1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26
27/*
28 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
29 * Copyright (c) 2012 by Delphix. All rights reserved.
30 */
31
32#include <stdlib.h>
33#include <strings.h>
34#include <errno.h>
35#include <unistd.h>
36#include <dt_impl.h>
37#include <assert.h>
38#ifdef illumos
39#include <alloca.h>
40#else
41#include <sys/sysctl.h>
42#include <libproc_compat.h>
43#endif
44#include <limits.h>
45
46#define	DTRACE_AHASHSIZE	32779		/* big 'ol prime */
47
48/*
49 * Because qsort(3C) does not allow an argument to be passed to a comparison
50 * function, the variables that affect comparison must regrettably be global;
51 * they are protected by a global static lock, dt_qsort_lock.
52 */
53static pthread_mutex_t dt_qsort_lock = PTHREAD_MUTEX_INITIALIZER;
54
55static int dt_revsort;
56static int dt_keysort;
57static int dt_keypos;
58
59#define	DT_LESSTHAN	(dt_revsort == 0 ? -1 : 1)
60#define	DT_GREATERTHAN	(dt_revsort == 0 ? 1 : -1)
61
62static void
63dt_aggregate_count(int64_t *existing, int64_t *new, size_t size)
64{
65	uint_t i;
66
67	for (i = 0; i < size / sizeof (int64_t); i++)
68		existing[i] = existing[i] + new[i];
69}
70
71static int
72dt_aggregate_countcmp(int64_t *lhs, int64_t *rhs)
73{
74	int64_t lvar = *lhs;
75	int64_t rvar = *rhs;
76
77	if (lvar < rvar)
78		return (DT_LESSTHAN);
79
80	if (lvar > rvar)
81		return (DT_GREATERTHAN);
82
83	return (0);
84}
85
86/*ARGSUSED*/
87static void
88dt_aggregate_min(int64_t *existing, int64_t *new, size_t size)
89{
90	if (*new < *existing)
91		*existing = *new;
92}
93
94/*ARGSUSED*/
95static void
96dt_aggregate_max(int64_t *existing, int64_t *new, size_t size)
97{
98	if (*new > *existing)
99		*existing = *new;
100}
101
102static int
103dt_aggregate_averagecmp(int64_t *lhs, int64_t *rhs)
104{
105	int64_t lavg = lhs[0] ? (lhs[1] / lhs[0]) : 0;
106	int64_t ravg = rhs[0] ? (rhs[1] / rhs[0]) : 0;
107
108	if (lavg < ravg)
109		return (DT_LESSTHAN);
110
111	if (lavg > ravg)
112		return (DT_GREATERTHAN);
113
114	return (0);
115}
116
117static int
118dt_aggregate_stddevcmp(int64_t *lhs, int64_t *rhs)
119{
120	uint64_t lsd = dt_stddev((uint64_t *)lhs, 1);
121	uint64_t rsd = dt_stddev((uint64_t *)rhs, 1);
122
123	if (lsd < rsd)
124		return (DT_LESSTHAN);
125
126	if (lsd > rsd)
127		return (DT_GREATERTHAN);
128
129	return (0);
130}
131
132/*ARGSUSED*/
133static void
134dt_aggregate_lquantize(int64_t *existing, int64_t *new, size_t size)
135{
136	int64_t arg = *existing++;
137	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
138	int i;
139
140	for (i = 0; i <= levels + 1; i++)
141		existing[i] = existing[i] + new[i + 1];
142}
143
144static long double
145dt_aggregate_lquantizedsum(int64_t *lquanta)
146{
147	int64_t arg = *lquanta++;
148	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
149	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
150	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg), i;
151	long double total = (long double)lquanta[0] * (long double)(base - 1);
152
153	for (i = 0; i < levels; base += step, i++)
154		total += (long double)lquanta[i + 1] * (long double)base;
155
156	return (total + (long double)lquanta[levels + 1] *
157	    (long double)(base + 1));
158}
159
160static int64_t
161dt_aggregate_lquantizedzero(int64_t *lquanta)
162{
163	int64_t arg = *lquanta++;
164	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
165	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
166	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg), i;
167
168	if (base - 1 == 0)
169		return (lquanta[0]);
170
171	for (i = 0; i < levels; base += step, i++) {
172		if (base != 0)
173			continue;
174
175		return (lquanta[i + 1]);
176	}
177
178	if (base + 1 == 0)
179		return (lquanta[levels + 1]);
180
181	return (0);
182}
183
184static int
185dt_aggregate_lquantizedcmp(int64_t *lhs, int64_t *rhs)
186{
187	long double lsum = dt_aggregate_lquantizedsum(lhs);
188	long double rsum = dt_aggregate_lquantizedsum(rhs);
189	int64_t lzero, rzero;
190
191	if (lsum < rsum)
192		return (DT_LESSTHAN);
193
194	if (lsum > rsum)
195		return (DT_GREATERTHAN);
196
197	/*
198	 * If they're both equal, then we will compare based on the weights at
199	 * zero.  If the weights at zero are equal (or if zero is not within
200	 * the range of the linear quantization), then this will be judged a
201	 * tie and will be resolved based on the key comparison.
202	 */
203	lzero = dt_aggregate_lquantizedzero(lhs);
204	rzero = dt_aggregate_lquantizedzero(rhs);
205
206	if (lzero < rzero)
207		return (DT_LESSTHAN);
208
209	if (lzero > rzero)
210		return (DT_GREATERTHAN);
211
212	return (0);
213}
214
215static void
216dt_aggregate_llquantize(int64_t *existing, int64_t *new, size_t size)
217{
218	int i;
219
220	for (i = 1; i < size / sizeof (int64_t); i++)
221		existing[i] = existing[i] + new[i];
222}
223
224static long double
225dt_aggregate_llquantizedsum(int64_t *llquanta)
226{
227	int64_t arg = *llquanta++;
228	uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
229	uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
230	uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
231	uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
232	int bin = 0, order;
233	int64_t value = 1, next, step;
234	long double total;
235
236	assert(nsteps >= factor);
237	assert(nsteps % factor == 0);
238
239	for (order = 0; order < low; order++)
240		value *= factor;
241
242	total = (long double)llquanta[bin++] * (long double)(value - 1);
243
244	next = value * factor;
245	step = next > nsteps ? next / nsteps : 1;
246
247	while (order <= high) {
248		assert(value < next);
249		total += (long double)llquanta[bin++] * (long double)(value);
250
251		if ((value += step) != next)
252			continue;
253
254		next = value * factor;
255		step = next > nsteps ? next / nsteps : 1;
256		order++;
257	}
258
259	return (total + (long double)llquanta[bin] * (long double)value);
260}
261
262static int
263dt_aggregate_llquantizedcmp(int64_t *lhs, int64_t *rhs)
264{
265	long double lsum = dt_aggregate_llquantizedsum(lhs);
266	long double rsum = dt_aggregate_llquantizedsum(rhs);
267	int64_t lzero, rzero;
268
269	if (lsum < rsum)
270		return (DT_LESSTHAN);
271
272	if (lsum > rsum)
273		return (DT_GREATERTHAN);
274
275	/*
276	 * If they're both equal, then we will compare based on the weights at
277	 * zero.  If the weights at zero are equal, then this will be judged a
278	 * tie and will be resolved based on the key comparison.
279	 */
280	lzero = lhs[1];
281	rzero = rhs[1];
282
283	if (lzero < rzero)
284		return (DT_LESSTHAN);
285
286	if (lzero > rzero)
287		return (DT_GREATERTHAN);
288
289	return (0);
290}
291
292static int
293dt_aggregate_quantizedcmp(int64_t *lhs, int64_t *rhs)
294{
295	int nbuckets = DTRACE_QUANTIZE_NBUCKETS;
296	long double ltotal = 0, rtotal = 0;
297	int64_t lzero, rzero;
298	uint_t i;
299
300	for (i = 0; i < nbuckets; i++) {
301		int64_t bucketval = DTRACE_QUANTIZE_BUCKETVAL(i);
302
303		if (bucketval == 0) {
304			lzero = lhs[i];
305			rzero = rhs[i];
306		}
307
308		ltotal += (long double)bucketval * (long double)lhs[i];
309		rtotal += (long double)bucketval * (long double)rhs[i];
310	}
311
312	if (ltotal < rtotal)
313		return (DT_LESSTHAN);
314
315	if (ltotal > rtotal)
316		return (DT_GREATERTHAN);
317
318	/*
319	 * If they're both equal, then we will compare based on the weights at
320	 * zero.  If the weights at zero are equal, then this will be judged a
321	 * tie and will be resolved based on the key comparison.
