vnode_pager.c revision 189595
1/*-
2 * Copyright (c) 1990 University of Utah.
3 * Copyright (c) 1991 The Regents of the University of California.
4 * All rights reserved.
5 * Copyright (c) 1993, 1994 John S. Dyson
6 * Copyright (c) 1995, David Greenman
7 *
8 * This code is derived from software contributed to Berkeley by
9 * the Systems Programming Group of the University of Utah Computer
10 * Science Department.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	from: @(#)vnode_pager.c	7.5 (Berkeley) 4/20/91
41 */
42
43/*
44 * Page to/from files (vnodes).
45 */
46
47/*
48 * TODO:
49 *	Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
50 *	greatly re-simplify the vnode_pager.
51 */
52
53#include <sys/cdefs.h>
54__FBSDID("$FreeBSD: head/sys/vm/vnode_pager.c 189595 2009-03-09 19:35:20Z jhb $");
55
56#include <sys/param.h>
57#include <sys/systm.h>
58#include <sys/proc.h>
59#include <sys/vnode.h>
60#include <sys/mount.h>
61#include <sys/bio.h>
62#include <sys/buf.h>
63#include <sys/vmmeter.h>
64#include <sys/limits.h>
65#include <sys/conf.h>
66#include <sys/sf_buf.h>
67
68#include <machine/atomic.h>
69
70#include <vm/vm.h>
71#include <vm/vm_object.h>
72#include <vm/vm_page.h>
73#include <vm/vm_pager.h>
74#include <vm/vm_map.h>
75#include <vm/vnode_pager.h>
76#include <vm/vm_extern.h>
77
78static int vnode_pager_addr(struct vnode *vp, vm_ooffset_t address,
79    daddr_t *rtaddress, int *run);
80static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m);
81static int vnode_pager_input_old(vm_object_t object, vm_page_t m);
82static void vnode_pager_dealloc(vm_object_t);
83static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int);
84static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
85static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *);
86static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t, vm_ooffset_t);
87
88struct pagerops vnodepagerops = {
89	.pgo_alloc =	vnode_pager_alloc,
90	.pgo_dealloc =	vnode_pager_dealloc,
91	.pgo_getpages =	vnode_pager_getpages,
92	.pgo_putpages =	vnode_pager_putpages,
93	.pgo_haspage =	vnode_pager_haspage,
94};
95
96int vnode_pbuf_freecnt;
97
98/* Create the VM system backing object for this vnode */
99int
100vnode_create_vobject(struct vnode *vp, off_t isize, struct thread *td)
101{
102	vm_object_t object;
103	vm_ooffset_t size = isize;
104	struct vattr va;
105
106	if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE)
107		return (0);
108
109	while ((object = vp->v_object) != NULL) {
110		VM_OBJECT_LOCK(object);
111		if (!(object->flags & OBJ_DEAD)) {
112			VM_OBJECT_UNLOCK(object);
113			return (0);
114		}
115		VOP_UNLOCK(vp, 0);
116		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
117		msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, "vodead", 0);
118		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
119	}
120
121	if (size == 0) {
122		if (vn_isdisk(vp, NULL)) {
123			size = IDX_TO_OFF(INT_MAX);
124		} else {
125			if (VOP_GETATTR(vp, &va, td->td_ucred))
126				return (0);
127			size = va.va_size;
128		}
129	}
130
131	object = vnode_pager_alloc(vp, size, 0, 0);
132	/*
133	 * Dereference the reference we just created.  This assumes
134	 * that the object is associated with the vp.
135	 */
136	VM_OBJECT_LOCK(object);
137	object->ref_count--;
138	VM_OBJECT_UNLOCK(object);
139	vrele(vp);
140
141	KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object"));
142
143	return (0);
144}
145
146void
147vnode_destroy_vobject(struct vnode *vp)
148{
149	struct vm_object *obj;
150
151	obj = vp->v_object;
152	if (obj == NULL)
153		return;
154	ASSERT_VOP_ELOCKED(vp, "vnode_destroy_vobject");
155	VM_OBJECT_LOCK(obj);
156	if (obj->ref_count == 0) {
157		/*
158		 * vclean() may be called twice. The first time
159		 * removes the primary reference to the object,
160		 * the second time goes one further and is a
161		 * special-case to terminate the object.
162		 *
163		 * don't double-terminate the object
164		 */
165		if ((obj->flags & OBJ_DEAD) == 0)
166			vm_object_terminate(obj);
167		else
168			VM_OBJECT_UNLOCK(obj);
169	} else {
170		/*
171		 * Woe to the process that tries to page now :-).
172		 */
173		vm_pager_deallocate(obj);
174		VM_OBJECT_UNLOCK(obj);
175	}
176	vp->v_object = NULL;
177}
178
179
180/*
181 * Allocate (or lookup) pager for a vnode.
