machine.c revision 168710
1/*
2 * top - a top users display for Unix
3 *
4 * SYNOPSIS:  For FreeBSD-2.x and later
5 *
6 * DESCRIPTION:
7 * Originally written for BSD4.4 system by Christos Zoulas.
8 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9 * Order support hacked in from top-3.5beta6/machine/m_aix41.c
10 *   by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
11 *
12 * This is the machine-dependent module for FreeBSD 2.2
13 * Works for:
14 *	FreeBSD 2.2.x, 3.x, 4.x, and probably FreeBSD 2.1.x
15 *
16 * LIBS: -lkvm
17 *
18 * AUTHOR:  Christos Zoulas <christos@ee.cornell.edu>
19 *          Steven Wallace  <swallace@freebsd.org>
20 *          Wolfram Schneider <wosch@FreeBSD.org>
21 *          Thomas Moestl <tmoestl@gmx.net>
22 *
23 * $FreeBSD: head/usr.bin/top/machine.c 168710 2007-04-14 10:16:52Z stas $
24 */
25
26#include <sys/param.h>
27#include <sys/errno.h>
28#include <sys/file.h>
29#include <sys/proc.h>
30#include <sys/resource.h>
31#include <sys/rtprio.h>
32#include <sys/signal.h>
33#include <sys/sysctl.h>
34#include <sys/time.h>
35#include <sys/user.h>
36#include <sys/vmmeter.h>
37
38#include <kvm.h>
39#include <math.h>
40#include <nlist.h>
41#include <paths.h>
42#include <pwd.h>
43#include <stdio.h>
44#include <stdlib.h>
45#include <string.h>
46#include <strings.h>
47#include <unistd.h>
48#include <vis.h>
49
50#include "top.h"
51#include "machine.h"
52#include "screen.h"
53#include "utils.h"
54
55#define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var))
56#define	SMPUNAMELEN	13
57#define	UPUNAMELEN	15
58
59extern struct process_select ps;
60extern char* printable(char *);
61static int smpmode;
62enum displaymodes displaymode;
63static int namelength = 8;
64static int cmdlengthdelta;
65
66/* Prototypes for top internals */
67void quit(int);
68
69/* get_process_info passes back a handle.  This is what it looks like: */
70
71struct handle {
72	struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
73	int remaining;			/* number of pointers remaining */
74};
75
76/* declarations for load_avg */
77#include "loadavg.h"
78
79/* define what weighted cpu is.  */
80#define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \
81			 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu))))
82
83/* what we consider to be process size: */
84#define PROCSIZE(pp) ((pp)->ki_size / 1024)
85
86#define RU(pp)	(&(pp)->ki_rusage)
87#define RUTOT(pp) \
88	(RU(pp)->ru_inblock + RU(pp)->ru_oublock + RU(pp)->ru_majflt)
89
90
91/* definitions for indices in the nlist array */
92
93/*
94 *  These definitions control the format of the per-process area
95 */
96
97static char io_header[] =
98    "  PID %-*.*s   VCSW  IVCSW   READ  WRITE  FAULT  TOTAL PERCENT COMMAND";
99
100#define io_Proc_format \
101    "%5d %-*.*s %6ld %6ld %6ld %6ld %6ld %6ld %6.2f%% %.*s"
102
103static char smp_header_thr[] =
104    "  PID %-*.*s  THR PRI NICE   SIZE    RES STATE  C   TIME %6s COMMAND";
105static char smp_header[] =
106    "  PID %-*.*s "   "PRI NICE   SIZE    RES STATE  C   TIME %6s COMMAND";
107
108#define smp_Proc_format \
109    "%5d %-*.*s %s%3d %4s%7s %6s %-6.6s %1x%7s %5.2f%% %.*s"
110
111static char up_header_thr[] =
112    "  PID %-*.*s  THR PRI NICE   SIZE    RES STATE    TIME %6s COMMAND";
113static char up_header[] =
114    "  PID %-*.*s "   "PRI NICE   SIZE    RES STATE    TIME %6s COMMAND";
115
116#define up_Proc_format \
117    "%5d %-*.*s %s%3d %4s%7s %6s %-6.6s%.0d%7s %5.2f%% %.*s"
118
119
120/* process state names for the "STATE" column of the display */
121/* the extra nulls in the string "run" are for adding a slash and
122   the processor number when needed */
123
124char *state_abbrev[] = {
125	"", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK"
126};
127
128
129static kvm_t *kd;
130
131/* values that we stash away in _init and use in later routines */
132
133static double logcpu;
134
135/* these are retrieved from the kernel in _init */
136
137static load_avg  ccpu;
138
139/* these are used in the get_ functions */
140
141static int lastpid;
142
143/* these are for calculating cpu state percentages */
144