322	 */
323	if (lzero < rzero)
324		return (DT_LESSTHAN);
325
326	if (lzero > rzero)
327		return (DT_GREATERTHAN);
328
329	return (0);
330}
331
332static void
333dt_aggregate_usym(dtrace_hdl_t *dtp, uint64_t *data)
334{
335	uint64_t pid = data[0];
336	uint64_t *pc = &data[1];
337	struct ps_prochandle *P;
338	GElf_Sym sym;
339
340	if (dtp->dt_vector != NULL)
341		return;
342
343	if ((P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0)) == NULL)
344		return;
345
346	dt_proc_lock(dtp, P);
347
348	if (Plookup_by_addr(P, *pc, NULL, 0, &sym) == 0)
349		*pc = sym.st_value;
350
351	dt_proc_unlock(dtp, P);
352	dt_proc_release(dtp, P);
353}
354
355static void
356dt_aggregate_umod(dtrace_hdl_t *dtp, uint64_t *data)
357{
358	uint64_t pid = data[0];
359	uint64_t *pc = &data[1];
360	struct ps_prochandle *P;
361	const prmap_t *map;
362
363	if (dtp->dt_vector != NULL)
364		return;
365
366	if ((P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0)) == NULL)
367		return;
368
369	dt_proc_lock(dtp, P);
370
371	if ((map = Paddr_to_map(P, *pc)) != NULL)
372		*pc = map->pr_vaddr;
373
374	dt_proc_unlock(dtp, P);
375	dt_proc_release(dtp, P);
376}
377
378static void
379dt_aggregate_sym(dtrace_hdl_t *dtp, uint64_t *data)
380{
381	GElf_Sym sym;
382	uint64_t *pc = data;
383
384	if (dtrace_lookup_by_addr(dtp, *pc, &sym, NULL) == 0)
385		*pc = sym.st_value;
386}
387
388static void
389dt_aggregate_mod(dtrace_hdl_t *dtp, uint64_t *data)
390{
391	uint64_t *pc = data;
392	dt_module_t *dmp;
393
394	if (dtp->dt_vector != NULL) {
395		/*
396		 * We don't have a way of just getting the module for a
397		 * vectored open, and it doesn't seem to be worth defining
398		 * one.  This means that use of mod() won't get true
399		 * aggregation in the postmortem case (some modules may
400		 * appear more than once in aggregation output).  It seems
401		 * unlikely that anyone will ever notice or care...
402		 */
403		return;
404	}
405
406	for (dmp = dt_list_next(&dtp->dt_modlist); dmp != NULL;
407	    dmp = dt_list_next(dmp)) {
408		if (*pc - dmp->dm_text_va < dmp->dm_text_size) {
409			*pc = dmp->dm_text_va;
410			return;
411		}
412	}
413}
414
415static dtrace_aggvarid_t
416dt_aggregate_aggvarid(dt_ahashent_t *ent)
417{
418	dtrace_aggdesc_t *agg = ent->dtahe_data.dtada_desc;
419	caddr_t data = ent->dtahe_data.dtada_data;
420	dtrace_recdesc_t *rec = agg->dtagd_rec;
421
422	/*
423	 * First, we'll check the variable ID in the aggdesc.  If it's valid,
424	 * we'll return it.  If not, we'll use the compiler-generated ID
425	 * present as the first record.
426	 */
427	if (agg->dtagd_varid != DTRACE_AGGVARIDNONE)
428		return (agg->dtagd_varid);
429
430	agg->dtagd_varid = *((dtrace_aggvarid_t *)(uintptr_t)(data +
431	    rec->dtrd_offset));
432
433	return (agg->dtagd_varid);
434}
435
436
437static int
438dt_aggregate_snap_cpu(dtrace_hdl_t *dtp, processorid_t cpu)
439{
440	dtrace_epid_t id;
441	uint64_t hashval;
442	size_t offs, roffs, size, ndx;
443	int i, j, rval;
444	caddr_t addr, data;
445	dtrace_recdesc_t *rec;
446	dt_aggregate_t *agp = &dtp->dt_aggregate;
447	dtrace_aggdesc_t *agg;
448	dt_ahash_t *hash = &agp->dtat_hash;
449	dt_ahashent_t *h;
450	dtrace_bufdesc_t b = agp->dtat_buf, *buf = &b;
451	dtrace_aggdata_t *aggdata;
452	int flags = agp->dtat_flags;
453
454	buf->dtbd_cpu = cpu;
455
456#ifdef illumos
457	if (dt_ioctl(dtp, DTRACEIOC_AGGSNAP, buf) == -1) {
458#else
459	if (dt_ioctl(dtp, DTRACEIOC_AGGSNAP, &buf) == -1) {
460#endif
461		if (errno == ENOENT) {
462			/*
463			 * If that failed with ENOENT, it may be because the
464			 * CPU was unconfigured.  This is okay; we'll just
465			 * do nothing but return success.
466			 */
467			return (0);
468		}
469
470		return (dt_set_errno(dtp, errno));
471	}
472
473	if (buf->dtbd_drops != 0) {
474		if (dt_handle_cpudrop(dtp, cpu,
475		    DTRACEDROP_AGGREGATION, buf->dtbd_drops) == -1)
476			return (-1);
477	}
478
479	if (buf->dtbd_size == 0)
480		return (0);
481
482	if (hash->dtah_hash == NULL) {
483		size_t size;
484
485		hash->dtah_size = DTRACE_AHASHSIZE;
486		size = hash->dtah_size * sizeof (dt_ahashent_t *);
487
488		if ((hash->dtah_hash = malloc(size)) == NULL)
489			return (dt_set_errno(dtp, EDT_NOMEM));
490
491		bzero(hash->dtah_hash, size);
492	}
493
494	for (offs = 0; offs < buf->dtbd_size; ) {
495		/*
496		 * We're guaranteed to have an ID.
497		 */
498		id = *((dtrace_epid_t *)((uintptr_t)buf->dtbd_data +
499		    (uintptr_t)offs));
500
501		if (id == DTRACE_AGGIDNONE) {
502			/*
503			 * This is filler to assure proper alignment of the
504			 * next record; we simply ignore it.
505			 */
506			offs += sizeof (id);
507			continue;
508		}
509
510		if ((rval = dt_aggid_lookup(dtp, id, &agg)) != 0)
511			return (rval);
512
513		addr = buf->dtbd_data + offs;
514		size = agg->dtagd_size;
515		hashval = 0;
516
517		for (j = 0; j < agg->dtagd_nrecs - 1; j++) {
518			rec = &agg->dtagd_rec[j];
519			roffs = rec->dtrd_offset;
520
521			switch (rec->dtrd_action) {
522			case DTRACEACT_USYM:
523				dt_aggregate_usym(dtp,
524				    /* LINTED - alignment */
525				    (uint64_t *)&addr[roffs]);
526				break;
527
528			case DTRACEACT_UMOD:
529				dt_aggregate_umod(dtp,
530				    /* LINTED - alignment */
531				    (uint64_t *)&addr[roffs]);
532				break;
533
534			case DTRACEACT_SYM:
535				/* LINTED - alignment */
536				dt_aggregate_sym(dtp, (uint64_t *)&addr[roffs]);
537				break;
538
539			case DTRACEACT_MOD:
540				/* LINTED - alignment */
541				dt_aggregate_mod(dtp, (uint64_t *)&addr[roffs]);
542				break;
543
544			default:
545				break;
546			}
547
548			for (i = 0; i < rec->dtrd_size; i++)
549				hashval += addr[roffs + i];
550		}
551
552		ndx = hashval % hash->dtah_size;
553
554		for (h = hash->dtah_hash[ndx]; h != NULL; h = h->dtahe_next) {
555			if (h->dtahe_hashval != hashval)
556				continue;
557
558			if (h->dtahe_size != size)
559				continue;
560
561			aggdata = &h->dtahe_data;
562			data = aggdata->dtada_data;
563
564			for (j = 0; j < agg->dtagd_nrecs - 1; j++) {
565				rec = &agg->dtagd_rec[j];
566				roffs = rec->dtrd_offset;
567
568				for (i = 0; i < rec->dtrd_size; i++)
569					if (addr[roffs + i] != data[roffs + i])
570						goto hashnext;
571			}
572
573			/*
574			 * We found it.  Now we need to apply the aggregating
575			 * action on the data here.
576			 */
577			rec = &agg->dtagd_rec[agg->dtagd_nrecs - 1];
578			roffs = rec->dtrd_offset;
579			/* LINTED - alignment */
580			h->dtahe_aggregate((int64_t *)&data[roffs],
581			    /* LINTED - alignment */
582			    (int64_t *)&addr[roffs], rec->dtrd_size);
583
584			/*
585			 * If we're keeping per CPU data, apply the aggregating
586			 * action there as well.
587			 */
588			if (aggdata->dtada_percpu != NULL) {
589				data = aggdata->dtada_percpu[cpu];
590
591				/* LINTED - alignment */
592				h->dtahe_aggregate((int64_t *)data,
593				    /* LINTED - alignment */
594				    (int64_t *)&addr[roffs], rec->dtrd_size);
595			}
596
597			goto bufnext;
598hashnext:
599			continue;
600		}
601
602		/*
603		 * If we're here, we couldn't find an entry for this record.
