libzfs_import.c revision 219089
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25/*
26 * Pool import support functions.
27 *
28 * To import a pool, we rely on reading the configuration information from the
29 * ZFS label of each device.  If we successfully read the label, then we
30 * organize the configuration information in the following hierarchy:
31 *
32 * 	pool guid -> toplevel vdev guid -> label txg
33 *
34 * Duplicate entries matching this same tuple will be discarded.  Once we have
35 * examined every device, we pick the best label txg config for each toplevel
36 * vdev.  We then arrange these toplevel vdevs into a complete pool config, and
37 * update any paths that have changed.  Finally, we attempt to import the pool
38 * using our derived config, and record the results.
39 */
40
41#include <ctype.h>
42#include <devid.h>
43#include <dirent.h>
44#include <errno.h>
45#include <libintl.h>
46#include <stddef.h>
47#include <stdlib.h>
48#include <string.h>
49#include <sys/stat.h>
50#include <unistd.h>
51#include <fcntl.h>
52#include <thread_pool.h>
53#include <libgeom.h>
54
55#include <sys/vdev_impl.h>
56
57#include "libzfs.h"
58#include "libzfs_impl.h"
59
60/*
61 * Intermediate structures used to gather configuration information.
62 */
63typedef struct config_entry {
64	uint64_t		ce_txg;
65	nvlist_t		*ce_config;
66	struct config_entry	*ce_next;
67} config_entry_t;
68
69typedef struct vdev_entry {
70	uint64_t		ve_guid;
71	config_entry_t		*ve_configs;
72	struct vdev_entry	*ve_next;
73} vdev_entry_t;
74
75typedef struct pool_entry {
76	uint64_t		pe_guid;
77	vdev_entry_t		*pe_vdevs;
78	struct pool_entry	*pe_next;
79} pool_entry_t;
80
81typedef struct name_entry {
82	char			*ne_name;
83	uint64_t		ne_guid;
84	struct name_entry	*ne_next;
85} name_entry_t;
86
87typedef struct pool_list {
88	pool_entry_t		*pools;
89	name_entry_t		*names;
90} pool_list_t;
91
92static char *
93get_devid(const char *path)
94{
95	int fd;
96	ddi_devid_t devid;
97	char *minor, *ret;
98
99	if ((fd = open(path, O_RDONLY)) < 0)
100		return (NULL);
101
102	minor = NULL;
103	ret = NULL;
104	if (devid_get(fd, &devid) == 0) {
105		if (devid_get_minor_name(fd, &minor) == 0)
106			ret = devid_str_encode(devid, minor);
107		if (minor != NULL)
108			devid_str_free(minor);
109		devid_free(devid);
110	}
111	(void) close(fd);
112
113	return (ret);
114}
115
116
117/*
118 * Go through and fix up any path and/or devid information for the given vdev
119 * configuration.
120 */
121static int
122fix_paths(nvlist_t *nv, name_entry_t *names)
123{
124	nvlist_t **child;
125	uint_t c, children;
126	uint64_t guid;
127	name_entry_t *ne, *best;
128	char *path, *devid;
129	int matched;
130
131	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
132	    &child, &children) == 0) {
133		for (c = 0; c < children; c++)
134			if (fix_paths(child[c], names) != 0)
135				return (-1);
136		return (0);
137	}
138
139	/*
140	 * This is a leaf (file or disk) vdev.  In either case, go through
141	 * the name list and see if we find a matching guid.  If so, replace
142	 * the path and see if we can calculate a new devid.
143	 *
144	 * There may be multiple names associated with a particular guid, in
145	 * which case we have overlapping slices or multiple paths to the same
146	 * disk.  If this is the case, then we want to pick the path that is
147	 * the most similar to the original, where "most similar" is the number
148	 * of matching characters starting from the end of the path.  This will
149	 * preserve slice numbers even if the disks have been reorganized, and
150	 * will also catch preferred disk names if multiple paths exist.
151	 */
152	verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
153	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
154		path = NULL;
155
156	matched = 0;
157	best = NULL;
158	for (ne = names; ne != NULL; ne = ne->ne_next) {
159		if (ne->ne_guid == guid) {
160			const char *src, *dst;
161			int count;
162
163			if (path == NULL) {
164				best = ne;
165				break;
166			}
167
168			src = ne->ne_name + strlen(ne->ne_name) - 1;
169			dst = path + strlen(path) - 1;
170			for (count = 0; src >= ne->ne_name && dst >= path;
171			    src--, dst--, count++)
172				if (*src != *dst)
173					break;
174
175			/*
176			 * At this point, 'count' is the number of characters
177			 * matched from the end.
178			 */
179			if (count > matched || best == NULL) {
180				best = ne;
181				matched = count;
182			}
183		}
184	}
185
186	if (best == NULL)
187		return (0);
188
189	if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
190		return (-1);
191
192	if ((devid = get_devid(best->ne_name)) == NULL) {
193		(void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
194	} else {
195		if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0)
196			return (-1);
197		devid_str_free(devid);
198	}
199
200	return (0);
201}
202
203/*
204 * Add the given configuration to the list of known devices.
205 */
206static int
207add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path,
208    nvlist_t *config)
209{
210	uint64_t pool_guid, vdev_guid, top_guid, txg, state;
211	pool_entry_t *pe;
212	vdev_entry_t *ve;
213	config_entry_t *ce;
214	name_entry_t *ne;
215
216	/*
217	 * If this is a hot spare not currently in use or level 2 cache
218	 * device, add it to the list of names to translate, but don't do
219	 * anything else.
220	 */
221	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
222	    &state) == 0 &&
223	    (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
224	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
225		if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
226			return (-1);
227
228		if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
229			free(ne);
230			return (-1);
231		}
232		ne->ne_guid = vdev_guid;
233		ne->ne_next = pl->names;
234		pl->names = ne;
235		return (0);
236	}
237
238	/*
239	 * If we have a valid config but cannot read any of these fields, then
240	 * it means we have a half-initialized label.  In vdev_label_init()
241	 * we write a label with txg == 0 so that we can identify the device
242	 * in case the user refers to the same disk later on.  If we fail to
243	 * create the pool, we'll be left with a label in this state
244	 * which should not be considered part of a valid pool.
245	 */
246	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
247	    &pool_guid) != 0 ||
248	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
249	    &vdev_guid) != 0 ||
250	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
251	    &top_guid) != 0 ||
252	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
253	    &txg) != 0 || txg == 0) {
254		nvlist_free(config);
255		return (0);
256	}
257
258	/*
259	 * First, see if we know about this pool.  If not, then add it to the
260	 * list of known pools.
