 ||
717		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
718		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
719		    nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
720		    child, children) != 0) {
721			nvlist_free(nvroot);
722			goto nomem;
723		}
724
725		for (c = 0; c < children; c++)
726			nvlist_free(child[c]);
727		free(child);
728		children = 0;
729		child = NULL;
730
731		/*
732		 * Go through and fix up any paths and/or devids based on our
733		 * known list of vdev GUID -> path mappings.
734		 */
735		if (fix_paths(nvroot, pl->names) != 0) {
736			nvlist_free(nvroot);
737			goto nomem;
738		}
739
740		/*
741		 * Add the root vdev to this pool's configuration.
742		 */
743		if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
744		    nvroot) != 0) {
745			nvlist_free(nvroot);
746			goto nomem;
747		}
748		nvlist_free(nvroot);
749
750		/*
751		 * zdb uses this path to report on active pools that were
752		 * imported or created using -R.
753		 */
754		if (active_ok)
755			goto add_pool;
756
757		/*
758		 * Determine if this pool is currently active, in which case we
759		 * can't actually import it.
760		 */
761		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
762		    &name) == 0);
763		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
764		    &guid) == 0);
765
766		if (pool_active(hdl, name, guid, &isactive) != 0)
767			goto error;
768
769		if (isactive) {
770			nvlist_free(config);
771			config = NULL;
772			continue;
773		}
774
775		if ((nvl = refresh_config(hdl, config)) == NULL) {
776			nvlist_free(config);
777			config = NULL;
778			continue;
779		}
780
781		nvlist_free(config);
782		config = nvl;
783
784		/*
785		 * Go through and update the paths for spares, now that we have
786		 * them.
787		 */
788		verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
789		    &nvroot) == 0);
790		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
791		    &spares, &nspares) == 0) {
792			for (i = 0; i < nspares; i++) {
793				if (fix_paths(spares[i], pl->names) != 0)
794					goto nomem;
795			}
796		}
797
798		/*
799		 * Update the paths for l2cache devices.
800		 */
801		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
802		    &l2cache, &nl2cache) == 0) {
803			for (i = 0; i < nl2cache; i++) {
804				if (fix_paths(l2cache[i], pl->names) != 0)
805					goto nomem;
806			}
807		}
808
809		/*
810		 * Restore the original information read from the actual label.
811		 */
812		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
813		    DATA_TYPE_UINT64);
814		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
815		    DATA_TYPE_STRING);
816		if (hostid != 0) {
817			verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
818			    hostid) == 0);
819			verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
820			    hostname) == 0);
821		}
822
823add_pool:
824		/*
825		 * Add this pool to the list of configs.
826		 */
827		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
828		    &name) == 0);
829		if (nvlist_add_nvlist(ret, name, config) != 0)
830			goto nomem;
831
832		found_one = B_TRUE;
833		nvlist_free(config);
834		config = NULL;
835	}
836
837	if (!found_one) {
838		nvlist_free(ret);
839		ret = NULL;
840	}
841
842	return (ret);
843
844nomem:
845	(void) no_memory(hdl);
846error:
847	nvlist_free(config);
848	nvlist_free(ret);
849	for (c = 0; c < children; c++)
850		nvlist_free(child[c]);
851	free(child);
852
853	return (NULL);
854}
855
856/*
857 * Return the offset of the given label.
858 */
859static uint64_t
860label_offset(uint64_t size, int l)
861{
862	ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0);
863	return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
864	    0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
865}
866
867/*
868 * Given a file descriptor, read the label information and return an nvlist
869 * describing the configuration, if there is one.
