vm_reserv.c revision 269072
1/*-
2 * Copyright (c) 2002-2006 Rice University
3 * Copyright (c) 2007-2008 Alan L. Cox <alc@cs.rice.edu>
4 * All rights reserved.
5 *
6 * This software was developed for the FreeBSD Project by Alan L. Cox,
7 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in the
16 *    documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32/*
33 *	Superpage reservation management module
34 *
35 * Any external functions defined by this module are only to be used by the
36 * virtual memory system.
37 */
38
39#include <sys/cdefs.h>
40__FBSDID("$FreeBSD: stable/10/sys/vm/vm_reserv.c 269072 2014-07-24 16:29:44Z kib $");
41
42#include "opt_vm.h"
43
44#include <sys/param.h>
45#include <sys/kernel.h>
46#include <sys/lock.h>
47#include <sys/malloc.h>
48#include <sys/mutex.h>
49#include <sys/queue.h>
50#include <sys/rwlock.h>
51#include <sys/sbuf.h>
52#include <sys/sysctl.h>
53#include <sys/systm.h>
54
55#include <vm/vm.h>
56#include <vm/vm_param.h>
57#include <vm/vm_object.h>
58#include <vm/vm_page.h>
59#include <vm/vm_phys.h>
60#include <vm/vm_radix.h>
61#include <vm/vm_reserv.h>
62
63/*
64 * The reservation system supports the speculative allocation of large physical
65 * pages ("superpages").  Speculative allocation enables the fully-automatic
66 * utilization of superpages by the virtual memory system.  In other words, no
67 * programmatic directives are required to use superpages.
68 */
69
70#if VM_NRESERVLEVEL > 0
71
72/*
73 * The number of small pages that are contained in a level 0 reservation
74 */
75#define	VM_LEVEL_0_NPAGES	(1 << VM_LEVEL_0_ORDER)
76
77/*
78 * The number of bits by which a physical address is shifted to obtain the
79 * reservation number
80 */
81#define	VM_LEVEL_0_SHIFT	(VM_LEVEL_0_ORDER + PAGE_SHIFT)
82
83/*
84 * The size of a level 0 reservation in bytes
85 */
86#define	VM_LEVEL_0_SIZE		(1 << VM_LEVEL_0_SHIFT)
87
88/*
89 * Computes the index of the small page underlying the given (object, pindex)
90 * within the reservation's array of small pages.
91 */
92#define	VM_RESERV_INDEX(object, pindex)	\
93    (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1))
94
95/*
96 * The reservation structure
97 *
98 * A reservation structure is constructed whenever a large physical page is
99 * speculatively allocated to an object.  The reservation provides the small
100 * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets
101 * within that object.  The reservation's "popcnt" tracks the number of these
102 * small physical pages that are in use at any given time.  When and if the
103 * reservation is not fully utilized, it appears in the queue of partially-
104 * populated reservations.  The reservation always appears on the containing
105 * object's list of reservations.
106 *
107 * A partially-populated reservation can be broken and reclaimed at any time.
108 */
109struct vm_reserv {
110	TAILQ_ENTRY(vm_reserv) partpopq;
111	LIST_ENTRY(vm_reserv) objq;
112	vm_object_t	object;			/* containing object */
113	vm_pindex_t	pindex;			/* offset within object */
114	vm_page_t	pages;			/* first page of a superpage */
115	int		popcnt;			/* # of pages in use */
116	char		inpartpopq;
117};
118
119/*
120 * The reservation array
121 *
122 * This array is analoguous in function to vm_page_array.  It differs in the
123 * respect that it may contain a greater number of useful reservation
124 * structures than there are (physical) superpages.  These "invalid"
125 * reservation structures exist to trade-off space for time in the
126 * implementation of vm_reserv_from_page().  Invalid reservation structures are
127 * distinguishable from "valid" reservation structures by inspecting the
128 * reservation's "pages" field.  Invalid reservation structures have a NULL
129 * "pages" field.
130 *
131 * vm_reserv_from_page() maps a small (physical) page to an element of this
132 * array by computing a physical reservation number from the page's physical
133 * address.  The physical reservation number is used as the array index.
134 *
135 * An "active" reservation is a valid reservation structure that has a non-NULL
136 * "object" field and a non-zero "popcnt" field.  In other words, every active
137 * reservation belongs to a particular object.  Moreover, every active
138 * reservation has an entry in the containing object's list of reservations.
