dt_consume.c revision 248708
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/*
27 * Copyright (c) 2011, Joyent, Inc. All rights reserved.
28 * Copyright (c) 2011 by Delphix. All rights reserved.
29 */
30
31#include <stdlib.h>
32#include <strings.h>
33#include <errno.h>
34#include <unistd.h>
35#include <limits.h>
36#include <assert.h>
37#include <ctype.h>
38#if defined(sun)
39#include <alloca.h>
40#endif
41#include <dt_impl.h>
42#if !defined(sun)
43#include <libproc_compat.h>
44#endif
45
46#define	DT_MASK_LO 0x00000000FFFFFFFFULL
47
48/*
49 * We declare this here because (1) we need it and (2) we want to avoid a
50 * dependency on libm in libdtrace.
51 */
52static long double
53dt_fabsl(long double x)
54{
55	if (x < 0)
56		return (-x);
57
58	return (x);
59}
60
61/*
62 * 128-bit arithmetic functions needed to support the stddev() aggregating
63 * action.
64 */
65static int
66dt_gt_128(uint64_t *a, uint64_t *b)
67{
68	return (a[1] > b[1] || (a[1] == b[1] && a[0] > b[0]));
69}
70
71static int
72dt_ge_128(uint64_t *a, uint64_t *b)
73{
74	return (a[1] > b[1] || (a[1] == b[1] && a[0] >= b[0]));
75}
76
77static int
78dt_le_128(uint64_t *a, uint64_t *b)
79{
80	return (a[1] < b[1] || (a[1] == b[1] && a[0] <= b[0]));
81}
82
83/*
84 * Shift the 128-bit value in a by b. If b is positive, shift left.
85 * If b is negative, shift right.
86 */
87static void
88dt_shift_128(uint64_t *a, int b)
89{
90	uint64_t mask;
91
92	if (b == 0)
93		return;
94
95	if (b < 0) {
96		b = -b;
97		if (b >= 64) {
98			a[0] = a[1] >> (b - 64);
99			a[1] = 0;
100		} else {
101			a[0] >>= b;
102			mask = 1LL << (64 - b);
103			mask -= 1;
104			a[0] |= ((a[1] & mask) << (64 - b));
105			a[1] >>= b;
106		}
107	} else {
108		if (b >= 64) {
109			a[1] = a[0] << (b - 64);
110			a[0] = 0;
111		} else {
112			a[1] <<= b;
113			mask = a[0] >> (64 - b);
114			a[1] |= mask;
115			a[0] <<= b;
116		}
117	}
118}
119
120static int
121dt_nbits_128(uint64_t *a)
122{
123	int nbits = 0;
124	uint64_t tmp[2];
125	uint64_t zero[2] = { 0, 0 };
126
127	tmp[0] = a[0];
128	tmp[1] = a[1];
129
130	dt_shift_128(tmp, -1);
131	while (dt_gt_128(tmp, zero)) {
132		dt_shift_128(tmp, -1);
133		nbits++;
134	}
135
136	return (nbits);
137}
138
139static void
140dt_subtract_128(uint64_t *minuend, uint64_t *subtrahend, uint64_t *difference)
141{
142	uint64_t result[2];
143
144	result[0] = minuend[0] - subtrahend[0];
145	result[1] = minuend[1] - subtrahend[1] -
146	    (minuend[0] < subtrahend[0] ? 1 : 0);
147
148	difference[0] = result[0];
149	difference[1] = result[1];
150}
151
152static void
153dt_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
154{
155	uint64_t result[2];
156
157	result[0] = addend1[0] + addend2[0];
158	result[1] = addend1[1] + addend2[1] +
159	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
160
161	sum[0] = result[0];
162	sum[1] = result[1];
163}
164
165/*
166 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
167 * use native multiplication on those, and then re-combine into the
168 * resulting 128-bit value.
169 *
170 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
171 *     hi1 * hi2 << 64 +
172 *     hi1 * lo2 << 32 +
173 *     hi2 * lo1 << 32 +
174 *     lo1 * lo2
175 */
176static void
177dt_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
178{
179	uint64_t hi1, hi2, lo1, lo2;
180	uint64_t tmp[2];
181
182	hi1 = factor1 >> 32;
183	hi2 = factor2 >> 32;
184
185	lo1 = factor1 & DT_MASK_LO;
186	lo2 = factor2 & DT_MASK_LO;
187
188	product[0] = lo1 * lo2;
189	product[1] = hi1 * hi2;
190
191	tmp[0] = hi1 * lo2;
192	tmp[1] = 0;
193	dt_shift_128(tmp, 32);
194	dt_add_128(product, tmp, product);
195
196	tmp[0] = hi2 * lo1;
197	tmp[1] = 0;
198	dt_shift_128(tmp, 32);
199	dt_add_128(product, tmp, product);
200}
201
202/*
203 * This is long-hand division.
204 *
205 * We initialize subtrahend by shifting divisor left as far as possible. We
206 * loop, comparing subtrahend to dividend:  if subtrahend is smaller, we
207 * subtract and set the appropriate bit in the result.  We then shift
208 * subtrahend right by one bit for the next comparison.
209 */
210static void
211dt_divide_128(uint64_t *dividend, uint64_t divisor, uint64_t *quotient)
212{
213	uint64_t result[2] = { 0, 0 };
214	uint64_t remainder[2];
215	uint64_t subtrahend[2];
216	uint64_t divisor_128[2];
217	uint64_t mask[2] = { 1, 0 };
218	int log = 0;
219
220	assert(divisor != 0);
221
222	divisor_128[0] = divisor;
223	divisor_128[1] = 0;
224
225	remainder[0] = dividend[0];
226	remainder[1] = dividend[1];
227
228	subtrahend[0] = divisor;
229	subtrahend[1] = 0;
230
231	while (divisor > 0) {
232		log++;
233		divisor >>= 1;
234	}
235
236	dt_shift_128(subtrahend, 128 - log);
237	dt_shift_128(mask, 128 - log);
238
239	while (dt_ge_128(remainder, divisor_128)) {
240		if (dt_ge_128(remainder, subtrahend)) {
241			dt_subtract_128(remainder, subtrahend, remainder);
242			result[0] |= mask[0];
243			result[1] |= mask[1];
244		}
245
246		dt_shift_128(subtrahend, -1);
247		dt_shift_128(mask, -1);
248	}
249
250	quotient[0] = result[0];
251	quotient[1] = result[1];
252}
253
254/*
255 * This is the long-hand method of calculating a square root.
256 * The algorithm is as follows:
257 *
258 * 1. Group the digits by 2 from the right.
259 * 2. Over the leftmost group, find the largest single-digit number
260 *    whose square is less than that group.
261 * 3. Subtract the result of the previous step (2 or 4, depending) and
262 *    bring down the next two-digit group.
263 * 4. For the result R we have so far, find the largest single-digit number
264 *    x such that 2 * R * 10 * x + x^2 is less than the result from step 3.
265 *    (Note that this is doubling R and performing a decimal left-shift by 1
266 *    and searching for the appropriate decimal to fill the one's place.)
267 *    The value x is the next digit in the square root.
268 * Repeat steps 3 and 4 until the desired precision is reached.  (We're
269 * dealing with integers, so the above is sufficient.)
270 *
271 * In decimal, the square root of 582,734 would be calculated as so:
272 *
273 *     __7__6__3
274 *    | 58 27 34
275 *     -49       (7^2 == 49 => 7 is the first digit in the square root)
276 *      --
277 *       9 27    (Subtract and bring down the next group.)
278 * 146   8 76    (2 * 7 * 10 * 6 + 6^2 == 876 => 6 is the next digit in
279 *      -----     the square root)
280 *         51 34 (Subtract and bring down the next group.)
281 * 1523    45 69 (2 * 76 * 10 * 3 + 3^2 == 4569 => 3 is the next digit in
282 *         -----  the square root)
283 *          5 65 (remainder)
284 *
285 * The above algorithm applies similarly in binary, but note that the
286 * only possible non-zero value for x in step 4 is 1, so step 4 becomes a
287 * simple decision: is 2 * R * 2 * 1 + 1^2 (aka R << 2 + 1) less than the
288 * preceding difference?
289 *
290 * In binary, the square root of 11011011 would be calculated as so:
291 *
292 *     __1__1__1__0
293 *    | 11 01 10 11
294 *      01          (0 << 2 + 1 == 1 < 11 => this bit is 1)
295 *      --
296 *      10 01 10 11
297 * 101   1 01       (1 << 2 + 1 == 101 < 1001 => next bit is 1)
298 *      -----
299 *       1 00 10 11
300 * 1101    11 01    (11 << 2 + 1 == 1101 < 10010 => next bit is 1)
301 *       -------
302 *          1 01 11
303 * 11101    1 11 01 (111 << 2 + 1 == 11101 > 10111 => last bit is 0)
304 *
305 */
306static uint64_t
307dt_sqrt_128(uint64_t *square)
308{
309	uint64_t result[2] = { 0, 0 };
310	uint64_t diff[2] = { 0, 0 };
311	uint64_t one[2] = { 1, 0 };
312	uint64_t next_pair[2];
313	uint64_t next_try[2];
314	uint64_t bit_pairs, pair_shift;
315	int i;
316
317	bit_pairs = dt_nbits_128(square) / 2;
318	pair_shift = bit_pairs * 2;
319
320	for (i = 0; i <= bit_pairs; i++) {
321		/*
322		 * Bring down the next pair of bits.
323		 */
324		next_pair[0] = square[0];
325		next_pair[1] = square[1];
326		dt_shift_128(next_pair, -pair_shift);
327		next_pair[0] &= 0x3;
328		next_pair[1] = 0;
329
330		dt_shift_128(diff, 2);
331		dt_add_128(diff, next_pair, diff);
332
333		/*
334		 * next_try = R << 2 + 1
335		 */
336		next_try[0] = result[0];
337		next_try[1] = result[1];
338		dt_shift_128(next_try, 2);
339		dt_add_128(next_try, one, next_try);
340
341		if (dt_le_128(next_try, diff)) {
342			dt_subtract_128(diff, next_try, diff);
343			dt_shift_128(result, 1);
344			dt_add_128(result, one, result);
345		} else {
346			dt_shift_128(result, 1);
347		}
348
349		pair_shift -= 2;
350	}
351
352	assert(result[1] == 0);
353
354	return (result[0]);
355}
356
357uint64_t
358dt_stddev(uint64_t *data, uint64_t normal)
359{
360	uint64_t avg_of_squares[2];
361	uint64_t square_of_avg[2];
362	int64_t norm_avg;
363	uint64_t diff[2];
364
365	/*
366	 * The standard approximation for standard deviation is
367	 * sqrt(average(x**2) - average(x)**2), i.e. the square root
368	 * of the average of the squares minus the square of the average.
369	 */
370	dt_divide_128(data + 2, normal, avg_of_squares);
371	dt_divide_128(avg_of_squares, data[0], avg_of_squares);
372
373	norm_avg = (int64_t)data[1] / (int64_t)normal / (int64_t)data[0];
374
375	if (norm_avg < 0)
376		norm_avg = -norm_avg;
377
378	dt_multiply_128((uint64_t)norm_avg, (uint64_t)norm_avg, square_of_avg);
379
380	dt_subtract_128(avg_of_squares, square_of_avg, diff);
381
382	return (dt_sqrt_128(diff));
383}
384
385static int
386dt_flowindent(dtrace_hdl_t *dtp, dtrace_probedata_t *data, dtrace_epid_t last,
387    dtrace_bufdesc_t *buf, size_t offs)
388{
389	dtrace_probedesc_t *pd = data->dtpda_pdesc, *npd;
390	dtrace_eprobedesc_t *epd = data->dtpda_edesc, *nepd;
391	char *p = pd->dtpd_provider, *n = pd->dtpd_name, *sub;
392	dtrace_flowkind_t flow = DTRACEFLOW_NONE;
393	const char *str = NULL;
394	static const char *e_str[2] = { " -> ", " => " };
395	static const char *r_str[2] = { " <- ", " <= " };
396	static const char *ent = "entry", *ret = "return";
397	static int entlen = 0, retlen = 0;
398	dtrace_epid_t next, id = epd->dtepd_epid;
399	int rval;
400
401	if (entlen == 0) {
402		assert(retlen == 0);
403		entlen = strlen(ent);
404		retlen = strlen(ret);
405	}
406
407	/*
408	 * If the name of the probe is "entry" or ends with "-entry", we
409	 * treat it as an entry; if it is "return" or ends with "-return",
410	 * we treat it as a return.  (This allows application-provided probes
411	 * like "method-entry" or "function-entry" to participate in flow
412	 * indentation -- without accidentally misinterpreting popular probe
413	 * names like "carpentry", "gentry" or "Coventry".)