261	 */
262	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
263		if (pe->pe_guid == pool_guid)
264			break;
265	}
266
267	if (pe == NULL) {
268		if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
269			nvlist_free(config);
270			return (-1);
271		}
272		pe->pe_guid = pool_guid;
273		pe->pe_next = pl->pools;
274		pl->pools = pe;
275	}
276
277	/*
278	 * Second, see if we know about this toplevel vdev.  Add it if its
279	 * missing.
280	 */
281	for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
282		if (ve->ve_guid == top_guid)
283			break;
284	}
285
286	if (ve == NULL) {
287		if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
288			nvlist_free(config);
289			return (-1);
290		}
291		ve->ve_guid = top_guid;
292		ve->ve_next = pe->pe_vdevs;
293		pe->pe_vdevs = ve;
294	}
295
296	/*
297	 * Third, see if we have a config with a matching transaction group.  If
298	 * so, then we do nothing.  Otherwise, add it to the list of known
299	 * configs.
300	 */
301	for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
302		if (ce->ce_txg == txg)
303			break;
304	}
305
306	if (ce == NULL) {
307		if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) {
308			nvlist_free(config);
309			return (-1);
310		}
311		ce->ce_txg = txg;
312		ce->ce_config = config;
313		ce->ce_next = ve->ve_configs;
314		ve->ve_configs = ce;
315	} else {
316		nvlist_free(config);
317	}
318
319	/*
320	 * At this point we've successfully added our config to the list of
321	 * known configs.  The last thing to do is add the vdev guid -> path
322	 * mappings so that we can fix up the configuration as necessary before
323	 * doing the import.
324	 */
325	if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
326		return (-1);
327
328	if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
329		free(ne);
330		return (-1);
331	}
332
333	ne->ne_guid = vdev_guid;
334	ne->ne_next = pl->names;
335	pl->names = ne;
336
337	return (0);
338}
339
340/*
341 * Returns true if the named pool matches the given GUID.
342 */
343static int
344pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid,
345    boolean_t *isactive)
346{
347	zpool_handle_t *zhp;
348	uint64_t theguid;
349
350	if (zpool_open_silent(hdl, name, &zhp) != 0)
351		return (-1);
352
353	if (zhp == NULL) {
354		*isactive = B_FALSE;
355		return (0);
356	}
357
358	verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID,
359	    &theguid) == 0);
360
361	zpool_close(zhp);
362
363	*isactive = (theguid == guid);
364	return (0);
365}
366
367static nvlist_t *
368refresh_config(libzfs_handle_t *hdl, nvlist_t *config)
369{
370	nvlist_t *nvl;
371	zfs_cmd_t zc = { 0 };
372	int err;
373
374	if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0)
375		return (NULL);
376
377	if (zcmd_alloc_dst_nvlist(hdl, &zc,
378	    zc.zc_nvlist_conf_size * 2) != 0) {
379		zcmd_free_nvlists(&zc);
380		return (NULL);
381	}
382
383	while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT,
384	    &zc)) != 0 && errno == ENOMEM) {
385		if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) {
386			zcmd_free_nvlists(&zc);
387			return (NULL);
388		}
389	}
390
391	if (err) {
392		zcmd_free_nvlists(&zc);
393		return (NULL);
394	}
395
396	if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) {
397		zcmd_free_nvlists(&zc);
398		return (NULL);
399	}
400
401	zcmd_free_nvlists(&zc);
402	return (nvl);
403}
404
405/*
406 * Determine if the vdev id is a hole in the namespace.
407 */
408boolean_t
409vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id)
410{
411	for (int c = 0; c < holes; c++) {
412
413		/* Top-level is a hole */
414		if (hole_array[c] == id)
415			return (B_TRUE);
416	}
417	return (B_FALSE);
418}
419
420/*
421 * Convert our list of pools into the definitive set of configurations.  We
422 * start by picking the best config for each toplevel vdev.  Once that's done,
423 * we assemble the toplevel vdevs into a full config for the pool.  We make a
424 * pass to fix up any incorrect paths, and then add it to the main list to
425 * return to the user.
426 */
427static nvlist_t *
428get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok)
429{
430	pool_entry_t *pe;
431	vdev_entry_t *ve;
432	config_entry_t *ce;
433	nvlist_t *ret = NULL, *config = NULL, *tmp, *nvtop, *nvroot;
434	nvlist_t **spares, **l2cache;
435	uint_t i, nspares, nl2cache;
436	boolean_t config_seen;
437	uint64_t best_txg;
438	char *name, *hostname;
439	uint64_t version, guid;
440	uint_t children = 0;
441	nvlist_t **child = NULL;
442	uint_t holes;
443	uint64_t *hole_array, max_id;
444	uint_t c;
445	boolean_t isactive;
446	uint64_t hostid;
447	nvlist_t *nvl;
448	boolean_t found_one = B_FALSE;
449	boolean_t valid_top_config = B_FALSE;
450
451	if (nvlist_alloc(&ret, 0, 0) != 0)
452		goto nomem;
453
454	for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
455		uint64_t id, max_txg = 0;
456
457		if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
458			goto nomem;
459		config_seen = B_FALSE;
460
461		/*
462		 * Iterate over all toplevel vdevs.  Grab the pool configuration
463		 * from the first one we find, and then go through the rest and
464		 * add them as necessary to the 'vdevs' member of the config.
465		 */
466		for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
467
468			/*
469			 * Determine the best configuration for this vdev by
470			 * selecting the config with the latest transaction
471			 * group.
472			 */
473			best_txg = 0;
474			for (ce = ve->ve_configs; ce != NULL;
475			    ce = ce->ce_next) {
476
477				if (ce->ce_txg > best_txg) {
478					tmp = ce->ce_config;
479					best_txg = ce->ce_txg;
480				}
481			}
482
483			/*
484			 * We rely on the fact that the max txg for the
485			 * pool will contain the most up-to-date information
486			 * about the valid top-levels in the vdev namespace.