145static long cp_time[CPUSTATES];
146static long cp_old[CPUSTATES];
147static long cp_diff[CPUSTATES];
148
149/* these are for detailing the process states */
150
151int process_states[8];
152char *procstatenames[] = {
153	"", " starting, ", " running, ", " sleeping, ", " stopped, ",
154	" zombie, ", " waiting, ", " lock, ",
155	NULL
156};
157
158/* these are for detailing the cpu states */
159
160int cpu_states[CPUSTATES];
161char *cpustatenames[] = {
162	"user", "nice", "system", "interrupt", "idle", NULL
163};
164
165/* these are for detailing the memory statistics */
166
167int memory_stats[7];
168char *memorynames[] = {
169	"K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ",
170	"K Free", NULL
171};
172
173int swap_stats[7];
174char *swapnames[] = {
175	"K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
176	NULL
177};
178
179
180/* these are for keeping track of the proc array */
181
182static int nproc;
183static int onproc = -1;
184static int pref_len;
185static struct kinfo_proc *pbase;
186static struct kinfo_proc **pref;
187static struct kinfo_proc *previous_procs;
188static struct kinfo_proc **previous_pref;
189static int previous_proc_count = 0;
190static int previous_proc_count_max = 0;
191
192/* total number of io operations */
193static long total_inblock;
194static long total_oublock;
195static long total_majflt;
196
197/* these are for getting the memory statistics */
198
199static int pageshift;		/* log base 2 of the pagesize */
200
201/* define pagetok in terms of pageshift */
202
203#define pagetok(size) ((size) << pageshift)
204
205/* useful externals */
206long percentages();
207
208#ifdef ORDER
209/*
210 * Sorting orders.  The first element is the default.
211 */
212char *ordernames[] = {
213	"cpu", "size", "res", "time", "pri", "threads",
214	"total", "read", "write", "fault", "vcsw", "ivcsw", NULL
215};
216#endif
217
218static int compare_pid(const void *a, const void *b);
219static const char *format_nice(const struct kinfo_proc *pp);
220static void getsysctl(const char *name, void *ptr, size_t len);
221static int swapmode(int *retavail, int *retfree);
222
223int
224machine_init(struct statics *statics)
225{
226	int pagesize;
227	size_t modelen;
228	struct passwd *pw;
229
230	modelen = sizeof(smpmode);
231	if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen,
232	    NULL, 0) != 0 &&
233	    sysctlbyname("kern.smp.active", &smpmode, &modelen,
234	    NULL, 0) != 0) ||
235	    modelen != sizeof(smpmode))
236		smpmode = 0;
237
238	while ((pw = getpwent()) != NULL) {
239		if (strlen(pw->pw_name) > namelength)
240			namelength = strlen(pw->pw_name);
241	}
242	if (smpmode && namelength > SMPUNAMELEN)
243		namelength = SMPUNAMELEN;
244	else if (namelength > UPUNAMELEN)
245		namelength = UPUNAMELEN;
246
247	kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open");
248	if (kd == NULL)
249		return (-1);
250
251	GETSYSCTL("kern.ccpu", ccpu);
252
253	/* this is used in calculating WCPU -- calculate it ahead of time */
254	logcpu = log(loaddouble(ccpu));
255
256	pbase = NULL;
257	pref = NULL;
258	nproc = 0;
259	onproc = -1;
260
261	/* get the page size and calculate pageshift from it */
262	pagesize = getpagesize();
263	pageshift = 0;
264	while (pagesize > 1) {
265		pageshift++;
266		pagesize >>= 1;
267	}
268
269	/* we only need the amount of log(2)1024 for our conversion */
270	pageshift -= LOG1024;
271
272	/* fill in the statics information */
273	statics->procstate_names = procstatenames;
274	statics->cpustate_names = cpustatenames;
275	statics->memory_names = memorynames;
276	statics->swap_names = swapnames;
277#ifdef ORDER
278	statics->order_names = ordernames;
279#endif
280
281	/* all done! */
282	return (0);
283}
284
285char *
286format_header(char *uname_field)
287{
288	static char Header[128];
289	const char *prehead;
290
291	switch (displaymode) {
292	case DISP_CPU:
293		/*
294		 * The logic of picking the right header format seems reverse
295		 * here because we only want to display a THR column when
296		 * "thread mode" is off (and threads are not listed as
297		 * separate lines).
298		 */
299		prehead = smpmode ?