870 */
871int
872zpool_read_label(int fd, nvlist_t **config)
873{
874	struct stat64 statbuf;
875	int l;
876	vdev_label_t *label;
877	uint64_t state, txg, size;
878
879	*config = NULL;
880
881	if (fstat64(fd, &statbuf) == -1)
882		return (0);
883	size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
884
885	if ((label = malloc(sizeof (vdev_label_t))) == NULL)
886		return (-1);
887
888	for (l = 0; l < VDEV_LABELS; l++) {
889		if (pread64(fd, label, sizeof (vdev_label_t),
890		    label_offset(size, l)) != sizeof (vdev_label_t))
891			continue;
892
893		if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
894		    sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0)
895			continue;
896
897		if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
898		    &state) != 0 || state > POOL_STATE_L2CACHE) {
899			nvlist_free(*config);
900			continue;
901		}
902
903		if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
904		    (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
905		    &txg) != 0 || txg == 0)) {
906			nvlist_free(*config);
907			continue;
908		}
909
910		free(label);
911		return (0);
912	}
913
914	free(label);
915	*config = NULL;
916	return (0);
917}
918
919typedef struct rdsk_node {
920	char *rn_name;
921	int rn_dfd;
922	libzfs_handle_t *rn_hdl;
923	nvlist_t *rn_config;
924	avl_tree_t *rn_avl;
925	avl_node_t rn_node;
926	boolean_t rn_nozpool;
927} rdsk_node_t;
928
929static int
930slice_cache_compare(const void *arg1, const void *arg2)
931{
932	const char  *nm1 = ((rdsk_node_t *)arg1)->rn_name;
933	const char  *nm2 = ((rdsk_node_t *)arg2)->rn_name;
934	char *nm1slice, *nm2slice;
935	int rv;
936
937	/*
938	 * slices zero and two are the most likely to provide results,
939	 * so put those first
940	 */
941	nm1slice = strstr(nm1, "s0");
942	nm2slice = strstr(nm2, "s0");
943	if (nm1slice && !nm2slice) {
944		return (-1);
945	}
946	if (!nm1slice && nm2slice) {
947		return (1);
948	}
949	nm1slice = strstr(nm1, "s2");
950	nm2slice = strstr(nm2, "s2");
951	if (nm1slice && !nm2slice) {
952		return (-1);
953	}
954	if (!nm1slice && nm2slice) {
955		return (1);
956	}
957
958	rv = strcmp(nm1, nm2);
959	if (rv == 0)
960		return (0);
961	return (rv > 0 ? 1 : -1);
962}
963
964#ifdef sun
965static void
966check_one_slice(avl_tree_t *r, char *diskname, uint_t partno,
967    diskaddr_t size, uint_t blksz)
968{
969	rdsk_node_t tmpnode;
970	rdsk_node_t *node;
971	char sname[MAXNAMELEN];
972
973	tmpnode.rn_name = &sname[0];
974	(void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u",
975	    diskname, partno);
976	/*
977	 * protect against division by zero for disk labels that
978	 * contain a bogus sector size
979	 */
980	if (blksz == 0)
981		blksz = DEV_BSIZE;
982	/* too small to contain a zpool? */
983	if ((size < (SPA_MINDEVSIZE / blksz)) &&
984	    (node = avl_find(r, &tmpnode, NULL)))
985		node->rn_nozpool = B_TRUE;
986}
987#endif	/* sun */
988
989static void
990nozpool_all_slices(avl_tree_t *r, const char *sname)
991{
992#ifdef sun
993	char diskname[MAXNAMELEN];
994	char *ptr;
995	int i;
996
997	(void) strncpy(diskname, sname, MAXNAMELEN);
998	if (((ptr = strrchr(diskname, 's')) == NULL) &&
999	    ((ptr = strrchr(diskname, 'p')) == NULL))
1000		return;
1001	ptr[0] = 's';
1002	ptr[1] = '\0';
1003	for (i = 0; i < NDKMAP; i++)
1004		check_one_slice(r, diskname, i, 0, 1);
1005	ptr[0] = 'p';
1006	for (i = 0; i <= FD_NUMPART; i++)
1007		check_one_slice(r, diskname, i, 0, 1);
1008#endif	/* sun */
1009}
1010
1011static void
