vnode_pager.c revision 146340
1/*-
2 * Copyright (c) 1990 University of Utah.
3 * Copyright (c) 1991 The Regents of the University of California.
4 * All rights reserved.
5 * Copyright (c) 1993, 1994 John S. Dyson
6 * Copyright (c) 1995, David Greenman
7 *
8 * This code is derived from software contributed to Berkeley by
9 * the Systems Programming Group of the University of Utah Computer
10 * Science Department.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by the University of
23 *	California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 *    may be used to endorse or promote products derived from this software
26 *    without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 *
40 *	from: @(#)vnode_pager.c	7.5 (Berkeley) 4/20/91
41 */
42
43/*
44 * Page to/from files (vnodes).
45 */
46
47/*
48 * TODO:
49 *	Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
50 *	greatly re-simplify the vnode_pager.
51 */
52
53#include <sys/cdefs.h>
54__FBSDID("$FreeBSD: head/sys/vm/vnode_pager.c 146340 2005-05-18 08:57:31Z bz $");
55
56#include <sys/param.h>
57#include <sys/systm.h>
58#include <sys/proc.h>
59#include <sys/vnode.h>
60#include <sys/mount.h>
61#include <sys/bio.h>
62#include <sys/buf.h>
63#include <sys/vmmeter.h>
64#include <sys/limits.h>
65#include <sys/conf.h>
66#include <sys/sf_buf.h>
67
68#include <vm/vm.h>
69#include <vm/vm_object.h>
70#include <vm/vm_page.h>
71#include <vm/vm_pager.h>
72#include <vm/vm_map.h>
73#include <vm/vnode_pager.h>
74#include <vm/vm_extern.h>
75
76static void vnode_pager_init(void);
77static daddr_t vnode_pager_addr(struct vnode *vp, vm_ooffset_t address,
78					 int *run);
79static int vnode_pager_input_smlfs(vm_object_t object, vm_page_t m);
80static int vnode_pager_input_old(vm_object_t object, vm_page_t m);
81static void vnode_pager_dealloc(vm_object_t);
82static int vnode_pager_getpages(vm_object_t, vm_page_t *, int, int);
83static void vnode_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
84static boolean_t vnode_pager_haspage(vm_object_t, vm_pindex_t, int *, int *);
85static vm_object_t vnode_pager_alloc(void *, vm_ooffset_t, vm_prot_t, vm_ooffset_t);
86
87struct pagerops vnodepagerops = {
88	.pgo_init =	vnode_pager_init,
89	.pgo_alloc =	vnode_pager_alloc,
90	.pgo_dealloc =	vnode_pager_dealloc,
91	.pgo_getpages =	vnode_pager_getpages,
92	.pgo_putpages =	vnode_pager_putpages,
93	.pgo_haspage =	vnode_pager_haspage,
94};
95
96int vnode_pbuf_freecnt;
97
98static void
99vnode_pager_init(void)
100{
101
102	vnode_pbuf_freecnt = nswbuf / 2 + 1;
103}
104
105/* Create the VM system backing object for this vnode */
106int
107vnode_create_vobject(struct vnode *vp, size_t isize, struct thread *td)
108{
109	vm_object_t object;
110	vm_ooffset_t size = isize;
111	struct vattr va;
112
113	if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE)
114		return (0);
115
116	while ((object = vp->v_object) != NULL) {
117		VM_OBJECT_LOCK(object);
118		if (!(object->flags & OBJ_DEAD)) {
119			VM_OBJECT_UNLOCK(object);
120			return (0);
121		}
122		VOP_UNLOCK(vp, 0, td);
123		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
124		msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, "vodead", 0);
125		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
126	}
127
128	if (size == 0) {
129		if (vn_isdisk(vp, NULL)) {
130			size = IDX_TO_OFF(INT_MAX);
131		} else {
132			if (VOP_GETATTR(vp, &va, td->td_ucred, td) != 0)
133				return (0);
134			size = va.va_size;
135		}
136	}
137
138	object = vnode_pager_alloc(vp, size, 0, 0);
139	/*
140	 * Dereference the reference we just created.  This assumes
141	 * that the object is associated with the vp.
142	 */
143	VM_OBJECT_LOCK(object);
144	object->ref_count--;
145	VM_OBJECT_UNLOCK(object);
146	vrele(vp);
147
148	KASSERT(vp->v_object != NULL, ("vnode_create_vobject: NULL object"));
149
150	return (0);
151}
152
153void
154vnode_destroy_vobject(struct vnode *vp)
155{
156	struct vm_object *obj;
157
158	obj = vp->v_object;
159	if (obj == NULL)
160		return;
161	ASSERT_VOP_LOCKED(vp, "vnode_destroy_vobject");
162	VM_OBJECT_LOCK(obj);
163	if (obj->ref_count == 0) {
164		/*
165		 * vclean() may be called twice. The first time
166		 * removes the primary reference to the object,
167		 * the second time goes one further and is a
168		 * special-case to terminate the object.