414	 */
415	if ((sub = strstr(n, ent)) != NULL && sub[entlen] == '\0' &&
416	    (sub == n || sub[-1] == '-')) {
417		flow = DTRACEFLOW_ENTRY;
418		str = e_str[strcmp(p, "syscall") == 0];
419	} else if ((sub = strstr(n, ret)) != NULL && sub[retlen] == '\0' &&
420	    (sub == n || sub[-1] == '-')) {
421		flow = DTRACEFLOW_RETURN;
422		str = r_str[strcmp(p, "syscall") == 0];
423	}
424
425	/*
426	 * If we're going to indent this, we need to check the ID of our last
427	 * call.  If we're looking at the same probe ID but a different EPID,
428	 * we _don't_ want to indent.  (Yes, there are some minor holes in
429	 * this scheme -- it's a heuristic.)
430	 */
431	if (flow == DTRACEFLOW_ENTRY) {
432		if ((last != DTRACE_EPIDNONE && id != last &&
433		    pd->dtpd_id == dtp->dt_pdesc[last]->dtpd_id))
434			flow = DTRACEFLOW_NONE;
435	}
436
437	/*
438	 * If we're going to unindent this, it's more difficult to see if
439	 * we don't actually want to unindent it -- we need to look at the
440	 * _next_ EPID.
441	 */
442	if (flow == DTRACEFLOW_RETURN) {
443		offs += epd->dtepd_size;
444
445		do {
446			if (offs >= buf->dtbd_size) {
447				/*
448				 * We're at the end -- maybe.  If the oldest
449				 * record is non-zero, we need to wrap.
450				 */
451				if (buf->dtbd_oldest != 0) {
452					offs = 0;
453				} else {
454					goto out;
455				}
456			}
457
458			next = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
459
460			if (next == DTRACE_EPIDNONE)
461				offs += sizeof (id);
462		} while (next == DTRACE_EPIDNONE);
463
464		if ((rval = dt_epid_lookup(dtp, next, &nepd, &npd)) != 0)
465			return (rval);
466
467		if (next != id && npd->dtpd_id == pd->dtpd_id)
468			flow = DTRACEFLOW_NONE;
469	}
470
471out:
472	if (flow == DTRACEFLOW_ENTRY || flow == DTRACEFLOW_RETURN) {
473		data->dtpda_prefix = str;
474	} else {
475		data->dtpda_prefix = "| ";
476	}
477
478	if (flow == DTRACEFLOW_RETURN && data->dtpda_indent > 0)
479		data->dtpda_indent -= 2;
480
481	data->dtpda_flow = flow;
482
483	return (0);
484}
485
486static int
487dt_nullprobe()
488{
489	return (DTRACE_CONSUME_THIS);
490}
491
492static int
493dt_nullrec()
494{
495	return (DTRACE_CONSUME_NEXT);
496}
497
498int
499dt_print_quantline(dtrace_hdl_t *dtp, FILE *fp, int64_t val,
500    uint64_t normal, long double total, char positives, char negatives)
501{
502	long double f;
503	uint_t depth, len = 40;
504
505	const char *ats = "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@";
506	const char *spaces = "                                        ";
507
508	assert(strlen(ats) == len && strlen(spaces) == len);
509	assert(!(total == 0 && (positives || negatives)));
510	assert(!(val < 0 && !negatives));
511	assert(!(val > 0 && !positives));
512	assert(!(val != 0 && total == 0));
513
514	if (!negatives) {
515		if (positives) {
516			f = (dt_fabsl((long double)val) * len) / total;
517			depth = (uint_t)(f + 0.5);
518		} else {
519			depth = 0;
520		}
521
522		return (dt_printf(dtp, fp, "|%s%s %-9lld\n", ats + len - depth,
523		    spaces + depth, (long long)val / normal));
524	}
525
526	if (!positives) {
527		f = (dt_fabsl((long double)val) * len) / total;
528		depth = (uint_t)(f + 0.5);
529
530		return (dt_printf(dtp, fp, "%s%s| %-9lld\n", spaces + depth,
531		    ats + len - depth, (long long)val / normal));
532	}
533
534	/*
535	 * If we're here, we have both positive and negative bucket values.
536	 * To express this graphically, we're going to generate both positive
537	 * and negative bars separated by a centerline.  These bars are half
538	 * the size of normal quantize()/lquantize() bars, so we divide the
539	 * length in half before calculating the bar length.
540	 */
541	len /= 2;
542	ats = &ats[len];
543	spaces = &spaces[len];
544
545	f = (dt_fabsl((long double)val) * len) / total;
546	depth = (uint_t)(f + 0.5);
547
548	if (val <= 0) {
549		return (dt_printf(dtp, fp, "%s%s|%*s %-9lld\n", spaces + depth,
550		    ats + len - depth, len, "", (long long)val / normal));
551	} else {
552		return (dt_printf(dtp, fp, "%20s|%s%s %-9lld\n", "",
553		    ats + len - depth, spaces + depth,
554		    (long long)val / normal));
555	}
556}
557
558int
559dt_print_quantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
560    size_t size, uint64_t normal)
561{
562	const int64_t *data = addr;
563	int i, first_bin = 0, last_bin = DTRACE_QUANTIZE_NBUCKETS - 1;
564	long double total = 0;
565	char positives = 0, negatives = 0;
566
567	if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
568		return (dt_set_errno(dtp, EDT_DMISMATCH));
569
570	while (first_bin < DTRACE_QUANTIZE_NBUCKETS - 1 && data[first_bin] == 0)
571		first_bin++;
572
573	if (first_bin == DTRACE_QUANTIZE_NBUCKETS - 1) {
574		/*
575		 * There isn't any data.  This is possible if (and only if)
576		 * negative increment values have been used.  In this case,
577		 * we'll print the buckets around 0.
578		 */
579		first_bin = DTRACE_QUANTIZE_ZEROBUCKET - 1;
580		last_bin = DTRACE_QUANTIZE_ZEROBUCKET + 1;
581	} else {
582		if (first_bin > 0)
583			first_bin--;
584
585		while (last_bin > 0 && data[last_bin] == 0)
586			last_bin--;
587
588		if (last_bin < DTRACE_QUANTIZE_NBUCKETS - 1)
589			last_bin++;
590	}
591
592	for (i = first_bin; i <= last_bin; i++) {
593		positives |= (data[i] > 0);
594		negatives |= (data[i] < 0);
595		total += dt_fabsl((long double)data[i]);
596	}
597
598	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
599	    "------------- Distribution -------------", "count") < 0)
600		return (-1);
601
602	for (i = first_bin; i <= last_bin; i++) {
603		if (dt_printf(dtp, fp, "%16lld ",
604		    (long long)DTRACE_QUANTIZE_BUCKETVAL(i)) < 0)
605			return (-1);
606
607		if (dt_print_quantline(dtp, fp, data[i], normal, total,
608		    positives, negatives) < 0)
609			return (-1);
610	}
611
612	return (0);
613}
614
615int
616dt_print_lquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
617    size_t size, uint64_t normal)
618{
619	const int64_t *data = addr;
620	int i, first_bin, last_bin, base;
621	uint64_t arg;
622	long double total = 0;
623	uint16_t step, levels;
624	char positives = 0, negatives = 0;
625
626	if (size < sizeof (uint64_t))
627		return (dt_set_errno(dtp, EDT_DMISMATCH));
628
629	arg = *data++;
630	size -= sizeof (uint64_t);
631
632	base = DTRACE_LQUANTIZE_BASE(arg);
633	step = DTRACE_LQUANTIZE_STEP(arg);
634	levels = DTRACE_LQUANTIZE_LEVELS(arg);
635
636	first_bin = 0;
637	last_bin = levels + 1;
638
639	if (size != sizeof (uint64_t) * (levels + 2))
640		return (dt_set_errno(dtp, EDT_DMISMATCH));
641
642	while (first_bin <= levels + 1 && data[first_bin] == 0)
643		first_bin++;
644
645	if (first_bin > levels + 1) {
646		first_bin = 0;
647		last_bin = 2;
648	} else {
649		if (first_bin > 0)
650			first_bin--;
651
652		while (last_bin > 0 && data[last_bin] == 0)
653			last_bin--;
654
655		if (last_bin < levels + 1)
656			last_bin++;
657	}
658
659	for (i = first_bin; i <= last_bin; i++) {
660		positives |= (data[i] > 0);
661		negatives |= (data[i] < 0);
662		total += dt_fabsl((long double)data[i]);
663	}
664
665	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
666	    "------------- Distribution -------------", "count") < 0)
667		return (-1);
668
669	for (i = first_bin; i <= last_bin; i++) {
670		char c[32];
671		int err;
672
673		if (i == 0) {
674			(void) snprintf(c, sizeof (c), "< %d",
675			    base / (uint32_t)normal);
676			err = dt_printf(dtp, fp, "%16s ", c);
677		} else if (i == levels + 1) {
678			(void) snprintf(c, sizeof (c), ">= %d",
679			    base + (levels * step));
680			err = dt_printf(dtp, fp, "%16s ", c);
681		} else {
682			err = dt_printf(dtp, fp, "%16d ",
683			    base + (i - 1) * step);
684		}
685
686		if (err < 0 || dt_print_quantline(dtp, fp, data[i], normal,
687		    total, positives, negatives) < 0)
688			return (-1);
689	}
690
691	return (0);
692}
693
694int
695dt_print_llquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
696    size_t size, uint64_t normal)
697{
698	int i, first_bin, last_bin, bin = 1, order, levels;
699	uint16_t factor, low, high, nsteps;
700	const int64_t *data = addr;
701	int64_t value = 1, next, step;
702	char positives = 0, negatives = 0;
703	long double total = 0;
704	uint64_t arg;
705	char c[32];
706
707	if (size < sizeof (uint64_t))
708		return (dt_set_errno(dtp, EDT_DMISMATCH));
709
710	arg = *data++;
711	size -= sizeof (uint64_t);
712
713	factor = DTRACE_LLQUANTIZE_FACTOR(arg);
714	low = DTRACE_LLQUANTIZE_LOW(arg);
715	high = DTRACE_LLQUANTIZE_HIGH(arg);
716	nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
717
718	/*
719	 * We don't expect to be handed invalid llquantize() parameters here,
720	 * but sanity check them (to a degree) nonetheless.