1012check_slices(avl_tree_t *r, int fd, const char *sname)
1013{
1014#ifdef sun
1015	struct extvtoc vtoc;
1016	struct dk_gpt *gpt;
1017	char diskname[MAXNAMELEN];
1018	char *ptr;
1019	int i;
1020
1021	(void) strncpy(diskname, sname, MAXNAMELEN);
1022	if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1]))
1023		return;
1024	ptr[1] = '\0';
1025
1026	if (read_extvtoc(fd, &vtoc) >= 0) {
1027		for (i = 0; i < NDKMAP; i++)
1028			check_one_slice(r, diskname, i,
1029			    vtoc.v_part[i].p_size, vtoc.v_sectorsz);
1030	} else if (efi_alloc_and_read(fd, &gpt) >= 0) {
1031		/*
1032		 * on x86 we'll still have leftover links that point
1033		 * to slices s[9-15], so use NDKMAP instead
1034		 */
1035		for (i = 0; i < NDKMAP; i++)
1036			check_one_slice(r, diskname, i,
1037			    gpt->efi_parts[i].p_size, gpt->efi_lbasize);
1038		/* nodes p[1-4] are never used with EFI labels */
1039		ptr[0] = 'p';
1040		for (i = 1; i <= FD_NUMPART; i++)
1041			check_one_slice(r, diskname, i, 0, 1);
1042		efi_free(gpt);
1043	}
1044#endif	/* sun */
1045}
1046
1047static void
1048zpool_open_func(void *arg)
1049{
1050	rdsk_node_t *rn = arg;
1051	struct stat64 statbuf;
1052	nvlist_t *config;
1053	int fd;
1054
1055	if (rn->rn_nozpool)
1056		return;
1057	if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) {
1058		/* symlink to a device that's no longer there */
1059		if (errno == ENOENT)
1060			nozpool_all_slices(rn->rn_avl, rn->rn_name);
1061		return;
1062	}
1063	/*
1064	 * Ignore failed stats.  We only want regular
1065	 * files, character devs and block devs.
1066	 */
1067	if (fstat64(fd, &statbuf) != 0 ||
1068	    (!S_ISREG(statbuf.st_mode) &&
1069	    !S_ISCHR(statbuf.st_mode) &&
1070	    !S_ISBLK(statbuf.st_mode))) {
1071		(void) close(fd);
1072		return;
1073	}
1074	/* this file is too small to hold a zpool */
1075	if (S_ISREG(statbuf.st_mode) &&
1076	    statbuf.st_size < SPA_MINDEVSIZE) {
1077		(void) close(fd);
1078		return;
1079	} else if (!S_ISREG(statbuf.st_mode)) {
1080		/*
1081		 * Try to read the disk label first so we don't have to
1082		 * open a bunch of minor nodes that can't have a zpool.
1083		 */
1084		check_slices(rn->rn_avl, fd, rn->rn_name);
1085	}
1086
1087	if ((zpool_read_label(fd, &config)) != 0) {
1088		(void) close(fd);
1089		(void) no_memory(rn->rn_hdl);
1090		return;
1091	}
1092	(void) close(fd);
1093
1094
1095	rn->rn_config = config;
1096	if (config != NULL) {
1097		assert(rn->rn_nozpool == B_FALSE);
1098	}
1099}
1100
1101/*
1102 * Given a file descriptor, clear (zero) the label information.  This function
1103 * is used in the appliance stack as part of the ZFS sysevent module and
1104 * to implement the "zpool labelclear" command.
1105 */
1106int
1107zpool_clear_label(int fd)
1108{
1109	struct stat64 statbuf;
1110	int l;
1111	vdev_label_t *label;
1112	uint64_t size;
1113
1114	if (fstat64(fd, &statbuf) == -1)
1115		return (0);
1116	size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
1117
1118	if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL)
1119		return (-1);
1120
1121	for (l = 0; l < VDEV_LABELS; l++) {
1122		if (pwrite64(fd, label, sizeof (vdev_label_t),
1123		    label_offset(size, l)) != sizeof (vdev_label_t))
1124			return (-1);
1125	}
1126
1127	free(label);
1128	return (0);
1129}
1130
1131/*
1132 * Given a list of directories to search, find all pools stored on disk.  This
1133 * includes partial pools which are not available to import.  If no args are
1134 * given (argc is 0), then the default directory (/dev/dsk) is searched.