182 * Handle is a vnode pointer.
183 *
184 * MPSAFE
185 */
186vm_object_t
187vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
188		  vm_ooffset_t offset)
189{
190	vm_object_t object;
191	struct vnode *vp;
192
193	/*
194	 * Pageout to vnode, no can do yet.
195	 */
196	if (handle == NULL)
197		return (NULL);
198
199	vp = (struct vnode *) handle;
200
201	/*
202	 * If the object is being terminated, wait for it to
203	 * go away.
204	 */
205retry:
206	while ((object = vp->v_object) != NULL) {
207		VM_OBJECT_LOCK(object);
208		if ((object->flags & OBJ_DEAD) == 0)
209			break;
210		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
211		msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, "vadead", 0);
212	}
213
214	if (vp->v_usecount == 0)
215		panic("vnode_pager_alloc: no vnode reference");
216
217	if (object == NULL) {
218		/*
219		 * Add an object of the appropriate size
220		 */
221		object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size)));
222
223		object->un_pager.vnp.vnp_size = size;
224
225		object->handle = handle;
226		VI_LOCK(vp);
227		if (vp->v_object != NULL) {
228			/*
229			 * Object has been created while we were sleeping
230			 */
231			VI_UNLOCK(vp);
232			vm_object_destroy(object);
233			goto retry;
234		}
235		vp->v_object = object;
236		VI_UNLOCK(vp);
237	} else {
238		object->ref_count++;
239		VM_OBJECT_UNLOCK(object);
240	}
241	vref(vp);
242	return (object);
243}
244
245/*
246 *	The object must be locked.
247 */
248static void
249vnode_pager_dealloc(object)
250	vm_object_t object;
251{
252	struct vnode *vp = object->handle;
253
254	if (vp == NULL)
255		panic("vnode_pager_dealloc: pager already dealloced");
256
257	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
258	vm_object_pip_wait(object, "vnpdea");
259
260	object->handle = NULL;
261	object->type = OBJT_DEAD;
262	if (object->flags & OBJ_DISCONNECTWNT) {
263		vm_object_clear_flag(object, OBJ_DISCONNECTWNT);
264		wakeup(object);
265	}
266	ASSERT_VOP_ELOCKED(vp, "vnode_pager_dealloc");
267	vp->v_object = NULL;
268	vp->v_vflag &= ~VV_TEXT;
269}
270
271static boolean_t
272vnode_pager_haspage(object, pindex, before, after)
273	vm_object_t object;
274	vm_pindex_t pindex;
275	int *before;
276	int *after;
277{
278	struct vnode *vp = object->handle;
279	daddr_t bn;
280	int err;
281	daddr_t reqblock;
282	int poff;
283	int bsize;
284	int pagesperblock, blocksperpage;
285	int vfslocked;
286
287	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
288	/*
289	 * If no vp or vp is doomed or marked transparent to VM, we do not
290	 * have the page.
291	 */
292	if (vp == NULL || vp->v_iflag & VI_DOOMED)
293		return FALSE;
294	/*
295	 * If the offset is beyond end of file we do
296	 * not have the page.
297	 */
298	if (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size)
299		return FALSE;
300
301	bsize = vp->v_mount->mnt_stat.f_iosize;
302	pagesperblock = bsize / PAGE_SIZE;
303	blocksperpage = 0;
304	if (pagesperblock > 0) {
305		reqblock = pindex / pagesperblock;
306	} else {
307		blocksperpage = (PAGE_SIZE / bsize);
308		reqblock = pindex * blocksperpage;
309	}
310	VM_OBJECT_UNLOCK(object);
311	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
312	err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before);
313	VFS_UNLOCK_GIANT(vfslocked);
314	VM_OBJECT_LOCK(object);
315	if (err)
316		return TRUE;
317	if (bn == -1)
318		return FALSE;
319	if (pagesperblock > 0) {
320		poff = pindex - (reqblock * pagesperblock);
321		if (before) {
322			*before *= pagesperblock;
323			*before += poff;
324		}
325		if (after) {
326			int numafter;
327			*after *= pagesperblock;
328			numafter = pagesperblock - (poff + 1);
329			if (IDX_TO_OFF(pindex + numafter) >
330			    object->un_pager.vnp.vnp_size) {
331				numafter =
332		    		    OFF_TO_IDX(object->un_pager.vnp.vnp_size) -
333				    pindex;
334			}
335			*after += numafter;
336		}
337	} else {
338		if (before) {
339			*before /= blocksperpage;
340		}
341
342		if (after) {
343			*after /= blocksperpage;
344		}
345	}
346	return TRUE;
347}
348
349/*
350 * Lets the VM system know about a change in size for a file.
351 * We adjust our own internal size and flush any cached pages in
352 * the associated object that are affected by the size change.