169		 *
170		 * don't double-terminate the object
171		 */
172		if ((obj->flags & OBJ_DEAD) == 0)
173			vm_object_terminate(obj);
174		else
175			VM_OBJECT_UNLOCK(obj);
176	} else {
177		/*
178		 * Woe to the process that tries to page now :-).
179		 */
180		vm_pager_deallocate(obj);
181		VM_OBJECT_UNLOCK(obj);
182	}
183	vp->v_object = NULL;
184}
185
186
187/*
188 * Allocate (or lookup) pager for a vnode.
189 * Handle is a vnode pointer.
190 *
191 * MPSAFE
192 */
193vm_object_t
194vnode_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
195		  vm_ooffset_t offset)
196{
197	vm_object_t object;
198	struct vnode *vp;
199
200	/*
201	 * Pageout to vnode, no can do yet.
202	 */
203	if (handle == NULL)
204		return (NULL);
205
206	vp = (struct vnode *) handle;
207
208	ASSERT_VOP_LOCKED(vp, "vnode_pager_alloc");
209
210	/*
211	 * If the object is being terminated, wait for it to
212	 * go away.
213	 */
214	while ((object = vp->v_object) != NULL) {
215		VM_OBJECT_LOCK(object);
216		if ((object->flags & OBJ_DEAD) == 0)
217			break;
218		vm_object_set_flag(object, OBJ_DISCONNECTWNT);
219		msleep(object, VM_OBJECT_MTX(object), PDROP | PVM, "vadead", 0);
220	}
221
222	if (vp->v_usecount == 0)
223		panic("vnode_pager_alloc: no vnode reference");
224
225	if (object == NULL) {
226		/*
227		 * And an object of the appropriate size
228		 */
229		object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size)));
230
231		object->un_pager.vnp.vnp_size = size;
232
233		object->handle = handle;
234		if (VFS_NEEDSGIANT(vp->v_mount))
235			vm_object_set_flag(object, OBJ_NEEDGIANT);
236		vp->v_object = object;
237	} else {
238		object->ref_count++;
239		VM_OBJECT_UNLOCK(object);
240	}
241	vref(vp);
242	return (object);
243}
244
245/*
246 *	The object must be locked.
247 */
248static void
249vnode_pager_dealloc(object)
250	vm_object_t object;
251{
252	struct vnode *vp = object->handle;
253
254	if (vp == NULL)
255		panic("vnode_pager_dealloc: pager already dealloced");
256
257	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
258	vm_object_pip_wait(object, "vnpdea");
259
260	object->handle = NULL;
261	object->type = OBJT_DEAD;
262	if (object->flags & OBJ_DISCONNECTWNT) {
263		vm_object_clear_flag(object, OBJ_DISCONNECTWNT);
264		wakeup(object);
265	}
266	ASSERT_VOP_LOCKED(vp, "vnode_pager_dealloc");
267	vp->v_object = NULL;
268	vp->v_vflag &= ~VV_TEXT;
269}
270
271static boolean_t
272vnode_pager_haspage(object, pindex, before, after)
273	vm_object_t object;
274	vm_pindex_t pindex;
275	int *before;
276	int *after;
277{
278	struct vnode *vp = object->handle;
279	daddr_t bn;
280	int err;
281	daddr_t reqblock;
282	int poff;
283	int bsize;
284	int pagesperblock, blocksperpage;
285	int vfslocked;
286
287	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
288	/*
289	 * If no vp or vp is doomed or marked transparent to VM, we do not
290	 * have the page.
291	 */
292	if (vp == NULL)
293		return FALSE;
294
295	VI_LOCK(vp);
296	if (vp->v_iflag & VI_DOOMED) {
297		VI_UNLOCK(vp);
298		return FALSE;
299	}
300	VI_UNLOCK(vp);
301	/*
302	 * If filesystem no longer mounted or offset beyond end of file we do
303	 * not have the page.
304	 */
305	if ((vp->v_mount == NULL) ||
306	    (IDX_TO_OFF(pindex) >= object->un_pager.vnp.vnp_size))
307		return FALSE;
308
309	bsize = vp->v_mount->mnt_stat.f_iosize;
310	pagesperblock = bsize / PAGE_SIZE;
311	blocksperpage = 0;
312	if (pagesperblock > 0) {
313		reqblock = pindex / pagesperblock;
314	} else {
315		blocksperpage = (PAGE_SIZE / bsize);
316		reqblock = pindex * blocksperpage;
317	}
318	VM_OBJECT_UNLOCK(object);
319	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
320	err = VOP_BMAP(vp, reqblock, NULL, &bn, after, before);
321	VFS_UNLOCK_GIANT(vfslocked);
322	VM_OBJECT_LOCK(object);
323	if (err)
324		return TRUE;
325	if (bn == -1)
326		return FALSE;
327	if (pagesperblock > 0) {
328		poff = pindex - (reqblock * pagesperblock);
329		if (before) {
330			*before *= pagesperblock;
331			*before += poff;
332		}
333		if (after) {
334			int numafter;
335			*after *= pagesperblock;
336			numafter = pagesperblock - (poff + 1);
337			if (IDX_TO_OFF(pindex + numafter) >
338			    object->un_pager.vnp.vnp_size) {
339				numafter =
340		    		    OFF_TO_IDX(object->un_pager.vnp.vnp_size) -
341				    pindex;
342			}
343			*after += numafter;
344		}
345	} else {
346		if (before) {
347			*before /= blocksperpage;
348		}
349
350		if (after) {
351			*after /= blocksperpage;
352		}
353	}
354	return TRUE;
355}
356
357/*
358 * Lets the VM system know about a change in size for a file.