604		 */
605		if ((h = malloc(sizeof (dt_ahashent_t))) == NULL)
606			return (dt_set_errno(dtp, EDT_NOMEM));
607		bzero(h, sizeof (dt_ahashent_t));
608		aggdata = &h->dtahe_data;
609
610		if ((aggdata->dtada_data = malloc(size)) == NULL) {
611			free(h);
612			return (dt_set_errno(dtp, EDT_NOMEM));
613		}
614
615		bcopy(addr, aggdata->dtada_data, size);
616		aggdata->dtada_size = size;
617		aggdata->dtada_desc = agg;
618		aggdata->dtada_handle = dtp;
619		(void) dt_epid_lookup(dtp, agg->dtagd_epid,
620		    &aggdata->dtada_edesc, &aggdata->dtada_pdesc);
621		aggdata->dtada_normal = 1;
622
623		h->dtahe_hashval = hashval;
624		h->dtahe_size = size;
625		(void) dt_aggregate_aggvarid(h);
626
627		rec = &agg->dtagd_rec[agg->dtagd_nrecs - 1];
628
629		if (flags & DTRACE_A_PERCPU) {
630			int max_cpus = agp->dtat_maxcpu;
631			caddr_t *percpu = malloc(max_cpus * sizeof (caddr_t));
632
633			if (percpu == NULL) {
634				free(aggdata->dtada_data);
635				free(h);
636				return (dt_set_errno(dtp, EDT_NOMEM));
637			}
638
639			for (j = 0; j < max_cpus; j++) {
640				percpu[j] = malloc(rec->dtrd_size);
641
642				if (percpu[j] == NULL) {
643					while (--j >= 0)
644						free(percpu[j]);
645
646					free(aggdata->dtada_data);
647					free(h);
648					return (dt_set_errno(dtp, EDT_NOMEM));
649				}
650
651				if (j == cpu) {
652					bcopy(&addr[rec->dtrd_offset],
653					    percpu[j], rec->dtrd_size);
654				} else {
655					bzero(percpu[j], rec->dtrd_size);
656				}
657			}
658
659			aggdata->dtada_percpu = percpu;
660		}
661
662		switch (rec->dtrd_action) {
663		case DTRACEAGG_MIN:
664			h->dtahe_aggregate = dt_aggregate_min;
665			break;
666
667		case DTRACEAGG_MAX:
668			h->dtahe_aggregate = dt_aggregate_max;
669			break;
670
671		case DTRACEAGG_LQUANTIZE:
672			h->dtahe_aggregate = dt_aggregate_lquantize;
673			break;
674
675		case DTRACEAGG_LLQUANTIZE:
676			h->dtahe_aggregate = dt_aggregate_llquantize;
677			break;
678
679		case DTRACEAGG_COUNT:
680		case DTRACEAGG_SUM:
681		case DTRACEAGG_AVG:
682		case DTRACEAGG_STDDEV:
683		case DTRACEAGG_QUANTIZE:
684			h->dtahe_aggregate = dt_aggregate_count;
685			break;
686
687		default:
688			return (dt_set_errno(dtp, EDT_BADAGG));
689		}
690
691		if (hash->dtah_hash[ndx] != NULL)
692			hash->dtah_hash[ndx]->dtahe_prev = h;
693
694		h->dtahe_next = hash->dtah_hash[ndx];
695		hash->dtah_hash[ndx] = h;
696
697		if (hash->dtah_all != NULL)
698			hash->dtah_all->dtahe_prevall = h;
699
700		h->dtahe_nextall = hash->dtah_all;
701		hash->dtah_all = h;
702bufnext:
703		offs += agg->dtagd_size;
704	}
705
706	return (0);
707}
708
709int
710dtrace_aggregate_snap(dtrace_hdl_t *dtp)
711{
712	int i, rval;
713	dt_aggregate_t *agp = &dtp->dt_aggregate;
714	hrtime_t now = gethrtime();
715	dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_AGGRATE];
716
717	if (dtp->dt_lastagg != 0) {
718		if (now - dtp->dt_lastagg < interval)
719			return (0);
720
721		dtp->dt_lastagg += interval;
722	} else {
723		dtp->dt_lastagg = now;
724	}
725
726	if (!dtp->dt_active)
727		return (dt_set_errno(dtp, EINVAL));
728
729	if (agp->dtat_buf.dtbd_size == 0)
730		return (0);
731
732	for (i = 0; i < agp->dtat_ncpus; i++) {
733		if ((rval = dt_aggregate_snap_cpu(dtp, agp->dtat_cpus[i])))
734			return (rval);
735	}
736
737	return (0);
738}
739
740static int
741dt_aggregate_hashcmp(const void *lhs, const void *rhs)
742{
743	dt_ahashent_t *lh = *((dt_ahashent_t **)lhs);
744	dt_ahashent_t *rh = *((dt_ahashent_t **)rhs);
745	dtrace_aggdesc_t *lagg = lh->dtahe_data.dtada_desc;
746	dtrace_aggdesc_t *ragg = rh->dtahe_data.dtada_desc;
747
748	if (lagg->dtagd_nrecs < ragg->dtagd_nrecs)
749		return (DT_LESSTHAN);
750
751	if (lagg->dtagd_nrecs > ragg->dtagd_nrecs)
752		return (DT_GREATERTHAN);
753
754	return (0);
755}
756
757static int
758dt_aggregate_varcmp(const void *lhs, const void *rhs)
759{
760	dt_ahashent_t *lh = *((dt_ahashent_t **)lhs);
761	dt_ahashent_t *rh = *((dt_ahashent_t **)rhs);
762	dtrace_aggvarid_t lid, rid;
763
764	lid = dt_aggregate_aggvarid(lh);
765	rid = dt_aggregate_aggvarid(rh);
766
767	if (lid < rid)
768		return (DT_LESSTHAN);
769
770	if (lid > rid)
771		return (DT_GREATERTHAN);
772
773	return (0);
774}
775
776static int
777dt_aggregate_keycmp(const void *lhs, const void *rhs)
778{
779	dt_ahashent_t *lh = *((dt_ahashent_t **)lhs);
780	dt_ahashent_t *rh = *((dt_ahashent_t **)rhs);
781	dtrace_aggdesc_t *lagg = lh->dtahe_data.dtada_desc;
782	dtrace_aggdesc_t *ragg = rh->dtahe_data.dtada_desc;
783	dtrace_recdesc_t *lrec, *rrec;
784	char *ldata, *rdata;
785	int rval, i, j, keypos, nrecs;
786
787	if ((rval = dt_aggregate_hashcmp(lhs, rhs)) != 0)
788		return (rval);
789
790	nrecs = lagg->dtagd_nrecs - 1;
791	assert(nrecs == ragg->dtagd_nrecs - 1);
792
793	keypos = dt_keypos + 1 >= nrecs ? 0 : dt_keypos;
794
795	for (i = 1; i < nrecs; i++) {
796		uint64_t lval, rval;
797		int ndx = i + keypos;
798
799		if (ndx >= nrecs)
800			ndx = ndx - nrecs + 1;
801
802		lrec = &lagg->dtagd_rec[ndx];
803		rrec = &ragg->dtagd_rec[ndx];
804
805		ldata = lh->dtahe_data.dtada_data + lrec->dtrd_offset;
806		rdata = rh->dtahe_data.dtada_data + rrec->dtrd_offset;
807
808		if (lrec->dtrd_size < rrec->dtrd_size)
809			return (DT_LESSTHAN);
810
811		if (lrec->dtrd_size > rrec->dtrd_size)
812			return (DT_GREATERTHAN);
813
814		switch (lrec->dtrd_size) {
815		case sizeof (uint64_t):
816			/* LINTED - alignment */
817			lval = *((uint64_t *)ldata);
818			/* LINTED - alignment */
819			rval = *((uint64_t *)rdata);
820			break;
821
822		case sizeof (uint32_t):
823			/* LINTED - alignment */
824			lval = *((uint32_t *)ldata);
825			/* LINTED - alignment */
826			rval = *((uint32_t *)rdata);
827			break;
828
829		case sizeof (uint16_t):
830			/* LINTED - alignment */
831			lval = *((uint16_t *)ldata);
832			/* LINTED - alignment */
833			rval = *((uint16_t *)rdata);
834			break;
835
836		case sizeof (uint8_t):
837			lval = *((uint8_t *)ldata);
838			rval = *((uint8_t *)rdata);
839			break;
840
841		default:
842			switch (lrec->dtrd_action) {
843			case DTRACEACT_UMOD:
844			case DTRACEACT_UADDR:
845			case DTRACEACT_USYM:
846				for (j = 0; j < 2; j++) {
847					/* LINTED - alignment */
848					lval = ((uint64_t *)ldata)[j];
849					/* LINTED - alignment */
850					rval = ((uint64_t *)rdata)[j];
851
852					if (lval < rval)
853						return (DT_LESSTHAN);
854
855					if (lval > rval)
856						return (DT_GREATERTHAN);
857				}
858
859				break;
860
861			default:
862				for (j = 0; j < lrec->dtrd_size; j++) {
863					lval = ((uint8_t *)ldata)[j];
864					rval = ((uint8_t *)rdata)[j];
865
866					if (lval < rval)
867						return (DT_LESSTHAN);
868
869					if (lval > rval)
870						return (DT_GREATERTHAN);
871				}
872			}
873
874			continue;
875		}
876
877		if (lval < rval)
878			return (DT_LESSTHAN);
879
880		if (lval > rval)
881			return (DT_GREATERTHAN);
882	}
883
884	return (0);
885}
886
887static int
888dt_aggregate_valcmp(const void *lhs, const void *rhs)
889{
890	dt_ahashent_t *lh = *((dt_ahashent_t **)lhs);
891	dt_ahashent_t *rh = *((dt_ahashent_t **)rhs);
892	dtrace_aggdesc_t *lagg = lh->dtahe_data.dtada_desc;
893	dtrace_aggdesc_t *ragg = rh->dtahe_data.dtada_desc;
894	caddr_t ldata = lh->dtahe_data.dtada_data;
895	caddr_t rdata = rh->dtahe_data.dtada_data;
896	dtrace_recdesc_t *lrec, *rrec;
897	int64_t *laddr, *raddr;
898	int rval;
899
900	assert(lagg->dtagd_nrecs == ragg->dtagd_nrecs);
901
902	lrec = &lagg->dtagd_rec[lagg->dtagd_nrecs - 1];
903	rrec = &ragg->dtagd_rec[ragg->dtagd_nrecs - 1];
904
905	assert(lrec->dtrd_action == rrec->dtrd_action);
906
907	laddr = (int64_t *)(uintptr_t)(ldata + lrec->dtrd_offset);
908	raddr = (int64_t *)(uintptr_t)(rdata + rrec->dtrd_offset);
909
910	switch (lrec->dtrd_action) {
911	case DTRACEAGG_AVG:
912		rval = dt_aggregate_averagecmp(laddr, raddr);
913		break;
914
915	case DTRACEAGG_STDDEV:
916		rval = dt_aggregate_stddevcmp(laddr, raddr);
917		break;
918
919	case DTRACEAGG_QUANTIZE:
920		rval = dt_aggregate_quantizedcmp(laddr, raddr);
921		break;
922
923	case DTRACEAGG_LQUANTIZE:
924		rval = dt_aggregate_lquantizedcmp(laddr, raddr);
925		break;
926
927	case DTRACEAGG_LLQUANTIZE:
928		rval = dt_aggregate_llquantizedcmp(laddr, raddr);
929		break;
930
931	case DTRACEAGG_COUNT:
932	case DTRACEAGG_SUM:
933	case DTRACEAGG_MIN:
934	case DTRACEAGG_MAX:
935		rval = dt_aggregate_countcmp(laddr, raddr);
936		break;
937
938	default:
939		assert(0);
940	}
941
942	return (rval);
943}
944
945static int
946dt_aggregate_valkeycmp(const void *lhs, const void *rhs)
947{
948	int rval;
949
950	if ((rval = dt_aggregate_valcmp(lhs, rhs)) != 0)
951		return (rval);
952
953	/*
954	 * If we're here, the values for the two aggregation elements are
955	 * equal.  We already know that the key layout is the same for the two
956	 * elements; we must now compare the keys themselves as a tie-breaker.