300		    (ps.thread ? smp_header : smp_header_thr) :
301		    (ps.thread ? up_header : up_header_thr);
302		snprintf(Header, sizeof(Header), prehead,
303		    namelength, namelength, uname_field,
304		    ps.wcpu ? "WCPU" : "CPU");
305		break;
306	case DISP_IO:
307		prehead = io_header;
308		snprintf(Header, sizeof(Header), prehead,
309		    namelength, namelength, uname_field);
310		break;
311	}
312	cmdlengthdelta = strlen(Header) - 7;
313	return (Header);
314}
315
316static int swappgsin = -1;
317static int swappgsout = -1;
318extern struct timeval timeout;
319
320void
321get_system_info(struct system_info *si)
322{
323	long total;
324	struct loadavg sysload;
325	int mib[2];
326	struct timeval boottime;
327	size_t bt_size;
328	int i;
329
330	/* get the cp_time array */
331	GETSYSCTL("kern.cp_time", cp_time);
332	GETSYSCTL("vm.loadavg", sysload);
333	GETSYSCTL("kern.lastpid", lastpid);
334
335	/* convert load averages to doubles */
336	for (i = 0; i < 3; i++)
337		si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale;
338
339	/* convert cp_time counts to percentages */
340	total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
341
342	/* sum memory & swap statistics */
343	{
344		static unsigned int swap_delay = 0;
345		static int swapavail = 0;
346		static int swapfree = 0;
347		static int bufspace = 0;
348		static int nspgsin, nspgsout;
349
350		GETSYSCTL("vfs.bufspace", bufspace);
351		GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]);
352		GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]);
353		GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[2]);
354		GETSYSCTL("vm.stats.vm.v_cache_count", memory_stats[3]);
355		GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]);
356		GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin);
357		GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout);
358		/* convert memory stats to Kbytes */
359		memory_stats[0] = pagetok(memory_stats[0]);
360		memory_stats[1] = pagetok(memory_stats[1]);
361		memory_stats[2] = pagetok(memory_stats[2]);
362		memory_stats[3] = pagetok(memory_stats[3]);
363		memory_stats[4] = bufspace / 1024;
364		memory_stats[5] = pagetok(memory_stats[5]);
365		memory_stats[6] = -1;
366
367		/* first interval */
368		if (swappgsin < 0) {
369			swap_stats[4] = 0;
370			swap_stats[5] = 0;
371		}
372
373		/* compute differences between old and new swap statistic */
374		else {
375			swap_stats[4] = pagetok(((nspgsin - swappgsin)));
376			swap_stats[5] = pagetok(((nspgsout - swappgsout)));
377		}
378
379		swappgsin = nspgsin;
380		swappgsout = nspgsout;
381
382		/* call CPU heavy swapmode() only for changes */
383		if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
384			swap_stats[3] = swapmode(&swapavail, &swapfree);
385			swap_stats[0] = swapavail;
386			swap_stats[1] = swapavail - swapfree;
387			swap_stats[2] = swapfree;
388		}
389		swap_delay = 1;
390		swap_stats[6] = -1;
391	}
392
393	/* set arrays and strings */
394	si->cpustates = cpu_states;
395	si->memory = memory_stats;
396	si->swap = swap_stats;
397
398
399	if (lastpid > 0) {
400		si->last_pid = lastpid;
401	} else {
402		si->last_pid = -1;
403	}
404
405	/*
406	 * Print how long system has been up.
407	 * (Found by looking getting "boottime" from the kernel)
408	 */
409	mib[0] = CTL_KERN;
410	mib[1] = KERN_BOOTTIME;
411	bt_size = sizeof(boottime);
412	if (sysctl(mib, 2, &boottime, &bt_size, NULL, 0) != -1 &&
413	    boottime.tv_sec != 0) {
414		si->boottime = boottime;
415	} else {
416		si->boottime.tv_sec = -1;
417	}
418}
419
420#define NOPROC	((void *)-1)
421
422/*
423 * We need to compare data from the old process entry with the new
424 * process entry.
425 * To facilitate doing this quickly we stash a pointer in the kinfo_proc
426 * structure to cache the mapping.  We also use a negative cache pointer
427 * of NOPROC to avoid duplicate lookups.
428 * XXX: this could be done when the actual processes are fetched, we do
429 * it here out of laziness.
430 */
431const struct kinfo_proc *
432get_old_proc(struct kinfo_proc *pp)
433{
434	struct kinfo_proc **oldpp, *oldp;
435
436	/*
437	 * If this is the first fetch of the kinfo_procs then we don't have
438	 * any previous entries.
439	 */
440	if (previous_proc_count == 0)
441		return (NULL);
442	/* negative cache? */
443	if (pp->ki_udata == NOPROC)
444		return (NULL);
445	/* cached? */
446	if (pp->ki_udata != NULL)
447		return (pp->ki_udata);
448	/*
449	 * Not cached,
450	 * 1) look up based on pid.
451	 * 2) compare process start.
452	 * If we fail here, then setup a negative cache entry, otherwise
453	 * cache it.
454	 */
455	oldpp = bsearch(&pp, previous_pref, previous_proc_count,
456	    sizeof(*previous_pref), compare_pid);
457	if (oldpp == NULL) {
458		pp->ki_udata = NOPROC;
459		return (NULL);
460	}
461	oldp = *oldpp;
462	if (bcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) {
463		pp->ki_udata = NOPROC;
464		return (NULL);
465	}
466	pp->ki_udata = oldp;
467	return (oldp);
468}
469
470/*
471 * Return the total amount of IO done in blocks in/out and faults.
472 * store the values individually in the pointers passed in.