487			 */
488			if (best_txg > max_txg) {
489				(void) nvlist_remove(config,
490				    ZPOOL_CONFIG_VDEV_CHILDREN,
491				    DATA_TYPE_UINT64);
492				(void) nvlist_remove(config,
493				    ZPOOL_CONFIG_HOLE_ARRAY,
494				    DATA_TYPE_UINT64_ARRAY);
495
496				max_txg = best_txg;
497				hole_array = NULL;
498				holes = 0;
499				max_id = 0;
500				valid_top_config = B_FALSE;
501
502				if (nvlist_lookup_uint64(tmp,
503				    ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) {
504					verify(nvlist_add_uint64(config,
505					    ZPOOL_CONFIG_VDEV_CHILDREN,
506					    max_id) == 0);
507					valid_top_config = B_TRUE;
508				}
509
510				if (nvlist_lookup_uint64_array(tmp,
511				    ZPOOL_CONFIG_HOLE_ARRAY, &hole_array,
512				    &holes) == 0) {
513					verify(nvlist_add_uint64_array(config,
514					    ZPOOL_CONFIG_HOLE_ARRAY,
515					    hole_array, holes) == 0);
516				}
517			}
518
519			if (!config_seen) {
520				/*
521				 * Copy the relevant pieces of data to the pool
522				 * configuration:
523				 *
524				 *	version
525				 * 	pool guid
526				 * 	name
527				 * 	pool state
528				 *	hostid (if available)
529				 *	hostname (if available)
530				 */
531				uint64_t state;
532
533				verify(nvlist_lookup_uint64(tmp,
534				    ZPOOL_CONFIG_VERSION, &version) == 0);
535				if (nvlist_add_uint64(config,
536				    ZPOOL_CONFIG_VERSION, version) != 0)
537					goto nomem;
538				verify(nvlist_lookup_uint64(tmp,
539				    ZPOOL_CONFIG_POOL_GUID, &guid) == 0);
540				if (nvlist_add_uint64(config,
541				    ZPOOL_CONFIG_POOL_GUID, guid) != 0)
542					goto nomem;
543				verify(nvlist_lookup_string(tmp,
544				    ZPOOL_CONFIG_POOL_NAME, &name) == 0);
545				if (nvlist_add_string(config,
546				    ZPOOL_CONFIG_POOL_NAME, name) != 0)
547					goto nomem;
548				verify(nvlist_lookup_uint64(tmp,
549				    ZPOOL_CONFIG_POOL_STATE, &state) == 0);
550				if (nvlist_add_uint64(config,
551				    ZPOOL_CONFIG_POOL_STATE, state) != 0)
552					goto nomem;
553				hostid = 0;
554				if (nvlist_lookup_uint64(tmp,
555				    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
556					if (nvlist_add_uint64(config,
557					    ZPOOL_CONFIG_HOSTID, hostid) != 0)
558						goto nomem;
559					verify(nvlist_lookup_string(tmp,
560					    ZPOOL_CONFIG_HOSTNAME,
561					    &hostname) == 0);
562					if (nvlist_add_string(config,
563					    ZPOOL_CONFIG_HOSTNAME,
564					    hostname) != 0)
565						goto nomem;
566				}
567
568				config_seen = B_TRUE;
569			}
570
571			/*
572			 * Add this top-level vdev to the child array.
573			 */
574			verify(nvlist_lookup_nvlist(tmp,
575			    ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
576			verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
577			    &id) == 0);
578
579			if (id >= children) {
580				nvlist_t **newchild;
581
582				newchild = zfs_alloc(hdl, (id + 1) *
583				    sizeof (nvlist_t *));
584				if (newchild == NULL)
585					goto nomem;
586
587				for (c = 0; c < children; c++)
588					newchild[c] = child[c];
589
590				free(child);
591				child = newchild;
592				children = id + 1;
593			}
594			if (nvlist_dup(nvtop, &child[id], 0) != 0)
595				goto nomem;
596
597		}
598
599		/*
600		 * If we have information about all the top-levels then
601		 * clean up the nvlist which we've constructed. This
602		 * means removing any extraneous devices that are
603		 * beyond the valid range or adding devices to the end
604		 * of our array which appear to be missing.
605		 */
606		if (valid_top_config) {
607			if (max_id < children) {
608				for (c = max_id; c < children; c++)
609					nvlist_free(child[c]);
610				children = max_id;
611			} else if (max_id > children) {
612				nvlist_t **newchild;
613
614				newchild = zfs_alloc(hdl, (max_id) *
615				    sizeof (nvlist_t *));
616				if (newchild == NULL)
617					goto nomem;
618
619				for (c = 0; c < children; c++)
620					newchild[c] = child[c];
621
622				free(child);
623				child = newchild;
624				children = max_id;
625			}
626		}
627
628		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
629		    &guid) == 0);
630
631		/*
632		 * The vdev namespace may contain holes as a result of
633		 * device removal. We must add them back into the vdev
634		 * tree before we process any missing devices.
635		 */
636		if (holes > 0) {
637			ASSERT(valid_top_config);
638
639			for (c = 0; c < children; c++) {
640				nvlist_t *holey;
641
642				if (child[c] != NULL ||
643				    !vdev_is_hole(hole_array, holes, c))
644					continue;
645
646				if (nvlist_alloc(&holey, NV_UNIQUE_NAME,
647				    0) != 0)
648					goto nomem;
649
650				/*
651				 * Holes in the namespace are treated as
652				 * "hole" top-level vdevs and have a
653				 * special flag set on them.
654				 */
655				if (nvlist_add_string(holey,
656				    ZPOOL_CONFIG_TYPE,
657				    VDEV_TYPE_HOLE) != 0 ||
658				    nvlist_add_uint64(holey,
659				    ZPOOL_CONFIG_ID, c) != 0 ||
660				    nvlist_add_uint64(holey,
661				    ZPOOL_CONFIG_GUID, 0ULL) != 0)
662					goto nomem;
663				child[c] = holey;
664			}
665		}
666
667		/*
668		 * Look for any missing top-level vdevs.  If this is the case,
669		 * create a faked up 'missing' vdev as a placeholder.  We cannot
670		 * simply compress the child array, because the kernel performs
671		 * certain checks to make sure the vdev IDs match their location
672		 * in the configuration.
673		 */
674		for (c = 0; c < children; c++) {
675			if (child[c] == NULL) {
676				nvlist_t *missing;
677				if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
678				    0) != 0)
679					goto nomem;
680				if (nvlist_add_string(missing,
681				    ZPOOL_CONFIG_TYPE,
682				    VDEV_TYPE_MISSING) != 0 ||
683				    nvlist_add_uint64(missing,
684				    ZPOOL_CONFIG_ID, c) != 0 ||
685				    nvlist_add_uint64(missing,
686				    ZPOOL_CONFIG_GUID, 0ULL) != 0) {
687					nvlist_free(missing);
688					goto nomem;
689				}
690				child[c] = missing;
691			}
692		}
693
694		/*
695		 * Put all of this pool's top-level vdevs into a root vdev.