359 * We adjust our own internal size and flush any cached pages in
360 * the associated object that are affected by the size change.
361 *
362 * Note: this routine may be invoked as a result of a pager put
363 * operation (possibly at object termination time), so we must be careful.
364 */
365void
366vnode_pager_setsize(vp, nsize)
367	struct vnode *vp;
368	vm_ooffset_t nsize;
369{
370	vm_object_t object;
371	vm_page_t m;
372	vm_pindex_t nobjsize;
373
374	if ((object = vp->v_object) == NULL)
375		return;
376	VM_OBJECT_LOCK(object);
377	if (nsize == object->un_pager.vnp.vnp_size) {
378		/*
379		 * Hasn't changed size
380		 */
381		VM_OBJECT_UNLOCK(object);
382		return;
383	}
384	nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
385	if (nsize < object->un_pager.vnp.vnp_size) {
386		/*
387		 * File has shrunk. Toss any cached pages beyond the new EOF.
388		 */
389		if (nobjsize < object->size)
390			vm_object_page_remove(object, nobjsize, object->size,
391			    FALSE);
392		/*
393		 * this gets rid of garbage at the end of a page that is now
394		 * only partially backed by the vnode.
395		 *
396		 * XXX for some reason (I don't know yet), if we take a
397		 * completely invalid page and mark it partially valid
398		 * it can screw up NFS reads, so we don't allow the case.
399		 */
400		if ((nsize & PAGE_MASK) &&
401		    (m = vm_page_lookup(object, OFF_TO_IDX(nsize))) != NULL &&
402		    m->valid != 0) {
403			int base = (int)nsize & PAGE_MASK;
404			int size = PAGE_SIZE - base;
405
406			/*
407			 * Clear out partial-page garbage in case
408			 * the page has been mapped.
409			 */
410			pmap_zero_page_area(m, base, size);
411
412			/*
413			 * XXX work around SMP data integrity race
414			 * by unmapping the page from user processes.
415			 * The garbage we just cleared may be mapped
416			 * to a user process running on another cpu
417			 * and this code is not running through normal
418			 * I/O channels which handle SMP issues for
419			 * us, so unmap page to synchronize all cpus.
420			 *
421			 * XXX should vm_pager_unmap_page() have
422			 * dealt with this?
423			 */
424			vm_page_lock_queues();
425			pmap_remove_all(m);
426
427			/*
428			 * Clear out partial-page dirty bits.  This
429			 * has the side effect of setting the valid
430			 * bits, but that is ok.  There are a bunch
431			 * of places in the VM system where we expected
432			 * m->dirty == VM_PAGE_BITS_ALL.  The file EOF
433			 * case is one of them.  If the page is still
434			 * partially dirty, make it fully dirty.
435			 *
436			 * note that we do not clear out the valid
437			 * bits.  This would prevent bogus_page
438			 * replacement from working properly.
439			 */
440			vm_page_set_validclean(m, base, size);
441			if (m->dirty != 0)
442				m->dirty = VM_PAGE_BITS_ALL;
443			vm_page_unlock_queues();
444		}
445	}
446	object->un_pager.vnp.vnp_size = nsize;
447	object->size = nobjsize;
448	VM_OBJECT_UNLOCK(object);
449}
450
451/*
452 * calculate the linear (byte) disk address of specified virtual
453 * file address
454 */
455static daddr_t
456vnode_pager_addr(vp, address, run)
457	struct vnode *vp;
458	vm_ooffset_t address;
459	int *run;
460{
461	daddr_t rtaddress;
462	int bsize;
463	daddr_t block;
464	int err;
465	daddr_t vblock;
466	daddr_t voffset;
467
468	if (address < 0)
469		return -1;
470
471	if (vp->v_mount == NULL)
472		return -1;
473
474	bsize = vp->v_mount->mnt_stat.f_iosize;
475	vblock = address / bsize;
476	voffset = address % bsize;
477
478	err = VOP_BMAP(vp, vblock, NULL, &block, run, NULL);
479
480	if (err || (block == -1))
481		rtaddress = -1;
482	else {
483		rtaddress = block + voffset / DEV_BSIZE;
484		if (run) {
485			*run += 1;
486			*run *= bsize/PAGE_SIZE;
487			*run -= voffset/PAGE_SIZE;
488		}
489	}
490
491	return rtaddress;
492}
493
494/*
495 * small block filesystem vnode pager input
496 */
497static int
498vnode_pager_input_smlfs(object, m)
499	vm_object_t object;
500	vm_page_t m;
501{
502	int i;
503	struct vnode *vp;
504	struct bufobj *bo;
505	struct buf *bp;
506	struct sf_buf *sf;
507	daddr_t fileaddr;
508	vm_offset_t bsize;
509	int error = 0;
510
511	vp = object->handle;
512	if (vp->v_mount == NULL)
513		return VM_PAGER_BAD;