473 */
474long
475get_io_stats(struct kinfo_proc *pp, long *inp, long *oup, long *flp,
476    long *vcsw, long *ivcsw)
477{
478	const struct kinfo_proc *oldp;
479	static struct kinfo_proc dummy;
480	long ret;
481
482	oldp = get_old_proc(pp);
483	if (oldp == NULL) {
484		bzero(&dummy, sizeof(dummy));
485		oldp = &dummy;
486	}
487	*inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock;
488	*oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock;
489	*flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
490	*vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
491	*ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
492	ret =
493	    (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) +
494	    (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) +
495	    (RU(pp)->ru_majflt - RU(oldp)->ru_majflt);
496	return (ret);
497}
498
499/*
500 * Return the total number of block in/out and faults by a process.
501 */
502long
503get_io_total(struct kinfo_proc *pp)
504{
505	long dummy;
506
507	return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy));
508}
509
510static struct handle handle;
511
512caddr_t
513get_process_info(struct system_info *si, struct process_select *sel,
514    int (*compare)(const void *, const void *))
515{
516	int i;
517	int total_procs;
518	long p_io;
519	long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw;
520	int active_procs;
521	struct kinfo_proc **prefp;
522	struct kinfo_proc *pp;
523	struct kinfo_proc *prev_pp = NULL;
524
525	/* these are copied out of sel for speed */
526	int show_idle;
527	int show_self;
528	int show_system;
529	int show_uid;
530	int show_command;
531
532	/*
533	 * Save the previous process info.
534	 */
535	if (previous_proc_count_max < nproc) {
536		free(previous_procs);
537		previous_procs = malloc(nproc * sizeof(*previous_procs));
538		free(previous_pref);
539		previous_pref = malloc(nproc * sizeof(*previous_pref));
540		if (previous_procs == NULL || previous_pref == NULL) {
541			(void) fprintf(stderr, "top: Out of memory.\n");
542			quit(23);
543		}
544		previous_proc_count_max = nproc;
545	}
546	if (nproc) {
547		for (i = 0; i < nproc; i++)
548			previous_pref[i] = &previous_procs[i];
549		bcopy(pbase, previous_procs, nproc * sizeof(*previous_procs));
550		qsort(previous_pref, nproc, sizeof(*previous_pref),
551		    compare_pid);
552	}
553	previous_proc_count = nproc;
554
555	pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc);
556	if (nproc > onproc)
557		pref = realloc(pref, sizeof(*pref) * (onproc = nproc));
558	if (pref == NULL || pbase == NULL) {
559		(void) fprintf(stderr, "top: Out of memory.\n");
560		quit(23);
561	}
562	/* get a pointer to the states summary array */
563	si->procstates = process_states;
564
565	/* set up flags which define what we are going to select */
566	show_idle = sel->idle;
567	show_self = sel->self == -1;
568	show_system = sel->system;
569	show_uid = sel->uid != -1;
570	show_command = sel->command != NULL;
571
572	/* count up process states and get pointers to interesting procs */
573	total_procs = 0;
574	active_procs = 0;
575	total_inblock = 0;
576	total_oublock = 0;
577	total_majflt = 0;
578	memset((char *)process_states, 0, sizeof(process_states));
579	prefp = pref;
580	for (pp = pbase, i = 0; i < nproc; pp++, i++) {
581
582		if (pp->ki_stat == 0)
583			/* not in use */
584			continue;
585
586		if (!show_self && pp->ki_pid == sel->self)
587			/* skip self */
588			continue;
589
590		if (!show_system && (pp->ki_flag & P_SYSTEM))
591			/* skip system process */
592			continue;
593
594		p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt,
595		    &p_vcsw, &p_ivcsw);
596		total_inblock += p_inblock;
597		total_oublock += p_oublock;
598		total_majflt += p_majflt;
599		total_procs++;
600		process_states[pp->ki_stat]++;
601
602		if (pp->ki_stat == SZOMB)
603			/* skip zombies */
604			continue;
605
606		if (displaymode == DISP_CPU && !show_idle &&
607		    (pp->ki_pctcpu == 0 ||
608		     pp->ki_stat == SSTOP || pp->ki_stat == SIDL))
609			/* skip idle or non-running processes */
610			continue;
611
612		if (displaymode == DISP_IO && !show_idle && p_io == 0)
613			/* skip processes that aren't doing I/O */
614			continue;
615
616		if (show_uid && pp->ki_ruid != (uid_t)sel->uid)
617			/* skip proc. that don't belong to the selected UID */
618			continue;
619
620		/*
621		 * When not showing threads, take the first thread
622		 * for output and add the fields that we can from
623		 * the rest of the process's threads rather than
624		 * using the system's mostly-broken KERN_PROC_PROC.