1135 * poolname or guid (but not both) are provided by the caller when trying
1136 * to import a specific pool.
1137 */
1138static nvlist_t *
1139zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg)
1140{
1141	int i, dirs = iarg->paths;
1142	DIR *dirp = NULL;
1143	struct dirent64 *dp;
1144	char path[MAXPATHLEN];
1145	char *end, **dir = iarg->path;
1146	size_t pathleft;
1147	nvlist_t *ret = NULL;
1148	static char *default_dir = "/dev";
1149	pool_list_t pools = { 0 };
1150	pool_entry_t *pe, *penext;
1151	vdev_entry_t *ve, *venext;
1152	config_entry_t *ce, *cenext;
1153	name_entry_t *ne, *nenext;
1154	avl_tree_t slice_cache;
1155	rdsk_node_t *slice;
1156	void *cookie;
1157
1158	if (dirs == 0) {
1159		dirs = 1;
1160		dir = &default_dir;
1161	}
1162
1163	/*
1164	 * Go through and read the label configuration information from every
1165	 * possible device, organizing the information according to pool GUID
1166	 * and toplevel GUID.
1167	 */
1168	for (i = 0; i < dirs; i++) {
1169		tpool_t *t;
1170		char *rdsk;
1171		int dfd;
1172
1173		/* use realpath to normalize the path */
1174		if (realpath(dir[i], path) == 0) {
1175			(void) zfs_error_fmt(hdl, EZFS_BADPATH,
1176			    dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]);
1177			goto error;
1178		}
1179		end = &path[strlen(path)];
1180		*end++ = '/';
1181		*end = 0;
1182		pathleft = &path[sizeof (path)] - end;
1183
1184		/*
1185		 * Using raw devices instead of block devices when we're
1186		 * reading the labels skips a bunch of slow operations during
1187		 * close(2) processing, so we replace /dev/dsk with /dev/rdsk.
1188		 */
1189		if (strcmp(path, "/dev/dsk/") == 0)
1190			rdsk = "/dev/";
1191		else
1192			rdsk = path;
1193
1194		if ((dfd = open64(rdsk, O_RDONLY)) < 0 ||
1195		    (dirp = fdopendir(dfd)) == NULL) {
1196			zfs_error_aux(hdl, strerror(errno));
1197			(void) zfs_error_fmt(hdl, EZFS_BADPATH,
1198			    dgettext(TEXT_DOMAIN, "cannot open '%s'"),
1199			    rdsk);
1200			goto error;
1201		}
1202
1203		avl_create(&slice_cache, slice_cache_compare,
1204		    sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node));
1205
1206		if (strcmp(rdsk, "/dev/") == 0) {
1207			struct gmesh mesh;
1208			struct gclass *mp;
1209			struct ggeom *gp;
1210			struct gprovider *pp;
1211
1212			errno = geom_gettree(&mesh);
1213			if (errno != 0) {
1214				zfs_error_aux(hdl, strerror(errno));
1215				(void) zfs_error_fmt(hdl, EZFS_BADPATH,
1216				    dgettext(TEXT_DOMAIN, "cannot get GEOM tree"));
1217				goto error;
1218			}
1219
1220			LIST_FOREACH(mp, &mesh.lg_class, lg_class) {
1221		        	LIST_FOREACH(gp, &mp->lg_geom, lg_geom) {
1222					LIST_FOREACH(pp, &gp->lg_provider, lg_provider) {
1223						slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1224						slice->rn_name = zfs_strdup(hdl, pp->lg_name);
1225						slice->rn_avl = &slice_cache;
1226						slice->rn_dfd = dfd;
1227						slice->rn_hdl = hdl;
1228						slice->rn_nozpool = B_FALSE;
1229						avl_add(&slice_cache, slice);
1230					}
1231				}
1232			}
1233
1234			geom_deletetree(&mesh);
1235			goto skipdir;
1236		}
1237
1238		/*
1239		 * This is not MT-safe, but we have no MT consumers of libzfs
1240		 */
1241		while ((dp = readdir64(dirp)) != NULL) {
1242			const char *name = dp->d_name;
1243			if (name[0] == '.' &&
1244			    (name[1] == 0 || (name[1] == '.' && name[2] == 0)))
1245				continue;
1246
1247			slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1248			slice->rn_name = zfs_strdup(hdl, name);
1249			slice->rn_avl = &slice_cache;
1250			slice->rn_dfd = dfd;
1251			slice->rn_hdl = hdl;
1252			slice->rn_nozpool = B_FALSE;
1253			avl_add(&slice_cache, slice);
1254		}
1255skipdir:
1256		/*
1257		 * create a thread pool to do all of this in parallel;
1258		 * rn_nozpool is not protected, so this is racy in that
1259		 * multiple tasks could decide that the same slice can
1260		 * not hold a zpool, which is benign.  Also choose
1261		 * double the number of processors; we hold a lot of
1262		 * locks in the kernel, so going beyond this doesn't
1263		 * buy us much.