514
515	bsize = vp->v_mount->mnt_stat.f_iosize;
516
517	VOP_BMAP(vp, 0, &bo, 0, NULL, NULL);
518
519	sf = sf_buf_alloc(m, 0);
520
521	for (i = 0; i < PAGE_SIZE / bsize; i++) {
522		vm_ooffset_t address;
523
524		if (vm_page_bits(i * bsize, bsize) & m->valid)
525			continue;
526
527		address = IDX_TO_OFF(m->pindex) + i * bsize;
528		if (address >= object->un_pager.vnp.vnp_size) {
529			fileaddr = -1;
530		} else {
531			fileaddr = vnode_pager_addr(vp, address, NULL);
532		}
533		if (fileaddr != -1) {
534			bp = getpbuf(&vnode_pbuf_freecnt);
535
536			/* build a minimal buffer header */
537			bp->b_iocmd = BIO_READ;
538			bp->b_iodone = bdone;
539			KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
540			KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
541			bp->b_rcred = crhold(curthread->td_ucred);
542			bp->b_wcred = crhold(curthread->td_ucred);
543			bp->b_data = (caddr_t)sf_buf_kva(sf) + i * bsize;
544			bp->b_blkno = fileaddr;
545			pbgetbo(bo, bp);
546			bp->b_bcount = bsize;
547			bp->b_bufsize = bsize;
548			bp->b_runningbufspace = bp->b_bufsize;
549			runningbufspace += bp->b_runningbufspace;
550
551			/* do the input */
552			bp->b_iooffset = dbtob(bp->b_blkno);
553			bstrategy(bp);
554
555			/* we definitely need to be at splvm here */
556
557			bwait(bp, PVM, "vnsrd");
558
559			if ((bp->b_ioflags & BIO_ERROR) != 0)
560				error = EIO;
561
562			/*
563			 * free the buffer header back to the swap buffer pool
564			 */
565			pbrelbo(bp);
566			relpbuf(bp, &vnode_pbuf_freecnt);
567			if (error)
568				break;
569
570			VM_OBJECT_LOCK(object);
571			vm_page_lock_queues();
572			vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize);
573			vm_page_unlock_queues();
574			VM_OBJECT_UNLOCK(object);
575		} else {
576			VM_OBJECT_LOCK(object);
577			vm_page_lock_queues();
578			vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize);
579			vm_page_unlock_queues();
580			VM_OBJECT_UNLOCK(object);
581			bzero((caddr_t)sf_buf_kva(sf) + i * bsize, bsize);
582		}
583	}
584	sf_buf_free(sf);
585	vm_page_lock_queues();
586	pmap_clear_modify(m);
587	vm_page_unlock_queues();
588	if (error) {
589		return VM_PAGER_ERROR;
590	}
591	return VM_PAGER_OK;
592
593}
594
595
596/*
597 * old style vnode pager input routine
598 */
599static int
600vnode_pager_input_old(object, m)
601	vm_object_t object;
602	vm_page_t m;
603{
604	struct uio auio;
605	struct iovec aiov;
606	int error;
607	int size;
608	struct sf_buf *sf;
609	struct vnode *vp;
610
611	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
612	error = 0;
613
614	/*
615	 * Return failure if beyond current EOF
616	 */
617	if (IDX_TO_OFF(m->pindex) >= object->un_pager.vnp.vnp_size) {
618		return VM_PAGER_BAD;
619	} else {
620		size = PAGE_SIZE;
621		if (IDX_TO_OFF(m->pindex) + size > object->un_pager.vnp.vnp_size)
622			size = object->un_pager.vnp.vnp_size - IDX_TO_OFF(m->pindex);
623		vp = object->handle;
624		VM_OBJECT_UNLOCK(object);
625
626		/*
627		 * Allocate a kernel virtual address and initialize so that
628		 * we can use VOP_READ/WRITE routines.
629		 */
630		sf = sf_buf_alloc(m, 0);
631
632		aiov.iov_base = (caddr_t)sf_buf_kva(sf);
633		aiov.iov_len = size;
634		auio.uio_iov = &aiov;
635		auio.uio_iovcnt = 1;
636		auio.uio_offset = IDX_TO_OFF(m->pindex);
637		auio.uio_segflg = UIO_SYSSPACE;
638		auio.uio_rw = UIO_READ;
639		auio.uio_resid = size;
640		auio.uio_td = curthread;
641
642		error = VOP_READ(vp, &auio, 0, curthread->td_ucred);
643		if (!error) {
644			int count = size - auio.uio_resid;
645
646			if (count == 0)
647				error = EINVAL;
648			else if (count != PAGE_SIZE)
649				bzero((caddr_t)sf_buf_kva(sf) + count,
650				    PAGE_SIZE - count);
651		}
652		sf_buf_free(sf);
653
654		VM_OBJECT_LOCK(object);
655	}
656	vm_page_lock_queues();
657	pmap_clear_modify(m);
658	vm_page_undirty(m);
659	vm_page_unlock_queues();
660	if (!error)
661		m->valid = VM_PAGE_BITS_ALL;
662	return error ? VM_PAGER_ERROR : VM_PAGER_OK;
663}
664
665/*
666 * generic vnode pager input routine
667 */
668
669/*
670 * Local media VFS's that do not implement their own VOP_GETPAGES
671 * should have their VOP_GETPAGES call to vnode_pager_generic_getpages()
672 * to implement the previous behaviour.
