zfs_iter.c revision 177698
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#pragma ident	"%Z%%M%	%I%	%E% SMI"
27
28#include <libintl.h>
29#include <libuutil.h>
30#include <stddef.h>
31#include <stdio.h>
32#include <stdlib.h>
33#include <strings.h>
34
35#include <libzfs.h>
36
37#include "zfs_util.h"
38#include "zfs_iter.h"
39
40/*
41 * This is a private interface used to gather up all the datasets specified on
42 * the command line so that we can iterate over them in order.
43 *
44 * First, we iterate over all filesystems, gathering them together into an
45 * AVL tree.  We report errors for any explicitly specified datasets
46 * that we couldn't open.
47 *
48 * When finished, we have an AVL tree of ZFS handles.  We go through and execute
49 * the provided callback for each one, passing whatever data the user supplied.
50 */
51
52typedef struct zfs_node {
53	zfs_handle_t	*zn_handle;
54	uu_avl_node_t	zn_avlnode;
55} zfs_node_t;
56
57typedef struct callback_data {
58	uu_avl_t	*cb_avl;
59	int		cb_recurse;
60	zfs_type_t	cb_types;
61	zfs_sort_column_t *cb_sortcol;
62	zfs_proplist_t	**cb_proplist;
63} callback_data_t;
64
65uu_avl_pool_t *avl_pool;
66
67/*
68 * Called for each dataset.  If the object the object is of an appropriate type,
69 * add it to the avl tree and recurse over any children as necessary.
70 */
71int
72zfs_callback(zfs_handle_t *zhp, void *data)
73{
74	callback_data_t *cb = data;
75	int dontclose = 0;
76
77	/*
78	 * If this object is of the appropriate type, add it to the AVL tree.
79	 */
80	if (zfs_get_type(zhp) & cb->cb_types) {
81		uu_avl_index_t idx;
82		zfs_node_t *node = safe_malloc(sizeof (zfs_node_t));
83
84		node->zn_handle = zhp;
85		uu_avl_node_init(node, &node->zn_avlnode, avl_pool);
86		if (uu_avl_find(cb->cb_avl, node, cb->cb_sortcol,
87		    &idx) == NULL) {
88			if (cb->cb_proplist &&
89			    zfs_expand_proplist(zhp, cb->cb_proplist) != 0) {
90				free(node);
91				return (-1);
92			}
93			uu_avl_insert(cb->cb_avl, node, idx);
94			dontclose = 1;
95		} else {
96			free(node);
97		}
98	}
99
100	/*
101	 * Recurse if necessary.
102	 */
103	if (cb->cb_recurse && (zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM ||
104	    (zfs_get_type(zhp) == ZFS_TYPE_VOLUME && (cb->cb_types &
105	    ZFS_TYPE_SNAPSHOT))))
106		(void) zfs_iter_children(zhp, zfs_callback, data);
107
108	if (!dontclose)
109		zfs_close(zhp);
110
111	return (0);
112}
113
114int
115zfs_add_sort_column(zfs_sort_column_t **sc, const char *name,
116    boolean_t reverse)
117{
118	zfs_sort_column_t *col;
119	zfs_prop_t prop;
120
121	if ((prop = zfs_name_to_prop(name)) == ZFS_PROP_INVAL &&
122	    !zfs_prop_user(name))
123		return (-1);
124
125	col = safe_malloc(sizeof (zfs_sort_column_t));
126
127	col->sc_prop = prop;
128	col->sc_reverse = reverse;
129	if (prop == ZFS_PROP_INVAL) {
130		col->sc_user_prop = safe_malloc(strlen(name) + 1);
131		(void) strcpy(col->sc_user_prop, name);
132	}
133
134	if (*sc == NULL) {
135		col->sc_last = col;
136		*sc = col;
137	} else {
138		(*sc)->sc_last->sc_next = col;
139		(*sc)->sc_last = col;
140	}
141
142	return (0);
143}
144
145void
146zfs_free_sort_columns(zfs_sort_column_t *sc)
147{
148	zfs_sort_column_t *col;
149
150	while (sc != NULL) {
151		col = sc->sc_next;
152		free(sc->sc_user_prop);
153		free(sc);
154		sc = col;
155	}
156}
157
158/* ARGSUSED */
159static int
160zfs_compare(const void *larg, const void *rarg, void *unused)
161{
162	zfs_handle_t *l = ((zfs_node_t *)larg)->zn_handle;
163	zfs_handle_t *r = ((zfs_node_t *)rarg)->zn_handle;
164	const char *lname = zfs_get_name(l);
165	const char *rname = zfs_get_name(r);
166	char *lat, *rat;
167	uint64_t lcreate, rcreate;
168	int ret;
169
170	lat = (char *)strchr(lname, '@');
171	rat = (char *)strchr(rname, '@');
172
173	if (lat != NULL)
174		*lat = '\0';
175	if (rat != NULL)
176		*rat = '\0';
177
178	ret = strcmp(lname, rname);
179	if (ret == 0) {
180		/*
181		 * If we're comparing a dataset to one of its snapshots, we
182		 * always make the full dataset first.