1264		 */
1265		t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN),
1266		    0, NULL);
1267		for (slice = avl_first(&slice_cache); slice;
1268		    (slice = avl_walk(&slice_cache, slice,
1269		    AVL_AFTER)))
1270			(void) tpool_dispatch(t, zpool_open_func, slice);
1271		tpool_wait(t);
1272		tpool_destroy(t);
1273
1274		cookie = NULL;
1275		while ((slice = avl_destroy_nodes(&slice_cache,
1276		    &cookie)) != NULL) {
1277			if (slice->rn_config != NULL) {
1278				nvlist_t *config = slice->rn_config;
1279				boolean_t matched = B_TRUE;
1280
1281				if (iarg->poolname != NULL) {
1282					char *pname;
1283
1284					matched = nvlist_lookup_string(config,
1285					    ZPOOL_CONFIG_POOL_NAME,
1286					    &pname) == 0 &&
1287					    strcmp(iarg->poolname, pname) == 0;
1288				} else if (iarg->guid != 0) {
1289					uint64_t this_guid;
1290
1291					matched = nvlist_lookup_uint64(config,
1292					    ZPOOL_CONFIG_POOL_GUID,
1293					    &this_guid) == 0 &&
1294					    iarg->guid == this_guid;
1295				}
1296				if (!matched) {
1297					nvlist_free(config);
1298					config = NULL;
1299					continue;
1300				}
1301				/* use the non-raw path for the config */
1302				(void) strlcpy(end, slice->rn_name, pathleft);
1303				if (add_config(hdl, &pools, path, config) != 0)
1304					goto error;
1305			}
1306			free(slice->rn_name);
1307			free(slice);
1308		}
1309		avl_destroy(&slice_cache);
1310
1311		(void) closedir(dirp);
1312		dirp = NULL;
1313	}
1314
1315	ret = get_configs(hdl, &pools, iarg->can_be_active);
1316
1317error:
1318	for (pe = pools.pools; pe != NULL; pe = penext) {
1319		penext = pe->pe_next;
1320		for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
1321			venext = ve->ve_next;
1322			for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
1323				cenext = ce->ce_next;
1324				if (ce->ce_config)
1325					nvlist_free(ce->ce_config);
1326				free(ce);
1327			}
1328			free(ve);
1329		}
1330		free(pe);
1331	}
1332
1333	for (ne = pools.names; ne != NULL; ne = nenext) {
1334		nenext = ne->ne_next;
1335		if (ne->ne_name)
1336			free(ne->ne_name);
1337		free(ne);
1338	}
1339
1340	if (dirp)
1341		(void) closedir(dirp);
1342
1343	return (ret);
1344}
1345
1346nvlist_t *
1347zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv)
1348{
1349	importargs_t iarg = { 0 };
1350
1351	iarg.paths = argc;
1352	iarg.path = argv;
1353
1354	return (zpool_find_import_impl(hdl, &iarg));
1355}
1356
1357/*
1358 * Given a cache file, return the contents as a list of importable pools.
1359 * poolname or guid (but not both) are provided by the caller when trying
1360 * to import a specific pool.