625		 */
626		if (sel->thread || prev_pp == NULL ||
627		    prev_pp->ki_pid != pp->ki_pid) {
628			*prefp++ = pp;
629			active_procs++;
630			prev_pp = pp;
631		} else {
632			prev_pp->ki_pctcpu += pp->ki_pctcpu;
633		}
634	}
635
636	/* if requested, sort the "interesting" processes */
637	if (compare != NULL)
638		qsort(pref, active_procs, sizeof(*pref), compare);
639
640	/* remember active and total counts */
641	si->p_total = total_procs;
642	si->p_active = pref_len = active_procs;
643
644	/* pass back a handle */
645	handle.next_proc = pref;
646	handle.remaining = active_procs;
647	return ((caddr_t)&handle);
648}
649
650static char fmt[128];	/* static area where result is built */
651
652char *
653format_next_process(caddr_t handle, char *(*get_userid)(int), int flags)
654{
655	struct kinfo_proc *pp;
656	const struct kinfo_proc *oldp;
657	long cputime;
658	double pct;
659	struct handle *hp;
660	char status[16];
661	int state;
662	struct rusage ru, *rup;
663	long p_tot, s_tot;
664	char *proc_fmt, thr_buf[6];
665	char *cmdbuf = NULL;
666	char **args;
667
668	/* find and remember the next proc structure */
669	hp = (struct handle *)handle;
670	pp = *(hp->next_proc++);
671	hp->remaining--;
672
673	/* get the process's command name */
674	if ((pp->ki_sflag & PS_INMEM) == 0) {
675		/*
676		 * Print swapped processes as <pname>
677		 */
678		size_t len;
679
680		len = strlen(pp->ki_comm);
681		if (len > sizeof(pp->ki_comm) - 3)
682			len = sizeof(pp->ki_comm) - 3;
683		memmove(pp->ki_comm + 1, pp->ki_comm, len);
684		pp->ki_comm[0] = '<';
685		pp->ki_comm[len + 1] = '>';
686		pp->ki_comm[len + 2] = '\0';
687	}
688
689	/*
690	 * Convert the process's runtime from microseconds to seconds.  This
691	 * time includes the interrupt time although that is not wanted here.
692	 * ps(1) is similarly sloppy.
693	 */
694	cputime = (pp->ki_runtime + 500000) / 1000000;
695
696	/* calculate the base for cpu percentages */
697	pct = pctdouble(pp->ki_pctcpu);
698
699	/* generate "STATE" field */
700	switch (state = pp->ki_stat) {
701	case SRUN:
702		if (smpmode && pp->ki_oncpu != 0xff)
703			sprintf(status, "CPU%d", pp->ki_oncpu);
704		else
705			strcpy(status, "RUN");
706		break;
707	case SLOCK:
708		if (pp->ki_kiflag & KI_LOCKBLOCK) {
709			sprintf(status, "*%.6s", pp->ki_lockname);
710			break;
711		}
712		/* fall through */
713	case SSLEEP:
714		if (pp->ki_wmesg != NULL) {
715			sprintf(status, "%.6s", pp->ki_wmesg);
716			break;
717		}
718		/* FALLTHROUGH */
719	default:
720
721		if (state >= 0 &&
722		    state < sizeof(state_abbrev) / sizeof(*state_abbrev))
723			sprintf(status, "%.6s", state_abbrev[state]);
724		else
725			sprintf(status, "?%5d", state);
726		break;
727	}
728
729	cmdbuf = (char *)malloc(cmdlengthdelta + 1);
730	if (cmdbuf == NULL) {
731		warn("malloc(%d)", cmdlengthdelta + 1);
732		return NULL;
733	}
734
735	if (!(flags & FMT_SHOWARGS)) {
736		snprintf(cmdbuf, cmdlengthdelta, "%s", pp->ki_comm);
737	}
738	else if (pp->ki_args == NULL ||
739	    (args = kvm_getargv(kd, pp, cmdlengthdelta)) == NULL || !(*args))
740		snprintf(cmdbuf, cmdlengthdelta, "[%s]", pp->ki_comm);
741	else {
742		char *src, *dst, *argbuf;
743		char *cmd;
744		size_t argbuflen;
745		size_t len;
746
747		argbuflen = cmdlengthdelta * 4;
748		argbuf = (char *)malloc(argbuflen + 1);
749		if (argbuf == NULL) {
750			warn("malloc(%d)", argbuflen + 1);
751			free(cmdbuf);
752			return NULL;
753		}
754
755		dst = argbuf;
756
757		/* Extract cmd name from argv */
758		cmd = strrchr(*args, '/');
759		if (cmd == NULL)
760			cmd = *args;
761		else
762			cmd++;
763
764		for (; (src = *args++) != NULL; ) {
765			if (*src == '\0')
766				continue;
767			len = (argbuflen - (dst - argbuf) - 1) / 4;
768			strvisx(dst, src, strlen(src) < len ? strlen(src) : len,
769			    VIS_NL | VIS_CSTYLE);
770			while (*dst != '\0')
771				dst++;
772			if ((argbuflen - (dst - argbuf) - 1) / 4 > 0)
773				*dst++ = ' '; /* add delimiting space */
774		}
775		if (dst != argbuf && dst[-1] == ' ')
776			dst--;
777		*dst = '\0';
778
779		if (strcmp(cmd, pp->ki_comm) != 0 )
780			snprintf(cmdbuf, cmdlengthdelta, "%s (%s)",argbuf, \
781				 pp->ki_comm);
782		else
783			strlcpy(cmdbuf, argbuf, cmdlengthdelta);
784
785		free(argbuf);
786	}
787
788	if (displaymode == DISP_IO) {
789		oldp = get_old_proc(pp);
790		if (oldp != NULL) {
791			ru.ru_inblock = RU(pp)->ru_inblock -
792			    RU(oldp)->ru_inblock;
793			ru.ru_oublock = RU(pp)->ru_oublock -
794			    RU(oldp)->ru_oublock;
795			ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
796			ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
797			ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
798			rup = &ru;
799		} else {
800			rup = RU(pp);
801		}
802		p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt;
803		s_tot = total_inblock + total_oublock + total_majflt;
804
805		sprintf(fmt, io_Proc_format,
806		    pp->ki_pid,
807		    namelength, namelength, (*get_userid)(pp->ki_ruid),
808		    rup->ru_nvcsw,
809		    rup->ru_nivcsw,
810		    rup->ru_inblock,
811		    rup->ru_oublock,
812		    rup->ru_majflt,
813		    p_tot,
814		    s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot),
815		    screen_width > cmdlengthdelta ?