183		 */
184		if (lat == NULL) {
185			ret = -1;
186		} else if (rat == NULL) {
187			ret = 1;
188		} else {
189			/*
190			 * If we have two snapshots from the same dataset, then
191			 * we want to sort them according to creation time.  We
192			 * use the hidden CREATETXG property to get an absolute
193			 * ordering of snapshots.
194			 */
195			lcreate = zfs_prop_get_int(l, ZFS_PROP_CREATETXG);
196			rcreate = zfs_prop_get_int(r, ZFS_PROP_CREATETXG);
197
198			if (lcreate < rcreate)
199				ret = -1;
200			else if (lcreate > rcreate)
201				ret = 1;
202		}
203	}
204
205	if (lat != NULL)
206		*lat = '@';
207	if (rat != NULL)
208		*rat = '@';
209
210	return (ret);
211}
212
213/*
214 * Sort datasets by specified columns.
215 *
216 * o  Numeric types sort in ascending order.
217 * o  String types sort in alphabetical order.
218 * o  Types inappropriate for a row sort that row to the literal
219 *    bottom, regardless of the specified ordering.
220 *
221 * If no sort columns are specified, or two datasets compare equally
222 * across all specified columns, they are sorted alphabetically by name
223 * with snapshots grouped under their parents.
224 */
225static int
226zfs_sort(const void *larg, const void *rarg, void *data)
227{
228	zfs_handle_t *l = ((zfs_node_t *)larg)->zn_handle;
229	zfs_handle_t *r = ((zfs_node_t *)rarg)->zn_handle;
230	zfs_sort_column_t *sc = (zfs_sort_column_t *)data;
231	zfs_sort_column_t *psc;
232
233	for (psc = sc; psc != NULL; psc = psc->sc_next) {
234		char lbuf[ZFS_MAXPROPLEN], rbuf[ZFS_MAXPROPLEN];
235		char *lstr, *rstr;
236		uint64_t lnum, rnum;
237		boolean_t lvalid, rvalid;
238		int ret = 0;
239
240		/*
241		 * We group the checks below the generic code.  If 'lstr' and
242		 * 'rstr' are non-NULL, then we do a string based comparison.
243		 * Otherwise, we compare 'lnum' and 'rnum'.
244		 */
245		lstr = rstr = NULL;
246		if (psc->sc_prop == ZFS_PROP_INVAL) {
247			nvlist_t *luser, *ruser;
248			nvlist_t *lval, *rval;
249
250			luser = zfs_get_user_props(l);
251			ruser = zfs_get_user_props(r);
252
253			lvalid = (nvlist_lookup_nvlist(luser,
254			    psc->sc_user_prop, &lval) == 0);
255			rvalid = (nvlist_lookup_nvlist(ruser,
256			    psc->sc_user_prop, &rval) == 0);
257
258			if (lvalid)
259				verify(nvlist_lookup_string(lval,
260				    ZFS_PROP_VALUE, &lstr) == 0);
261			if (rvalid)
262				verify(nvlist_lookup_string(rval,
263				    ZFS_PROP_VALUE, &rstr) == 0);
264
265		} else if (zfs_prop_is_string(psc->sc_prop)) {
266			lvalid = (zfs_prop_get(l, psc->sc_prop, lbuf,
267			    sizeof (lbuf), NULL, NULL, 0, B_TRUE) == 0);
268			rvalid = (zfs_prop_get(r, psc->sc_prop, rbuf,
269			    sizeof (rbuf), NULL, NULL, 0, B_TRUE) == 0);
270
271			lstr = lbuf;
272			rstr = rbuf;
273		} else {
274			lvalid = zfs_prop_valid_for_type(psc->sc_prop,
275			    zfs_get_type(l));
276			rvalid = zfs_prop_valid_for_type(psc->sc_prop,
277			    zfs_get_type(r));
278
279			if (lvalid)
280				(void) zfs_prop_get_numeric(l, psc->sc_prop,
281				    &lnum, NULL, NULL, 0);
282			if (rvalid)
283				(void) zfs_prop_get_numeric(r, psc->sc_prop,