353 *
354 * Note: this routine may be invoked as a result of a pager put
355 * operation (possibly at object termination time), so we must be careful.
356 */
357void
358vnode_pager_setsize(vp, nsize)
359	struct vnode *vp;
360	vm_ooffset_t nsize;
361{
362	vm_object_t object;
363	vm_page_t m;
364	vm_pindex_t nobjsize;
365
366	if ((object = vp->v_object) == NULL)
367		return;
368/* 	ASSERT_VOP_ELOCKED(vp, "vnode_pager_setsize and not locked vnode"); */
369	VM_OBJECT_LOCK(object);
370	if (nsize == object->un_pager.vnp.vnp_size) {
371		/*
372		 * Hasn't changed size
373		 */
374		VM_OBJECT_UNLOCK(object);
375		return;
376	}
377	nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
378	if (nsize < object->un_pager.vnp.vnp_size) {
379		/*
380		 * File has shrunk. Toss any cached pages beyond the new EOF.
381		 */
382		if (nobjsize < object->size)
383			vm_object_page_remove(object, nobjsize, object->size,
384			    FALSE);
385		/*
386		 * this gets rid of garbage at the end of a page that is now
387		 * only partially backed by the vnode.
388		 *
389		 * XXX for some reason (I don't know yet), if we take a
390		 * completely invalid page and mark it partially valid
391		 * it can screw up NFS reads, so we don't allow the case.
392		 */
393		if ((nsize & PAGE_MASK) &&
394		    (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL &&
395		    m->valid != 0) {
396			int base = (int)nsize & PAGE_MASK;
397			int size = PAGE_SIZE - base;
398
399			/*
400			 * Clear out partial-page garbage in case
401			 * the page has been mapped.
402			 */
403			pmap_zero_page_area(m, base, size);
404
405			/*
406			 * Clear out partial-page dirty bits.  This
407			 * has the side effect of setting the valid
408			 * bits, but that is ok.  There are a bunch
409			 * of places in the VM system where we expected
410			 * m->dirty == VM_PAGE_BITS_ALL.  The file EOF
411			 * case is one of them.  If the page is still
412			 * partially dirty, make it fully dirty.
413			 *
414			 * note that we do not clear out the valid
415			 * bits.  This would prevent bogus_page
416			 * replacement from working properly.
417			 */
418			vm_page_lock_queues();
419			vm_page_set_validclean(m, base, size);
420			if (m->dirty != 0)
421				m->dirty = VM_PAGE_BITS_ALL;
422			vm_page_unlock_queues();
423		} else if ((nsize & PAGE_MASK) &&
424		    __predict_false(object->cache != NULL)) {
425			vm_page_cache_free(object, OFF_TO_IDX(nsize),
426			    nobjsize);
427		}
428	}
429	object->un_pager.vnp.vnp_size = nsize;
430	object->size = nobjsize;
431	VM_OBJECT_UNLOCK(object);
432}
433
434/*
435 * calculate the linear (byte) disk address of specified virtual
436 * file address
437 */
438static int
439vnode_pager_addr(struct vnode *vp, vm_ooffset_t address, daddr_t *rtaddress,
440    int *run)
441{
442	int bsize;
443	int err;
444	daddr_t vblock;
445	daddr_t voffset;
446
447	if (address < 0)
448		return -1;
449
450	if (vp->v_iflag & VI_DOOMED)
451		return -1;
452
453	bsize = vp->v_mount->mnt_stat.f_iosize;
454	vblock = address / bsize;
455	voffset = address % bsize;
456
457	err = VOP_BMAP(vp, vblock, NULL, rtaddress, run, NULL);
458	if (err == 0) {
459		if (*rtaddress != -1)
460			*rtaddress += voffset / DEV_BSIZE;
461		if (run) {
462			*run += 1;
463			*run *= bsize/PAGE_SIZE;
464			*run -= voffset/PAGE_SIZE;
465		}
466	}
467
468	return (err);
469}
470
471/*
472 * small block filesystem vnode pager input
473 */
474static int
475vnode_pager_input_smlfs(object, m)
476	vm_object_t object;
477	vm_page_t m;
478{
479	int i;
480	struct vnode *vp;
481	struct bufobj *bo;
482	struct buf *bp;
483	struct sf_buf *sf;
484	daddr_t fileaddr;
485	vm_offset_t bsize;
486	int error = 0;
487
488	vp = object->handle;
489	if (vp->v_iflag & VI_DOOMED)
490		return VM_PAGER_BAD;
491
492	bsize = vp->v_mount->mnt_stat.f_iosize;
493
494	VOP_BMAP(vp, 0, &bo, 0, NULL, NULL);
495
496	sf = sf_buf_alloc(m, 0);
497
498	for (i = 0; i < PAGE_SIZE / bsize; i++) {
499		vm_ooffset_t address;
500
501		if (vm_page_bits(i * bsize, bsize) & m->valid)
502			continue;
503