816		    screen_width - cmdlengthdelta : 0,
817		    printable(cmdbuf));
818
819		free(cmdbuf);
820
821		return (fmt);
822	}
823
824	/* format this entry */
825	proc_fmt = smpmode ? smp_Proc_format : up_Proc_format;
826	if (ps.thread != 0)
827		thr_buf[0] = '\0';
828	else
829		snprintf(thr_buf, sizeof(thr_buf), "%*d ",
830		    sizeof(thr_buf) - 2, pp->ki_numthreads);
831
832	sprintf(fmt, proc_fmt,
833	    pp->ki_pid,
834	    namelength, namelength, (*get_userid)(pp->ki_ruid),
835	    thr_buf,
836	    pp->ki_pri.pri_level - PZERO,
837	    format_nice(pp),
838	    format_k2(PROCSIZE(pp)),
839	    format_k2(pagetok(pp->ki_rssize)),
840	    status,
841	    smpmode ? pp->ki_lastcpu : 0,
842	    format_time(cputime),
843	    ps.wcpu ? 100.0 * weighted_cpu(pct, pp) : 100.0 * pct,
844	    screen_width > cmdlengthdelta ? screen_width - cmdlengthdelta : 0,
845	    printable(cmdbuf));
846
847	free(cmdbuf);
848
849	/* return the result */
850	return (fmt);
851}
852
853static void
854getsysctl(const char *name, void *ptr, size_t len)
855{
856	size_t nlen = len;
857
858	if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) {
859		fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name,
860		    strerror(errno));
861		quit(23);
862	}
863	if (nlen != len) {
864		fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n",
865		    name, (unsigned long)len, (unsigned long)nlen);
866		quit(23);
867	}
868}
869
870static const char *
871format_nice(const struct kinfo_proc *pp)
872{
873	const char *fifo, *kthread;
874	int rtpri;
875	static char nicebuf[4 + 1];
876
877	fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F";
878	kthread = (pp->ki_flag & P_KTHREAD) ? "k" : "";
879	switch (PRI_BASE(pp->ki_pri.pri_class)) {
880	case PRI_ITHD:
881		return ("-");
882	case PRI_REALTIME:
883		rtpri = pp->ki_pri.pri_level - PRI_MIN_REALTIME;
884		snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s",
885		    kthread, rtpri, fifo);
886		break;
887	case PRI_TIMESHARE:
888		if (pp->ki_flag & P_KTHREAD)
889			return ("-");
890		snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO);
891		break;
892	case PRI_IDLE:
893		rtpri = pp->ki_pri.pri_level - PRI_MIN_IDLE;
894		snprintf(nicebuf, sizeof(nicebuf), "%si%d%s",
895		    kthread, rtpri, fifo);
896		break;
897	default:
898		return ("?");
899	}
900	return (nicebuf);
901}
902
903/* comparison routines for qsort */
904
905static int
906compare_pid(const void *p1, const void *p2)
907{
908	const struct kinfo_proc * const *pp1 = p1;
909	const struct kinfo_proc * const *pp2 = p2;
910
911	if ((*pp2)->ki_pid < 0 || (*pp1)->ki_pid < 0)
912		abort();
913
914	return ((*pp1)->ki_pid - (*pp2)->ki_pid);
915}
916
917/*
918 *  proc_compare - comparison function for "qsort"
919 *	Compares the resource consumption of two processes using five
920 *	distinct keys.  The keys (in descending order of importance) are:
921 *	percent cpu, cpu ticks, state, resident set size, total virtual
922 *	memory usage.  The process states are ordered as follows (from least
923 *	to most important):  WAIT, zombie, sleep, stop, start, run.  The
924 *	array declaration below maps a process state index into a number
925 *	that reflects this ordering.