721	 */
722	if (size > INT32_MAX || factor < 2 || low >= high ||
723	    nsteps == 0 || factor > nsteps)
724		return (dt_set_errno(dtp, EDT_DMISMATCH));
725
726	levels = (int)size / sizeof (uint64_t);
727
728	first_bin = 0;
729	last_bin = levels - 1;
730
731	while (first_bin < levels && data[first_bin] == 0)
732		first_bin++;
733
734	if (first_bin == levels) {
735		first_bin = 0;
736		last_bin = 1;
737	} else {
738		if (first_bin > 0)
739			first_bin--;
740
741		while (last_bin > 0 && data[last_bin] == 0)
742			last_bin--;
743
744		if (last_bin < levels - 1)
745			last_bin++;
746	}
747
748	for (i = first_bin; i <= last_bin; i++) {
749		positives |= (data[i] > 0);
750		negatives |= (data[i] < 0);
751		total += dt_fabsl((long double)data[i]);
752	}
753
754	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
755	    "------------- Distribution -------------", "count") < 0)
756		return (-1);
757
758	for (order = 0; order < low; order++)
759		value *= factor;
760
761	next = value * factor;
762	step = next > nsteps ? next / nsteps : 1;
763
764	if (first_bin == 0) {
765		(void) snprintf(c, sizeof (c), "< %lld", (long long)value);
766
767		if (dt_printf(dtp, fp, "%16s ", c) < 0)
768			return (-1);
769
770		if (dt_print_quantline(dtp, fp, data[0], normal,
771		    total, positives, negatives) < 0)
772			return (-1);
773	}
774
775	while (order <= high) {
776		if (bin >= first_bin && bin <= last_bin) {
777			if (dt_printf(dtp, fp, "%16lld ", (long long)value) < 0)
778				return (-1);
779
780			if (dt_print_quantline(dtp, fp, data[bin],
781			    normal, total, positives, negatives) < 0)
782				return (-1);
783		}
784
785		assert(value < next);
786		bin++;
787
788		if ((value += step) != next)
789			continue;
790
791		next = value * factor;
792		step = next > nsteps ? next / nsteps : 1;
793		order++;
794	}
795
796	if (last_bin < bin)
797		return (0);
798
799	assert(last_bin == bin);
800	(void) snprintf(c, sizeof (c), ">= %lld", (long long)value);
801
802	if (dt_printf(dtp, fp, "%16s ", c) < 0)
803		return (-1);
804
805	return (dt_print_quantline(dtp, fp, data[bin], normal,
806	    total, positives, negatives));
807}
808
809/*ARGSUSED*/
810static int
811dt_print_average(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
812    size_t size, uint64_t normal)
813{
814	/* LINTED - alignment */
815	int64_t *data = (int64_t *)addr;
816
817	return (dt_printf(dtp, fp, " %16lld", data[0] ?
818	    (long long)(data[1] / (int64_t)normal / data[0]) : 0));
819}
820
821/*ARGSUSED*/
822static int
823dt_print_stddev(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
824    size_t size, uint64_t normal)
825{
826	/* LINTED - alignment */
827	uint64_t *data = (uint64_t *)addr;
828
829	return (dt_printf(dtp, fp, " %16llu", data[0] ?
830	    (unsigned long long) dt_stddev(data, normal) : 0));
831}
832
833/*ARGSUSED*/
834int
835dt_print_bytes(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
836    size_t nbytes, int width, int quiet, int forceraw)
837{
838	/*
839	 * If the byte stream is a series of printable characters, followed by
840	 * a terminating byte, we print it out as a string.  Otherwise, we
841	 * assume that it's something else and just print the bytes.
842	 */
843	int i, j, margin = 5;
844	char *c = (char *)addr;
845
846	if (nbytes == 0)
847		return (0);
848
849	if (forceraw)
850		goto raw;
851
852	if (dtp->dt_options[DTRACEOPT_RAWBYTES] != DTRACEOPT_UNSET)
853		goto raw;
854
855	for (i = 0; i < nbytes; i++) {
856		/*
857		 * We define a "printable character" to be one for which
858		 * isprint(3C) returns non-zero, isspace(3C) returns non-zero,
859		 * or a character which is either backspace or the bell.
860		 * Backspace and the bell are regrettably special because
861		 * they fail the first two tests -- and yet they are entirely
862		 * printable.  These are the only two control characters that
863		 * have meaning for the terminal and for which isprint(3C) and
864		 * isspace(3C) return 0.
865		 */
866		if (isprint(c[i]) || isspace(c[i]) ||
867		    c[i] == '\b' || c[i] == '\a')
868			continue;
869
870		if (c[i] == '\0' && i > 0) {
871			/*
872			 * This looks like it might be a string.  Before we
873			 * assume that it is indeed a string, check the
874			 * remainder of the byte range; if it contains
875			 * additional non-nul characters, we'll assume that
876			 * it's a binary stream that just happens to look like
877			 * a string, and we'll print out the individual bytes.
878			 */
879			for (j = i + 1; j < nbytes; j++) {
880				if (c[j] != '\0')
881					break;
882			}
883
884			if (j != nbytes)
885				break;
886
887			if (quiet)
888				return (dt_printf(dtp, fp, "%s", c));
889			else
890				return (dt_printf(dtp, fp, "  %-*s", width, c));
891		}
892
893		break;
894	}
895
896	if (i == nbytes) {
897		/*
898		 * The byte range is all printable characters, but there is
899		 * no trailing nul byte.  We'll assume that it's a string and
900		 * print it as such.
901		 */
902		char *s = alloca(nbytes + 1);
903		bcopy(c, s, nbytes);
904		s[nbytes] = '\0';
905		return (dt_printf(dtp, fp, "  %-*s", width, s));
906	}
907
908raw:
909	if (dt_printf(dtp, fp, "\n%*s      ", margin, "") < 0)
910		return (-1);
911
912	for (i = 0; i < 16; i++)
913		if (dt_printf(dtp, fp, "  %c", "0123456789abcdef"[i]) < 0)
914			return (-1);
915
916	if (dt_printf(dtp, fp, "  0123456789abcdef\n") < 0)
917		return (-1);
918
919
920	for (i = 0; i < nbytes; i += 16) {
921		if (dt_printf(dtp, fp, "%*s%5x:", margin, "", i) < 0)
922			return (-1);
923
924		for (j = i; j < i + 16 && j < nbytes; j++) {
925			if (dt_printf(dtp, fp, " %02x", (uchar_t)c[j]) < 0)
926				return (-1);
927		}
928
929		while (j++ % 16) {
930			if (dt_printf(dtp, fp, "   ") < 0)
931				return (-1);
932		}
933
934		if (dt_printf(dtp, fp, "  ") < 0)
935			return (-1);
936
937		for (j = i; j < i + 16 && j < nbytes; j++) {
938			if (dt_printf(dtp, fp, "%c",
939			    c[j] < ' ' || c[j] > '~' ? '.' : c[j]) < 0)
940				return (-1);
941		}
942
943		if (dt_printf(dtp, fp, "\n") < 0)
944			return (-1);
945	}
946
947	return (0);
948}
949
950int
951dt_print_stack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
952    caddr_t addr, int depth, int size)
953{
954	dtrace_syminfo_t dts;
955	GElf_Sym sym;
956	int i, indent;
957	char c[PATH_MAX * 2];
958	uint64_t pc;
959
960	if (dt_printf(dtp, fp, "\n") < 0)
961		return (-1);
962
963	if (format == NULL)
964		format = "%s";
965
966	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
967		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
968	else
969		indent = _dtrace_stkindent;
970
971	for (i = 0; i < depth; i++) {
972		switch (size) {
973		case sizeof (uint32_t):
974			/* LINTED - alignment */
975			pc = *((uint32_t *)addr);
976			break;
977
978		case sizeof (uint64_t):
979			/* LINTED - alignment */
980			pc = *((uint64_t *)addr);
981			break;
982
983		default:
984			return (dt_set_errno(dtp, EDT_BADSTACKPC));
985		}
986
987		if (pc == 0)
988			break;
989
990		addr += size;
991
992		if (dt_printf(dtp, fp, "%*s", indent, "") < 0)
993			return (-1);
994
995		if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
996			if (pc > sym.st_value) {
997				(void) snprintf(c, sizeof (c), "%s`%s+0x%llx",
998				    dts.dts_object, dts.dts_name,
999				    (u_longlong_t)(pc - sym.st_value));
1000			} else {
1001				(void) snprintf(c, sizeof (c), "%s`%s",
1002				    dts.dts_object, dts.dts_name);
1003			}
1004		} else {
1005			/*
1006			 * We'll repeat the lookup, but this time we'll specify
1007			 * a NULL GElf_Sym -- indicating that we're only
1008			 * interested in the containing module.
1009			 */
1010			if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1011				(void) snprintf(c, sizeof (c), "%s`0x%llx",
1012				    dts.dts_object, (u_longlong_t)pc);
1013			} else {
1014				(void) snprintf(c, sizeof (c), "0x%llx",
1015				    (u_longlong_t)pc);
1016			}
1017		}
1018
1019		if (dt_printf(dtp, fp, format, c) < 0)
1020			return (-1);
1021
1022		if (dt_printf(dtp, fp, "\n") < 0)
1023			return (-1);
1024	}
1025
1026	return (0);
1027}
1028
1029int
1030dt_print_ustack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
1031    caddr_t addr, uint64_t arg)
1032{
1033	/* LINTED - alignment */
1034	uint64_t *pc = (uint64_t *)addr;
1035	uint32_t depth = DTRACE_USTACK_NFRAMES(arg);
1036	uint32_t strsize = DTRACE_USTACK_STRSIZE(arg);
1037	const char *strbase = addr + (depth + 1) * sizeof (uint64_t);
1038	const char *str = strsize ? strbase : NULL;
1039	int err = 0;
1040
1041	char name[PATH_MAX], objname[PATH_MAX], c[PATH_MAX * 2];
1042	struct ps_prochandle *P;
1043	GElf_Sym sym;
1044	int i, indent;
1045	pid_t pid;
1046
1047	if (depth == 0)
1048		return (0);
1049
1050	pid = (pid_t)*pc++;
1051
1052	if (dt_printf(dtp, fp, "\n") < 0)
1053		return (-1);
1054
1055	if (format == NULL)
1056		format = "%s";
1057
1058	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
1059		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
1060	else
1061		indent = _dtrace_stkindent;
1062
1063	/*
1064	 * Ultimately, we need to add an entry point in the library vector for
1065	 * determining <symbol, offset> from <pid, address>.  For now, if
1066	 * this is a vector open, we just print the raw address or string.
1067	 */
1068	if (dtp->dt_vector == NULL)
1069		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1070	else
1071		P = NULL;
1072
1073	if (P != NULL)
1074		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1075
1076	for (i = 0; i < depth && pc[i] != 0; i++) {
1077		const prmap_t *map;
1078
1079		if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1080			break;
1081
1082		if (P != NULL && Plookup_by_addr(P, pc[i],
1083		    name, sizeof (name), &sym) == 0) {
1084			(void) Pobjname(P, pc[i], objname, sizeof (objname));
1085
1086			if (pc[i] > sym.st_value) {
1087				(void) snprintf(c, sizeof (c),
1088				    "%s`%s+0x%llx", dt_basename(objname), name,
1089				    (u_longlong_t)(pc[i] - sym.st_value));
1090			} else {
1091				(void) snprintf(c, sizeof (c),
1092				    "%s`%s", dt_basename(objname), name);
1093			}
1094		} else if (str != NULL && str[0] != '\0' && str[0] != '@' &&
1095		    (P != NULL && ((map = Paddr_to_map(P, pc[i])) == NULL ||
1096		    (map->pr_mflags & MA_WRITE)))) {
1097			/*
1098			 * If the current string pointer in the string table
1099			 * does not point to an empty string _and_ the program
1100			 * counter falls in a writable region, we'll use the
1101			 * string from the string table instead of the raw
1102			 * address.  This last condition is necessary because
1103			 * some (broken) ustack helpers will return a string
1104			 * even for a program counter that they can't
1105			 * identify.  If we have a string for a program
1106			 * counter that falls in a segment that isn't
1107			 * writable, we assume that we have fallen into this
1108			 * case and we refuse to use the string.
1109			 */
1110			(void) snprintf(c, sizeof (c), "%s", str);
1111		} else {
1112			if (P != NULL && Pobjname(P, pc[i], objname,
1113			    sizeof (objname)) != 0) {
1114				(void) snprintf(c, sizeof (c), "%s`0x%llx",
1115				    dt_basename(objname), (u_longlong_t)pc[i]);
1116			} else {
1117				(void) snprintf(c, sizeof (c), "0x%llx",
1118				    (u_longlong_t)pc[i]);
1119			}
1120		}
1121
1122		if ((err = dt_printf(dtp, fp, format, c)) < 0)
1123			break;
1124
1125		if ((err = dt_printf(dtp, fp, "\n")) < 0)
1126			break;
1127
1128		if (str != NULL && str[0] == '@') {
1129			/*
1130			 * If the first character of the string is an "at" sign,
1131			 * then the string is inferred to be an annotation --
1132			 * and it is printed out beneath the frame and offset
1133			 * with brackets.