504		address = IDX_TO_OFF(m->pindex) + i * bsize;
505		if (address >= object->un_pager.vnp.vnp_size) {
506			fileaddr = -1;
507		} else {
508			error = vnode_pager_addr(vp, address, &fileaddr, NULL);
509			if (error)
510				break;
511		}
512		if (fileaddr != -1) {
513			bp = getpbuf(&vnode_pbuf_freecnt);
514
515			/* build a minimal buffer header */
516			bp->b_iocmd = BIO_READ;
517			bp->b_iodone = bdone;
518			KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
519			KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
520			bp->b_rcred = crhold(curthread->td_ucred);
521			bp->b_wcred = crhold(curthread->td_ucred);
522			bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize;
523			bp->b_blkno = fileaddr;
524			pbgetbo(bo, bp);
525			bp->b_bcount = bsize;
526			bp->b_bufsize = bsize;
527			bp->b_runningbufspace = bp->b_bufsize;
528			atomic_add_long(&runningbufspace, bp->b_runningbufspace);
529
530			/* do the input */
531			bp->b_iooffset = dbtob(bp->b_blkno);
532			bstrategy(bp);
533
534			bwait(bp, PVM, "vnsrd");
535
536			if ((bp->b_ioflags & BIO_ERROR) != 0)
537				error = EIO;
538
539			/*
540			 * free the buffer header back to the swap buffer pool
541			 */
542			pbrelbo(bp);
543			relpbuf(bp, &vnode_pbuf_freecnt);
544			if (error)
545				break;
546
547			VM_OBJECT_LOCK(object);
548			vm_page_lock_queues();
549			vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize);
550			vm_page_unlock_queues();
551			VM_OBJECT_UNLOCK(object);
552		} else {
553			VM_OBJECT_LOCK(object);
554			vm_page_lock_queues();
555			vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize);
556			vm_page_unlock_queues();
557			VM_OBJECT_UNLOCK(object);
558			bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize);
559		}
560	}
561	sf_buf_free(sf);
562	vm_page_lock_queues();
563	pmap_clear_modify(m);
564	vm_page_unlock_queues();
565	if (error) {
566		return VM_PAGER_ERROR;
567	}
568	return VM_PAGER_OK;
569
570}
571
572
573/*
574 * old style vnode pager input routine
575 */
576static int
577vnode_pager_input_old(object, m)
578	vm_object_t object;
579	vm_page_t m;
580{
581	struct uio auio;
582	struct iovec aiov;
583	int error;
584	int size;
585	struct sf_buf *sf;
586	struct vnode *vp;
587
588	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
589	error = 0;
590
591	/*
592	 * Return failure if beyond current EOF
593	 */
594	if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) {
595		return VM_PAGER_BAD;
596	} else {
597		size = PAGE_SIZE;
598		if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size)
599			size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex);
600		vp = object->handle;
601		VM_OBJECT_UNLOCK(object);
602
603		/*
604		 * Allocate a kernel virtual address and initialize so that
605		 * we can use VOP_READ/WRITE routines.
606		 */
607		sf = sf_buf_alloc(m, 0);
608
609		aiov.iov_base = (caddr_t)sf_buf_kva(sf);
610		aiov.iov_len = size;
611		auio.uio_iov = &aiov;
612		auio.uio_iovcnt = 1;
613		auio.uio_offset = IDX_TO_OFF(m->pindex);
614		auio.uio_segflg = UIO_SYSSPACE;
615		auio.uio_rw = UIO_READ;
616		auio.uio_resid = size;
617		auio.uio_td = curthread;
618
619		error = VOP_READ(vp, &auio, 0, curthread->td_ucred);
620		if (!error) {
621			int count = size - auio.uio_resid;
622
623			if (count == 0)
624				error = EINVAL;
625			else if (count != PAGE_SIZE)
626				bzero((caddr_t)sf_buf_kva(sf) + count,
627				    PAGE_SIZE - count);
628		}
629		sf_buf_free(sf);
630
631		VM_OBJECT_LOCK(object);
632	}
633	vm_page_lock_queues();
634	pmap_clear_modify(m);
635	vm_page_undirty(m);
636	vm_page_unlock_queues();
637	if (!error)
638		m->valid = VM_PAGE_BITS_ALL;
639	return error ? VM_PAGER_ERROR : VM_PAGER_OK;
640}
641
642/*
643 * generic vnode pager input routine
644 */
645
646/*
647 * Local media VFS's that do not implement their own VOP_GETPAGES
648 * should have their VOP_GETPAGES call to vnode_pager_generic_getpages()
649 * to implement the previous behaviour.
650 *
651 * All other FS's should use the bypass to get to the local media
652 * backing vp's VOP_GETPAGES.