139 */
140static vm_reserv_t vm_reserv_array;
141
142/*
143 * The partially-populated reservation queue
144 *
145 * This queue enables the fast recovery of an unused cached or free small page
146 * from a partially-populated reservation.  The reservation at the head of
147 * this queue is the least-recently-changed, partially-populated reservation.
148 *
149 * Access to this queue is synchronized by the free page queue lock.
150 */
151static TAILQ_HEAD(, vm_reserv) vm_rvq_partpop =
152			    TAILQ_HEAD_INITIALIZER(vm_rvq_partpop);
153
154static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD, 0, "Reservation Info");
155
156static long vm_reserv_broken;
157SYSCTL_LONG(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD,
158    &vm_reserv_broken, 0, "Cumulative number of broken reservations");
159
160static long vm_reserv_freed;
161SYSCTL_LONG(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD,
162    &vm_reserv_freed, 0, "Cumulative number of freed reservations");
163
164static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS);
165
166SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0,
167    sysctl_vm_reserv_partpopq, "A", "Partially-populated reservation queues");
168
169static long vm_reserv_reclaimed;
170SYSCTL_LONG(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD,
171    &vm_reserv_reclaimed, 0, "Cumulative number of reclaimed reservations");
172
173static void		vm_reserv_depopulate(vm_reserv_t rv);
174static vm_reserv_t	vm_reserv_from_page(vm_page_t m);
175static boolean_t	vm_reserv_has_pindex(vm_reserv_t rv,
176			    vm_pindex_t pindex);
177static void		vm_reserv_populate(vm_reserv_t rv);
178static void		vm_reserv_reclaim(vm_reserv_t rv);
179
180/*
181 * Describes the current state of the partially-populated reservation queue.
182 */
183static int
184sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS)
185{
186	struct sbuf sbuf;
187	vm_reserv_t rv;
188	int counter, error, level, unused_pages;
189
190	error = sysctl_wire_old_buffer(req, 0);
191	if (error != 0)
192		return (error);
193	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
194	sbuf_printf(&sbuf, "\nLEVEL     SIZE  NUMBER\n\n");
195	for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) {
196		counter = 0;
197		unused_pages = 0;
198		mtx_lock(&vm_page_queue_free_mtx);
199		TAILQ_FOREACH(rv, &vm_rvq_partpop/*[level]*/, partpopq) {
200			counter++;
201			unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt;
202		}
203		mtx_unlock(&vm_page_queue_free_mtx);
204		sbuf_printf(&sbuf, "%5d: %6dK, %6d\n", level,
205		    unused_pages * ((int)PAGE_SIZE / 1024), counter);
206	}
207	error = sbuf_finish(&sbuf);
208	sbuf_delete(&sbuf);
209	return (error);
210}
211
212/*
213 * Reduces the given reservation's population count.  If the population count
214 * becomes zero, the reservation is destroyed.  Additionally, moves the
215 * reservation to the tail of the partially-populated reservations queue if the
216 * population count is non-zero.
217 *
218 * The free page queue lock must be held.
219 */
220static void
221vm_reserv_depopulate(vm_reserv_t rv)
222{
223
224	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
225	KASSERT(rv->object != NULL,
226	    ("vm_reserv_depopulate: reserv %p is free", rv));
227	KASSERT(rv->popcnt > 0,
228	    ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv));
229	if (rv->inpartpopq) {
230		TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
231		rv->inpartpopq = FALSE;
232	} else {
233		KASSERT(rv->pages->psind == 1,
234		    ("vm_reserv_depopulate: reserv %p is already demoted",
235		    rv));
236		rv->pages->psind = 0;
237	}
238	rv->popcnt--;
239	if (rv->popcnt == 0) {
240		LIST_REMOVE(rv, objq);
241		rv->object = NULL;
242		vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER);
243		vm_reserv_freed++;
244	} else {
245		rv->inpartpopq = TRUE;
246		TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq);
247	}
248}
249
250/*
251 * Returns the reservation to which the given page might belong.
252 */
253static __inline vm_reserv_t
254vm_reserv_from_page(vm_page_t m)
255{
256
257	return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]);
258}
259
260/*
261 * Returns TRUE if the given reservation contains the given page index and
262 * FALSE otherwise.
263 */
264static __inline boolean_t
265vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex)
266{
267
268	return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0);
269}
270
271/*
272 * Increases the given reservation's population count.  Moves the reservation
273 * to the tail of the partially-populated reservation queue.
274 *
275 * The free page queue must be locked.