696		 */
697		if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
698			goto nomem;
699		if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
700		    VDEV_TYPE_ROOT) != 0 ||
701		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
702		    nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
703		    nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
704		    child, children) != 0) {
705			nvlist_free(nvroot);
706			goto nomem;
707		}
708
709		for (c = 0; c < children; c++)
710			nvlist_free(child[c]);
711		free(child);
712		children = 0;
713		child = NULL;
714
715		/*
716		 * Go through and fix up any paths and/or devids based on our
717		 * known list of vdev GUID -> path mappings.
718		 */
719		if (fix_paths(nvroot, pl->names) != 0) {
720			nvlist_free(nvroot);
721			goto nomem;
722		}
723
724		/*
725		 * Add the root vdev to this pool's configuration.
726		 */
727		if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
728		    nvroot) != 0) {
729			nvlist_free(nvroot);
730			goto nomem;
731		}
732		nvlist_free(nvroot);
733
734		/*
735		 * zdb uses this path to report on active pools that were
736		 * imported or created using -R.
737		 */
738		if (active_ok)
739			goto add_pool;
740
741		/*
742		 * Determine if this pool is currently active, in which case we
743		 * can't actually import it.
744		 */
745		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
746		    &name) == 0);
747		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
748		    &guid) == 0);
749
750		if (pool_active(hdl, name, guid, &isactive) != 0)
751			goto error;
752
753		if (isactive) {
754			nvlist_free(config);
755			config = NULL;
756			continue;
757		}
758
759		if ((nvl = refresh_config(hdl, config)) == NULL) {
760			nvlist_free(config);
761			config = NULL;
762			continue;
763		}
764
765		nvlist_free(config);
766		config = nvl;
767
768		/*
769		 * Go through and update the paths for spares, now that we have
770		 * them.
771		 */
772		verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
773		    &nvroot) == 0);
774		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
775		    &spares, &nspares) == 0) {
776			for (i = 0; i < nspares; i++) {
777				if (fix_paths(spares[i], pl->names) != 0)
778					goto nomem;
779			}
780		}
781
782		/*
783		 * Update the paths for l2cache devices.
784		 */
785		if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
786		    &l2cache, &nl2cache) == 0) {
787			for (i = 0; i < nl2cache; i++) {
788				if (fix_paths(l2cache[i], pl->names) != 0)
789					goto nomem;
790			}
791		}
792
793		/*
794		 * Restore the original information read from the actual label.
795		 */
796		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
797		    DATA_TYPE_UINT64);
798		(void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
799		    DATA_TYPE_STRING);
800		if (hostid != 0) {
801			verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
802			    hostid) == 0);
803			verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
804			    hostname) == 0);
805		}
806
807add_pool:
808		/*
809		 * Add this pool to the list of configs.
810		 */
811		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
812		    &name) == 0);
813		if (nvlist_add_nvlist(ret, name, config) != 0)
814			goto nomem;
815
816		found_one = B_TRUE;
817		nvlist_free(config);
818		config = NULL;
819	}
820
821	if (!found_one) {
822		nvlist_free(ret);
823		ret = NULL;
824	}
825
826	return (ret);
827
828nomem:
829	(void) no_memory(hdl);
830error:
831	nvlist_free(config);
832	nvlist_free(ret);
833	for (c = 0; c < children; c++)
834		nvlist_free(child[c]);
835	free(child);
836
837	return (NULL);
838}
839
840/*
841 * Return the offset of the given label.
842 */
843static uint64_t
844label_offset(uint64_t size, int l)
845{
846	ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0);
847	return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
848	    0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
849}
850
851/*
852 * Given a file descriptor, read the label information and return an nvlist
853 * describing the configuration, if there is one.
854 */
855int
856zpool_read_label(int fd, nvlist_t **config)
857{
858	struct stat64 statbuf;
859	int l;
860	vdev_label_t *label;
861	uint64_t state, txg, size;
862
863	*config = NULL;
864
865	if (fstat64(fd, &statbuf) == -1)
866		return (0);
867	size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
868
869	if ((label = malloc(sizeof (vdev_label_t))) == NULL)
870		return (-1);
871
872	for (l = 0; l < VDEV_LABELS; l++) {
873		if (pread64(fd, label, sizeof (vdev_label_t),
874		    label_offset(size, l)) != sizeof (vdev_label_t))
875			continue;
876
877		if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
878		    sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0)
879			continue;
880
881		if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
882		    &state) != 0 || state > POOL_STATE_L2CACHE) {
883			nvlist_free(*config);
884			continue;
885		}
886
887		if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
888		    (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
889		    &txg) != 0 || txg == 0)) {
890			nvlist_free(*config);
891			continue;
892		}
893
894		free(label);
895		return (0);
896	}
897
898	free(label);
899	*config = NULL;
900	return (0);
901}
902
903typedef struct rdsk_node {
904	char *rn_name;
905	int rn_dfd;
906	libzfs_handle_t *rn_hdl;
907	nvlist_t *rn_config;
908	avl_tree_t *rn_avl;
909	avl_node_t rn_node;
910	boolean_t rn_nozpool;
911} rdsk_node_t;
912
913static int
914slice_cache_compare(const void *arg1, const void *arg2)
915{
916	const char  *nm1 = ((rdsk_node_t *)arg1)->rn_name;
917	const char  *nm2 = ((rdsk_node_t *)arg2)->rn_name;
918	char *nm1slice, *nm2slice;
919	int rv;
920
921	/*
922	 * slices zero and two are the most likely to provide results,
923	 * so put those first
924	 */
925	nm1slice = strstr(nm1, "s0");
926	nm2slice = strstr(nm2, "s0");
927	if (nm1slice && !nm2slice) {
928		return (-1);
929	}
930	if (!nm1slice && nm2slice) {