653 */
654static int
655vnode_pager_getpages(object, m, count, reqpage)
656	vm_object_t object;
657	vm_page_t *m;
658	int count;
659	int reqpage;
660{
661	int rtval;
662	struct vnode *vp;
663	int bytes = count * PAGE_SIZE;
664	int vfslocked;
665
666	vp = object->handle;
667	VM_OBJECT_UNLOCK(object);
668	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
669	rtval = VOP_GETPAGES(vp, m, bytes, reqpage, 0);
670	KASSERT(rtval != EOPNOTSUPP,
671	    ("vnode_pager: FS getpages not implemented\n"));
672	VFS_UNLOCK_GIANT(vfslocked);
673	VM_OBJECT_LOCK(object);
674	return rtval;
675}
676
677/*
678 * This is now called from local media FS's to operate against their
679 * own vnodes if they fail to implement VOP_GETPAGES.
680 */
681int
682vnode_pager_generic_getpages(vp, m, bytecount, reqpage)
683	struct vnode *vp;
684	vm_page_t *m;
685	int bytecount;
686	int reqpage;
687{
688	vm_object_t object;
689	vm_offset_t kva;
690	off_t foff, tfoff, nextoff;
691	int i, j, size, bsize, first;
692	daddr_t firstaddr, reqblock;
693	struct bufobj *bo;
694	int runpg;
695	int runend;
696	struct buf *bp;
697	int count;
698	int error;
699
700	object = vp->v_object;
701	count = bytecount / PAGE_SIZE;
702
703	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
704	    ("vnode_pager_generic_getpages does not support devices"));
705	if (vp->v_iflag & VI_DOOMED)
706		return VM_PAGER_BAD;
707
708	bsize = vp->v_mount->mnt_stat.f_iosize;
709
710	/* get the UNDERLYING device for the file with VOP_BMAP() */
711
712	/*
713	 * originally, we did not check for an error return value -- assuming
714	 * an fs always has a bmap entry point -- that assumption is wrong!!!
715	 */
716	foff = IDX_TO_OFF(m[reqpage]->pindex);
717
718	/*
719	 * if we can't bmap, use old VOP code
720	 */
721	error = VOP_BMAP(vp, foff / bsize, &bo, &reqblock, NULL, NULL);
722	if (error == EOPNOTSUPP) {
723		VM_OBJECT_LOCK(object);
724		vm_page_lock_queues();
725		for (i = 0; i < count; i++)
726			if (i != reqpage)
727				vm_page_free(m[i]);
728		vm_page_unlock_queues();
729		PCPU_INC(cnt.v_vnodein);
730		PCPU_INC(cnt.v_vnodepgsin);
731		error = vnode_pager_input_old(object, m[reqpage]);
732		VM_OBJECT_UNLOCK(object);
733		return (error);
734	} else if (error != 0) {
735		VM_OBJECT_LOCK(object);
736		vm_page_lock_queues();
737		for (i = 0; i < count; i++)
738			if (i != reqpage)
739				vm_page_free(m[i]);
740		vm_page_unlock_queues();
741		VM_OBJECT_UNLOCK(object);
742		return (VM_PAGER_ERROR);
743
744		/*
745		 * if the blocksize is smaller than a page size, then use
746		 * special small filesystem code.  NFS sometimes has a small
747		 * blocksize, but it can handle large reads itself.
748		 */
749	} else if ((PAGE_SIZE / bsize) > 1 &&
750	    (vp->v_mount->mnt_stat.f_type != nfs_mount_type)) {
751		VM_OBJECT_LOCK(object);
752		vm_page_lock_queues();
753		for (i = 0; i < count; i++)
754			if (i != reqpage)
755				vm_page_free(m[i]);
756		vm_page_unlock_queues();
757		VM_OBJECT_UNLOCK(object);
758		PCPU_INC(cnt.v_vnodein);
759		PCPU_INC(cnt.v_vnodepgsin);
760		return vnode_pager_input_smlfs(object, m[reqpage]);
761	}
762
763	/*
764	 * If we have a completely valid page available to us, we can
765	 * clean up and return.  Otherwise we have to re-read the
766	 * media.