673 *
674 * All other FS's should use the bypass to get to the local media
675 * backing vp's VOP_GETPAGES.
676 */
677static int
678vnode_pager_getpages(object, m, count, reqpage)
679	vm_object_t object;
680	vm_page_t *m;
681	int count;
682	int reqpage;
683{
684	int rtval;
685	struct vnode *vp;
686	int bytes = count * PAGE_SIZE;
687	int vfslocked;
688
689	vp = object->handle;
690	VM_OBJECT_UNLOCK(object);
691	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
692	rtval = VOP_GETPAGES(vp, m, bytes, reqpage, 0);
693	KASSERT(rtval != EOPNOTSUPP,
694	    ("vnode_pager: FS getpages not implemented\n"));
695	VFS_UNLOCK_GIANT(vfslocked);
696	VM_OBJECT_LOCK(object);
697	return rtval;
698}
699
700/*
701 * This is now called from local media FS's to operate against their
702 * own vnodes if they fail to implement VOP_GETPAGES.
703 */
704int
705vnode_pager_generic_getpages(vp, m, bytecount, reqpage)
706	struct vnode *vp;
707	vm_page_t *m;
708	int bytecount;
709	int reqpage;
710{
711	vm_object_t object;
712	vm_offset_t kva;
713	off_t foff, tfoff, nextoff;
714	int i, j, size, bsize, first;
715	daddr_t firstaddr;
716	struct bufobj *bo;
717	int runpg;
718	int runend;
719	struct buf *bp;
720	int count;
721	int error = 0;
722
723	object = vp->v_object;
724	count = bytecount / PAGE_SIZE;
725
726	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
727	    ("vnode_pager_generic_getpages does not support devices"));
728	if (vp->v_mount == NULL)
729		return VM_PAGER_BAD;
730
731	bsize = vp->v_mount->mnt_stat.f_iosize;
732
733	/* get the UNDERLYING device for the file with VOP_BMAP() */
734
735	/*
736	 * originally, we did not check for an error return value -- assuming
737	 * an fs always has a bmap entry point -- that assumption is wrong!!!
738	 */
739	foff = IDX_TO_OFF(m[reqpage]->pindex);
740
741	/*
742	 * if we can't bmap, use old VOP code
743	 */
744	if (VOP_BMAP(vp, 0, &bo, 0, NULL, NULL)) {
745		VM_OBJECT_LOCK(object);
746		vm_page_lock_queues();
747		for (i = 0; i < count; i++)
748			if (i != reqpage)
749				vm_page_free(m[i]);
750		vm_page_unlock_queues();
751		cnt.v_vnodein++;
752		cnt.v_vnodepgsin++;
753		error = vnode_pager_input_old(object, m[reqpage]);
754		VM_OBJECT_UNLOCK(object);
755		return (error);
756
757		/*
758		 * if the blocksize is smaller than a page size, then use
759		 * special small filesystem code.  NFS sometimes has a small
760		 * blocksize, but it can handle large reads itself.
761		 */
762	} else if ((PAGE_SIZE / bsize) > 1 &&
763	    (vp->v_mount->mnt_stat.f_type != nfs_mount_type)) {
764		VM_OBJECT_LOCK(object);
765		vm_page_lock_queues();
766		for (i = 0; i < count; i++)
767			if (i != reqpage)
768				vm_page_free(m[i]);
769		vm_page_unlock_queues();
770		VM_OBJECT_UNLOCK(object);
771		cnt.v_vnodein++;
772		cnt.v_vnodepgsin++;
773		return vnode_pager_input_smlfs(object, m[reqpage]);
774	}
775
776	/*
777	 * If we have a completely valid page available to us, we can
778	 * clean up and return.  Otherwise we have to re-read the
779	 * media.