1134			 */
1135			if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1136				break;
1137
1138			(void) snprintf(c, sizeof (c), "  [ %s ]", &str[1]);
1139
1140			if ((err = dt_printf(dtp, fp, format, c)) < 0)
1141				break;
1142
1143			if ((err = dt_printf(dtp, fp, "\n")) < 0)
1144				break;
1145		}
1146
1147		if (str != NULL) {
1148			str += strlen(str) + 1;
1149			if (str - strbase >= strsize)
1150				str = NULL;
1151		}
1152	}
1153
1154	if (P != NULL) {
1155		dt_proc_unlock(dtp, P);
1156		dt_proc_release(dtp, P);
1157	}
1158
1159	return (err);
1160}
1161
1162static int
1163dt_print_usym(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, dtrace_actkind_t act)
1164{
1165	/* LINTED - alignment */
1166	uint64_t pid = ((uint64_t *)addr)[0];
1167	/* LINTED - alignment */
1168	uint64_t pc = ((uint64_t *)addr)[1];
1169	const char *format = "  %-50s";
1170	char *s;
1171	int n, len = 256;
1172
1173	if (act == DTRACEACT_USYM && dtp->dt_vector == NULL) {
1174		struct ps_prochandle *P;
1175
1176		if ((P = dt_proc_grab(dtp, pid,
1177		    PGRAB_RDONLY | PGRAB_FORCE, 0)) != NULL) {
1178			GElf_Sym sym;
1179
1180			dt_proc_lock(dtp, P);
1181
1182			if (Plookup_by_addr(P, pc, NULL, 0, &sym) == 0)
1183				pc = sym.st_value;
1184
1185			dt_proc_unlock(dtp, P);
1186			dt_proc_release(dtp, P);
1187		}
1188	}
1189
1190	do {
1191		n = len;
1192		s = alloca(n);
1193	} while ((len = dtrace_uaddr2str(dtp, pid, pc, s, n)) > n);
1194
1195	return (dt_printf(dtp, fp, format, s));
1196}
1197
1198int
1199dt_print_umod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1200{
1201	/* LINTED - alignment */
1202	uint64_t pid = ((uint64_t *)addr)[0];
1203	/* LINTED - alignment */
1204	uint64_t pc = ((uint64_t *)addr)[1];
1205	int err = 0;
1206
1207	char objname[PATH_MAX], c[PATH_MAX * 2];
1208	struct ps_prochandle *P;
1209
1210	if (format == NULL)
1211		format = "  %-50s";
1212
1213	/*
1214	 * See the comment in dt_print_ustack() for the rationale for
1215	 * printing raw addresses in the vectored case.
1216	 */
1217	if (dtp->dt_vector == NULL)
1218		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1219	else
1220		P = NULL;
1221
1222	if (P != NULL)
1223		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1224
1225	if (P != NULL && Pobjname(P, pc, objname, sizeof (objname)) != 0) {
1226		(void) snprintf(c, sizeof (c), "%s", dt_basename(objname));
1227	} else {
1228		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1229	}
1230
1231	err = dt_printf(dtp, fp, format, c);
1232
1233	if (P != NULL) {
1234		dt_proc_unlock(dtp, P);
1235		dt_proc_release(dtp, P);
1236	}
1237
1238	return (err);
1239}
1240
1241int
1242dt_print_memory(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr)
1243{
1244	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1245	size_t nbytes = *((uintptr_t *) addr);
1246
1247	return (dt_print_bytes(dtp, fp, addr + sizeof(uintptr_t),
1248	    nbytes, 50, quiet, 1));
1249}
1250
1251typedef struct dt_type_cbdata {
1252	dtrace_hdl_t		*dtp;
1253	dtrace_typeinfo_t	dtt;
1254	caddr_t			addr;
1255	caddr_t			addrend;
1256	const char		*name;
1257	int			f_type;
1258	int			indent;
1259	int			type_width;
1260	int			name_width;
1261	FILE			*fp;
1262} dt_type_cbdata_t;
1263
1264static int	dt_print_type_data(dt_type_cbdata_t *, ctf_id_t);
1265
1266static int
1267dt_print_type_member(const char *name, ctf_id_t type, ulong_t off, void *arg)
1268{
1269	dt_type_cbdata_t cbdata;
1270	dt_type_cbdata_t *cbdatap = arg;
1271	ssize_t ssz;
1272
1273	if ((ssz = ctf_type_size(cbdatap->dtt.dtt_ctfp, type)) <= 0)
1274		return (0);
1275
1276	off /= 8;
1277
1278	cbdata = *cbdatap;
1279	cbdata.name = name;
1280	cbdata.addr += off;
1281	cbdata.addrend = cbdata.addr + ssz;
1282
1283	return (dt_print_type_data(&cbdata, type));
1284}
1285
1286static int
1287dt_print_type_width(const char *name, ctf_id_t type, ulong_t off, void *arg)
1288{
1289	char buf[DT_TYPE_NAMELEN];
1290	char *p;
1291	dt_type_cbdata_t *cbdatap = arg;
1292	size_t sz = strlen(name);
1293
1294	ctf_type_name(cbdatap->dtt.dtt_ctfp, type, buf, sizeof (buf));
1295
1296	if ((p = strchr(buf, '[')) != NULL)
1297		p[-1] = '\0';
1298	else
1299		p = "";
1300
1301	sz += strlen(p);
1302
1303	if (sz > cbdatap->name_width)
1304		cbdatap->name_width = sz;
1305
1306	sz = strlen(buf);
1307
1308	if (sz > cbdatap->type_width)
1309		cbdatap->type_width = sz;
1310
1311	return (0);
1312}
1313
1314static int
1315dt_print_type_data(dt_type_cbdata_t *cbdatap, ctf_id_t type)
1316{
1317	caddr_t addr = cbdatap->addr;
1318	caddr_t addrend = cbdatap->addrend;
1319	char buf[DT_TYPE_NAMELEN];
1320	char *p;
1321	int cnt = 0;
1322	uint_t kind = ctf_type_kind(cbdatap->dtt.dtt_ctfp, type);
1323	ssize_t ssz = ctf_type_size(cbdatap->dtt.dtt_ctfp, type);
1324
1325	ctf_type_name(cbdatap->dtt.dtt_ctfp, type, buf, sizeof (buf));
1326
1327	if ((p = strchr(buf, '[')) != NULL)
1328		p[-1] = '\0';
1329	else
1330		p = "";
1331
1332	if (cbdatap->f_type) {
1333		int type_width = roundup(cbdatap->type_width + 1, 4);
1334		int name_width = roundup(cbdatap->name_width + 1, 4);
1335
1336		name_width -= strlen(cbdatap->name);
1337
1338		dt_printf(cbdatap->dtp, cbdatap->fp, "%*s%-*s%s%-*s	= ",cbdatap->indent * 4,"",type_width,buf,cbdatap->name,name_width,p);
1339	}
1340
1341	while (addr < addrend) {
1342		dt_type_cbdata_t cbdata;
1343		ctf_arinfo_t arinfo;
1344		ctf_encoding_t cte;
1345		uintptr_t *up;
1346		void *vp = addr;
1347		cbdata = *cbdatap;
1348		cbdata.name = "";
1349		cbdata.addr = addr;
1350		cbdata.addrend = addr + ssz;
1351		cbdata.f_type = 0;
1352		cbdata.indent++;
1353		cbdata.type_width = 0;
1354		cbdata.name_width = 0;
1355
1356		if (cnt > 0)
1357			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s", cbdatap->indent * 4,"");
1358
1359		switch (kind) {
1360		case CTF_K_INTEGER:
1361			if (ctf_type_encoding(cbdatap->dtt.dtt_ctfp, type, &cte) != 0)
1362				return (-1);
1363			if ((cte.cte_format & CTF_INT_SIGNED) != 0)
1364				switch (cte.cte_bits) {
1365				case 8:
1366					if (isprint(*((char *) vp)))
1367						dt_printf(cbdatap->dtp, cbdatap->fp, "'%c', ", *((char *) vp));
1368					dt_printf(cbdatap->dtp, cbdatap->fp, "%d (0x%x);\n", *((char *) vp), *((char *) vp));
1369					break;
1370				case 16:
1371					dt_printf(cbdatap->dtp, cbdatap->fp, "%hd (0x%hx);\n", *((short *) vp), *((u_short *) vp));
1372					break;
1373				case 32:
1374					dt_printf(cbdatap->dtp, cbdatap->fp, "%d (0x%x);\n", *((int *) vp), *((u_int *) vp));
1375					break;
1376				case 64:
1377					dt_printf(cbdatap->dtp, cbdatap->fp, "%jd (0x%jx);\n", *((long long *) vp), *((unsigned long long *) vp));
1378					break;
1379				default:
1380					dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_INTEGER: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1381					break;
1382				}
1383			else
1384				switch (cte.cte_bits) {
1385				case 8:
1386					dt_printf(cbdatap->dtp, cbdatap->fp, "%u (0x%x);\n", *((uint8_t *) vp) & 0xff, *((uint8_t *) vp) & 0xff);
1387					break;
1388				case 16:
1389					dt_printf(cbdatap->dtp, cbdatap->fp, "%hu (0x%hx);\n", *((u_short *) vp), *((u_short *) vp));
1390					break;
1391				case 32:
1392					dt_printf(cbdatap->dtp, cbdatap->fp, "%u (0x%x);\n", *((u_int *) vp), *((u_int *) vp));
1393					break;
1394				case 64:
1395					dt_printf(cbdatap->dtp, cbdatap->fp, "%ju (0x%jx);\n", *((unsigned long long *) vp), *((unsigned long long *) vp));
1396					break;
1397				default:
1398					dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_INTEGER: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1399					break;
1400				}
1401			break;
1402		case CTF_K_FLOAT:
1403			dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_FLOAT: format %x offset %u bits %u\n",cte.cte_format,cte.cte_offset,cte.cte_bits);
1404			break;
1405		case CTF_K_POINTER:
1406			dt_printf(cbdatap->dtp, cbdatap->fp, "%p;\n", *((void **) addr));
1407			break;
1408		case CTF_K_ARRAY:
1409			if (ctf_array_info(cbdatap->dtt.dtt_ctfp, type, &arinfo) != 0)
1410				return (-1);
1411			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n%*s",cbdata.indent * 4,"");
1412			dt_print_type_data(&cbdata, arinfo.ctr_contents);
1413			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1414			break;
1415		case CTF_K_FUNCTION:
1416			dt_printf(cbdatap->dtp, cbdatap->fp, "CTF_K_FUNCTION:\n");
1417			break;
1418		case CTF_K_STRUCT:
1419			cbdata.f_type = 1;
1420			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1421			    dt_print_type_width, &cbdata) != 0)
1422				return (-1);
1423			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n");
1424			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1425			    dt_print_type_member, &cbdata) != 0)
1426				return (-1);
1427			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1428			break;
1429		case CTF_K_UNION:
1430			cbdata.f_type = 1;
1431			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1432			    dt_print_type_width, &cbdata) != 0)
1433				return (-1);
1434			dt_printf(cbdatap->dtp, cbdatap->fp, "{\n");
1435			if (ctf_member_iter(cbdatap->dtt.dtt_ctfp, type,
1436			    dt_print_type_member, &cbdata) != 0)
1437				return (-1);
1438			dt_printf(cbdatap->dtp, cbdatap->fp, "%*s};\n",cbdatap->indent * 4,"");
1439			break;
1440		case CTF_K_ENUM:
1441			dt_printf(cbdatap->dtp, cbdatap->fp, "%s;\n", ctf_enum_name(cbdatap->dtt.dtt_ctfp, type, *((int *) vp)));
1442			break;
1443		case CTF_K_TYPEDEF:
1444			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1445			break;
1446		case CTF_K_VOLATILE:
1447			if (cbdatap->f_type)
1448				dt_printf(cbdatap->dtp, cbdatap->fp, "volatile ");
1449			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1450			break;
1451		case CTF_K_CONST:
1452			if (cbdatap->f_type)
1453				dt_printf(cbdatap->dtp, cbdatap->fp, "const ");
1454			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1455			break;
1456		case CTF_K_RESTRICT:
1457			if (cbdatap->f_type)
1458				dt_printf(cbdatap->dtp, cbdatap->fp, "restrict ");
1459			dt_print_type_data(&cbdata, ctf_type_reference(cbdatap->dtt.dtt_ctfp,type));
1460			break;
1461		default:
1462			break;
1463		}
1464
1465		addr += ssz;
1466		cnt++;
1467	}
1468
1469	return (0);
1470}
1471
1472static int
1473dt_print_type(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr)
1474{
1475	caddr_t addrend;
1476	char *p;
1477	dtrace_typeinfo_t dtt;
1478	dt_type_cbdata_t cbdata;
1479	int num = 0;
1480	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1481	ssize_t ssz;
1482
1483	if (!quiet)
1484		dt_printf(dtp, fp, "\n");
1485
1486	/* Get the total number of bytes of data buffered. */
1487	size_t nbytes = *((uintptr_t *) addr);
1488	addr += sizeof(uintptr_t);
1489
1490	/*
1491	 * Get the size of the type so that we can check that it matches
1492	 * the CTF data we look up and so that we can figure out how many
1493	 * type elements are buffered.