276 */
277static void
278vm_reserv_populate(vm_reserv_t rv)
279{
280
281	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
282	KASSERT(rv->object != NULL,
283	    ("vm_reserv_populate: reserv %p is free", rv));
284	KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES,
285	    ("vm_reserv_populate: reserv %p is already full", rv));
286	KASSERT(rv->pages->psind == 0,
287	    ("vm_reserv_populate: reserv %p is already promoted", rv));
288	if (rv->inpartpopq) {
289		TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
290		rv->inpartpopq = FALSE;
291	}
292	rv->popcnt++;
293	if (rv->popcnt < VM_LEVEL_0_NPAGES) {
294		rv->inpartpopq = TRUE;
295		TAILQ_INSERT_TAIL(&vm_rvq_partpop, rv, partpopq);
296	} else
297		rv->pages->psind = 1;
298}
299
300/*
301 * Allocates a contiguous set of physical pages of the given size "npages"
302 * from an existing or newly-created reservation.  All of the physical pages
303 * must be at or above the given physical address "low" and below the given
304 * physical address "high".  The given value "alignment" determines the
305 * alignment of the first physical page in the set.  If the given value
306 * "boundary" is non-zero, then the set of physical pages cannot cross any
307 * physical address boundary that is a multiple of that value.  Both
308 * "alignment" and "boundary" must be a power of two.
309 *
310 * The object and free page queue must be locked.
311 */
312vm_page_t
313vm_reserv_alloc_contig(vm_object_t object, vm_pindex_t pindex, u_long npages,
314    vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
315{
316	vm_paddr_t pa, size;
317	vm_page_t m, m_ret, mpred, msucc;
318	vm_pindex_t first, leftcap, rightcap;
319	vm_reserv_t rv;
320	u_long allocpages, maxpages, minpages;
321	int i, index, n;
322
323	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
324	VM_OBJECT_ASSERT_WLOCKED(object);
325	KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0"));
326
327	/*
328	 * Is a reservation fundamentally impossible?
329	 */
330	if (pindex < VM_RESERV_INDEX(object, pindex) ||
331	    pindex + npages > object->size)
332		return (NULL);
333
334	/*
335	 * All reservations of a particular size have the same alignment.
336	 * Assuming that the first page is allocated from a reservation, the
337	 * least significant bits of its physical address can be determined
338	 * from its offset from the beginning of the reservation and the size
339	 * of the reservation.
340	 *
341	 * Could the specified index within a reservation of the smallest
342	 * possible size satisfy the alignment and boundary requirements?
343	 */
344	pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT;
345	if ((pa & (alignment - 1)) != 0)
346		return (NULL);
347	size = npages << PAGE_SHIFT;
348	if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
349		return (NULL);
350
351	/*
352	 * Look for an existing reservation.
353	 */
354	mpred = vm_radix_lookup_le(&object->rtree, pindex);
355	if (mpred != NULL) {
356		KASSERT(mpred->pindex < pindex,
357		    ("vm_reserv_alloc_contig: pindex already allocated"));
358		rv = vm_reserv_from_page(mpred);
359		if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
360			goto found;
361		msucc = TAILQ_NEXT(mpred, listq);
362	} else
363		msucc = TAILQ_FIRST(&object->memq);
364	if (msucc != NULL) {
365		KASSERT(msucc->pindex > pindex,
366		    ("vm_reserv_alloc_page: pindex already allocated"));
367		rv = vm_reserv_from_page(msucc);
368		if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
369			goto found;
370	}
371
372	/*
373	 * Could at least one reservation fit between the first index to the
374	 * left that can be used and the first index to the right that cannot
375	 * be used?
376	 */
377	first = pindex - VM_RESERV_INDEX(object, pindex);
378	if (mpred != NULL) {
379		if ((rv = vm_reserv_from_page(mpred))->object != object)
380			leftcap = mpred->pindex + 1;
381		else
382			leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
383		if (leftcap > first)
384			return (NULL);
385	}
386	minpages = VM_RESERV_INDEX(object, pindex) + npages;
387	maxpages = roundup2(minpages, VM_LEVEL_0_NPAGES);
388	allocpages = maxpages;
389	if (msucc != NULL) {
390		if ((rv = vm_reserv_from_page(msucc))->object != object)
391			rightcap = msucc->pindex;
392		else
393			rightcap = rv->pindex;
394		if (first + maxpages > rightcap) {
395			if (maxpages == VM_LEVEL_0_NPAGES)
396				return (NULL);
397			allocpages = minpages;
398		}
399	}
400
401	/*
402	 * Would the last new reservation extend past the end of the object?
403	 */
404	if (first + maxpages > object->size) {
405		/*
406		 * Don't allocate the last new reservation if the object is a
407		 * vnode or backed by another object that is a vnode.