1361 */
1362nvlist_t *
1363zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile,
1364    char *poolname, uint64_t guid)
1365{
1366	char *buf;
1367	int fd;
1368	struct stat64 statbuf;
1369	nvlist_t *raw, *src, *dst;
1370	nvlist_t *pools;
1371	nvpair_t *elem;
1372	char *name;
1373	uint64_t this_guid;
1374	boolean_t active;
1375
1376	verify(poolname == NULL || guid == 0);
1377
1378	if ((fd = open(cachefile, O_RDONLY)) < 0) {
1379		zfs_error_aux(hdl, "%s", strerror(errno));
1380		(void) zfs_error(hdl, EZFS_BADCACHE,
1381		    dgettext(TEXT_DOMAIN, "failed to open cache file"));
1382		return (NULL);
1383	}
1384
1385	if (fstat64(fd, &statbuf) != 0) {
1386		zfs_error_aux(hdl, "%s", strerror(errno));
1387		(void) close(fd);
1388		(void) zfs_error(hdl, EZFS_BADCACHE,
1389		    dgettext(TEXT_DOMAIN, "failed to get size of cache file"));
1390		return (NULL);
1391	}
1392
1393	if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) {
1394		(void) close(fd);
1395		return (NULL);
1396	}
1397
1398	if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
1399		(void) close(fd);
1400		free(buf);
1401		(void) zfs_error(hdl, EZFS_BADCACHE,
1402		    dgettext(TEXT_DOMAIN,
1403		    "failed to read cache file contents"));
1404		return (NULL);
1405	}
1406
1407	(void) close(fd);
1408
1409	if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
1410		free(buf);
1411		(void) zfs_error(hdl, EZFS_BADCACHE,
1412		    dgettext(TEXT_DOMAIN,
1413		    "invalid or corrupt cache file contents"));
1414		return (NULL);
1415	}
1416
1417	free(buf);
1418
1419	/*
1420	 * Go through and get the current state of the pools and refresh their
1421	 * state.
1422	 */
1423	if (nvlist_alloc(&pools, 0, 0) != 0) {
1424		(void) no_memory(hdl);
1425		nvlist_free(raw);
1426		return (NULL);
1427	}
1428
1429	elem = NULL;
1430	while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
1431		verify(nvpair_value_nvlist(elem, &src) == 0);
1432
1433		verify(nvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME,
1434		    &name) == 0);
1435		if (poolname != NULL && strcmp(poolname, name) != 0)
1436			continue;
1437
1438		verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID,
1439		    &this_guid) == 0);
1440		if (guid != 0) {
1441			verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID,
1442			    &this_guid) == 0);
1443			if (guid != this_guid)
1444				continue;
1445		}
1446
1447		if (pool_active(hdl, name, this_guid, &active) != 0) {
1448			nvlist_free(raw);
1449			nvlist_free(pools);
1450			return (NULL);
1451		}
1452
1453		if (active)
1454			continue;
1455
1456		if ((dst = refresh_config(hdl, src)) == NULL) {
1457			nvlist_free(raw);
1458			nvlist_free(pools);
1459			return (NULL);
1460		}
1461
1462		if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) {
1463			(void) no_memory(hdl);
1464			nvlist_free(dst);
1465			nvlist_free(raw);
1466			nvlist_free(pools);
1467			return (NULL);
1468		}
1469		nvlist_free(dst);
1470	}
1471
1472	nvlist_free(raw);
1473	return (pools);
1474}
1475
1476static int
1477name_or_guid_exists(zpool_handle_t *zhp, void *data)
1478{
1479	importargs_t *import = data;
1480	int found = 0;
1481
1482	if (import->poolname != NULL) {
1483		char *pool_name;
1484
1485		verify(nvlist_lookup_string(zhp->zpool_config,
1486		    ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0);
1487		if (strcmp(pool_name, import->poolname) == 0)
1488			found = 1;
1489	} else {
1490		uint64_t pool_guid;
1491
1492		verify(nvlist_lookup_uint64(zhp->zpool_config,
1493		    ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0);
1494		if (pool_guid == import->guid)
1495			found = 1;
1496	}
1497
1498	zpool_close(zhp);
1499	return (found);
1500}
1501
1502nvlist_t *
1503zpool_search_import(libzfs_handle_t *hdl, importargs_t *import)