926 */
927
928static int sorted_state[] = {
929	0,	/* not used		*/
930	3,	/* sleep		*/
931	1,	/* ABANDONED (WAIT)	*/
932	6,	/* run			*/
933	5,	/* start		*/
934	2,	/* zombie		*/
935	4	/* stop			*/
936};
937
938
939#define ORDERKEY_PCTCPU(a, b) do { \
940	long diff; \
941	if (ps.wcpu) \
942		diff = floor(1.0E6 * weighted_cpu(pctdouble((b)->ki_pctcpu), \
943		    (b))) - \
944		    floor(1.0E6 * weighted_cpu(pctdouble((a)->ki_pctcpu), \
945		    (a))); \
946	else \
947		diff = (long)(b)->ki_pctcpu - (long)(a)->ki_pctcpu; \
948	if (diff != 0) \
949		return (diff > 0 ? 1 : -1); \
950} while (0)
951
952#define ORDERKEY_CPTICKS(a, b) do { \
953	int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \
954	if (diff != 0) \
955		return (diff > 0 ? 1 : -1); \
956} while (0)
957
958#define ORDERKEY_STATE(a, b) do { \
959	int diff = sorted_state[(b)->ki_stat] - sorted_state[(a)->ki_stat]; \
960	if (diff != 0) \
961		return (diff > 0 ? 1 : -1); \
962} while (0)
963
964#define ORDERKEY_PRIO(a, b) do { \
965	int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \
966	if (diff != 0) \
967		return (diff > 0 ? 1 : -1); \
968} while (0)
969
970#define	ORDERKEY_THREADS(a, b) do { \
971	int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \
972	if (diff != 0) \
973		return (diff > 0 ? 1 : -1); \
974} while (0)
975
976#define ORDERKEY_RSSIZE(a, b) do { \
977	long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \
978	if (diff != 0) \
979		return (diff > 0 ? 1 : -1); \
980} while (0)
981
982#define ORDERKEY_MEM(a, b) do { \
983	long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \
984	if (diff != 0) \
985		return (diff > 0 ? 1 : -1); \
986} while (0)
987
988/* compare_cpu - the comparison function for sorting by cpu percentage */
989
990int
991#ifdef ORDER
992compare_cpu(void *arg1, void *arg2)
993#else
994proc_compare(void *arg1, void *arg2)
995#endif
996{
997	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
998	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
999
1000	ORDERKEY_PCTCPU(p1, p2);
1001	ORDERKEY_CPTICKS(p1, p2);
1002	ORDERKEY_STATE(p1, p2);
1003	ORDERKEY_PRIO(p1, p2);
1004	ORDERKEY_RSSIZE(p1, p2);
1005	ORDERKEY_MEM(p1, p2);
1006
1007	return (0);
1008}
1009
1010#ifdef ORDER
1011/* "cpu" compare routines */
1012int compare_size(), compare_res(), compare_time(), compare_prio(),
1013    compare_threads();
1014
1015/*
1016 * "io" compare routines.  Context switches aren't i/o, but are displayed
1017 * on the "io" display.
1018 */
1019int compare_iototal(), compare_ioread(), compare_iowrite(), compare_iofault(),
1020    compare_vcsw(), compare_ivcsw();
1021
1022int (*compares[])() = {
1023	compare_cpu,
1024	compare_size,
1025	compare_res,
1026	compare_time,
1027	compare_prio,
1028	compare_threads,
1029	compare_iototal,
1030	compare_ioread,
1031	compare_iowrite,
1032	compare_iofault,
1033	compare_vcsw,
1034	compare_ivcsw,
1035	NULL
1036};
1037
1038/* compare_size - the comparison function for sorting by total memory usage */
1039
1040int
1041compare_size(void *arg1, void *arg2)
1042{
1043	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1044	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1045
1046	ORDERKEY_MEM(p1, p2);
1047	ORDERKEY_RSSIZE(p1, p2);
1048	ORDERKEY_PCTCPU(p1, p2);
1049	ORDERKEY_CPTICKS(p1, p2);
1050	ORDERKEY_STATE(p1, p2);
1051	ORDERKEY_PRIO(p1, p2);
1052
1053	return (0);
1054}
1055
1056/* compare_res - the comparison function for sorting by resident set size */
1057
1058int
1059compare_res(void *arg1, void *arg2)
1060{
1061	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1062	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1063
1064	ORDERKEY_RSSIZE(p1, p2);
1065	ORDERKEY_MEM(p1, p2);
1066	ORDERKEY_PCTCPU(p1, p2);
1067	ORDERKEY_CPTICKS(p1, p2);
1068	ORDERKEY_STATE(p1, p2);
1069	ORDERKEY_PRIO(p1, p2);
1070
1071	return (0);
1072}
1073
1074/* compare_time - the comparison function for sorting by total cpu time */
1075
1076int
1077compare_time(void *arg1, void *arg2)
1078{
1079	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1080	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1081
1082	ORDERKEY_CPTICKS(p1, p2);
1083	ORDERKEY_PCTCPU(p1, p2);
1084	ORDERKEY_STATE(p1, p2);
1085	ORDERKEY_PRIO(p1, p2);
1086	ORDERKEY_RSSIZE(p1, p2);
1087	ORDERKEY_MEM(p1, p2);
1088
1089	return (0);
1090}
1091
1092/* compare_prio - the comparison function for sorting by priority */
1093
1094int
1095compare_prio(void *arg1, void *arg2)
1096{