1494	 */
1495	size_t typs = *((uintptr_t *) addr);
1496	addr += sizeof(uintptr_t);
1497
1498	/*
1499	 * Point to the type string in the buffer. Get it's string
1500	 * length and round it up to become the offset to the start
1501	 * of the buffered type data which we would like to be aligned
1502	 * for easy access.
1503	 */
1504	char *strp = (char *) addr;
1505	int offset = roundup(strlen(strp) + 1, sizeof(uintptr_t));
1506
1507	/*
1508	 * The type string might have a format such as 'int [20]'.
1509	 * Check if there is an array dimension present.
1510	 */
1511	if ((p = strchr(strp, '[')) != NULL) {
1512		/* Strip off the array dimension. */
1513		*p++ = '\0';
1514
1515		for (; *p != '\0' && *p != ']'; p++)
1516			num = num * 10 + *p - '0';
1517	} else
1518		/* No array dimension, so default. */
1519		num = 1;
1520
1521	/* Lookup the CTF type from the type string. */
1522	if (dtrace_lookup_by_type(dtp,  DTRACE_OBJ_EVERY, strp, &dtt) < 0)
1523		return (-1);
1524
1525	/* Offset the buffer address to the start of the data... */
1526	addr += offset;
1527
1528	ssz = ctf_type_size(dtt.dtt_ctfp, dtt.dtt_type);
1529
1530	if (typs != ssz) {
1531		printf("Expected type size from buffer (%lu) to match type size looked up now (%ld)\n", (u_long) typs, (long) ssz);
1532		return (-1);
1533	}
1534
1535	cbdata.dtp = dtp;
1536	cbdata.dtt = dtt;
1537	cbdata.name = "";
1538	cbdata.addr = addr;
1539	cbdata.addrend = addr + nbytes;
1540	cbdata.indent = 1;
1541	cbdata.f_type = 1;
1542	cbdata.type_width = 0;
1543	cbdata.name_width = 0;
1544	cbdata.fp = fp;
1545
1546	return (dt_print_type_data(&cbdata, dtt.dtt_type));
1547}
1548
1549static int
1550dt_print_sym(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1551{
1552	/* LINTED - alignment */
1553	uint64_t pc = *((uint64_t *)addr);
1554	dtrace_syminfo_t dts;
1555	GElf_Sym sym;
1556	char c[PATH_MAX * 2];
1557
1558	if (format == NULL)
1559		format = "  %-50s";
1560
1561	if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
1562		(void) snprintf(c, sizeof (c), "%s`%s",
1563		    dts.dts_object, dts.dts_name);
1564	} else {
1565		/*
1566		 * We'll repeat the lookup, but this time we'll specify a
1567		 * NULL GElf_Sym -- indicating that we're only interested in
1568		 * the containing module.
1569		 */
1570		if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1571			(void) snprintf(c, sizeof (c), "%s`0x%llx",
1572			    dts.dts_object, (u_longlong_t)pc);
1573		} else {
1574			(void) snprintf(c, sizeof (c), "0x%llx",
1575			    (u_longlong_t)pc);
1576		}
1577	}
1578
1579	if (dt_printf(dtp, fp, format, c) < 0)
1580		return (-1);
1581
1582	return (0);
1583}
1584
1585int
1586dt_print_mod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1587{
1588	/* LINTED - alignment */
1589	uint64_t pc = *((uint64_t *)addr);
1590	dtrace_syminfo_t dts;
1591	char c[PATH_MAX * 2];
1592
1593	if (format == NULL)
1594		format = "  %-50s";
1595
1596	if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1597		(void) snprintf(c, sizeof (c), "%s", dts.dts_object);
1598	} else {
1599		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1600	}
1601
1602	if (dt_printf(dtp, fp, format, c) < 0)
1603		return (-1);
1604
1605	return (0);
1606}
1607
1608typedef struct dt_normal {
1609	dtrace_aggvarid_t dtnd_id;
1610	uint64_t dtnd_normal;
1611} dt_normal_t;
1612
1613static int
1614dt_normalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1615{
1616	dt_normal_t *normal = arg;
1617	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1618	dtrace_aggvarid_t id = normal->dtnd_id;
1619
1620	if (agg->dtagd_nrecs == 0)
1621		return (DTRACE_AGGWALK_NEXT);
1622
1623	if (agg->dtagd_varid != id)
1624		return (DTRACE_AGGWALK_NEXT);
1625
1626	((dtrace_aggdata_t *)aggdata)->dtada_normal = normal->dtnd_normal;
1627	return (DTRACE_AGGWALK_NORMALIZE);
1628}
1629
1630static int
1631dt_normalize(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1632{
1633	dt_normal_t normal;
1634	caddr_t addr;
1635
1636	/*
1637	 * We (should) have two records:  the aggregation ID followed by the
1638	 * normalization value.
1639	 */
1640	addr = base + rec->dtrd_offset;
1641
1642	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1643		return (dt_set_errno(dtp, EDT_BADNORMAL));
1644
1645	/* LINTED - alignment */
1646	normal.dtnd_id = *((dtrace_aggvarid_t *)addr);
1647	rec++;
1648
1649	if (rec->dtrd_action != DTRACEACT_LIBACT)
1650		return (dt_set_errno(dtp, EDT_BADNORMAL));
1651
1652	if (rec->dtrd_arg != DT_ACT_NORMALIZE)
1653		return (dt_set_errno(dtp, EDT_BADNORMAL));
1654
1655	addr = base + rec->dtrd_offset;
1656
1657	switch (rec->dtrd_size) {
1658	case sizeof (uint64_t):
1659		/* LINTED - alignment */
1660		normal.dtnd_normal = *((uint64_t *)addr);
1661		break;
1662	case sizeof (uint32_t):
1663		/* LINTED - alignment */
1664		normal.dtnd_normal = *((uint32_t *)addr);
1665		break;
1666	case sizeof (uint16_t):
1667		/* LINTED - alignment */
1668		normal.dtnd_normal = *((uint16_t *)addr);
1669		break;
1670	case sizeof (uint8_t):
1671		normal.dtnd_normal = *((uint8_t *)addr);
1672		break;
1673	default:
1674		return (dt_set_errno(dtp, EDT_BADNORMAL));
1675	}
1676
1677	(void) dtrace_aggregate_walk(dtp, dt_normalize_agg, &normal);
1678
1679	return (0);
1680}
1681
1682static int
1683dt_denormalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1684{
1685	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1686	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1687
1688	if (agg->dtagd_nrecs == 0)
1689		return (DTRACE_AGGWALK_NEXT);
1690
1691	if (agg->dtagd_varid != id)
1692		return (DTRACE_AGGWALK_NEXT);
1693
1694	return (DTRACE_AGGWALK_DENORMALIZE);
1695}
1696
1697static int
1698dt_clear_agg(const dtrace_aggdata_t *aggdata, void *arg)
1699{
1700	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1701	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1702
1703	if (agg->dtagd_nrecs == 0)
1704		return (DTRACE_AGGWALK_NEXT);
1705
1706	if (agg->dtagd_varid != id)
1707		return (DTRACE_AGGWALK_NEXT);
1708
1709	return (DTRACE_AGGWALK_CLEAR);
1710}
1711
1712typedef struct dt_trunc {
1713	dtrace_aggvarid_t dttd_id;
1714	uint64_t dttd_remaining;
1715} dt_trunc_t;
1716
1717static int
1718dt_trunc_agg(const dtrace_aggdata_t *aggdata, void *arg)
1719{
1720	dt_trunc_t *trunc = arg;
1721	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1722	dtrace_aggvarid_t id = trunc->dttd_id;
1723
1724	if (agg->dtagd_nrecs == 0)
1725		return (DTRACE_AGGWALK_NEXT);
1726
1727	if (agg->dtagd_varid != id)
1728		return (DTRACE_AGGWALK_NEXT);
1729
1730	if (trunc->dttd_remaining == 0)
1731		return (DTRACE_AGGWALK_REMOVE);
1732
1733	trunc->dttd_remaining--;
1734	return (DTRACE_AGGWALK_NEXT);
1735}
1736
1737static int
1738dt_trunc(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1739{
1740	dt_trunc_t trunc;
1741	caddr_t addr;
1742	int64_t remaining;
1743	int (*func)(dtrace_hdl_t *, dtrace_aggregate_f *, void *);
1744
1745	/*
1746	 * We (should) have two records:  the aggregation ID followed by the
1747	 * number of aggregation entries after which the aggregation is to be
1748	 * truncated.