767	 */
768	VM_OBJECT_LOCK(object);
769	if (m[reqpage]->valid == VM_PAGE_BITS_ALL) {
770		vm_page_lock_queues();
771		for (i = 0; i < count; i++)
772			if (i != reqpage)
773				vm_page_free(m[i]);
774		vm_page_unlock_queues();
775		VM_OBJECT_UNLOCK(object);
776		return VM_PAGER_OK;
777	} else if (reqblock == -1) {
778		pmap_zero_page(m[reqpage]);
779		vm_page_undirty(m[reqpage]);
780		m[reqpage]->valid = VM_PAGE_BITS_ALL;
781		vm_page_lock_queues();
782		for (i = 0; i < count; i++)
783			if (i != reqpage)
784				vm_page_free(m[i]);
785		vm_page_unlock_queues();
786		VM_OBJECT_UNLOCK(object);
787		return (VM_PAGER_OK);
788	}
789	m[reqpage]->valid = 0;
790	VM_OBJECT_UNLOCK(object);
791
792	/*
793	 * here on direct device I/O
794	 */
795	firstaddr = -1;
796
797	/*
798	 * calculate the run that includes the required page
799	 */
800	for (first = 0, i = 0; i < count; i = runend) {
801		if (vnode_pager_addr(vp, IDX_TO_OFF(m[i]->pindex), &firstaddr,
802		    &runpg) != 0) {
803			VM_OBJECT_LOCK(object);
804			vm_page_lock_queues();
805			for (; i < count; i++)
806				if (i != reqpage)
807					vm_page_free(m[i]);
808			vm_page_unlock_queues();
809			VM_OBJECT_UNLOCK(object);
810			return (VM_PAGER_ERROR);
811		}
812		if (firstaddr == -1) {
813			VM_OBJECT_LOCK(object);
814			if (i == reqpage && foff < object->un_pager.vnp.vnp_size) {
815				panic("vnode_pager_getpages: unexpected missing page: firstaddr: %jd, foff: 0x%jx%08jx, vnp_size: 0x%jx%08jx",
816				    (intmax_t)firstaddr, (uintmax_t)(foff >> 32),
817				    (uintmax_t)foff,
818				    (uintmax_t)
819				    (object->un_pager.vnp.vnp_size >> 32),
820				    (uintmax_t)object->un_pager.vnp.vnp_size);
821			}
822			vm_page_lock_queues();
823			vm_page_free(m[i]);
824			vm_page_unlock_queues();
825			VM_OBJECT_UNLOCK(object);
826			runend = i + 1;
827			first = runend;
828			continue;
829		}
830		runend = i + runpg;
831		if (runend <= reqpage) {
832			VM_OBJECT_LOCK(object);
833			vm_page_lock_queues();
834			for (j = i; j < runend; j++)
835				vm_page_free(m[j]);
836			vm_page_unlock_queues();
837			VM_OBJECT_UNLOCK(object);
838		} else {
839			if (runpg < (count - first)) {
840				VM_OBJECT_LOCK(object);
841				vm_page_lock_queues();
842				for (i = first + runpg; i < count; i++)
843					vm_page_free(m[i]);
844				vm_page_unlock_queues();
845				VM_OBJECT_UNLOCK(object);
846				count = first + runpg;
847			}
848			break;
849		}
850		first = runend;
851	}
852
853	/*
854	 * the first and last page have been calculated now, move input pages
855	 * to be zero based...
856	 */
857	if (first != 0) {
858		m += first;
859		count -= first;
860		reqpage -= first;
861	}
862
863	/*
864	 * calculate the file virtual address for the transfer
865	 */
866	foff = IDX_TO_OFF(m[0]->pindex);
867
868	/*
869	 * calculate the size of the transfer
870	 */
871	size = count * PAGE_SIZE;
872	KASSERT(count > 0, ("zero count"));
873	if ((foff + size) > object->un_pager.vnp.vnp_size)
874		size = object->un_pager.vnp.vnp_size - foff;
875	KASSERT(size > 0, ("zero size"));
876
877	/*
878	 * round up physical size for real devices.
879	 */
880	if (1) {
881		int secmask = bo->bo_bsize - 1;
882		KASSERT(secmask < PAGE_SIZE && secmask > 0,
883		    ("vnode_pager_generic_getpages: sector size %d too large",
884		    secmask + 1));
885		size = (size + secmask) & ~secmask;
886	}
887
888	bp = getpbuf(&vnode_pbuf_freecnt);
889	kva = (vm_offset_t) bp->b_data;
890
891	/*
892	 * and map the pages to be read into the kva
893	 */
894	pmap_qenter(kva, m, count);
895
896	/* build a minimal buffer header */
897	bp->b_iocmd = BIO_READ;
898	bp->b_iodone = bdone;
899	KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
900	KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
901	bp->b_rcred = crhold(curthread->td_ucred);
902	bp->b_wcred = crhold(curthread->td_ucred);
903	bp->b_blkno = firstaddr;
904	pbgetbo(bo, bp);
905	bp->b_bcount = size;
906	bp->b_bufsize = size;
907	bp->b_runningbufspace = bp->b_bufsize;
908	atomic_add_long(&runningbufspace, bp->b_runningbufspace);
909
910	PCPU_INC(cnt.v_vnodein);
911	PCPU_ADD(cnt.v_vnodepgsin, count);
912
913	/* do the input */
914	bp->b_iooffset = dbtob(bp->b_blkno);
915	bstrategy(bp);
916
917	bwait(bp, PVM, "vnread");
918
919	if ((bp->b_ioflags & BIO_ERROR) != 0)
920		error = EIO;
921
922	if (!error) {
923		if (size != count * PAGE_SIZE)
924			bzero((caddr_t) kva + size, PAGE_SIZE * count - size);
925	}
926	pmap_qremove(kva, count);
927
928	/*
929	 * free the buffer header back to the swap buffer pool
930	 */
931	pbrelbo(bp);
932	relpbuf(bp, &vnode_pbuf_freecnt);
933
934	VM_OBJECT_LOCK(object);
935	vm_page_lock_queues();
936	for (i = 0, tfoff = foff; i < count; i++, tfoff = nextoff) {
937		vm_page_t mt;
938
939		nextoff = tfoff + PAGE_SIZE;
940		mt = m[i];
941
942		if (nextoff <= object->un_pager.vnp.vnp_size) {
943			/*
944			 * Read filled up entire page.