931		return (1);
932	}
933	nm1slice = strstr(nm1, "s2");
934	nm2slice = strstr(nm2, "s2");
935	if (nm1slice && !nm2slice) {
936		return (-1);
937	}
938	if (!nm1slice && nm2slice) {
939		return (1);
940	}
941
942	rv = strcmp(nm1, nm2);
943	if (rv == 0)
944		return (0);
945	return (rv > 0 ? 1 : -1);
946}
947
948#ifdef sun
949static void
950check_one_slice(avl_tree_t *r, char *diskname, uint_t partno,
951    diskaddr_t size, uint_t blksz)
952{
953	rdsk_node_t tmpnode;
954	rdsk_node_t *node;
955	char sname[MAXNAMELEN];
956
957	tmpnode.rn_name = &sname[0];
958	(void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u",
959	    diskname, partno);
960	/*
961	 * protect against division by zero for disk labels that
962	 * contain a bogus sector size
963	 */
964	if (blksz == 0)
965		blksz = DEV_BSIZE;
966	/* too small to contain a zpool? */
967	if ((size < (SPA_MINDEVSIZE / blksz)) &&
968	    (node = avl_find(r, &tmpnode, NULL)))
969		node->rn_nozpool = B_TRUE;
970}
971#endif	/* sun */
972
973static void
974nozpool_all_slices(avl_tree_t *r, const char *sname)
975{
976#ifdef sun
977	char diskname[MAXNAMELEN];
978	char *ptr;
979	int i;
980
981	(void) strncpy(diskname, sname, MAXNAMELEN);
982	if (((ptr = strrchr(diskname, 's')) == NULL) &&
983	    ((ptr = strrchr(diskname, 'p')) == NULL))
984		return;
985	ptr[0] = 's';
986	ptr[1] = '\0';
987	for (i = 0; i < NDKMAP; i++)
988		check_one_slice(r, diskname, i, 0, 1);
989	ptr[0] = 'p';
990	for (i = 0; i <= FD_NUMPART; i++)
991		check_one_slice(r, diskname, i, 0, 1);
992#endif	/* sun */
993}
994
995static void
996check_slices(avl_tree_t *r, int fd, const char *sname)
997{
998#ifdef sun
999	struct extvtoc vtoc;
1000	struct dk_gpt *gpt;
1001	char diskname[MAXNAMELEN];
1002	char *ptr;
1003	int i;
1004
1005	(void) strncpy(diskname, sname, MAXNAMELEN);
1006	if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1]))
1007		return;
1008	ptr[1] = '\0';
1009
1010	if (read_extvtoc(fd, &vtoc) >= 0) {
1011		for (i = 0; i < NDKMAP; i++)
1012			check_one_slice(r, diskname, i,
1013			    vtoc.v_part[i].p_size, vtoc.v_sectorsz);
1014	} else if (efi_alloc_and_read(fd, &gpt) >= 0) {
1015		/*
1016		 * on x86 we'll still have leftover links that point
1017		 * to slices s[9-15], so use NDKMAP instead
1018		 */
1019		for (i = 0; i < NDKMAP; i++)
1020			check_one_slice(r, diskname, i,
1021			    gpt->efi_parts[i].p_size, gpt->efi_lbasize);
1022		/* nodes p[1-4] are never used with EFI labels */
1023		ptr[0] = 'p';
1024		for (i = 1; i <= FD_NUMPART; i++)
1025			check_one_slice(r, diskname, i, 0, 1);
1026		efi_free(gpt);
1027	}
1028#endif	/* sun */
1029}
1030
1031static void
1032zpool_open_func(void *arg)
1033{
1034	rdsk_node_t *rn = arg;
1035	struct stat64 statbuf;
1036	nvlist_t *config;
1037	int fd;
1038
1039	if (rn->rn_nozpool)
1040		return;
1041	if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) {
1042		/* symlink to a device that's no longer there */
1043		if (errno == ENOENT)
1044			nozpool_all_slices(rn->rn_avl, rn->rn_name);
1045		return;
1046	}
1047	/*
1048	 * Ignore failed stats.  We only want regular
1049	 * files, character devs and block devs.
1050	 */
1051	if (fstat64(fd, &statbuf) != 0 ||
1052	    (!S_ISREG(statbuf.st_mode) &&
1053	    !S_ISCHR(statbuf.st_mode) &&
1054	    !S_ISBLK(statbuf.st_mode))) {
1055		(void) close(fd);
1056		return;
1057	}
1058	/* this file is too small to hold a zpool */
1059	if (S_ISREG(statbuf.st_mode) &&
1060	    statbuf.st_size < SPA_MINDEVSIZE) {
1061		(void) close(fd);
1062		return;
1063	} else if (!S_ISREG(statbuf.st_mode)) {
1064		/*
1065		 * Try to read the disk label first so we don't have to
1066		 * open a bunch of minor nodes that can't have a zpool.
1067		 */
1068		check_slices(rn->rn_avl, fd, rn->rn_name);
1069	}
1070
1071	if ((zpool_read_label(fd, &config)) != 0) {
1072		(void) close(fd);
1073		(void) no_memory(rn->rn_hdl);
1074		return;
1075	}
1076	(void) close(fd);
1077
1078
1079	rn->rn_config = config;
1080	if (config != NULL) {
1081		assert(rn->rn_nozpool == B_FALSE);
1082	}
1083}
1084
1085/*
1086 * Given a file descriptor, clear (zero) the label information.  This function
1087 * is currently only used in the appliance stack as part of the ZFS sysevent
1088 * module.
1089 */
1090int
1091zpool_clear_label(int fd)
1092{
1093	struct stat64 statbuf;
1094	int l;
1095	vdev_label_t *label;
1096	uint64_t size;
1097
1098	if (fstat64(fd, &statbuf) == -1)
1099		return (0);
1100	size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
1101
1102	if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL)
1103		return (-1);
1104
1105	for (l = 0; l < VDEV_LABELS; l++) {
1106		if (pwrite64(fd, label, sizeof (vdev_label_t),
1107		    label_offset(size, l)) != sizeof (vdev_label_t))
1108			return (-1);
1109	}
1110
1111	free(label);
1112	return (0);
1113}
1114
1115/*
1116 * Given a list of directories to search, find all pools stored on disk.  This
1117 * includes partial pools which are not available to import.  If no args are
1118 * given (argc is 0), then the default directory (/dev/dsk) is searched.
1119 * poolname or guid (but not both) are provided by the caller when trying
1120 * to import a specific pool.
1121 */
1122static nvlist_t *
1123zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg)
1124{
1125	int i, dirs = iarg->paths;
1126	DIR *dirp = NULL;
1127	struct dirent64 *dp;
1128	char path[MAXPATHLEN];
1129	char *end, **dir = iarg->path;
1130	size_t pathleft;
1131	nvlist_t *ret = NULL;
1132	static char *default_dir = "/dev/dsk";
1133	pool_list_t pools = { 0 };
1134	pool_entry_t *pe, *penext;
1135	vdev_entry_t *ve, *venext;
1136	config_entry_t *ce, *cenext;
1137	name_entry_t *ne, *nenext;
1138	avl_tree_t slice_cache;
1139	rdsk_node_t *slice;
1140	void *cookie;
1141
1142	if (dirs == 0) {
1143		dirs = 1;
1144		dir = &default_dir;
1145	}
1146
1147	/*
1148	 * Go through and read the label configuration information from every
1149	 * possible device, organizing the information according to pool GUID
1150	 * and toplevel GUID.