1504{
1505	verify(import->poolname == NULL || import->guid == 0);
1506
1507	if (import->unique)
1508		import->exists = zpool_iter(hdl, name_or_guid_exists, import);
1509
1510	if (import->cachefile != NULL)
1511		return (zpool_find_import_cached(hdl, import->cachefile,
1512		    import->poolname, import->guid));
1513
1514	return (zpool_find_import_impl(hdl, import));
1515}
1516
1517boolean_t
1518find_guid(nvlist_t *nv, uint64_t guid)
1519{
1520	uint64_t tmp;
1521	nvlist_t **child;
1522	uint_t c, children;
1523
1524	verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0);
1525	if (tmp == guid)
1526		return (B_TRUE);
1527
1528	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1529	    &child, &children) == 0) {
1530		for (c = 0; c < children; c++)
1531			if (find_guid(child[c], guid))
1532				return (B_TRUE);
1533	}
1534
1535	return (B_FALSE);
1536}
1537
1538typedef struct aux_cbdata {
1539	const char	*cb_type;
1540	uint64_t	cb_guid;
1541	zpool_handle_t	*cb_zhp;
1542} aux_cbdata_t;
1543
1544static int
1545find_aux(zpool_handle_t *zhp, void *data)
1546{
1547	aux_cbdata_t *cbp = data;
1548	nvlist_t **list;
1549	uint_t i, count;
1550	uint64_t guid;
1551	nvlist_t *nvroot;
1552
1553	verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE,
1554	    &nvroot) == 0);
1555
1556	if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type,
1557	    &list, &count) == 0) {
1558		for (i = 0; i < count; i++) {
1559			verify(nvlist_lookup_uint64(list[i],
1560			    ZPOOL_CONFIG_GUID, &guid) == 0);
1561			if (guid == cbp->cb_guid) {
1562				cbp->cb_zhp = zhp;
1563				return (1);
1564			}
1565		}
1566	}
1567
1568	zpool_close(zhp);
1569	return (0);
1570}
1571
1572/*
1573 * Determines if the pool is in use.  If so, it returns true and the state of
1574 * the pool as well as the name of the pool.  Both strings are allocated and
1575 * must be freed by the caller.
1576 */
1577int
1578zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr,
1579    boolean_t *inuse)
1580{
1581	nvlist_t *config;
1582	char *name;
1583	boolean_t ret;
1584	uint64_t guid, vdev_guid;
1585	zpool_handle_t *zhp;
1586	nvlist_t *pool_config;
1587	uint64_t stateval, isspare;
1588	aux_cbdata_t cb = { 0 };
1589	boolean_t isactive;
1590
1591	*inuse = B_FALSE;
1592
1593	if (zpool_read_label(fd, &config) != 0) {
1594		(void) no_memory(hdl);
1595		return (-1);
1596	}
1597
1598	if (config == NULL)
1599		return (0);
1600
1601	verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1602	    &stateval) == 0);
1603	verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
1604	    &vdev_guid) == 0);
1605
1606	if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) {
1607		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
1608		    &name) == 0);
1609		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
1610		    &guid) == 0);
1611	}
1612
1613	switch (stateval) {
1614	case POOL_STATE_EXPORTED:
1615		/*
1616		 * A pool with an exported state may in fact be imported
1617		 * read-only, so check the in-core state to see if it's
1618		 * active and imported read-only.  If it is, set
1619		 * its state to active.
1620		 */
1621		if (pool_active(hdl, name, guid, &isactive) == 0 && isactive &&
1622		    (zhp = zpool_open_canfail(hdl, name)) != NULL &&
1623		    zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL))
1624			stateval = POOL_STATE_ACTIVE;
1625
1626		ret = B_TRUE;
1627		break;
1628
1629	case POOL_STATE_ACTIVE:
1630		/*
1631		 * For an active pool, we have to determine if it's really part
1632		 * of a currently active pool (in which case the pool will exist
1633		 * and the guid will be the same), or whether it's part of an
1634		 * active pool that was disconnected without being explicitly
1635		 * exported.