945			 */
946			mt->valid = VM_PAGE_BITS_ALL;
947			vm_page_undirty(mt);	/* should be an assert? XXX */
948			pmap_clear_modify(mt);
949		} else {
950			/*
951			 * Read did not fill up entire page.  Since this
952			 * is getpages, the page may be mapped, so we have
953			 * to zero the invalid portions of the page even
954			 * though we aren't setting them valid.
955			 *
956			 * Currently we do not set the entire page valid,
957			 * we just try to clear the piece that we couldn't
958			 * read.
959			 */
960			vm_page_set_validclean(mt, 0,
961			    object->un_pager.vnp.vnp_size - tfoff);
962			/* handled by vm_fault now */
963			/* vm_page_zero_invalid(mt, FALSE); */
964		}
965
966		if (i != reqpage) {
967
968			/*
969			 * whether or not to leave the page activated is up in
970			 * the air, but we should put the page on a page queue
971			 * somewhere. (it already is in the object). Result:
972			 * It appears that empirical results show that
973			 * deactivating pages is best.
974			 */
975
976			/*
977			 * just in case someone was asking for this page we
978			 * now tell them that it is ok to use
979			 */
980			if (!error) {
981				if (mt->oflags & VPO_WANTED)
982					vm_page_activate(mt);
983				else
984					vm_page_deactivate(mt);
985				vm_page_wakeup(mt);
986			} else {
987				vm_page_free(mt);
988			}
989		}
990	}
991	vm_page_unlock_queues();
992	VM_OBJECT_UNLOCK(object);
993	if (error) {
994		printf("vnode_pager_getpages: I/O read error\n");
995	}
996	return (error ? VM_PAGER_ERROR : VM_PAGER_OK);
997}
998
999/*
1000 * EOPNOTSUPP is no longer legal.  For local media VFS's that do not
1001 * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
1002 * vnode_pager_generic_putpages() to implement the previous behaviour.
1003 *
1004 * All other FS's should use the bypass to get to the local media
1005 * backing vp's VOP_PUTPAGES.
1006 */
1007static void
1008vnode_pager_putpages(object, m, count, sync, rtvals)
1009	vm_object_t object;
1010	vm_page_t *m;
1011	int count;
1012	boolean_t sync;
1013	int *rtvals;
1014{
1015	int rtval;
1016	struct vnode *vp;
1017	struct mount *mp;
1018	int bytes = count * PAGE_SIZE;
1019
1020	/*
1021	 * Force synchronous operation if we are extremely low on memory
1022	 * to prevent a low-memory deadlock.  VOP operations often need to
1023	 * allocate more memory to initiate the I/O ( i.e. do a BMAP
1024	 * operation ).  The swapper handles the case by limiting the amount
1025	 * of asynchronous I/O, but that sort of solution doesn't scale well
1026	 * for the vnode pager without a lot of work.
1027	 *
1028	 * Also, the backing vnode's iodone routine may not wake the pageout
1029	 * daemon up.  This should be probably be addressed XXX.
1030	 */
1031
1032	if ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min)
1033		sync |= OBJPC_SYNC;
1034
1035	/*
1036	 * Call device-specific putpages function
1037	 */
1038	vp = object->handle;
1039	VM_OBJECT_UNLOCK(object);
1040	if (vp->v_type != VREG)
1041		mp = NULL;
1042	rtval = VOP_PUTPAGES(vp, m, bytes, sync, rtvals, 0);
1043	KASSERT(rtval != EOPNOTSUPP,
1044	    ("vnode_pager: stale FS putpages\n"));
1045	VM_OBJECT_LOCK(object);
1046}
1047
1048
1049/*
1050 * This is now called from local media FS's to operate against their
1051 * own vnodes if they fail to implement VOP_PUTPAGES.
1052 *
1053 * This is typically called indirectly via the pageout daemon and
1054 * clustering has already typically occured, so in general we ask the
1055 * underlying filesystem to write the data out asynchronously rather
1056 * then delayed.