1749	 */
1750	addr = base + rec->dtrd_offset;
1751
1752	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1753		return (dt_set_errno(dtp, EDT_BADTRUNC));
1754
1755	/* LINTED - alignment */
1756	trunc.dttd_id = *((dtrace_aggvarid_t *)addr);
1757	rec++;
1758
1759	if (rec->dtrd_action != DTRACEACT_LIBACT)
1760		return (dt_set_errno(dtp, EDT_BADTRUNC));
1761
1762	if (rec->dtrd_arg != DT_ACT_TRUNC)
1763		return (dt_set_errno(dtp, EDT_BADTRUNC));
1764
1765	addr = base + rec->dtrd_offset;
1766
1767	switch (rec->dtrd_size) {
1768	case sizeof (uint64_t):
1769		/* LINTED - alignment */
1770		remaining = *((int64_t *)addr);
1771		break;
1772	case sizeof (uint32_t):
1773		/* LINTED - alignment */
1774		remaining = *((int32_t *)addr);
1775		break;
1776	case sizeof (uint16_t):
1777		/* LINTED - alignment */
1778		remaining = *((int16_t *)addr);
1779		break;
1780	case sizeof (uint8_t):
1781		remaining = *((int8_t *)addr);
1782		break;
1783	default:
1784		return (dt_set_errno(dtp, EDT_BADNORMAL));
1785	}
1786
1787	if (remaining < 0) {
1788		func = dtrace_aggregate_walk_valsorted;
1789		remaining = -remaining;
1790	} else {
1791		func = dtrace_aggregate_walk_valrevsorted;
1792	}
1793
1794	assert(remaining >= 0);
1795	trunc.dttd_remaining = remaining;
1796
1797	(void) func(dtp, dt_trunc_agg, &trunc);
1798
1799	return (0);
1800}
1801
1802static int
1803dt_print_datum(dtrace_hdl_t *dtp, FILE *fp, dtrace_recdesc_t *rec,
1804    caddr_t addr, size_t size, uint64_t normal)
1805{
1806	int err;
1807	dtrace_actkind_t act = rec->dtrd_action;
1808
1809	switch (act) {
1810	case DTRACEACT_STACK:
1811		return (dt_print_stack(dtp, fp, NULL, addr,
1812		    rec->dtrd_arg, rec->dtrd_size / rec->dtrd_arg));
1813
1814	case DTRACEACT_USTACK:
1815	case DTRACEACT_JSTACK:
1816		return (dt_print_ustack(dtp, fp, NULL, addr, rec->dtrd_arg));
1817
1818	case DTRACEACT_USYM:
1819	case DTRACEACT_UADDR:
1820		return (dt_print_usym(dtp, fp, addr, act));
1821
1822	case DTRACEACT_UMOD:
1823		return (dt_print_umod(dtp, fp, NULL, addr));
1824
1825	case DTRACEACT_SYM:
1826		return (dt_print_sym(dtp, fp, NULL, addr));
1827
1828	case DTRACEACT_MOD:
1829		return (dt_print_mod(dtp, fp, NULL, addr));
1830
1831	case DTRACEAGG_QUANTIZE:
1832		return (dt_print_quantize(dtp, fp, addr, size, normal));
1833
1834	case DTRACEAGG_LQUANTIZE:
1835		return (dt_print_lquantize(dtp, fp, addr, size, normal));
1836
1837	case DTRACEAGG_LLQUANTIZE:
1838		return (dt_print_llquantize(dtp, fp, addr, size, normal));
1839
1840	case DTRACEAGG_AVG:
1841		return (dt_print_average(dtp, fp, addr, size, normal));
1842
1843	case DTRACEAGG_STDDEV:
1844		return (dt_print_stddev(dtp, fp, addr, size, normal));
1845
1846	default:
1847		break;
1848	}
1849
1850	switch (size) {
1851	case sizeof (uint64_t):
1852		err = dt_printf(dtp, fp, " %16lld",
1853		    /* LINTED - alignment */
1854		    (long long)*((uint64_t *)addr) / normal);
1855		break;
1856	case sizeof (uint32_t):
1857		/* LINTED - alignment */
1858		err = dt_printf(dtp, fp, " %8d", *((uint32_t *)addr) /
1859		    (uint32_t)normal);
1860		break;
1861	case sizeof (uint16_t):
1862		/* LINTED - alignment */
1863		err = dt_printf(dtp, fp, " %5d", *((uint16_t *)addr) /
1864		    (uint32_t)normal);
1865		break;
1866	case sizeof (uint8_t):
1867		err = dt_printf(dtp, fp, " %3d", *((uint8_t *)addr) /
1868		    (uint32_t)normal);
1869		break;
1870	default:
1871		err = dt_print_bytes(dtp, fp, addr, size, 50, 0, 0);
1872		break;
1873	}
1874
1875	return (err);
1876}
1877
1878int
1879dt_print_aggs(const dtrace_aggdata_t **aggsdata, int naggvars, void *arg)
1880{
1881	int i, aggact = 0;
1882	dt_print_aggdata_t *pd = arg;
1883	const dtrace_aggdata_t *aggdata = aggsdata[0];
1884	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1885	FILE *fp = pd->dtpa_fp;
1886	dtrace_hdl_t *dtp = pd->dtpa_dtp;
1887	dtrace_recdesc_t *rec;
1888	dtrace_actkind_t act;
1889	caddr_t addr;
1890	size_t size;
1891
1892	/*
1893	 * Iterate over each record description in the key, printing the traced
1894	 * data, skipping the first datum (the tuple member created by the
1895	 * compiler).
1896	 */
1897	for (i = 1; i < agg->dtagd_nrecs; i++) {
1898		rec = &agg->dtagd_rec[i];
1899		act = rec->dtrd_action;
1900		addr = aggdata->dtada_data + rec->dtrd_offset;
1901		size = rec->dtrd_size;
1902
1903		if (DTRACEACT_ISAGG(act)) {
1904			aggact = i;
1905			break;
1906		}
1907
1908		if (dt_print_datum(dtp, fp, rec, addr, size, 1) < 0)
1909			return (-1);
1910
1911		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
1912		    DTRACE_BUFDATA_AGGKEY) < 0)
1913			return (-1);
1914	}
1915
1916	assert(aggact != 0);
1917
1918	for (i = (naggvars == 1 ? 0 : 1); i < naggvars; i++) {
1919		uint64_t normal;
1920
1921		aggdata = aggsdata[i];
1922		agg = aggdata->dtada_desc;
1923		rec = &agg->dtagd_rec[aggact];
1924		act = rec->dtrd_action;
1925		addr = aggdata->dtada_data + rec->dtrd_offset;
1926		size = rec->dtrd_size;
1927
1928		assert(DTRACEACT_ISAGG(act));
1929		normal = aggdata->dtada_normal;
1930
1931		if (dt_print_datum(dtp, fp, rec, addr, size, normal) < 0)
1932			return (-1);
1933
1934		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
1935		    DTRACE_BUFDATA_AGGVAL) < 0)
1936			return (-1);
1937
1938		if (!pd->dtpa_allunprint)
1939			agg->dtagd_flags |= DTRACE_AGD_PRINTED;
1940	}
1941
1942	if (dt_printf(dtp, fp, "\n") < 0)
1943		return (-1);
1944
1945	if (dt_buffered_flush(dtp, NULL, NULL, aggdata,
1946	    DTRACE_BUFDATA_AGGFORMAT | DTRACE_BUFDATA_AGGLAST) < 0)
1947		return (-1);
1948
1949	return (0);
1950}
1951
1952int
1953dt_print_agg(const dtrace_aggdata_t *aggdata, void *arg)
1954{
1955	dt_print_aggdata_t *pd = arg;
1956	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1957	dtrace_aggvarid_t aggvarid = pd->dtpa_id;
1958
1959	if (pd->dtpa_allunprint) {
1960		if (agg->dtagd_flags & DTRACE_AGD_PRINTED)
1961			return (0);
1962	} else {
1963		/*
1964		 * If we're not printing all unprinted aggregations, then the
1965		 * aggregation variable ID denotes a specific aggregation
1966		 * variable that we should print -- skip any other aggregations
1967		 * that we encounter.
1968		 */
1969		if (agg->dtagd_nrecs == 0)
1970			return (0);
1971
1972		if (aggvarid != agg->dtagd_varid)
1973			return (0);
1974	}
1975
1976	return (dt_print_aggs(&aggdata, 1, arg));
1977}
1978
1979int
1980dt_setopt(dtrace_hdl_t *dtp, const dtrace_probedata_t *data,
1981    const char *option, const char *value)
1982{
1983	int len, rval;
1984	char *msg;
1985	const char *errstr;
1986	dtrace_setoptdata_t optdata;
1987
1988	bzero(&optdata, sizeof (optdata));
1989	(void) dtrace_getopt(dtp, option, &optdata.dtsda_oldval);
1990
1991	if (dtrace_setopt(dtp, option, value) == 0) {
1992		(void) dtrace_getopt(dtp, option, &optdata.dtsda_newval);
1993		optdata.dtsda_probe = data;
1994		optdata.dtsda_option = option;
1995		optdata.dtsda_handle = dtp;
1996
1997		if ((rval = dt_handle_setopt(dtp, &optdata)) != 0)
1998			return (rval);
1999
2000		return (0);
2001	}
2002
2003	errstr = dtrace_errmsg(dtp, dtrace_errno(dtp));
2004	len = strlen(option) + strlen(value) + strlen(errstr) + 80;
2005	msg = alloca(len);
2006
2007	(void) snprintf(msg, len, "couldn't set option \"%s\" to \"%s\": %s\n",
2008	    option, value, errstr);
2009
2010	if ((rval = dt_handle_liberr(dtp, data, msg)) == 0)
2011		return (0);
2012
2013	return (rval);
2014}
2015
2016static int
2017dt_consume_cpu(dtrace_hdl_t *dtp, FILE *fp, int cpu, dtrace_bufdesc_t *buf,
2018    dtrace_consume_probe_f *efunc, dtrace_consume_rec_f *rfunc, void *arg)
2019{
2020	dtrace_epid_t id;
2021	size_t offs, start = buf->dtbd_oldest, end = buf->dtbd_size;
2022	int flow = (dtp->dt_options[DTRACEOPT_FLOWINDENT] != DTRACEOPT_UNSET);
2023	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
2024	int rval, i, n;
2025	dtrace_epid_t last = DTRACE_EPIDNONE;
2026	uint64_t tracememsize = 0;
2027	dtrace_probedata_t data;
2028	uint64_t drops;
2029	caddr_t addr;
2030
2031	bzero(&data, sizeof (data));
2032	data.dtpda_handle = dtp;
2033	data.dtpda_cpu = cpu;
2034
2035again:
2036	for (offs = start; offs < end; ) {
2037		dtrace_eprobedesc_t *epd;
2038
2039		/*
2040		 * We're guaranteed to have an ID.
2041		 */
2042		id = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
2043
2044		if (id == DTRACE_EPIDNONE) {
2045			/*
2046			 * This is filler to assure proper alignment of the
2047			 * next record; we simply ignore it.