1151	 */
1152	for (i = 0; i < dirs; i++) {
1153		tpool_t *t;
1154		char *rdsk;
1155		int dfd;
1156
1157		/* use realpath to normalize the path */
1158		if (realpath(dir[i], path) == 0) {
1159			(void) zfs_error_fmt(hdl, EZFS_BADPATH,
1160			    dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]);
1161			goto error;
1162		}
1163		end = &path[strlen(path)];
1164		*end++ = '/';
1165		*end = 0;
1166		pathleft = &path[sizeof (path)] - end;
1167
1168		/*
1169		 * Using raw devices instead of block devices when we're
1170		 * reading the labels skips a bunch of slow operations during
1171		 * close(2) processing, so we replace /dev/dsk with /dev/rdsk.
1172		 */
1173		if (strcmp(path, "/dev/dsk/") == 0)
1174			rdsk = "/dev/";
1175		else
1176			rdsk = path;
1177
1178		if ((dfd = open64(rdsk, O_RDONLY)) < 0 ||
1179		    (dirp = fdopendir(dfd)) == NULL) {
1180			zfs_error_aux(hdl, strerror(errno));
1181			(void) zfs_error_fmt(hdl, EZFS_BADPATH,
1182			    dgettext(TEXT_DOMAIN, "cannot open '%s'"),
1183			    rdsk);
1184			goto error;
1185		}
1186
1187		avl_create(&slice_cache, slice_cache_compare,
1188		    sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node));
1189
1190		if (strcmp(rdsk, "/dev/") == 0) {
1191			struct gmesh mesh;
1192			struct gclass *mp;
1193			struct ggeom *gp;
1194			struct gprovider *pp;
1195
1196			errno = geom_gettree(&mesh);
1197			if (errno != 0) {
1198				zfs_error_aux(hdl, strerror(errno));
1199				(void) zfs_error_fmt(hdl, EZFS_BADPATH,
1200				    dgettext(TEXT_DOMAIN, "cannot get GEOM tree"));
1201				goto error;
1202			}
1203
1204			LIST_FOREACH(mp, &mesh.lg_class, lg_class) {
1205		        	LIST_FOREACH(gp, &mp->lg_geom, lg_geom) {
1206					LIST_FOREACH(pp, &gp->lg_provider, lg_provider) {
1207						slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1208						slice->rn_name = zfs_strdup(hdl, pp->lg_name);
1209						slice->rn_avl = &slice_cache;
1210						slice->rn_dfd = dfd;
1211						slice->rn_hdl = hdl;
1212						slice->rn_nozpool = B_FALSE;
1213						avl_add(&slice_cache, slice);
1214					}
1215				}
1216			}
1217
1218			geom_deletetree(&mesh);
1219			goto skipdir;
1220		}
1221
1222		/*
1223		 * This is not MT-safe, but we have no MT consumers of libzfs
1224		 */
1225		while ((dp = readdir64(dirp)) != NULL) {
1226			const char *name = dp->d_name;
1227			if (name[0] == '.' &&
1228			    (name[1] == 0 || (name[1] == '.' && name[2] == 0)))
1229				continue;
1230
1231			slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1232			slice->rn_name = zfs_strdup(hdl, name);
1233			slice->rn_avl = &slice_cache;
1234			slice->rn_dfd = dfd;
1235			slice->rn_hdl = hdl;
1236			slice->rn_nozpool = B_FALSE;
1237			avl_add(&slice_cache, slice);
1238		}
1239skipdir:
1240		/*
1241		 * create a thread pool to do all of this in parallel;
1242		 * rn_nozpool is not protected, so this is racy in that
1243		 * multiple tasks could decide that the same slice can
1244		 * not hold a zpool, which is benign.  Also choose
1245		 * double the number of processors; we hold a lot of
1246		 * locks in the kernel, so going beyond this doesn't
1247		 * buy us much.
1248		 */
1249		t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN),
1250		    0, NULL);
1251		for (slice = avl_first(&slice_cache); slice;
1252		    (slice = avl_walk(&slice_cache, slice,
1253		    AVL_AFTER)))
1254			(void) tpool_dispatch(t, zpool_open_func, slice);
1255		tpool_wait(t);
1256		tpool_destroy(t);
1257
1258		cookie = NULL;
1259		while ((slice = avl_destroy_nodes(&slice_cache,
1260		    &cookie)) != NULL) {
1261			if (slice->rn_config != NULL) {
1262				nvlist_t *config = slice->rn_config;
1263				boolean_t matched = B_TRUE;
1264
1265				if (iarg->poolname != NULL) {
1266					char *pname;
1267
1268					matched = nvlist_lookup_string(config,
1269					    ZPOOL_CONFIG_POOL_NAME,
1270					    &pname) == 0 &&
1271					    strcmp(iarg->poolname, pname) == 0;
1272				} else if (iarg->guid != 0) {
1273					uint64_t this_guid;
1274
1275					matched = nvlist_lookup_uint64(config,
1276					    ZPOOL_CONFIG_POOL_GUID,
1277					    &this_guid) == 0 &&
1278					    iarg->guid == this_guid;
1279				}
1280				if (!matched) {
1281					nvlist_free(config);
1282					config = NULL;
1283					continue;
1284				}
1285				/* use the non-raw path for the config */
1286				(void) strlcpy(end, slice->rn_name, pathleft);
1287				if (add_config(hdl, &pools, path, config) != 0)
1288					goto error;
1289			}
1290			free(slice->rn_name);
1291			free(slice);
1292		}
1293		avl_destroy(&slice_cache);
1294
1295		(void) closedir(dirp);
1296		dirp = NULL;
1297	}
1298
1299	ret = get_configs(hdl, &pools, iarg->can_be_active);
1300
1301error:
1302	for (pe = pools.pools; pe != NULL; pe = penext) {
1303		penext = pe->pe_next;
1304		for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
1305			venext = ve->ve_next;
1306			for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
1307				cenext = ce->ce_next;
1308				if (ce->ce_config)
1309					nvlist_free(ce->ce_config);
1310				free(ce);
1311			}
1312			free(ve);
1313		}
1314		free(pe);
1315	}
1316
1317	for (ne = pools.names; ne != NULL; ne = nenext) {
1318		nenext = ne->ne_next;
1319		if (ne->ne_name)
1320			free(ne->ne_name);
1321		free(ne);
1322	}
1323
1324	if (dirp)
1325		(void) closedir(dirp);
1326
1327	return (ret);
1328}
1329
1330nvlist_t *
1331zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv)
1332{
1333	importargs_t iarg = { 0 };
1334
1335	iarg.paths = argc;
1336	iarg.path = argv;
1337
1338	return (zpool_find_import_impl(hdl, &iarg));
1339}
1340
1341/*
1342 * Given a cache file, return the contents as a list of importable pools.