284				    &rnum, NULL, NULL, 0);
285		}
286
287		if (!lvalid && !rvalid)
288			continue;
289		else if (!lvalid)
290			return (1);
291		else if (!rvalid)
292			return (-1);
293
294		if (lstr)
295			ret = strcmp(lstr, rstr);
296		if (lnum < rnum)
297			ret = -1;
298		else if (lnum > rnum)
299			ret = 1;
300
301		if (ret != 0) {
302			if (psc->sc_reverse == B_TRUE)
303				ret = (ret < 0) ? 1 : -1;
304			return (ret);
305		}
306	}
307
308	return (zfs_compare(larg, rarg, NULL));
309}
310
311int
312zfs_for_each(int argc, char **argv, boolean_t recurse, zfs_type_t types,
313    zfs_sort_column_t *sortcol, zfs_proplist_t **proplist, zfs_iter_f callback,
314    void *data, boolean_t args_can_be_paths)
315{
316	callback_data_t cb;
317	int ret = 0;
318	zfs_node_t *node;
319	uu_avl_walk_t *walk;
320
321	avl_pool = uu_avl_pool_create("zfs_pool", sizeof (zfs_node_t),
322	    offsetof(zfs_node_t, zn_avlnode), zfs_sort, UU_DEFAULT);
323
324	if (avl_pool == NULL) {
325		(void) fprintf(stderr,
326		    gettext("internal error: out of memory\n"));
327		exit(1);
328	}
329
330	cb.cb_sortcol = sortcol;
331	cb.cb_recurse = recurse;
332	cb.cb_proplist = proplist;
333	cb.cb_types = types;
334	if ((cb.cb_avl = uu_avl_create(avl_pool, NULL, UU_DEFAULT)) == NULL) {
335		(void) fprintf(stderr,
336		    gettext("internal error: out of memory\n"));
337		exit(1);
338	}
339
340	if (argc == 0) {
341		/*
342		 * If given no arguments, iterate over all datasets.
343		 */
344		cb.cb_recurse = 1;
345		ret = zfs_iter_root(g_zfs, zfs_callback, &cb);
346	} else {
347		int i;
348		zfs_handle_t *zhp;
349		zfs_type_t argtype;
350
351		/*
352		 * If we're recursive, then we always allow filesystems as
353		 * arguments.  If we also are interested in snapshots, then we
354		 * can take volumes as well.
355		 */
356		argtype = types;
357		if (recurse) {
358			argtype |= ZFS_TYPE_FILESYSTEM;
359			if (types & ZFS_TYPE_SNAPSHOT)
360				argtype |= ZFS_TYPE_VOLUME;
361		}
362
363		for (i = 0; i < argc; i++) {
364			if (args_can_be_paths) {
365				zhp = zfs_path_to_zhandle(g_zfs, argv[i],
366				    argtype);
367			} else {
368				zhp = zfs_open(g_zfs, argv[i], argtype);
369			}
370			if (zhp != NULL)
371				ret |= zfs_callback(zhp, &cb);
372			else
373				ret = 1;
374		}
375	}
376
377	/*
378	 * At this point we've got our AVL tree full of zfs handles, so iterate
379	 * over each one and execute the real user callback.
380	 */
381	for (node = uu_avl_first(cb.cb_avl); node != NULL;
382	    node = uu_avl_next(cb.cb_avl, node))
383		ret |= callback(node->zn_handle, data);
384
385	/*
386	 * Finally, clean up the AVL tree.
387	 */
388	if ((walk = uu_avl_walk_start(cb.cb_avl, UU_WALK_ROBUST)) == NULL) {
389		(void) fprintf(stderr,
390		    gettext("internal error: out of memory"));
391		exit(1);
392	}
393
394	while ((node = uu_avl_walk_next(walk)) != NULL) {
395		uu_avl_remove(cb.cb_avl, node);
396		zfs_close(node->zn_handle);
397		free(node);
398	}
399
400	uu_avl_walk_end(walk);
401	uu_avl_destroy(cb.cb_avl);
402	uu_avl_pool_destroy(avl_pool);
403
404	return (ret);
405}
406