2048			 */
2049			offs += sizeof (id);
2050			continue;
2051		}
2052
2053		if ((rval = dt_epid_lookup(dtp, id, &data.dtpda_edesc,
2054		    &data.dtpda_pdesc)) != 0)
2055			return (rval);
2056
2057		epd = data.dtpda_edesc;
2058		data.dtpda_data = buf->dtbd_data + offs;
2059
2060		if (data.dtpda_edesc->dtepd_uarg != DT_ECB_DEFAULT) {
2061			rval = dt_handle(dtp, &data);
2062
2063			if (rval == DTRACE_CONSUME_NEXT)
2064				goto nextepid;
2065
2066			if (rval == DTRACE_CONSUME_ERROR)
2067				return (-1);
2068		}
2069
2070		if (flow)
2071			(void) dt_flowindent(dtp, &data, last, buf, offs);
2072
2073		rval = (*efunc)(&data, arg);
2074
2075		if (flow) {
2076			if (data.dtpda_flow == DTRACEFLOW_ENTRY)
2077				data.dtpda_indent += 2;
2078		}
2079
2080		if (rval == DTRACE_CONSUME_NEXT)
2081			goto nextepid;
2082
2083		if (rval == DTRACE_CONSUME_ABORT)
2084			return (dt_set_errno(dtp, EDT_DIRABORT));
2085
2086		if (rval != DTRACE_CONSUME_THIS)
2087			return (dt_set_errno(dtp, EDT_BADRVAL));
2088
2089		for (i = 0; i < epd->dtepd_nrecs; i++) {
2090			dtrace_recdesc_t *rec = &epd->dtepd_rec[i];
2091			dtrace_actkind_t act = rec->dtrd_action;
2092
2093			data.dtpda_data = buf->dtbd_data + offs +
2094			    rec->dtrd_offset;
2095			addr = data.dtpda_data;
2096
2097			if (act == DTRACEACT_LIBACT) {
2098				uint64_t arg = rec->dtrd_arg;
2099				dtrace_aggvarid_t id;
2100
2101				switch (arg) {
2102				case DT_ACT_CLEAR:
2103					/* LINTED - alignment */
2104					id = *((dtrace_aggvarid_t *)addr);
2105					(void) dtrace_aggregate_walk(dtp,
2106					    dt_clear_agg, &id);
2107					continue;
2108
2109				case DT_ACT_DENORMALIZE:
2110					/* LINTED - alignment */
2111					id = *((dtrace_aggvarid_t *)addr);
2112					(void) dtrace_aggregate_walk(dtp,
2113					    dt_denormalize_agg, &id);
2114					continue;
2115
2116				case DT_ACT_FTRUNCATE:
2117					if (fp == NULL)
2118						continue;
2119
2120					(void) fflush(fp);
2121					(void) ftruncate(fileno(fp), 0);
2122					(void) fseeko(fp, 0, SEEK_SET);
2123					continue;
2124
2125				case DT_ACT_NORMALIZE:
2126					if (i == epd->dtepd_nrecs - 1)
2127						return (dt_set_errno(dtp,
2128						    EDT_BADNORMAL));
2129
2130					if (dt_normalize(dtp,
2131					    buf->dtbd_data + offs, rec) != 0)
2132						return (-1);
2133
2134					i++;
2135					continue;
2136
2137				case DT_ACT_SETOPT: {
2138					uint64_t *opts = dtp->dt_options;
2139					dtrace_recdesc_t *valrec;
2140					uint32_t valsize;
2141					caddr_t val;
2142					int rv;
2143
2144					if (i == epd->dtepd_nrecs - 1) {
2145						return (dt_set_errno(dtp,
2146						    EDT_BADSETOPT));
2147					}
2148
2149					valrec = &epd->dtepd_rec[++i];
2150					valsize = valrec->dtrd_size;
2151
2152					if (valrec->dtrd_action != act ||
2153					    valrec->dtrd_arg != arg) {
2154						return (dt_set_errno(dtp,
2155						    EDT_BADSETOPT));
2156					}
2157
2158					if (valsize > sizeof (uint64_t)) {
2159						val = buf->dtbd_data + offs +
2160						    valrec->dtrd_offset;
2161					} else {
2162						val = "1";
2163					}
2164
2165					rv = dt_setopt(dtp, &data, addr, val);
2166
2167					if (rv != 0)
2168						return (-1);
2169
2170					flow = (opts[DTRACEOPT_FLOWINDENT] !=
2171					    DTRACEOPT_UNSET);
2172					quiet = (opts[DTRACEOPT_QUIET] !=
2173					    DTRACEOPT_UNSET);
2174
2175					continue;
2176				}
2177
2178				case DT_ACT_TRUNC:
2179					if (i == epd->dtepd_nrecs - 1)
2180						return (dt_set_errno(dtp,
2181						    EDT_BADTRUNC));
2182
2183					if (dt_trunc(dtp,
2184					    buf->dtbd_data + offs, rec) != 0)
2185						return (-1);
2186
2187					i++;
2188					continue;
2189
2190				default:
2191					continue;
2192				}
2193			}
2194
2195			if (act == DTRACEACT_TRACEMEM_DYNSIZE &&
2196			    rec->dtrd_size == sizeof (uint64_t)) {
2197			    	/* LINTED - alignment */
2198				tracememsize = *((unsigned long long *)addr);
2199				continue;
2200			}
2201
2202			rval = (*rfunc)(&data, rec, arg);
2203
2204			if (rval == DTRACE_CONSUME_NEXT)
2205				continue;
2206
2207			if (rval == DTRACE_CONSUME_ABORT)
2208				return (dt_set_errno(dtp, EDT_DIRABORT));
2209
2210			if (rval != DTRACE_CONSUME_THIS)
2211				return (dt_set_errno(dtp, EDT_BADRVAL));
2212
2213			if (act == DTRACEACT_STACK) {
2214				int depth = rec->dtrd_arg;
2215
2216				if (dt_print_stack(dtp, fp, NULL, addr, depth,
2217				    rec->dtrd_size / depth) < 0)
2218					return (-1);
2219				goto nextrec;
2220			}
2221
2222			if (act == DTRACEACT_USTACK ||
2223			    act == DTRACEACT_JSTACK) {
2224				if (dt_print_ustack(dtp, fp, NULL,
2225				    addr, rec->dtrd_arg) < 0)
2226					return (-1);
2227				goto nextrec;
2228			}
2229
2230			if (act == DTRACEACT_SYM) {
2231				if (dt_print_sym(dtp, fp, NULL, addr) < 0)
2232					return (-1);
2233				goto nextrec;
2234			}
2235
2236			if (act == DTRACEACT_MOD) {
2237				if (dt_print_mod(dtp, fp, NULL, addr) < 0)
2238					return (-1);
2239				goto nextrec;
2240			}
2241
2242			if (act == DTRACEACT_USYM || act == DTRACEACT_UADDR) {
2243				if (dt_print_usym(dtp, fp, addr, act) < 0)
2244					return (-1);
2245				goto nextrec;
2246			}
2247
2248			if (act == DTRACEACT_UMOD) {
2249				if (dt_print_umod(dtp, fp, NULL, addr) < 0)
2250					return (-1);
2251				goto nextrec;
2252			}
2253
2254			if (act == DTRACEACT_PRINTM) {
2255				if (dt_print_memory(dtp, fp, addr) < 0)
2256					return (-1);
2257				goto nextrec;
2258			}
2259
2260			if (act == DTRACEACT_PRINTT) {
2261				if (dt_print_type(dtp, fp, addr) < 0)
2262					return (-1);
2263				goto nextrec;
2264			}
2265
2266			if (DTRACEACT_ISPRINTFLIKE(act)) {
2267				void *fmtdata;
2268				int (*func)(dtrace_hdl_t *, FILE *, void *,
2269				    const dtrace_probedata_t *,
2270				    const dtrace_recdesc_t *, uint_t,
2271				    const void *buf, size_t);
2272
2273				if ((fmtdata = dt_format_lookup(dtp,
2274				    rec->dtrd_format)) == NULL)
2275					goto nofmt;
2276
2277				switch (act) {
2278				case DTRACEACT_PRINTF:
2279					func = dtrace_fprintf;
2280					break;
2281				case DTRACEACT_PRINTA:
2282					func = dtrace_fprinta;
2283					break;
2284				case DTRACEACT_SYSTEM:
2285					func = dtrace_system;
2286					break;
2287				case DTRACEACT_FREOPEN:
2288					func = dtrace_freopen;
2289					break;
2290				}
2291
2292				n = (*func)(dtp, fp, fmtdata, &data,
2293				    rec, epd->dtepd_nrecs - i,
2294				    (uchar_t *)buf->dtbd_data + offs,
2295				    buf->dtbd_size - offs);
2296
2297				if (n < 0)
2298					return (-1); /* errno is set for us */
2299
2300				if (n > 0)
2301					i += n - 1;
2302				goto nextrec;
2303			}
2304
2305			/*
2306			 * If this is a DIF expression, and the record has a
2307			 * format set, this indicates we have a CTF type name
2308			 * associated with the data and we should try to print
2309			 * it out by type.
2310			 */
2311			if (act == DTRACEACT_DIFEXPR) {
2312				const char *strdata = dt_strdata_lookup(dtp,
2313				    rec->dtrd_format);
2314				if (strdata != NULL) {
2315					n = dtrace_print(dtp, fp, strdata,
2316					    addr, rec->dtrd_size);
2317
2318					/*
2319					 * dtrace_print() will return -1 on
2320					 * error, or return the number of bytes
2321					 * consumed.  It will return 0 if the
2322					 * type couldn't be determined, and we
2323					 * should fall through to the normal
2324					 * trace method.
2325					 */
2326					if (n < 0)
2327						return (-1);
2328
2329					if (n > 0)
2330						goto nextrec;
2331				}
2332			}
2333
2334nofmt:
2335			if (act == DTRACEACT_PRINTA) {
2336				dt_print_aggdata_t pd;
2337				dtrace_aggvarid_t *aggvars;
2338				int j, naggvars = 0;
2339				size_t size = ((epd->dtepd_nrecs - i) *
2340				    sizeof (dtrace_aggvarid_t));
2341
2342				if ((aggvars = dt_alloc(dtp, size)) == NULL)
2343					return (-1);
2344
2345				/*
2346				 * This might be a printa() with multiple
2347				 * aggregation variables.  We need to scan
2348				 * forward through the records until we find
2349				 * a record from a different statement.
2350				 */
2351				for (j = i; j < epd->dtepd_nrecs; j++) {
2352					dtrace_recdesc_t *nrec;
2353					caddr_t naddr;
2354
2355					nrec = &epd->dtepd_rec[j];
2356
2357					if (nrec->dtrd_uarg != rec->dtrd_uarg)
2358						break;
2359
2360					if (nrec->dtrd_action != act) {
2361						return (dt_set_errno(dtp,
2362						    EDT_BADAGG));
2363					}
2364
2365					naddr = buf->dtbd_data + offs +
2366					    nrec->dtrd_offset;
2367
2368					aggvars[naggvars++] =
2369					    /* LINTED - alignment */
2370					    *((dtrace_aggvarid_t *)naddr);
2371				}
2372
2373				i = j - 1;
2374				bzero(&pd, sizeof (pd));
2375				pd.dtpa_dtp = dtp;
2376				pd.dtpa_fp = fp;
2377
2378				assert(naggvars >= 1);
2379
2380				if (naggvars == 1) {
2381					pd.dtpa_id = aggvars[0];
2382					dt_free(dtp, aggvars);
2383
2384					if (dt_printf(dtp, fp, "\n") < 0 ||
2385					    dtrace_aggregate_walk_sorted(dtp,
2386					    dt_print_agg, &pd) < 0)
2387						return (-1);
2388					goto nextrec;
2389				}
2390
2391				if (dt_printf(dtp, fp, "\n") < 0 ||
2392				    dtrace_aggregate_walk_joined(dtp, aggvars,
2393				    naggvars, dt_print_aggs, &pd) < 0) {
2394					dt_free(dtp, aggvars);
2395					return (-1);
2396				}
2397
2398				dt_free(dtp, aggvars);
2399				goto nextrec;
2400			}
2401
2402			if (act == DTRACEACT_TRACEMEM) {
2403				if (tracememsize == 0 ||
2404				    tracememsize > rec->dtrd_size) {
2405					tracememsize = rec->dtrd_size;
2406				}
2407
2408				n = dt_print_bytes(dtp, fp, addr,
2409				    tracememsize, 33, quiet, 1);
2410
2411				tracememsize = 0;
2412
2413				if (n < 0)
2414					return (-1);
2415
2416				goto nextrec;
2417			}
2418
2419			switch (rec->dtrd_size) {
2420			case sizeof (uint64_t):
2421				n = dt_printf(dtp, fp,
2422				    quiet ? "%lld" : " %16lld",
2423				    /* LINTED - alignment */
2424				    *((unsigned long long *)addr));
2425				break;
2426			case sizeof (uint32_t):
2427				n = dt_printf(dtp, fp, quiet ? "%d" : " %8d",
2428				    /* LINTED - alignment */
2429				    *((uint32_t *)addr));
2430				break;
2431			case sizeof (uint16_t):
2432				n = dt_printf(dtp, fp, quiet ? "%d" : " %5d",
2433				    /* LINTED - alignment */
2434				    *((uint16_t *)addr));
2435				break;
2436			case sizeof (uint8_t):
2437				n = dt_printf(dtp, fp, quiet ? "%d" : " %3d",
2438				    *((uint8_t *)addr));
2439				break;
2440			default:
2441				n = dt_print_bytes(dtp, fp, addr,
2442				    rec->dtrd_size, 33, quiet, 0);
2443				break;
2444			}
2445
2446			if (n < 0)
2447				return (-1); /* errno is set for us */
2448
2449nextrec:
2450			if (dt_buffered_flush(dtp, &data, rec, NULL, 0) < 0)
2451				return (-1); /* errno is set for us */
2452		}
2453
2454		/*
2455		 * Call the record callback with a NULL record to indicate
2456		 * that we're done processing this EPID.
2457		 */
2458		rval = (*rfunc)(&data, NULL, arg);
2459nextepid:
2460		offs += epd->dtepd_size;
2461		last = id;
2462	}
2463
2464	if (buf->dtbd_oldest != 0 && start == buf->dtbd_oldest) {
2465		end = buf->dtbd_oldest;
2466		start = 0;
2467		goto again;
2468	}
2469
2470	if ((drops = buf->dtbd_drops) == 0)
2471		return (0);
2472
2473	/*
2474	 * Explicitly zero the drops to prevent us from processing them again.