1343 * poolname or guid (but not both) are provided by the caller when trying
1344 * to import a specific pool.
1345 */
1346nvlist_t *
1347zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile,
1348    char *poolname, uint64_t guid)
1349{
1350	char *buf;
1351	int fd;
1352	struct stat64 statbuf;
1353	nvlist_t *raw, *src, *dst;
1354	nvlist_t *pools;
1355	nvpair_t *elem;
1356	char *name;
1357	uint64_t this_guid;
1358	boolean_t active;
1359
1360	verify(poolname == NULL || guid == 0);
1361
1362	if ((fd = open(cachefile, O_RDONLY)) < 0) {
1363		zfs_error_aux(hdl, "%s", strerror(errno));
1364		(void) zfs_error(hdl, EZFS_BADCACHE,
1365		    dgettext(TEXT_DOMAIN, "failed to open cache file"));
1366		return (NULL);
1367	}
1368
1369	if (fstat64(fd, &statbuf) != 0) {
1370		zfs_error_aux(hdl, "%s", strerror(errno));
1371		(void) close(fd);
1372		(void) zfs_error(hdl, EZFS_BADCACHE,
1373		    dgettext(TEXT_DOMAIN, "failed to get size of cache file"));
1374		return (NULL);
1375	}
1376
1377	if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) {
1378		(void) close(fd);
1379		return (NULL);
1380	}
1381
1382	if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
1383		(void) close(fd);
1384		free(buf);
1385		(void) zfs_error(hdl, EZFS_BADCACHE,
1386		    dgettext(TEXT_DOMAIN,
1387		    "failed to read cache file contents"));
1388		return (NULL);
1389	}
1390
1391	(void) close(fd);
1392
1393	if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
1394		free(buf);
1395		(void) zfs_error(hdl, EZFS_BADCACHE,
1396		    dgettext(TEXT_DOMAIN,
1397		    "invalid or corrupt cache file contents"));
1398		return (NULL);
1399	}
1400
1401	free(buf);
1402
1403	/*
1404	 * Go through and get the current state of the pools and refresh their
1405	 * state.
1406	 */
1407	if (nvlist_alloc(&pools, 0, 0) != 0) {
1408		(void) no_memory(hdl);
1409		nvlist_free(raw);
1410		return (NULL);
1411	}
1412
1413	elem = NULL;
1414	while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
1415		verify(nvpair_value_nvlist(elem, &src) == 0);
1416
1417		verify(nvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME,
1418		    &name) == 0);
1419		if (poolname != NULL && strcmp(poolname, name) != 0)
1420			continue;
1421
1422		verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID,
1423		    &this_guid) == 0);
1424		if (guid != 0) {
1425			verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID,
1426			    &this_guid) == 0);
1427			if (guid != this_guid)
1428				continue;
1429		}
1430
1431		if (pool_active(hdl, name, this_guid, &active) != 0) {
1432			nvlist_free(raw);
1433			nvlist_free(pools);
1434			return (NULL);
1435		}
1436
1437		if (active)
1438			continue;
1439
1440		if ((dst = refresh_config(hdl, src)) == NULL) {
1441			nvlist_free(raw);
1442			nvlist_free(pools);
1443			return (NULL);
1444		}
1445
1446		if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) {
1447			(void) no_memory(hdl);
1448			nvlist_free(dst);
1449			nvlist_free(raw);
1450			nvlist_free(pools);
1451			return (NULL);
1452		}
1453		nvlist_free(dst);
1454	}
1455
1456	nvlist_free(raw);
1457	return (pools);
1458}
1459
1460static int
1461name_or_guid_exists(zpool_handle_t *zhp, void *data)
1462{
1463	importargs_t *import = data;
1464	int found = 0;
1465
1466	if (import->poolname != NULL) {
1467		char *pool_name;
1468
1469		verify(nvlist_lookup_string(zhp->zpool_config,
1470		    ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0);
1471		if (strcmp(pool_name, import->poolname) == 0)
1472			found = 1;
1473	} else {
1474		uint64_t pool_guid;
1475
1476		verify(nvlist_lookup_uint64(zhp->zpool_config,
1477		    ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0);
1478		if (pool_guid == import->guid)
1479			found = 1;
1480	}
1481
1482	zpool_close(zhp);
1483	return (found);
1484}
1485
1486nvlist_t *
1487zpool_search_import(libzfs_handle_t *hdl, importargs_t *import)
1488{
1489	verify(import->poolname == NULL || import->guid == 0);
1490
1491	if (import->unique)
1492		import->exists = zpool_iter(hdl, name_or_guid_exists, import);
1493
1494	if (import->cachefile != NULL)
1495		return (zpool_find_import_cached(hdl, import->cachefile,
1496		    import->poolname, import->guid));
1497
1498	return (zpool_find_import_impl(hdl, import));
1499}
1500
1501boolean_t
1502find_guid(nvlist_t *nv, uint64_t guid)
1503{
1504	uint64_t tmp;
1505	nvlist_t **child;
1506	uint_t c, children;
1507
1508	verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0);
1509	if (tmp == guid)
1510		return (B_TRUE);
1511
1512	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1513	    &child, &children) == 0) {
1514		for (c = 0; c < children; c++)
1515			if (find_guid(child[c], guid))
1516				return (B_TRUE);
1517	}
1518
1519	return (B_FALSE);
1520}
1521
1522typedef struct aux_cbdata {
1523	const char	*cb_type;
1524	uint64_t	cb_guid;
1525	zpool_handle_t	*cb_zhp;
1526} aux_cbdata_t;
1527
1528static int
1529find_aux(zpool_handle_t *zhp, void *data)
1530{
1531	aux_cbdata_t *cbp = data;
1532	nvlist_t **list;
1533	uint_t i, count;
1534	uint64_t guid;
1535	nvlist_t *nvroot;
1536
1537	verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE,
1538	    &nvroot) == 0);
1539
1540	if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type,
1541	    &list, &count) == 0) {
1542		for (i = 0; i < count; i++) {
1543			verify(nvlist_lookup_uint64(list[i],
1544			    ZPOOL_CONFIG_GUID, &guid) == 0);
1545			if (guid == cbp->cb_guid) {
1546				cbp->cb_zhp = zhp;
1547				return (1);
1548			}
1549		}
1550	}
1551
1552	zpool_close(zhp);
1553	return (0);
1554}
1555
1556/*
1557 * Determines if the pool is in use.  If so, it returns true and the state of
1558 * the pool as well as the name of the pool.  Both strings are allocated and
1559 * must be freed by the caller.