1636		 */
1637		if (pool_active(hdl, name, guid, &isactive) != 0) {
1638			nvlist_free(config);
1639			return (-1);
1640		}
1641
1642		if (isactive) {
1643			/*
1644			 * Because the device may have been removed while
1645			 * offlined, we only report it as active if the vdev is
1646			 * still present in the config.  Otherwise, pretend like
1647			 * it's not in use.
1648			 */
1649			if ((zhp = zpool_open_canfail(hdl, name)) != NULL &&
1650			    (pool_config = zpool_get_config(zhp, NULL))
1651			    != NULL) {
1652				nvlist_t *nvroot;
1653
1654				verify(nvlist_lookup_nvlist(pool_config,
1655				    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1656				ret = find_guid(nvroot, vdev_guid);
1657			} else {
1658				ret = B_FALSE;
1659			}
1660
1661			/*
1662			 * If this is an active spare within another pool, we
1663			 * treat it like an unused hot spare.  This allows the
1664			 * user to create a pool with a hot spare that currently
1665			 * in use within another pool.  Since we return B_TRUE,
1666			 * libdiskmgt will continue to prevent generic consumers
1667			 * from using the device.
1668			 */
1669			if (ret && nvlist_lookup_uint64(config,
1670			    ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
1671				stateval = POOL_STATE_SPARE;
1672
1673			if (zhp != NULL)
1674				zpool_close(zhp);
1675		} else {
1676			stateval = POOL_STATE_POTENTIALLY_ACTIVE;
1677			ret = B_TRUE;
1678		}
1679		break;
1680
1681	case POOL_STATE_SPARE:
1682		/*
1683		 * For a hot spare, it can be either definitively in use, or
1684		 * potentially active.  To determine if it's in use, we iterate
1685		 * over all pools in the system and search for one with a spare
1686		 * with a matching guid.
1687		 *
1688		 * Due to the shared nature of spares, we don't actually report
1689		 * the potentially active case as in use.  This means the user
1690		 * can freely create pools on the hot spares of exported pools,
1691		 * but to do otherwise makes the resulting code complicated, and
1692		 * we end up having to deal with this case anyway.
1693		 */
1694		cb.cb_zhp = NULL;
1695		cb.cb_guid = vdev_guid;
1696		cb.cb_type = ZPOOL_CONFIG_SPARES;
1697		if (zpool_iter(hdl, find_aux, &cb) == 1) {
1698			name = (char *)zpool_get_name(cb.cb_zhp);
1699			ret = TRUE;
1700		} else {
1701			ret = FALSE;
1702		}
1703		break;
1704
1705	case POOL_STATE_L2CACHE:
1706
1707		/*
1708		 * Check if any pool is currently using this l2cache device.
1709		 */
1710		cb.cb_zhp = NULL;
1711		cb.cb_guid = vdev_guid;
1712		cb.cb_type = ZPOOL_CONFIG_L2CACHE;
1713		if (zpool_iter(hdl, find_aux, &cb) == 1) {
1714			name = (char *)zpool_get_name(cb.cb_zhp);
1715			ret = TRUE;
1716		} else {
1717			ret = FALSE;
1718		}
1719		break;
1720
1721	default:
1722		ret = B_FALSE;
1723	}
1724
1725
1726	if (ret) {
1727		if ((*namestr = zfs_strdup(hdl, name)) == NULL) {
1728			if (cb.cb_zhp)
1729				zpool_close(cb.cb_zhp);
1730			nvlist_free(config);
1731			return (-1);
1732		}
1733		*state = (pool_state_t)stateval;
1734	}
1735
1736	if (cb.cb_zhp)
1737		zpool_close(cb.cb_zhp);
1738
1739	nvlist_free(config);
1740	*inuse = ret;
1741	return (0);
1742}
1743