1057 */
1058int
1059vnode_pager_generic_putpages(vp, m, bytecount, flags, rtvals)
1060	struct vnode *vp;
1061	vm_page_t *m;
1062	int bytecount;
1063	int flags;
1064	int *rtvals;
1065{
1066	int i;
1067	vm_object_t object;
1068	int count;
1069
1070	int maxsize, ncount;
1071	vm_ooffset_t poffset;
1072	struct uio auio;
1073	struct iovec aiov;
1074	int error;
1075	int ioflags;
1076	int ppscheck = 0;
1077	static struct timeval lastfail;
1078	static int curfail;
1079
1080	object = vp->v_object;
1081	count = bytecount / PAGE_SIZE;
1082
1083	for (i = 0; i < count; i++)
1084		rtvals[i] = VM_PAGER_AGAIN;
1085
1086	if ((int64_t)m[0]->pindex < 0) {
1087		printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%lx)\n",
1088			(long)m[0]->pindex, (u_long)m[0]->dirty);
1089		rtvals[0] = VM_PAGER_BAD;
1090		return VM_PAGER_BAD;
1091	}
1092
1093	maxsize = count * PAGE_SIZE;
1094	ncount = count;
1095
1096	poffset = IDX_TO_OFF(m[0]->pindex);
1097
1098	/*
1099	 * If the page-aligned write is larger then the actual file we
1100	 * have to invalidate pages occuring beyond the file EOF.  However,
1101	 * there is an edge case where a file may not be page-aligned where
1102	 * the last page is partially invalid.  In this case the filesystem
1103	 * may not properly clear the dirty bits for the entire page (which
1104	 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d).
1105	 * With the page locked we are free to fix-up the dirty bits here.
1106	 *
1107	 * We do not under any circumstances truncate the valid bits, as
1108	 * this will screw up bogus page replacement.
1109	 */
1110	if (maxsize + poffset > object->un_pager.vnp.vnp_size) {
1111		if (object->un_pager.vnp.vnp_size > poffset) {
1112			int pgoff;
1113
1114			maxsize = object->un_pager.vnp.vnp_size - poffset;
1115			ncount = btoc(maxsize);
1116			if ((pgoff = (int)maxsize & PAGE_MASK) != 0) {
1117				vm_page_lock_queues();
1118				vm_page_clear_dirty(m[ncount - 1], pgoff,
1119					PAGE_SIZE - pgoff);
1120				vm_page_unlock_queues();
1121			}
1122		} else {
1123			maxsize = 0;
1124			ncount = 0;
1125		}
1126		if (ncount < count) {
1127			for (i = ncount; i < count; i++) {
1128				rtvals[i] = VM_PAGER_BAD;
1129			}
1130		}
1131	}
1132
1133	/*
1134	 * pageouts are already clustered, use IO_ASYNC t o force a bawrite()
1135	 * rather then a bdwrite() to prevent paging I/O from saturating
1136	 * the buffer cache.  Dummy-up the sequential heuristic to cause
1137	 * large ranges to cluster.  If neither IO_SYNC or IO_ASYNC is set,
1138	 * the system decides how to cluster.
1139	 */
1140	ioflags = IO_VMIO;
1141	if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL))
1142		ioflags |= IO_SYNC;
1143	else if ((flags & VM_PAGER_CLUSTER_OK) == 0)
1144		ioflags |= IO_ASYNC;
1145	ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0;
1146	ioflags |= IO_SEQMAX << IO_SEQSHIFT;
1147
1148	aiov.iov_base = (caddr_t) 0;
1149	aiov.iov_len = maxsize;
1150	auio.uio_iov = &aiov;
1151	auio.uio_iovcnt = 1;
1152	auio.uio_offset = poffset;
1153	auio.uio_segflg = UIO_NOCOPY;
1154	auio.uio_rw = UIO_WRITE;
1155	auio.uio_resid = maxsize;
1156	auio.uio_td = (struct thread *) 0;
1157	error = VOP_WRITE(vp, &auio, ioflags, curthread->td_ucred);
1158	PCPU_INC(cnt.v_vnodeout);
1159	PCPU_ADD(cnt.v_vnodepgsout, ncount);
1160
1161	if (error) {
1162		if ((ppscheck = ppsratecheck(&lastfail, &curfail, 1)))
1163			printf("vnode_pager_putpages: I/O error %d\n", error);
1164	}
1165	if (auio.uio_resid) {
1166		if (ppscheck || ppsratecheck(&lastfail, &curfail, 1))
1167			printf("vnode_pager_putpages: residual I/O %d at %lu\n",
1168			    auio.uio_resid, (u_long)m[0]->pindex);
1169	}
1170	for (i = 0; i < ncount; i++) {
1171		rtvals[i] = VM_PAGER_OK;
1172	}
1173	return rtvals[0];
1174}
1175