1560 */
1561int
1562zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr,
1563    boolean_t *inuse)
1564{
1565	nvlist_t *config;
1566	char *name;
1567	boolean_t ret;
1568	uint64_t guid, vdev_guid;
1569	zpool_handle_t *zhp;
1570	nvlist_t *pool_config;
1571	uint64_t stateval, isspare;
1572	aux_cbdata_t cb = { 0 };
1573	boolean_t isactive;
1574
1575	*inuse = B_FALSE;
1576
1577	if (zpool_read_label(fd, &config) != 0) {
1578		(void) no_memory(hdl);
1579		return (-1);
1580	}
1581
1582	if (config == NULL)
1583		return (0);
1584
1585	verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1586	    &stateval) == 0);
1587	verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
1588	    &vdev_guid) == 0);
1589
1590	if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) {
1591		verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
1592		    &name) == 0);
1593		verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
1594		    &guid) == 0);
1595	}
1596
1597	switch (stateval) {
1598	case POOL_STATE_EXPORTED:
1599		/*
1600		 * A pool with an exported state may in fact be imported
1601		 * read-only, so check the in-core state to see if it's
1602		 * active and imported read-only.  If it is, set
1603		 * its state to active.
1604		 */
1605		if (pool_active(hdl, name, guid, &isactive) == 0 && isactive &&
1606		    (zhp = zpool_open_canfail(hdl, name)) != NULL &&
1607		    zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL))
1608			stateval = POOL_STATE_ACTIVE;
1609
1610		ret = B_TRUE;
1611		break;
1612
1613	case POOL_STATE_ACTIVE:
1614		/*
1615		 * For an active pool, we have to determine if it's really part
1616		 * of a currently active pool (in which case the pool will exist
1617		 * and the guid will be the same), or whether it's part of an
1618		 * active pool that was disconnected without being explicitly
1619		 * exported.
1620		 */
1621		if (pool_active(hdl, name, guid, &isactive) != 0) {
1622			nvlist_free(config);
1623			return (-1);
1624		}
1625
1626		if (isactive) {
1627			/*
1628			 * Because the device may have been removed while
1629			 * offlined, we only report it as active if the vdev is
1630			 * still present in the config.  Otherwise, pretend like
1631			 * it's not in use.
1632			 */
1633			if ((zhp = zpool_open_canfail(hdl, name)) != NULL &&
1634			    (pool_config = zpool_get_config(zhp, NULL))
1635			    != NULL) {
1636				nvlist_t *nvroot;
1637
1638				verify(nvlist_lookup_nvlist(pool_config,
1639				    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1640				ret = find_guid(nvroot, vdev_guid);
1641			} else {
1642				ret = B_FALSE;
1643			}
1644
1645			/*
1646			 * If this is an active spare within another pool, we
1647			 * treat it like an unused hot spare.  This allows the
1648			 * user to create a pool with a hot spare that currently
1649			 * in use within another pool.  Since we return B_TRUE,
1650			 * libdiskmgt will continue to prevent generic consumers
1651			 * from using the device.
1652			 */
1653			if (ret && nvlist_lookup_uint64(config,
1654			    ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
1655				stateval = POOL_STATE_SPARE;
1656
1657			if (zhp != NULL)
1658				zpool_close(zhp);
1659		} else {
1660			stateval = POOL_STATE_POTENTIALLY_ACTIVE;
1661			ret = B_TRUE;
1662		}
1663		break;
1664
1665	case POOL_STATE_SPARE:
1666		/*
1667		 * For a hot spare, it can be either definitively in use, or
1668		 * potentially active.  To determine if it's in use, we iterate
1669		 * over all pools in the system and search for one with a spare
1670		 * with a matching guid.
1671		 *
1672		 * Due to the shared nature of spares, we don't actually report
1673		 * the potentially active case as in use.  This means the user
1674		 * can freely create pools on the hot spares of exported pools,
1675		 * but to do otherwise makes the resulting code complicated, and
1676		 * we end up having to deal with this case anyway.
1677		 */
1678		cb.cb_zhp = NULL;
1679		cb.cb_guid = vdev_guid;
1680		cb.cb_type = ZPOOL_CONFIG_SPARES;
1681		if (zpool_iter(hdl, find_aux, &cb) == 1) {
1682			name = (char *)zpool_get_name(cb.cb_zhp);
1683			ret = TRUE;
1684		} else {
1685			ret = FALSE;
1686		}
1687		break;
1688
1689	case POOL_STATE_L2CACHE:
1690
1691		/*
1692		 * Check if any pool is currently using this l2cache device.
1693		 */
1694		cb.cb_zhp = NULL;
1695		cb.cb_guid = vdev_guid;
1696		cb.cb_type = ZPOOL_CONFIG_L2CACHE;
1697		if (zpool_iter(hdl, find_aux, &cb) == 1) {
1698			name = (char *)zpool_get_name(cb.cb_zhp);
1699			ret = TRUE;
1700		} else {
1701			ret = FALSE;
1702		}
1703		break;
1704
1705	default:
1706		ret = B_FALSE;
1707	}
1708
1709
1710	if (ret) {
1711		if ((*namestr = zfs_strdup(hdl, name)) == NULL) {
1712			if (cb.cb_zhp)
1713				zpool_close(cb.cb_zhp);
1714			nvlist_free(config);
1715			return (-1);
1716		}
1717		*state = (pool_state_t)stateval;
1718	}
1719
1720	if (cb.cb_zhp)
1721		zpool_close(cb.cb_zhp);
1722
1723	nvlist_free(config);
1724	*inuse = ret;
1725	return (0);
1726}
1727