1097	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1098	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1099
1100	ORDERKEY_PRIO(p1, p2);
1101	ORDERKEY_CPTICKS(p1, p2);
1102	ORDERKEY_PCTCPU(p1, p2);
1103	ORDERKEY_STATE(p1, p2);
1104	ORDERKEY_RSSIZE(p1, p2);
1105	ORDERKEY_MEM(p1, p2);
1106
1107	return (0);
1108}
1109
1110/* compare_threads - the comparison function for sorting by threads */
1111int
1112compare_threads(void *arg1, void *arg2)
1113{
1114	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1115	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1116
1117	ORDERKEY_THREADS(p1, p2);
1118	ORDERKEY_PCTCPU(p1, p2);
1119	ORDERKEY_CPTICKS(p1, p2);
1120	ORDERKEY_STATE(p1, p2);
1121	ORDERKEY_PRIO(p1, p2);
1122	ORDERKEY_RSSIZE(p1, p2);
1123	ORDERKEY_MEM(p1, p2);
1124
1125	return (0);
1126}
1127#endif /* ORDER */
1128
1129/* assorted comparison functions for sorting by i/o */
1130
1131int
1132#ifdef ORDER
1133compare_iototal(void *arg1, void *arg2)
1134#else
1135io_compare(void *arg1, void *arg2)
1136#endif
1137{
1138	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1139	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1140
1141	return (get_io_total(p2) - get_io_total(p1));
1142}
1143
1144#ifdef ORDER
1145int
1146compare_ioread(void *arg1, void *arg2)
1147{
1148	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1149	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1150	long dummy, inp1, inp2;
1151
1152	(void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy);
1153	(void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy);
1154
1155	return (inp2 - inp1);
1156}
1157
1158int
1159compare_iowrite(void *arg1, void *arg2)
1160{
1161	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1162	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1163	long dummy, oup1, oup2;
1164
1165	(void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy);
1166	(void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy);
1167
1168	return (oup2 - oup1);
1169}
1170
1171int
1172compare_iofault(void *arg1, void *arg2)
1173{
1174	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1175	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1176	long dummy, flp1, flp2;
1177
1178	(void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy);
1179	(void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy);
1180
1181	return (flp2 - flp1);
1182}
1183
1184int
1185compare_vcsw(void *arg1, void *arg2)
1186{
1187	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1188	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1189	long dummy, flp1, flp2;
1190
1191	(void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy);
1192	(void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy);
1193
1194	return (flp2 - flp1);
1195}
1196
1197int
1198compare_ivcsw(void *arg1, void *arg2)
1199{
1200	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
1201	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
1202	long dummy, flp1, flp2;
1203
1204	(void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1);
1205	(void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2);
1206
1207	return (flp2 - flp1);
1208}
1209#endif /* ORDER */
1210
1211/*
1212 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
1213 *		the process does not exist.
1214 *		It is EXTREMLY IMPORTANT that this function work correctly.
1215 *		If top runs setuid root (as in SVR4), then this function
1216 *		is the only thing that stands in the way of a serious
1217 *		security problem.  It validates requests for the "kill"
1218 *		and "renice" commands.
1219 */
1220
1221int
1222proc_owner(int pid)
1223{
1224	int cnt;
1225	struct kinfo_proc **prefp;
1226	struct kinfo_proc *pp;
1227
1228	prefp = pref;
1229	cnt = pref_len;
1230	while (--cnt >= 0) {
1231		pp = *prefp++;
1232		if (pp->ki_pid == (pid_t)pid)
1233			return ((int)pp->ki_ruid);
1234	}
1235	return (-1);
1236}
1237
1238static int
1239swapmode(int *retavail, int *retfree)
1240{
1241	int n;
1242	int pagesize = getpagesize();
1243	struct kvm_swap swapary[1];
1244
1245	*retavail = 0;
1246	*retfree = 0;
1247
1248#define CONVERT(v)	((quad_t)(v) * pagesize / 1024)
1249
1250	n = kvm_getswapinfo(kd, swapary, 1, 0);
1251	if (n < 0 || swapary[0].ksw_total == 0)
1252		return (0);
1253
1254	*retavail = CONVERT(swapary[0].ksw_total);
1255	*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
1256
1257	n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total);
1258	return (n);
1259}
1260