2475	 */
2476	buf->dtbd_drops = 0;
2477
2478	return (dt_handle_cpudrop(dtp, cpu, DTRACEDROP_PRINCIPAL, drops));
2479}
2480
2481typedef struct dt_begin {
2482	dtrace_consume_probe_f *dtbgn_probefunc;
2483	dtrace_consume_rec_f *dtbgn_recfunc;
2484	void *dtbgn_arg;
2485	dtrace_handle_err_f *dtbgn_errhdlr;
2486	void *dtbgn_errarg;
2487	int dtbgn_beginonly;
2488} dt_begin_t;
2489
2490static int
2491dt_consume_begin_probe(const dtrace_probedata_t *data, void *arg)
2492{
2493	dt_begin_t *begin = (dt_begin_t *)arg;
2494	dtrace_probedesc_t *pd = data->dtpda_pdesc;
2495
2496	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
2497	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
2498
2499	if (begin->dtbgn_beginonly) {
2500		if (!(r1 && r2))
2501			return (DTRACE_CONSUME_NEXT);
2502	} else {
2503		if (r1 && r2)
2504			return (DTRACE_CONSUME_NEXT);
2505	}
2506
2507	/*
2508	 * We have a record that we're interested in.  Now call the underlying
2509	 * probe function...
2510	 */
2511	return (begin->dtbgn_probefunc(data, begin->dtbgn_arg));
2512}
2513
2514static int
2515dt_consume_begin_record(const dtrace_probedata_t *data,
2516    const dtrace_recdesc_t *rec, void *arg)
2517{
2518	dt_begin_t *begin = (dt_begin_t *)arg;
2519
2520	return (begin->dtbgn_recfunc(data, rec, begin->dtbgn_arg));
2521}
2522
2523static int
2524dt_consume_begin_error(const dtrace_errdata_t *data, void *arg)
2525{
2526	dt_begin_t *begin = (dt_begin_t *)arg;
2527	dtrace_probedesc_t *pd = data->dteda_pdesc;
2528
2529	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
2530	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
2531
2532	if (begin->dtbgn_beginonly) {
2533		if (!(r1 && r2))
2534			return (DTRACE_HANDLE_OK);
2535	} else {
2536		if (r1 && r2)
2537			return (DTRACE_HANDLE_OK);
2538	}
2539
2540	return (begin->dtbgn_errhdlr(data, begin->dtbgn_errarg));
2541}
2542
2543static int
2544dt_consume_begin(dtrace_hdl_t *dtp, FILE *fp, dtrace_bufdesc_t *buf,
2545    dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2546{
2547	/*
2548	 * There's this idea that the BEGIN probe should be processed before
2549	 * everything else, and that the END probe should be processed after
2550	 * anything else.  In the common case, this is pretty easy to deal
2551	 * with.  However, a situation may arise where the BEGIN enabling and
2552	 * END enabling are on the same CPU, and some enabling in the middle
2553	 * occurred on a different CPU.  To deal with this (blech!) we need to
2554	 * consume the BEGIN buffer up until the end of the BEGIN probe, and
2555	 * then set it aside.  We will then process every other CPU, and then
2556	 * we'll return to the BEGIN CPU and process the rest of the data
2557	 * (which will inevitably include the END probe, if any).  Making this
2558	 * even more complicated (!) is the library's ERROR enabling.  Because
2559	 * this enabling is processed before we even get into the consume call
2560	 * back, any ERROR firing would result in the library's ERROR enabling
2561	 * being processed twice -- once in our first pass (for BEGIN probes),
2562	 * and again in our second pass (for everything but BEGIN probes).  To
2563	 * deal with this, we interpose on the ERROR handler to assure that we
2564	 * only process ERROR enablings induced by BEGIN enablings in the
2565	 * first pass, and that we only process ERROR enablings _not_ induced
2566	 * by BEGIN enablings in the second pass.
2567	 */
2568	dt_begin_t begin;
2569	processorid_t cpu = dtp->dt_beganon;
2570	dtrace_bufdesc_t nbuf;
2571#if !defined(sun)
2572	dtrace_bufdesc_t *pbuf;
2573#endif
2574	int rval, i;
2575	static int max_ncpus;
2576	dtrace_optval_t size;
2577
2578	dtp->dt_beganon = -1;
2579
2580#if defined(sun)
2581	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2582#else
2583	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) {
2584#endif
2585		/*
2586		 * We really don't expect this to fail, but it is at least
2587		 * technically possible for this to fail with ENOENT.  In this
2588		 * case, we just drive on...
2589		 */
2590		if (errno == ENOENT)
2591			return (0);
2592
2593		return (dt_set_errno(dtp, errno));
2594	}
2595
2596	if (!dtp->dt_stopped || buf->dtbd_cpu != dtp->dt_endedon) {
2597		/*
2598		 * This is the simple case.  We're either not stopped, or if
2599		 * we are, we actually processed any END probes on another
2600		 * CPU.  We can simply consume this buffer and return.
2601		 */
2602		return (dt_consume_cpu(dtp, fp, cpu, buf, pf, rf, arg));
2603	}
2604
2605	begin.dtbgn_probefunc = pf;
2606	begin.dtbgn_recfunc = rf;
2607	begin.dtbgn_arg = arg;
2608	begin.dtbgn_beginonly = 1;
2609
2610	/*
2611	 * We need to interpose on the ERROR handler to be sure that we
2612	 * only process ERRORs induced by BEGIN.
2613	 */
2614	begin.dtbgn_errhdlr = dtp->dt_errhdlr;
2615	begin.dtbgn_errarg = dtp->dt_errarg;
2616	dtp->dt_errhdlr = dt_consume_begin_error;
2617	dtp->dt_errarg = &begin;
2618
2619	rval = dt_consume_cpu(dtp, fp, cpu, buf, dt_consume_begin_probe,
2620	    dt_consume_begin_record, &begin);
2621
2622	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2623	dtp->dt_errarg = begin.dtbgn_errarg;
2624
2625	if (rval != 0)
2626		return (rval);
2627
2628	/*
2629	 * Now allocate a new buffer.  We'll use this to deal with every other
2630	 * CPU.
2631	 */
2632	bzero(&nbuf, sizeof (dtrace_bufdesc_t));
2633	(void) dtrace_getopt(dtp, "bufsize", &size);
2634	if ((nbuf.dtbd_data = malloc(size)) == NULL)
2635		return (dt_set_errno(dtp, EDT_NOMEM));
2636
2637	if (max_ncpus == 0)
2638		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2639
2640	for (i = 0; i < max_ncpus; i++) {
2641		nbuf.dtbd_cpu = i;
2642
2643		if (i == cpu)
2644			continue;
2645
2646#if defined(sun)
2647		if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &nbuf) == -1) {
2648#else
2649		pbuf = &nbuf;
2650		if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &pbuf) == -1) {
2651#endif
2652			/*
2653			 * If we failed with ENOENT, it may be because the
2654			 * CPU was unconfigured -- this is okay.  Any other
2655			 * error, however, is unexpected.
2656			 */
2657			if (errno == ENOENT)
2658				continue;
2659
2660			free(nbuf.dtbd_data);
2661
2662			return (dt_set_errno(dtp, errno));
2663		}
2664
2665		if ((rval = dt_consume_cpu(dtp, fp,
2666		    i, &nbuf, pf, rf, arg)) != 0) {
2667			free(nbuf.dtbd_data);
2668			return (rval);
2669		}
2670	}
2671
2672	free(nbuf.dtbd_data);
2673
2674	/*
2675	 * Okay -- we're done with the other buffers.  Now we want to
2676	 * reconsume the first buffer -- but this time we're looking for
2677	 * everything _but_ BEGIN.  And of course, in order to only consume
2678	 * those ERRORs _not_ associated with BEGIN, we need to reinstall our
2679	 * ERROR interposition function...
2680	 */
2681	begin.dtbgn_beginonly = 0;
2682
2683	assert(begin.dtbgn_errhdlr == dtp->dt_errhdlr);
2684	assert(begin.dtbgn_errarg == dtp->dt_errarg);
2685	dtp->dt_errhdlr = dt_consume_begin_error;
2686	dtp->dt_errarg = &begin;
2687
2688	rval = dt_consume_cpu(dtp, fp, cpu, buf, dt_consume_begin_probe,
2689	    dt_consume_begin_record, &begin);
2690
2691	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2692	dtp->dt_errarg = begin.dtbgn_errarg;
2693
2694	return (rval);
2695}
2696
2697int
2698dtrace_consume(dtrace_hdl_t *dtp, FILE *fp,
2699    dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2700{
2701	dtrace_bufdesc_t *buf = &dtp->dt_buf;
2702	dtrace_optval_t size;
2703	static int max_ncpus;
2704	int i, rval;
2705	dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_SWITCHRATE];
2706	hrtime_t now = gethrtime();
2707
2708	if (dtp->dt_lastswitch != 0) {
2709		if (now - dtp->dt_lastswitch < interval)
2710			return (0);
2711
2712		dtp->dt_lastswitch += interval;
2713	} else {
2714		dtp->dt_lastswitch = now;
2715	}
2716
2717	if (!dtp->dt_active)
2718		return (dt_set_errno(dtp, EINVAL));
2719
2720	if (max_ncpus == 0)
2721		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2722
2723	if (pf == NULL)
2724		pf = (dtrace_consume_probe_f *)dt_nullprobe;
2725
2726	if (rf == NULL)
2727		rf = (dtrace_consume_rec_f *)dt_nullrec;
2728
2729	if (buf->dtbd_data == NULL) {
2730		(void) dtrace_getopt(dtp, "bufsize", &size);
2731		if ((buf->dtbd_data = malloc(size)) == NULL)
2732			return (dt_set_errno(dtp, EDT_NOMEM));
2733
2734		buf->dtbd_size = size;
2735	}
2736
2737	/*
2738	 * If we have just begun, we want to first process the CPU that
2739	 * executed the BEGIN probe (if any).
2740	 */
2741	if (dtp->dt_active && dtp->dt_beganon != -1) {
2742		buf->dtbd_cpu = dtp->dt_beganon;
2743		if ((rval = dt_consume_begin(dtp, fp, buf, pf, rf, arg)) != 0)
2744			return (rval);
2745	}
2746
2747	for (i = 0; i < max_ncpus; i++) {
2748		buf->dtbd_cpu = i;
2749
2750		/*
2751		 * If we have stopped, we want to process the CPU on which the
2752		 * END probe was processed only _after_ we have processed
2753		 * everything else.
2754		 */
2755		if (dtp->dt_stopped && (i == dtp->dt_endedon))
2756			continue;
2757
2758#if defined(sun)
2759		if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2760#else
2761		if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) {
2762#endif
2763			/*
2764			 * If we failed with ENOENT, it may be because the
2765			 * CPU was unconfigured -- this is okay.  Any other
2766			 * error, however, is unexpected.
2767			 */
2768			if (errno == ENOENT)
2769				continue;
2770
2771			return (dt_set_errno(dtp, errno));
2772		}
2773
2774		if ((rval = dt_consume_cpu(dtp, fp, i, buf, pf, rf, arg)) != 0)
2775			return (rval);
2776	}
2777
2778	if (!dtp->dt_stopped)
2779		return (0);
2780
2781	buf->dtbd_cpu = dtp->dt_endedon;
2782
2783#if defined(sun)
2784	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2785#else
2786	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) {
2787#endif
2788		/*
2789		 * This _really_ shouldn't fail, but it is strictly speaking
2790		 * possible for this to return ENOENT if the CPU that called
2791		 * the END enabling somehow managed to become unconfigured.
2792		 * It's unclear how the user can possibly expect anything
2793		 * rational to happen in this case -- the state has been thrown
2794		 * out along with the unconfigured CPU -- so we'll just drive
2795		 * on...
2796		 */
2797		if (errno == ENOENT)
2798			return (0);
2799
2800		return (dt_set_errno(dtp, errno));
2801	}
2802
2803	return (dt_consume_cpu(dtp, fp, dtp->dt_endedon, buf, pf, rf, arg));
2804}
2805