957	 */
958	return (dt_aggregate_keycmp(lhs, rhs));
959}
960
961static int
962dt_aggregate_keyvarcmp(const void *lhs, const void *rhs)
963{
964	int rval;
965
966	if ((rval = dt_aggregate_keycmp(lhs, rhs)) != 0)
967		return (rval);
968
969	return (dt_aggregate_varcmp(lhs, rhs));
970}
971
972static int
973dt_aggregate_varkeycmp(const void *lhs, const void *rhs)
974{
975	int rval;
976
977	if ((rval = dt_aggregate_varcmp(lhs, rhs)) != 0)
978		return (rval);
979
980	return (dt_aggregate_keycmp(lhs, rhs));
981}
982
983static int
984dt_aggregate_valvarcmp(const void *lhs, const void *rhs)
985{
986	int rval;
987
988	if ((rval = dt_aggregate_valkeycmp(lhs, rhs)) != 0)
989		return (rval);
990
991	return (dt_aggregate_varcmp(lhs, rhs));
992}
993
994static int
995dt_aggregate_varvalcmp(const void *lhs, const void *rhs)
996{
997	int rval;
998
999	if ((rval = dt_aggregate_varcmp(lhs, rhs)) != 0)
1000		return (rval);
1001
1002	return (dt_aggregate_valkeycmp(lhs, rhs));
1003}
1004
1005static int
1006dt_aggregate_keyvarrevcmp(const void *lhs, const void *rhs)
1007{
1008	return (dt_aggregate_keyvarcmp(rhs, lhs));
1009}
1010
1011static int
1012dt_aggregate_varkeyrevcmp(const void *lhs, const void *rhs)
1013{
1014	return (dt_aggregate_varkeycmp(rhs, lhs));
1015}
1016
1017static int
1018dt_aggregate_valvarrevcmp(const void *lhs, const void *rhs)
1019{
1020	return (dt_aggregate_valvarcmp(rhs, lhs));
1021}
1022
1023static int
1024dt_aggregate_varvalrevcmp(const void *lhs, const void *rhs)
1025{
1026	return (dt_aggregate_varvalcmp(rhs, lhs));
1027}
1028
1029static int
1030dt_aggregate_bundlecmp(const void *lhs, const void *rhs)
1031{
1032	dt_ahashent_t **lh = *((dt_ahashent_t ***)lhs);
1033	dt_ahashent_t **rh = *((dt_ahashent_t ***)rhs);
1034	int i, rval;
1035
1036	if (dt_keysort) {
1037		/*
1038		 * If we're sorting on keys, we need to scan until we find the
1039		 * last entry -- that's the representative key.  (The order of
1040		 * the bundle is values followed by key to accommodate the
1041		 * default behavior of sorting by value.)  If the keys are
1042		 * equal, we'll fall into the value comparison loop, below.
1043		 */
1044		for (i = 0; lh[i + 1] != NULL; i++)
1045			continue;
1046
1047		assert(i != 0);
1048		assert(rh[i + 1] == NULL);
1049
1050		if ((rval = dt_aggregate_keycmp(&lh[i], &rh[i])) != 0)
1051			return (rval);
1052	}
1053
1054	for (i = 0; ; i++) {
1055		if (lh[i + 1] == NULL) {
1056			/*
1057			 * All of the values are equal; if we're sorting on
1058			 * keys, then we're only here because the keys were
1059			 * found to be equal and these records are therefore
1060			 * equal.  If we're not sorting on keys, we'll use the
1061			 * key comparison from the representative key as the
1062			 * tie-breaker.
1063			 */
1064			if (dt_keysort)
1065				return (0);
1066
1067			assert(i != 0);
1068			assert(rh[i + 1] == NULL);
1069			return (dt_aggregate_keycmp(&lh[i], &rh[i]));
1070		} else {
1071			if ((rval = dt_aggregate_valcmp(&lh[i], &rh[i])) != 0)
1072				return (rval);
1073		}
1074	}
1075}
1076
1077int
1078dt_aggregate_go(dtrace_hdl_t *dtp)
1079{
1080	dt_aggregate_t *agp = &dtp->dt_aggregate;
1081	dtrace_optval_t size, cpu;
1082	dtrace_bufdesc_t *buf = &agp->dtat_buf;
1083	int rval, i;
1084
1085	assert(agp->dtat_maxcpu == 0);
1086	assert(agp->dtat_ncpu == 0);
1087	assert(agp->dtat_cpus == NULL);
1088
1089	agp->dtat_maxcpu = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
1090	agp->dtat_ncpu = dt_sysconf(dtp, _SC_NPROCESSORS_MAX);
1091	agp->dtat_cpus = malloc(agp->dtat_ncpu * sizeof (processorid_t));
1092
1093	if (agp->dtat_cpus == NULL)
1094		return (dt_set_errno(dtp, EDT_NOMEM));
1095
1096	/*
1097	 * Use the aggregation buffer size as reloaded from the kernel.
1098	 */
1099	size = dtp->dt_options[DTRACEOPT_AGGSIZE];
1100
1101	rval = dtrace_getopt(dtp, "aggsize", &size);
1102	assert(rval == 0);
1103
1104	if (size == 0 || size == DTRACEOPT_UNSET)
1105		return (0);
1106
1107	buf = &agp->dtat_buf;
1108	buf->dtbd_size = size;
1109
1110	if ((buf->dtbd_data = malloc(buf->dtbd_size)) == NULL)
1111		return (dt_set_errno(dtp, EDT_NOMEM));
1112
1113	/*
1114	 * Now query for the CPUs enabled.
1115	 */
1116	rval = dtrace_getopt(dtp, "cpu", &cpu);
1117	assert(rval == 0 && cpu != DTRACEOPT_UNSET);
1118
1119	if (cpu != DTRACE_CPUALL) {
1120		assert(cpu < agp->dtat_ncpu);
1121		agp->dtat_cpus[agp->dtat_ncpus++] = (processorid_t)cpu;
1122
1123		return (0);
1124	}
1125
1126	agp->dtat_ncpus = 0;
1127	for (i = 0; i < agp->dtat_maxcpu; i++) {
1128		if (dt_status(dtp, i) == -1)
1129			continue;
1130
1131		agp->dtat_cpus[agp->dtat_ncpus++] = i;
1132	}
1133
1134	return (0);
1135}
1136
1137static int
1138dt_aggwalk_rval(dtrace_hdl_t *dtp, dt_ahashent_t *h, int rval)
1139{
1140	dt_aggregate_t *agp = &dtp->dt_aggregate;
1141	dtrace_aggdata_t *data;
1142	dtrace_aggdesc_t *aggdesc;
1143	dtrace_recdesc_t *rec;
1144	int i;
1145
1146	switch (rval) {
1147	case DTRACE_AGGWALK_NEXT:
1148		break;
1149
1150	case DTRACE_AGGWALK_CLEAR: {
1151		uint32_t size, offs = 0;
1152
1153		aggdesc = h->dtahe_data.dtada_desc;
1154		rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1];
1155		size = rec->dtrd_size;
1156		data = &h->dtahe_data;
1157
1158		if (rec->dtrd_action == DTRACEAGG_LQUANTIZE) {
1159			offs = sizeof (uint64_t);
1160			size -= sizeof (uint64_t);
1161		}
1162
1163		bzero(&data->dtada_data[rec->dtrd_offset] + offs, size);
1164
1165		if (data->dtada_percpu == NULL)
1166			break;
1167
1168		for (i = 0; i < dtp->dt_aggregate.dtat_maxcpu; i++)
1169			bzero(data->dtada_percpu[i] + offs, size);
1170		break;
1171	}
1172
1173	case DTRACE_AGGWALK_ERROR:
1174		/*
1175		 * We assume that errno is already set in this case.
1176		 */
1177		return (dt_set_errno(dtp, errno));
1178
1179	case DTRACE_AGGWALK_ABORT:
1180		return (dt_set_errno(dtp, EDT_DIRABORT));
1181
1182	case DTRACE_AGGWALK_DENORMALIZE:
1183		h->dtahe_data.dtada_normal = 1;
1184		return (0);
1185
1186	case DTRACE_AGGWALK_NORMALIZE:
1187		if (h->dtahe_data.dtada_normal == 0) {
1188			h->dtahe_data.dtada_normal = 1;
1189			return (dt_set_errno(dtp, EDT_BADRVAL));
1190		}
1191
1192		return (0);
1193
1194	case DTRACE_AGGWALK_REMOVE: {
1195		dtrace_aggdata_t *aggdata = &h->dtahe_data;
1196		int max_cpus = agp->dtat_maxcpu;
1197
1198		/*
1199		 * First, remove this hash entry from its hash chain.