780	 */
781	VM_OBJECT_LOCK(object);
782	if (m[reqpage]->valid == VM_PAGE_BITS_ALL) {
783		vm_page_lock_queues();
784		for (i = 0; i < count; i++)
785			if (i != reqpage)
786				vm_page_free(m[i]);
787		vm_page_unlock_queues();
788		VM_OBJECT_UNLOCK(object);
789		return VM_PAGER_OK;
790	}
791	m[reqpage]->valid = 0;
792	VM_OBJECT_UNLOCK(object);
793
794	/*
795	 * here on direct device I/O
796	 */
797	firstaddr = -1;
798
799	/*
800	 * calculate the run that includes the required page
801	 */
802	for (first = 0, i = 0; i < count; i = runend) {
803		firstaddr = vnode_pager_addr(vp,
804			IDX_TO_OFF(m[i]->pindex), &runpg);
805		if (firstaddr == -1) {
806			VM_OBJECT_LOCK(object);
807			if (i == reqpage && foff < object->un_pager.vnp.vnp_size) {
808				panic("vnode_pager_getpages: unexpected missing page: firstaddr: %jd, foff: 0x%jx%08jx, vnp_size: 0x%jx%08jx",
809				    (intmax_t)firstaddr, (uintmax_t)(foff >> 32),
810				    (uintmax_t)foff,
811				    (uintmax_t)
812				    (object->un_pager.vnp.vnp_size >> 32),
813				    (uintmax_t)object->un_pager.vnp.vnp_size);
814			}
815			vm_page_lock_queues();
816			vm_page_free(m[i]);
817			vm_page_unlock_queues();
818			VM_OBJECT_UNLOCK(object);
819			runend = i + 1;
820			first = runend;
821			continue;
822		}
823		runend = i + runpg;
824		if (runend <= reqpage) {
825			VM_OBJECT_LOCK(object);
826			vm_page_lock_queues();
827			for (j = i; j < runend; j++)
828				vm_page_free(m[j]);
829			vm_page_unlock_queues();
830			VM_OBJECT_UNLOCK(object);
831		} else {
832			if (runpg < (count - first)) {
833				VM_OBJECT_LOCK(object);
834				vm_page_lock_queues();
835				for (i = first + runpg; i < count; i++)
836					vm_page_free(m[i]);
837				vm_page_unlock_queues();
838				VM_OBJECT_UNLOCK(object);
839				count = first + runpg;
840			}
841			break;
842		}
843		first = runend;
844	}
845
846	/*
847	 * the first and last page have been calculated now, move input pages
848	 * to be zero based...
849	 */
850	if (first != 0) {
851		for (i = first; i < count; i++) {
852			m[i - first] = m[i];
853		}
854		count -= first;
855		reqpage -= first;
856	}
857
858	/*
859	 * calculate the file virtual address for the transfer
860	 */
861	foff = IDX_TO_OFF(m[0]->pindex);
862
863	/*
864	 * calculate the size of the transfer
865	 */
866	size = count * PAGE_SIZE;
867	KASSERT(count > 0, ("zero count"));
868	if ((foff + size) > object->un_pager.vnp.vnp_size)
869		size = object->un_pager.vnp.vnp_size - foff;
870	KASSERT(size > 0, ("zero size"));
871
872	/*
873	 * round up physical size for real devices.
874	 */
875	if (1) {
876		int secmask = bo->bo_bsize - 1;
877		KASSERT(secmask < PAGE_SIZE && secmask > 0,
878		    ("vnode_pager_generic_getpages: sector size %d too large",
879		    secmask + 1));
880		size = (size + secmask) & ~secmask;
881	}
882
883	bp = getpbuf(&vnode_pbuf_freecnt);
884	kva = (vm_offset_t) bp->b_data;
885
886	/*
887	 * and map the pages to be read into the kva
888	 */
889	pmap_qenter(kva, m, count);
890
891	/* build a minimal buffer header */
892	bp->b_iocmd = BIO_READ;
893	bp->b_iodone = bdone;
894	KASSERT(bp->b_rcred == NOCRED, ("leaking read ucred"));
895	KASSERT(bp->b_wcred == NOCRED, ("leaking write ucred"));
896	bp->b_rcred = crhold(curthread->td_ucred);
897	bp->b_wcred = crhold(curthread->td_ucred);
898	bp->b_blkno = firstaddr;
899	pbgetbo(bo, bp);
900	bp->b_bcount = size;
901	bp->b_bufsize = size;
902	bp->b_runningbufspace = bp->b_bufsize;
903	runningbufspace += bp->b_runningbufspace;
904
905	cnt.v_vnodein++;
906	cnt.v_vnodepgsin += count;
907
908	/* do the input */
909	bp->b_iooffset = dbtob(bp->b_blkno);
910	bstrategy(bp);
911
912	bwait(bp, PVM, "vnread");
913
914	if ((bp->b_ioflags & BIO_ERROR) != 0)
915		error = EIO;
916
917	if (!error) {
918		if (size != count * PAGE_SIZE)
919			bzero((caddr_t) kva + size, PAGE_SIZE * count - size);
920	}
921	pmap_qremove(kva, count);
922
923	/*
924	 * free the buffer header back to the swap buffer pool
925	 */
926	pbrelbo(bp);
927	relpbuf(bp, &vnode_pbuf_freecnt);
928
929	VM_OBJECT_LOCK(object);
930	vm_page_lock_queues();
931	for (i = 0, tfoff = foff; i < count; i++, tfoff = nextoff) {
932		vm_page_t mt;
933
934		nextoff = tfoff + PAGE_SIZE;
935		mt = m[i];
936
937		if (nextoff <= object->un_pager.vnp.vnp_size) {
938			/*
939			 * Read filled up entire page.
940			 */
941			mt->valid = VM_PAGE_BITS_ALL;
942			vm_page_undirty(mt);	/* should be an assert? XXX */
943			pmap_clear_modify(mt);
944		} else {
945			/*
946			 * Read did not fill up entire page.  Since this
947			 * is getpages, the page may be mapped, so we have
948			 * to zero the invalid portions of the page even
949			 * though we aren't setting them valid.
950			 *
951			 * Currently we do not set the entire page valid,
952			 * we just try to clear the piece that we couldn't
953			 * read.
954			 */
955			vm_page_set_validclean(mt, 0,
956			    object->un_pager.vnp.vnp_size - tfoff);
957			/* handled by vm_fault now */
958			/* vm_page_zero_invalid(mt, FALSE); */
959		}
960
961		if (i != reqpage) {
962
963			/*
964			 * whether or not to leave the page activated is up in
965			 * the air, but we should put the page on a page queue
966			 * somewhere. (it already is in the object). Result:
967			 * It appears that empirical results show that
968			 * deactivating pages is best.
969			 */
970
971			/*
972			 * just in case someone was asking for this page we
973			 * now tell them that it is ok to use
974			 */
975			if (!error) {
976				if (mt->flags & PG_WANTED)
977					vm_page_activate(mt);
978				else
979					vm_page_deactivate(mt);
980				vm_page_wakeup(mt);
981			} else {
982				vm_page_free(mt);
983			}
984		}
985	}
986	vm_page_unlock_queues();
987	VM_OBJECT_UNLOCK(object);
988	if (error) {
989		printf("vnode_pager_getpages: I/O read error\n");
990	}
991	return (error ? VM_PAGER_ERROR : VM_PAGER_OK);
992}
993
994/*
995 * EOPNOTSUPP is no longer legal.  For local media VFS's that do not
996 * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
997 * vnode_pager_generic_putpages() to implement the previous behaviour.
998 *
999 * All other FS's should use the bypass to get to the local media
1000 * backing vp's VOP_PUTPAGES.
1001 */
1002static void
1003vnode_pager_putpages(object, m, count, sync, rtvals)
1004	vm_object_t object;
1005	vm_page_t *m;
1006	int count;
1007	boolean_t sync;
1008	int *rtvals;
1009{
1010	int rtval;
1011	struct vnode *vp;
1012	struct mount *mp;
1013	int bytes = count * PAGE_SIZE;
1014
1015	/*
1016	 * Force synchronous operation if we are extremely low on memory
1017	 * to prevent a low-memory deadlock.  VOP operations often need to
1018	 * allocate more memory to initiate the I/O ( i.e. do a BMAP
1019	 * operation ).  The swapper handles the case by limiting the amount
1020	 * of asynchronous I/O, but that sort of solution doesn't scale well
1021	 * for the vnode pager without a lot of work.
1022	 *
1023	 * Also, the backing vnode's iodone routine may not wake the pageout
1024	 * daemon up.  This should be probably be addressed XXX.
1025	 */
1026
1027	if ((cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min)
1028		sync |= OBJPC_SYNC;
1029
1030	/*
1031	 * Call device-specific putpages function
1032	 */
1033	vp = object->handle;
1034	VM_OBJECT_UNLOCK(object);
1035	if (vp->v_type != VREG)
1036		mp = NULL;
1037	(void)vn_start_write(vp, &mp, V_WAIT);
1038	rtval = VOP_PUTPAGES(vp, m, bytes, sync, rtvals, 0);
1039	KASSERT(rtval != EOPNOTSUPP,
1040	    ("vnode_pager: stale FS putpages\n"));
1041	vn_finished_write(mp);
1042	VM_OBJECT_LOCK(object);
1043}
1044
1045
1046/*
1047 * This is now called from local media FS's to operate against their
1048 * own vnodes if they fail to implement VOP_PUTPAGES.
1049 *
1050 * This is typically called indirectly via the pageout daemon and
1051 * clustering has already typically occured, so in general we ask the
1052 * underlying filesystem to write the data out asynchronously rather
1053 * then delayed.
1054 */
1055int
1056vnode_pager_generic_putpages(vp, m, bytecount, flags, rtvals)
1057	struct vnode *vp;
1058	vm_page_t *m;
1059	int bytecount;
1060	int flags;
1061	int *rtvals;
1062{
1063	int i;
1064	vm_object_t object;
1065	int count;
1066
1067	int maxsize, ncount;
1068	vm_ooffset_t poffset;
1069	struct uio auio;
1070	struct iovec aiov;
1071	int error;
1072	int ioflags;
1073
1074	object = vp->v_object;
1075	count = bytecount / PAGE_SIZE;
1076
1077	for (i = 0; i < count; i++)
1078		rtvals[i] = VM_PAGER_AGAIN;
1079
1080	if ((int64_t)m[0]->pindex < 0) {
1081		printf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%lx)\n",
1082			(long)m[0]->pindex, (u_long)m[0]->dirty);
1083		rtvals[0] = VM_PAGER_BAD;
1084		return VM_PAGER_BAD;
1085	}
1086
1087	maxsize = count * PAGE_SIZE;
1088	ncount = count;
1089
1090	poffset = IDX_TO_OFF(m[0]->pindex);
1091
1092	/*
1093	 * If the page-aligned write is larger then the actual file we
1094	 * have to invalidate pages occuring beyond the file EOF.  However,
1095	 * there is an edge case where a file may not be page-aligned where
1096	 * the last page is partially invalid.  In this case the filesystem
1097	 * may not properly clear the dirty bits for the entire page (which
1098	 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d).