1200		 */
1201		if (h->dtahe_prev != NULL) {
1202			h->dtahe_prev->dtahe_next = h->dtahe_next;
1203		} else {
1204			dt_ahash_t *hash = &agp->dtat_hash;
1205			size_t ndx = h->dtahe_hashval % hash->dtah_size;
1206
1207			assert(hash->dtah_hash[ndx] == h);
1208			hash->dtah_hash[ndx] = h->dtahe_next;
1209		}
1210
1211		if (h->dtahe_next != NULL)
1212			h->dtahe_next->dtahe_prev = h->dtahe_prev;
1213
1214		/*
1215		 * Now remove it from the list of all hash entries.
1216		 */
1217		if (h->dtahe_prevall != NULL) {
1218			h->dtahe_prevall->dtahe_nextall = h->dtahe_nextall;
1219		} else {
1220			dt_ahash_t *hash = &agp->dtat_hash;
1221
1222			assert(hash->dtah_all == h);
1223			hash->dtah_all = h->dtahe_nextall;
1224		}
1225
1226		if (h->dtahe_nextall != NULL)
1227			h->dtahe_nextall->dtahe_prevall = h->dtahe_prevall;
1228
1229		/*
1230		 * We're unlinked.  We can safely destroy the data.
1231		 */
1232		if (aggdata->dtada_percpu != NULL) {
1233			for (i = 0; i < max_cpus; i++)
1234				free(aggdata->dtada_percpu[i]);
1235			free(aggdata->dtada_percpu);
1236		}
1237
1238		free(aggdata->dtada_data);
1239		free(h);
1240
1241		return (0);
1242	}
1243
1244	default:
1245		return (dt_set_errno(dtp, EDT_BADRVAL));
1246	}
1247
1248	return (0);
1249}
1250
1251void
1252dt_aggregate_qsort(dtrace_hdl_t *dtp, void *base, size_t nel, size_t width,
1253    int (*compar)(const void *, const void *))
1254{
1255	int rev = dt_revsort, key = dt_keysort, keypos = dt_keypos;
1256	dtrace_optval_t keyposopt = dtp->dt_options[DTRACEOPT_AGGSORTKEYPOS];
1257
1258	dt_revsort = (dtp->dt_options[DTRACEOPT_AGGSORTREV] != DTRACEOPT_UNSET);
1259	dt_keysort = (dtp->dt_options[DTRACEOPT_AGGSORTKEY] != DTRACEOPT_UNSET);
1260
1261	if (keyposopt != DTRACEOPT_UNSET && keyposopt <= INT_MAX) {
1262		dt_keypos = (int)keyposopt;
1263	} else {
1264		dt_keypos = 0;
1265	}
1266
1267	if (compar == NULL) {
1268		if (!dt_keysort) {
1269			compar = dt_aggregate_varvalcmp;
1270		} else {
1271			compar = dt_aggregate_varkeycmp;
1272		}
1273	}
1274
1275	qsort(base, nel, width, compar);
1276
1277	dt_revsort = rev;
1278	dt_keysort = key;
1279	dt_keypos = keypos;
1280}
1281
1282int
1283dtrace_aggregate_walk(dtrace_hdl_t *dtp, dtrace_aggregate_f *func, void *arg)
1284{
1285	dt_ahashent_t *h, *next;
1286	dt_ahash_t *hash = &dtp->dt_aggregate.dtat_hash;
1287
1288	for (h = hash->dtah_all; h != NULL; h = next) {
1289		/*
1290		 * dt_aggwalk_rval() can potentially remove the current hash
1291		 * entry; we need to load the next hash entry before calling
1292		 * into it.
1293		 */
1294		next = h->dtahe_nextall;
1295
1296		if (dt_aggwalk_rval(dtp, h, func(&h->dtahe_data, arg)) == -1)
1297			return (-1);
1298	}
1299
1300	return (0);
1301}
1302
1303static int
1304dt_aggregate_total(dtrace_hdl_t *dtp, boolean_t clear)
1305{
1306	dt_ahashent_t *h;
1307	dtrace_aggdata_t **total;
1308	dtrace_aggid_t max = DTRACE_AGGVARIDNONE, id;
1309	dt_aggregate_t *agp = &dtp->dt_aggregate;
1310	dt_ahash_t *hash = &agp->dtat_hash;
1311	uint32_t tflags;
1312
1313	tflags = DTRACE_A_TOTAL | DTRACE_A_HASNEGATIVES | DTRACE_A_HASPOSITIVES;
1314
1315	/*
1316	 * If we need to deliver per-aggregation totals, we're going to take
1317	 * three passes over the aggregate:  one to clear everything out and
1318	 * determine our maximum aggregation ID, one to actually total
1319	 * everything up, and a final pass to assign the totals to the
1320	 * individual elements.
1321	 */
1322	for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) {
1323		dtrace_aggdata_t *aggdata = &h->dtahe_data;
1324
1325		if ((id = dt_aggregate_aggvarid(h)) > max)
1326			max = id;
1327
1328		aggdata->dtada_total = 0;
1329		aggdata->dtada_flags &= ~tflags;
1330	}
1331
1332	if (clear || max == DTRACE_AGGVARIDNONE)
1333		return (0);
1334
1335	total = dt_zalloc(dtp, (max + 1) * sizeof (dtrace_aggdata_t *));
1336
1337	if (total == NULL)
1338		return (-1);
1339
1340	for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) {
1341		dtrace_aggdata_t *aggdata = &h->dtahe_data;
1342		dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1343		dtrace_recdesc_t *rec;
1344		caddr_t data;
1345		int64_t val, *addr;
1346
1347		rec = &agg->dtagd_rec[agg->dtagd_nrecs - 1];
1348		data = aggdata->dtada_data;
1349		addr = (int64_t *)(uintptr_t)(data + rec->dtrd_offset);
1350
1351		switch (rec->dtrd_action) {
1352		case DTRACEAGG_STDDEV:
1353			val = dt_stddev((uint64_t *)addr, 1);
1354			break;
1355
1356		case DTRACEAGG_SUM:
1357		case DTRACEAGG_COUNT:
1358			val = *addr;
1359			break;
1360
1361		case DTRACEAGG_AVG:
1362			val = addr[0] ? (addr[1] / addr[0]) : 0;
1363			break;
1364
1365		default:
1366			continue;
1367		}
1368
1369		if (total[agg->dtagd_varid] == NULL) {
1370			total[agg->dtagd_varid] = aggdata;
1371			aggdata->dtada_flags |= DTRACE_A_TOTAL;
1372		} else {
1373			aggdata = total[agg->dtagd_varid];
1374		}
1375
1376		if (val > 0)
1377			aggdata->dtada_flags |= DTRACE_A_HASPOSITIVES;
1378
1379		if (val < 0) {
1380			aggdata->dtada_flags |= DTRACE_A_HASNEGATIVES;
1381			val = -val;
1382		}
1383
1384		if (dtp->dt_options[DTRACEOPT_AGGZOOM] != DTRACEOPT_UNSET) {
1385			val = (int64_t)((long double)val *
1386			    (1 / DTRACE_AGGZOOM_MAX));
1387
1388			if (val > aggdata->dtada_total)
1389				aggdata->dtada_total = val;
1390		} else {
1391			aggdata->dtada_total += val;
1392		}
1393	}
1394
1395	/*
1396	 * And now one final pass to set everyone's total.
1397	 */
1398	for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) {
1399		dtrace_aggdata_t *aggdata = &h->dtahe_data, *t;
1400		dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1401
1402		if ((t = total[agg->dtagd_varid]) == NULL || aggdata == t)
1403			continue;
1404
1405		aggdata->dtada_total = t->dtada_total;
1406		aggdata->dtada_flags |= (t->dtada_flags & tflags);
1407	}
1408
1409	dt_free(dtp, total);
1410
1411	return (0);
1412}
1413
1414static int
1415dt_aggregate_minmaxbin(dtrace_hdl_t *dtp, boolean_t clear)
1416{
1417	dt_ahashent_t *h;
1418	dtrace_aggdata_t **minmax;
1419	dtrace_aggid_t max = DTRACE_AGGVARIDNONE, id;
1420	dt_aggregate_t *agp = &dtp->dt_aggregate;
1421	dt_ahash_t *hash = &agp->dtat_hash;
1422
1423	for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) {
1424		dtrace_aggdata_t *aggdata = &h->dtahe_data;
1425
1426		if ((id = dt_aggregate_aggvarid(h)) > max)
1427			max = id;
1428
1429		aggdata->dtada_minbin = 0;
1430		aggdata->dtada_maxbin = 0;
1431		aggdata->dtada_flags &= ~DTRACE_A_MINMAXBIN;
1432	}
1433
1434	if (clear || max == DTRACE_AGGVARIDNONE)
1435		return (0);
1436
1437	minmax = dt_zalloc(dtp, (max + 1) * sizeof (dtrace_aggdata_t *));
1438
1439	if (minmax == NULL)
1440		return (-1);
1441
1442	for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) {
1443		dtrace_aggdata_t *aggdata = &h->dtahe_data;
1444		dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1445		dtrace_recdesc_t *rec;
1446		caddr_t data;
1447		int64_t *addr;
1448		int minbin = -1, maxbin = -1, i;
1449		int start = 0, size;
1450
1451		rec = &agg->dtagd_rec[agg->dtagd_nrecs - 1];
1452		size = rec->dtrd_size / sizeof (int64_t);
1453		data = aggdata->dtada_data;
1454		addr = (int64_t *)(uintptr_t)(data + rec->dtrd_offset);
1455
1456		switch (rec->dtrd_action) {
1457		case DTRACEAGG_LQUANTIZE:
1458			/*
1459			 * For lquantize(), we always display the entire range
1460			 * of the aggregation when aggpack is set.
1461			 */
1462			start = 1;
1463			minbin = start;
1464			maxbin = size - 1 - start;
1465			break;
1466
1467		case DTRACEAGG_QUANTIZE:
1468			for (i = start; i < size; i++) {
1469				if (!addr[i])
1470					continue;
1471
1472				if (minbin == -1)
1473					minbin = i - start;
1474
1475				maxbin = i - start;
1476			}
1477
1478			if (minbin == -1) {
1479				/*
1480				 * If we have no data (e.g., due to a clear()
1481				 * or negative increments), we'll use the
1482				 * zero bucket as both our min and max.
1483				 */
1484				minbin = maxbin = DTRACE_QUANTIZE_ZEROBUCKET;
1485			}
1486
1487			break;
1488
1489		default:
1490			continue;
1491		}
1492
1493		if (minmax[agg->dtagd_varid] == NULL) {
1494			minmax[agg->dtagd_varid] = aggdata;
1495			aggdata->dtada_flags |= DTRACE_A_MINMAXBIN;
1496			aggdata->dtada_minbin = minbin;
1497			aggdata->dtada_maxbin = maxbin;
1498			continue;
1499		}
1500
1501		if (minbin < minmax[agg->dtagd_varid]->dtada_minbin)
1502			minmax[agg->dtagd_varid]->dtada_minbin = minbin;
1503
1504		if (maxbin > minmax[agg->dtagd_varid]->dtada_maxbin)
1505			minmax[agg->dtagd_varid]->dtada_maxbin = maxbin;
1506	}
1507
1508	/*
1509	 * And now one final pass to set everyone's minbin and maxbin.
1510	 */
1511	for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) {
1512		dtrace_aggdata_t *aggdata = &h->dtahe_data, *mm;
1513		dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1514
1515		if ((mm = minmax[agg->dtagd_varid]) == NULL || aggdata == mm)
1516			continue;
1517
1518		aggdata->dtada_minbin = mm->dtada_minbin;
1519		aggdata->dtada_maxbin = mm->dtada_maxbin;
1520		aggdata->dtada_flags |= DTRACE_A_MINMAXBIN;
1521	}
1522
1523	dt_free(dtp, minmax);
1524
1525	return (0);
1526}
1527
1528static int
1529dt_aggregate_walk_sorted(dtrace_hdl_t *dtp,
1530    dtrace_aggregate_f *func, void *arg,
1531    int (*sfunc)(const void *, const void *))
1532{
1533	dt_aggregate_t *agp = &dtp->dt_aggregate;
1534	dt_ahashent_t *h, **sorted;
1535	dt_ahash_t *hash = &agp->dtat_hash;
1536	size_t i, nentries = 0;
1537	int rval = -1;
1538
1539	agp->dtat_flags &= ~(DTRACE_A_TOTAL | DTRACE_A_MINMAXBIN);
1540
1541	if (dtp->dt_options[DTRACEOPT_AGGHIST] != DTRACEOPT_UNSET) {
1542		agp->dtat_flags |= DTRACE_A_TOTAL;
1543
1544		if (dt_aggregate_total(dtp, B_FALSE) != 0)
1545			return (-1);
1546	}
1547
1548	if (dtp->dt_options[DTRACEOPT_AGGPACK] != DTRACEOPT_UNSET) {
1549		agp->dtat_flags |= DTRACE_A_MINMAXBIN;
1550
1551		if (dt_aggregate_minmaxbin(dtp, B_FALSE) != 0)
1552			return (-1);
1553	}
1554
1555	for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall)
1556		nentries++;
1557
1558	sorted = dt_alloc(dtp, nentries * sizeof (dt_ahashent_t *));
1559
1560	if (sorted == NULL)
1561		goto out;
1562
1563	for (h = hash->dtah_all, i = 0; h != NULL; h = h->dtahe_nextall)
1564		sorted[i++] = h;
1565
1566	(void) pthread_mutex_lock(&dt_qsort_lock);
1567
1568	if (sfunc == NULL) {
1569		dt_aggregate_qsort(dtp, sorted, nentries,
1570		    sizeof (dt_ahashent_t *), NULL);
1571	} else {
1572		/*
1573		 * If we've been explicitly passed a sorting function,
1574		 * we'll use that -- ignoring the values of the "aggsortrev",
1575		 * "aggsortkey" and "aggsortkeypos" options.
1576		 */
1577		qsort(sorted, nentries, sizeof (dt_ahashent_t *), sfunc);
1578	}
1579
1580	(void) pthread_mutex_unlock(&dt_qsort_lock);
1581
1582	for (i = 0; i < nentries; i++) {
1583		h = sorted[i];
1584
1585		if (dt_aggwalk_rval(dtp, h, func(&h->dtahe_data, arg)) == -1)
1586			goto out;
1587	}
1588
1589	rval = 0;
1590out:
1591	if (agp->dtat_flags & DTRACE_A_TOTAL)
1592		(void) dt_aggregate_total(dtp, B_TRUE);
1593
1594	if (agp->dtat_flags & DTRACE_A_MINMAXBIN)
1595		(void) dt_aggregate_minmaxbin(dtp, B_TRUE);
1596
1597	dt_free(dtp, sorted);
1598	return (rval);
1599}
1600
1601int
1602dtrace_aggregate_walk_sorted(dtrace_hdl_t *dtp,
1603    dtrace_aggregate_f *func, void *arg)
1604{
1605	return (dt_aggregate_walk_sorted(dtp, func, arg, NULL));
1606}
1607
1608int
1609dtrace_aggregate_walk_keysorted(dtrace_hdl_t *dtp,
1610    dtrace_aggregate_f *func, void *arg)
1611{
1612	return (dt_aggregate_walk_sorted(dtp, func,
1613	    arg, dt_aggregate_varkeycmp));
1614}
1615
1616int
1617dtrace_aggregate_walk_valsorted(dtrace_hdl_t *dtp,
1618    dtrace_aggregate_f *func, void *arg)
1619{
1620	return (dt_aggregate_walk_sorted(dtp, func,
1621	    arg, dt_aggregate_varvalcmp));
1622}
1623
1624int
1625dtrace_aggregate_walk_keyvarsorted(dtrace_hdl_t *dtp,
1626    dtrace_aggregate_f *func, void *arg)
1627{
1628	return (dt_aggregate_walk_sorted(dtp, func,
1629	    arg, dt_aggregate_keyvarcmp));
1630}
1631
1632int
1633dtrace_aggregate_walk_valvarsorted(dtrace_hdl_t *dtp,
1634    dtrace_aggregate_f *func, void *arg)
1635{
1636	return (dt_aggregate_walk_sorted(dtp, func,
1637	    arg, dt_aggregate_valvarcmp));
1638}
1639
1640int
1641dtrace_aggregate_walk_keyrevsorted(dtrace_hdl_t *dtp,
1642    dtrace_aggregate_f *func, void *arg)
1643{
1644	return (dt_aggregate_walk_sorted(dtp, func,
1645	    arg, dt_aggregate_varkeyrevcmp));
1646}
1647
1648int
1649dtrace_aggregate_walk_valrevsorted(dtrace_hdl_t *dtp,
1650    dtrace_aggregate_f *func, void *arg)
1651{
1652	return (dt_aggregate_walk_sorted(dtp, func,
1653	    arg, dt_aggregate_varvalrevcmp));
1654}
1655
1656int
1657dtrace_aggregate_walk_keyvarrevsorted(dtrace_hdl_t *dtp,
1658    dtrace_aggregate_f *func, void *arg)
1659{
1660	return (dt_aggregate_walk_sorted(dtp, func,
1661	    arg, dt_aggregate_keyvarrevcmp));
1662}
1663
1664int
1665dtrace_aggregate_walk_valvarrevsorted(dtrace_hdl_t *dtp,
1666    dtrace_aggregate_f *func, void *arg)
1667{
1668	return (dt_aggregate_walk_sorted(dtp, func,
1669	    arg, dt_aggregate_valvarrevcmp));
1670}
1671
1672int
1673dtrace_aggregate_walk_joined(dtrace_hdl_t *dtp, dtrace_aggvarid_t *aggvars,
1674    int naggvars, dtrace_aggregate_walk_joined_f *func, void *arg)
1675{
1676	dt_aggregate_t *agp = &dtp->dt_aggregate;
1677	dt_ahashent_t *h, **sorted = NULL, ***bundle, **nbundle;
1678	const dtrace_aggdata_t **data;
1679	dt_ahashent_t *zaggdata = NULL;
1680	dt_ahash_t *hash = &agp->dtat_hash;
1681	size_t nentries = 0, nbundles = 0, start, zsize = 0, bundlesize;
1682	dtrace_aggvarid_t max = 0, aggvar;
1683	int rval = -1, *map, *remap = NULL;
1684	int i, j;
1685	dtrace_optval_t sortpos = dtp->dt_options[DTRACEOPT_AGGSORTPOS];
1686
1687	/*
1688	 * If the sorting position is greater than the number of aggregation
1689	 * variable IDs, we silently set it to 0.