1099	 * With the page locked we are free to fix-up the dirty bits here.
1100	 *
1101	 * We do not under any circumstances truncate the valid bits, as
1102	 * this will screw up bogus page replacement.
1103	 */
1104	if (maxsize + poffset > object->un_pager.vnp.vnp_size) {
1105		if (object->un_pager.vnp.vnp_size > poffset) {
1106			int pgoff;
1107
1108			maxsize = object->un_pager.vnp.vnp_size - poffset;
1109			ncount = btoc(maxsize);
1110			if ((pgoff = (int)maxsize & PAGE_MASK) != 0) {
1111				vm_page_lock_queues();
1112				vm_page_clear_dirty(m[ncount - 1], pgoff,
1113					PAGE_SIZE - pgoff);
1114				vm_page_unlock_queues();
1115			}
1116		} else {
1117			maxsize = 0;
1118			ncount = 0;
1119		}
1120		if (ncount < count) {
1121			for (i = ncount; i < count; i++) {
1122				rtvals[i] = VM_PAGER_BAD;
1123			}
1124		}
1125	}
1126
1127	/*
1128	 * pageouts are already clustered, use IO_ASYNC t o force a bawrite()
1129	 * rather then a bdwrite() to prevent paging I/O from saturating
1130	 * the buffer cache.  Dummy-up the sequential heuristic to cause
1131	 * large ranges to cluster.  If neither IO_SYNC or IO_ASYNC is set,
1132	 * the system decides how to cluster.
1133	 */
1134	ioflags = IO_VMIO;
1135	if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL))
1136		ioflags |= IO_SYNC;
1137	else if ((flags & VM_PAGER_CLUSTER_OK) == 0)
1138		ioflags |= IO_ASYNC;
1139	ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0;
1140	ioflags |= IO_SEQMAX << IO_SEQSHIFT;
1141
1142	aiov.iov_base = (caddr_t) 0;
1143	aiov.iov_len = maxsize;
1144	auio.uio_iov = &aiov;
1145	auio.uio_iovcnt = 1;
1146	auio.uio_offset = poffset;
1147	auio.uio_segflg = UIO_NOCOPY;
1148	auio.uio_rw = UIO_WRITE;
1149	auio.uio_resid = maxsize;
1150	auio.uio_td = (struct thread *) 0;
1151	error = VOP_WRITE(vp, &auio, ioflags, curthread->td_ucred);
1152	cnt.v_vnodeout++;
1153	cnt.v_vnodepgsout += ncount;
1154
1155	if (error) {
1156		printf("vnode_pager_putpages: I/O error %d\n", error);
1157	}
1158	if (auio.uio_resid) {
1159		printf("vnode_pager_putpages: residual I/O %d at %lu\n",
1160		    auio.uio_resid, (u_long)m[0]->pindex);
1161	}
1162	for (i = 0; i < ncount; i++) {
1163		rtvals[i] = VM_PAGER_OK;
1164	}
1165	return rtvals[0];
1166}
1167
1168struct vnode *
1169vnode_pager_lock(vm_object_t first_object)
1170{
1171	struct vnode *vp;
1172	vm_object_t backing_object, object;
1173
1174	VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
1175	for (object = first_object; object != NULL; object = backing_object) {
1176		if (object->type != OBJT_VNODE) {
1177			if ((backing_object = object->backing_object) != NULL)
1178				VM_OBJECT_LOCK(backing_object);
1179			if (object != first_object)
1180				VM_OBJECT_UNLOCK(object);
1181			continue;
1182		}
1183	retry:
1184		if (object->flags & OBJ_DEAD) {
1185			if (object != first_object)
1186				VM_OBJECT_UNLOCK(object);
1187			return NULL;
1188		}
1189		vp = object->handle;
1190		VI_LOCK(vp);
1191		VM_OBJECT_UNLOCK(object);
1192		if (first_object != object)
1193			VM_OBJECT_UNLOCK(first_object);
1194		VFS_ASSERT_GIANT(vp->v_mount);
1195		if (vget(vp, LK_CANRECURSE | LK_INTERLOCK |
1196		    LK_RETRY | LK_SHARED, curthread)) {
1197			VM_OBJECT_LOCK(first_object);
1198			if (object != first_object)
1199				VM_OBJECT_LOCK(object);
1200			if (object->type != OBJT_VNODE) {
1201				if (object != first_object)
1202					VM_OBJECT_UNLOCK(object);
1203				return NULL;
1204			}
1205			printf("vnode_pager_lock: retrying\n");
1206			goto retry;
1207		}
1208		VM_OBJECT_LOCK(first_object);
1209		return (vp);
1210	}
1211	return NULL;
1212}
1213