1690	 */
1691	if (sortpos == DTRACEOPT_UNSET || sortpos >= naggvars)
1692		sortpos = 0;
1693
1694	/*
1695	 * First we need to translate the specified aggregation variable IDs
1696	 * into a linear map that will allow us to translate an aggregation
1697	 * variable ID into its position in the specified aggvars.
1698	 */
1699	for (i = 0; i < naggvars; i++) {
1700		if (aggvars[i] == DTRACE_AGGVARIDNONE || aggvars[i] < 0)
1701			return (dt_set_errno(dtp, EDT_BADAGGVAR));
1702
1703		if (aggvars[i] > max)
1704			max = aggvars[i];
1705	}
1706
1707	if ((map = dt_zalloc(dtp, (max + 1) * sizeof (int))) == NULL)
1708		return (-1);
1709
1710	zaggdata = dt_zalloc(dtp, naggvars * sizeof (dt_ahashent_t));
1711
1712	if (zaggdata == NULL)
1713		goto out;
1714
1715	for (i = 0; i < naggvars; i++) {
1716		int ndx = i + sortpos;
1717
1718		if (ndx >= naggvars)
1719			ndx -= naggvars;
1720
1721		aggvar = aggvars[ndx];
1722		assert(aggvar <= max);
1723
1724		if (map[aggvar]) {
1725			/*
1726			 * We have an aggregation variable that is present
1727			 * more than once in the array of aggregation
1728			 * variables.  While it's unclear why one might want
1729			 * to do this, it's legal.  To support this construct,
1730			 * we will allocate a remap that will indicate the
1731			 * position from which this aggregation variable
1732			 * should be pulled.  (That is, where the remap will
1733			 * map from one position to another.)
1734			 */
1735			if (remap == NULL) {
1736				remap = dt_zalloc(dtp, naggvars * sizeof (int));
1737
1738				if (remap == NULL)
1739					goto out;
1740			}
1741
1742			/*
1743			 * Given that the variable is already present, assert
1744			 * that following through the mapping and adjusting
1745			 * for the sort position yields the same aggregation
1746			 * variable ID.
1747			 */
1748			assert(aggvars[(map[aggvar] - 1 + sortpos) %
1749			    naggvars] == aggvars[ndx]);
1750
1751			remap[i] = map[aggvar];
1752			continue;
1753		}
1754
1755		map[aggvar] = i + 1;
1756	}
1757
1758	/*
1759	 * We need to take two passes over the data to size our allocation, so
1760	 * we'll use the first pass to also fill in the zero-filled data to be
1761	 * used to properly format a zero-valued aggregation.
1762	 */
1763	for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) {
1764		dtrace_aggvarid_t id;
1765		int ndx;
1766
1767		if ((id = dt_aggregate_aggvarid(h)) > max || !(ndx = map[id]))
1768			continue;
1769
1770		if (zaggdata[ndx - 1].dtahe_size == 0) {
1771			zaggdata[ndx - 1].dtahe_size = h->dtahe_size;
1772			zaggdata[ndx - 1].dtahe_data = h->dtahe_data;
1773		}
1774
1775		nentries++;
1776	}
1777
1778	if (nentries == 0) {
1779		/*
1780		 * We couldn't find any entries; there is nothing else to do.
1781		 */
1782		rval = 0;
1783		goto out;
1784	}
1785
1786	/*
1787	 * Before we sort the data, we're going to look for any holes in our
1788	 * zero-filled data.  This will occur if an aggregation variable that
1789	 * we are being asked to print has not yet been assigned the result of
1790	 * any aggregating action for _any_ tuple.  The issue becomes that we
1791	 * would like a zero value to be printed for all columns for this
1792	 * aggregation, but without any record description, we don't know the
1793	 * aggregating action that corresponds to the aggregation variable.  To
1794	 * try to find a match, we're simply going to lookup aggregation IDs
1795	 * (which are guaranteed to be contiguous and to start from 1), looking
1796	 * for the specified aggregation variable ID.  If we find a match,
1797	 * we'll use that.  If we iterate over all aggregation IDs and don't
1798	 * find a match, then we must be an anonymous enabling.  (Anonymous
1799	 * enablings can't currently derive either aggregation variable IDs or
1800	 * aggregation variable names given only an aggregation ID.)  In this
1801	 * obscure case (anonymous enabling, multiple aggregation printa() with
1802	 * some aggregations not represented for any tuple), our defined
1803	 * behavior is that the zero will be printed in the format of the first
1804	 * aggregation variable that contains any non-zero value.
1805	 */
1806	for (i = 0; i < naggvars; i++) {
1807		if (zaggdata[i].dtahe_size == 0) {
1808			dtrace_aggvarid_t aggvar;
1809
1810			aggvar = aggvars[(i - sortpos + naggvars) % naggvars];
1811			assert(zaggdata[i].dtahe_data.dtada_data == NULL);
1812
1813			for (j = DTRACE_AGGIDNONE + 1; ; j++) {
1814				dtrace_aggdesc_t *agg;
1815				dtrace_aggdata_t *aggdata;
1816
1817				if (dt_aggid_lookup(dtp, j, &agg) != 0)
1818					break;
1819
1820				if (agg->dtagd_varid != aggvar)
1821					continue;
1822
1823				/*
1824				 * We have our description -- now we need to
1825				 * cons up the zaggdata entry for it.
1826				 */
1827				aggdata = &zaggdata[i].dtahe_data;
1828				aggdata->dtada_size = agg->dtagd_size;
1829				aggdata->dtada_desc = agg;
1830				aggdata->dtada_handle = dtp;
1831				(void) dt_epid_lookup(dtp, agg->dtagd_epid,
1832				    &aggdata->dtada_edesc,
1833				    &aggdata->dtada_pdesc);
1834				aggdata->dtada_normal = 1;
1835				zaggdata[i].dtahe_hashval = 0;
1836				zaggdata[i].dtahe_size = agg->dtagd_size;
1837				break;
1838			}
1839
1840			if (zaggdata[i].dtahe_size == 0) {
1841				caddr_t data;
1842
1843				/*
1844				 * We couldn't find this aggregation, meaning
1845				 * that we have never seen it before for any
1846				 * tuple _and_ this is an anonymous enabling.
1847				 * That is, we're in the obscure case outlined
1848				 * above.  In this case, our defined behavior
1849				 * is to format the data in the format of the
1850				 * first non-zero aggregation -- of which, of
1851				 * course, we know there to be at least one
1852				 * (or nentries would have been zero).
1853				 */
1854				for (j = 0; j < naggvars; j++) {
1855					if (zaggdata[j].dtahe_size != 0)
1856						break;
1857				}
1858
1859				assert(j < naggvars);
1860				zaggdata[i] = zaggdata[j];
1861
1862				data = zaggdata[i].dtahe_data.dtada_data;
1863				assert(data != NULL);
1864			}
1865		}
1866	}
1867
1868	/*
1869	 * Now we need to allocate our zero-filled data for use for
1870	 * aggregations that don't have a value corresponding to a given key.
1871	 */
1872	for (i = 0; i < naggvars; i++) {
1873		dtrace_aggdata_t *aggdata = &zaggdata[i].dtahe_data;
1874		dtrace_aggdesc_t *aggdesc = aggdata->dtada_desc;
1875		dtrace_recdesc_t *rec;
1876		uint64_t larg;
1877		caddr_t zdata;
1878
1879		zsize = zaggdata[i].dtahe_size;
1880		assert(zsize != 0);
1881
1882		if ((zdata = dt_zalloc(dtp, zsize)) == NULL) {
1883			/*
1884			 * If we failed to allocated some zero-filled data, we
1885			 * need to zero out the remaining dtada_data pointers
1886			 * to prevent the wrong data from being freed below.
1887			 */
1888			for (j = i; j < naggvars; j++)
1889				zaggdata[j].dtahe_data.dtada_data = NULL;
1890			goto out;
1891		}
1892
1893		aggvar = aggvars[(i - sortpos + naggvars) % naggvars];
1894
1895		/*
1896		 * First, the easy bit.  To maintain compatibility with
1897		 * consumers that pull the compiler-generated ID out of the
1898		 * data, we put that ID at the top of the zero-filled data.
1899		 */
1900		rec = &aggdesc->dtagd_rec[0];
1901		/* LINTED - alignment */
1902		*((dtrace_aggvarid_t *)(zdata + rec->dtrd_offset)) = aggvar;
1903
1904		rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1];
1905
1906		/*
1907		 * Now for the more complicated part.  If (and only if) this
1908		 * is an lquantize() aggregating action, zero-filled data is
1909		 * not equivalent to an empty record:  we must also get the
1910		 * parameters for the lquantize().
1911		 */
1912		if (rec->dtrd_action == DTRACEAGG_LQUANTIZE) {
1913			if (aggdata->dtada_data != NULL) {
1914				/*
1915				 * The easier case here is if we actually have
1916				 * some prototype data -- in which case we
1917				 * manually dig it out of the aggregation
1918				 * record.
1919				 */
1920				/* LINTED - alignment */
1921				larg = *((uint64_t *)(aggdata->dtada_data +
1922				    rec->dtrd_offset));
1923			} else {
1924				/*
1925				 * We don't have any prototype data.  As a
1926				 * result, we know that we _do_ have the
1927				 * compiler-generated information.  (If this
1928				 * were an anonymous enabling, all of our
1929				 * zero-filled data would have prototype data
1930				 * -- either directly or indirectly.) So as
1931				 * gross as it is, we'll grovel around in the
1932				 * compiler-generated information to find the
1933				 * lquantize() parameters.
1934				 */
1935				dtrace_stmtdesc_t *sdp;
1936				dt_ident_t *aid;
1937				dt_idsig_t *isp;
1938
1939				sdp = (dtrace_stmtdesc_t *)(uintptr_t)
1940				    aggdesc->dtagd_rec[0].dtrd_uarg;
1941				aid = sdp->dtsd_aggdata;
1942				isp = (dt_idsig_t *)aid->di_data;
1943				assert(isp->dis_auxinfo != 0);
1944				larg = isp->dis_auxinfo;
1945			}
1946
1947			/* LINTED - alignment */
1948			*((uint64_t *)(zdata + rec->dtrd_offset)) = larg;
1949		}
1950
1951		aggdata->dtada_data = zdata;
1952	}
1953
1954	/*
1955	 * Now that we've dealt with setting up our zero-filled data, we can
1956	 * allocate our sorted array, and take another pass over the data to
1957	 * fill it.
1958	 */
1959	sorted = dt_alloc(dtp, nentries * sizeof (dt_ahashent_t *));
1960
1961	if (sorted == NULL)
1962		goto out;
1963
1964	for (h = hash->dtah_all, i = 0; h != NULL; h = h->dtahe_nextall) {
1965		dtrace_aggvarid_t id;
1966
1967		if ((id = dt_aggregate_aggvarid(h)) > max || !map[id])
1968			continue;
1969
1970		sorted[i++] = h;
1971	}
1972
1973	assert(i == nentries);
1974
1975	/*
1976	 * We've loaded our array; now we need to sort by value to allow us
1977	 * to create bundles of like value.  We're going to acquire the
1978	 * dt_qsort_lock here, and hold it across all of our subsequent
1979	 * comparison and sorting.
1980	 */
1981	(void) pthread_mutex_lock(&dt_qsort_lock);
1982
1983	qsort(sorted, nentries, sizeof (dt_ahashent_t *),
1984	    dt_aggregate_keyvarcmp);
1985
1986	/*
1987	 * Now we need to go through and create bundles.  Because the number
1988	 * of bundles is bounded by the size of the sorted array, we're going
1989	 * to reuse the underlying storage.  And note that "bundle" is an
1990	 * array of pointers to arrays of pointers to dt_ahashent_t -- making
1991	 * its type (regrettably) "dt_ahashent_t ***".  (Regrettable because
1992	 * '*' -- like '_' and 'X' -- should never appear in triplicate in
1993	 * an ideal world.)
1994	 */
1995	bundle = (dt_ahashent_t ***)sorted;
1996
1997	for (i = 1, start = 0; i <= nentries; i++) {
1998		if (i < nentries &&
1999		    dt_aggregate_keycmp(&sorted[i], &sorted[i - 1]) == 0)
2000			continue;
2001
2002		/*
2003		 * We have a bundle boundary.  Everything from start to
2004		 * (i - 1) belongs in one bundle.
2005		 */
2006		assert(i - start <= naggvars);
2007		bundlesize = (naggvars + 2) * sizeof (dt_ahashent_t *);
2008
2009		if ((nbundle = dt_zalloc(dtp, bundlesize)) == NULL) {
2010			(void) pthread_mutex_unlock(&dt_qsort_lock);
2011			goto out;
2012		}
2013
2014		for (j = start; j < i; j++) {
2015			dtrace_aggvarid_t id = dt_aggregate_aggvarid(sorted[j]);
2016
2017			assert(id <= max);
2018			assert(map[id] != 0);
2019			assert(map[id] - 1 < naggvars);
2020			assert(nbundle[map[id] - 1] == NULL);
2021			nbundle[map[id] - 1] = sorted[j];
2022
2023			if (nbundle[naggvars] == NULL)
2024				nbundle[naggvars] = sorted[j];
2025		}
2026
2027		for (j = 0; j < naggvars; j++) {
2028			if (nbundle[j] != NULL)
2029				continue;
2030
2031			/*
2032			 * Before we assume that this aggregation variable
2033			 * isn't present (and fall back to using the
2034			 * zero-filled data allocated earlier), check the
2035			 * remap.  If we have a remapping, we'll drop it in
2036			 * here.  Note that we might be remapping an
2037			 * aggregation variable that isn't present for this
2038			 * key; in this case, the aggregation data that we
2039			 * copy will point to the zeroed data.
2040			 */
2041			if (remap != NULL && remap[j]) {
2042				assert(remap[j] - 1 < j);
2043				assert(nbundle[remap[j] - 1] != NULL);
2044				nbundle[j] = nbundle[remap[j] - 1];
2045			} else {
2046				nbundle[j] = &zaggdata[j];
2047			}
2048		}
2049
2050		bundle[nbundles++] = nbundle;
2051		start = i;
2052	}
2053
2054	/*
2055	 * Now we need to re-sort based on the first value.
2056	 */
2057	dt_aggregate_qsort(dtp, bundle, nbundles, sizeof (dt_ahashent_t **),
2058	    dt_aggregate_bundlecmp);
2059
2060	(void) pthread_mutex_unlock(&dt_qsort_lock);
2061
2062	/*
2063	 * We're done!  Now we just need to go back over the sorted bundles,
2064	 * calling the function.
2065	 */
2066	data = alloca((naggvars + 1) * sizeof (dtrace_aggdata_t *));
2067
2068	for (i = 0; i < nbundles; i++) {
2069		for (j = 0; j < naggvars; j++)
2070			data[j + 1] = NULL;
2071
2072		for (j = 0; j < naggvars; j++) {
2073			int ndx = j - sortpos;
2074
2075			if (ndx < 0)
2076				ndx += naggvars;
2077
2078			assert(bundle[i][ndx] != NULL);
2079			data[j + 1] = &bundle[i][ndx]->dtahe_data;
2080		}
2081
2082		for (j = 0; j < naggvars; j++)
2083			assert(data[j + 1] != NULL);
2084
2085		/*
2086		 * The representative key is the last element in the bundle.
2087		 * Assert that we have one, and then set it to be the first
2088		 * element of data.
2089		 */
2090		assert(bundle[i][j] != NULL);
2091		data[0] = &bundle[i][j]->dtahe_data;
2092
2093		if ((rval = func(data, naggvars + 1, arg)) == -1)
2094			goto out;
2095	}
2096
2097	rval = 0;
2098out:
2099	for (i = 0; i < nbundles; i++)
2100		dt_free(dtp, bundle[i]);
2101
2102	if (zaggdata != NULL) {
2103		for (i = 0; i < naggvars; i++)
2104			dt_free(dtp, zaggdata[i].dtahe_data.dtada_data);
2105	}
2106
2107	dt_free(dtp, zaggdata);
2108	dt_free(dtp, sorted);
2109	dt_free(dtp, remap);
2110	dt_free(dtp, map);
2111
2112	return (rval);
2113}
2114
2115int
2116dtrace_aggregate_print(dtrace_hdl_t *dtp, FILE *fp,
2117    dtrace_aggregate_walk_f *func)
2118{
2119	dt_print_aggdata_t pd;
2120
2121	bzero(&pd, sizeof (pd));
2122
2123	pd.dtpa_dtp = dtp;
2124	pd.dtpa_fp = fp;
2125	pd.dtpa_allunprint = 1;
2126
2127	if (func == NULL)
2128		func = dtrace_aggregate_walk_sorted;
2129
2130	if ((*func)(dtp, dt_print_agg, &pd) == -1)
2131		return (dt_set_errno(dtp, dtp->dt_errno));
2132
2133	return (0);
2134}
2135
2136void
2137dtrace_aggregate_clear(dtrace_hdl_t *dtp)
2138{
2139	dt_aggregate_t *agp = &dtp->dt_aggregate;
2140	dt_ahash_t *hash = &agp->dtat_hash;
2141	dt_ahashent_t *h;
2142	dtrace_aggdata_t *data;
2143	dtrace_aggdesc_t *aggdesc;
2144	dtrace_recdesc_t *rec;
2145	int i, max_cpus = agp->dtat_maxcpu;
2146
2147	for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) {
2148		aggdesc = h->dtahe_data.dtada_desc;
2149		rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1];
2150		data = &h->dtahe_data;
2151
2152		bzero(&data->dtada_data[rec->dtrd_offset], rec->dtrd_size);
2153
2154		if (data->dtada_percpu == NULL)
2155			continue;
2156
2157		for (i = 0; i < max_cpus; i++)
2158			bzero(data->dtada_percpu[i], rec->dtrd_size);
2159	}
2160}
2161
2162void
2163dt_aggregate_destroy(dtrace_hdl_t *dtp)
2164{
2165	dt_aggregate_t *agp = &dtp->dt_aggregate;
2166	dt_ahash_t *hash = &agp->dtat_hash;
2167	dt_ahashent_t *h, *next;
2168	dtrace_aggdata_t *aggdata;
2169	int i, max_cpus = agp->dtat_maxcpu;
2170
2171	if (hash->dtah_hash == NULL) {
2172		assert(hash->dtah_all == NULL);
2173	} else {
2174		free(hash->dtah_hash);
2175
2176		for (h = hash->dtah_all; h != NULL; h = next) {
2177			next = h->dtahe_nextall;
2178
2179			aggdata = &h->dtahe_data;
2180
2181			if (aggdata->dtada_percpu != NULL) {
2182				for (i = 0; i < max_cpus; i++)
2183					free(aggdata->dtada_percpu[i]);
2184				free(aggdata->dtada_percpu);
2185			}
2186
2187			free(aggdata->dtada_data);
2188			free(h);
2189		}
2190
2191		hash->dtah_hash = NULL;
2192		hash->dtah_all = NULL;
2193		hash->dtah_size = 0;
2194	}
2195
2196	free(agp->dtat_buf.dtbd_data);
2197	free(agp->dtat_cpus);
2198}
2199