408		 */
409		if (object->type == OBJT_VNODE ||
410		    (object->backing_object != NULL &&
411		    object->backing_object->type == OBJT_VNODE)) {
412			if (maxpages == VM_LEVEL_0_NPAGES)
413				return (NULL);
414			allocpages = minpages;
415		}
416		/* Speculate that the object may grow. */
417	}
418
419	/*
420	 * Allocate and populate the new reservations.  The alignment and
421	 * boundary specified for this allocation may be different from the
422	 * alignment and boundary specified for the requested pages.  For
423	 * instance, the specified index may not be the first page within the
424	 * first new reservation.
425	 */
426	m = vm_phys_alloc_contig(allocpages, low, high, ulmax(alignment,
427	    VM_LEVEL_0_SIZE), boundary > VM_LEVEL_0_SIZE ? boundary : 0);
428	if (m == NULL)
429		return (NULL);
430	m_ret = NULL;
431	index = VM_RESERV_INDEX(object, pindex);
432	do {
433		rv = vm_reserv_from_page(m);
434		KASSERT(rv->pages == m,
435		    ("vm_reserv_alloc_contig: reserv %p's pages is corrupted",
436		    rv));
437		KASSERT(rv->object == NULL,
438		    ("vm_reserv_alloc_contig: reserv %p isn't free", rv));
439		LIST_INSERT_HEAD(&object->rvq, rv, objq);
440		rv->object = object;
441		rv->pindex = first;
442		KASSERT(rv->popcnt == 0,
443		    ("vm_reserv_alloc_contig: reserv %p's popcnt is corrupted",
444		    rv));
445		KASSERT(!rv->inpartpopq,
446		    ("vm_reserv_alloc_contig: reserv %p's inpartpopq is TRUE",
447		    rv));
448		n = ulmin(VM_LEVEL_0_NPAGES - index, npages);
449		for (i = 0; i < n; i++)
450			vm_reserv_populate(rv);
451		npages -= n;
452		if (m_ret == NULL) {
453			m_ret = &rv->pages[index];
454			index = 0;
455		}
456		m += VM_LEVEL_0_NPAGES;
457		first += VM_LEVEL_0_NPAGES;
458		allocpages -= VM_LEVEL_0_NPAGES;
459	} while (allocpages > 0);
460	return (m_ret);
461
462	/*
463	 * Found a matching reservation.
464	 */
465found:
466	index = VM_RESERV_INDEX(object, pindex);
467	/* Does the allocation fit within the reservation? */
468	if (index + npages > VM_LEVEL_0_NPAGES)
469		return (NULL);
470	m = &rv->pages[index];
471	pa = VM_PAGE_TO_PHYS(m);
472	if (pa < low || pa + size > high || (pa & (alignment - 1)) != 0 ||
473	    ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
474		return (NULL);
475	/* Handle vm_page_rename(m, new_object, ...). */
476	for (i = 0; i < npages; i++)
477		if ((rv->pages[index + i].flags & (PG_CACHED | PG_FREE)) == 0)
478			return (NULL);
479	for (i = 0; i < npages; i++)
480		vm_reserv_populate(rv);
481	return (m);
482}
483
484/*
485 * Allocates a page from an existing or newly-created reservation.
486 *
487 * The page "mpred" must immediately precede the offset "pindex" within the
488 * specified object.
489 *
490 * The object and free page queue must be locked.
491 */
492vm_page_t
493vm_reserv_alloc_page(vm_object_t object, vm_pindex_t pindex, vm_page_t mpred)
494{
495	vm_page_t m, msucc;
496	vm_pindex_t first, leftcap, rightcap;
497	vm_reserv_t rv;
498
499	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
500	VM_OBJECT_ASSERT_WLOCKED(object);
501
502	/*
503	 * Is a reservation fundamentally impossible?
504	 */
505	if (pindex < VM_RESERV_INDEX(object, pindex) ||
506	    pindex >= object->size)
507		return (NULL);
508
509	/*
510	 * Look for an existing reservation.
511	 */
512	if (mpred != NULL) {
513		KASSERT(mpred->object == object,
514		    ("vm_reserv_alloc_page: object doesn't contain mpred"));
515		KASSERT(mpred->pindex < pindex,
516		    ("vm_reserv_alloc_page: mpred doesn't precede pindex"));
517		rv = vm_reserv_from_page(mpred);
518		if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
519			goto found;
520		msucc = TAILQ_NEXT(mpred, listq);
521	} else
522		msucc = TAILQ_FIRST(&object->memq);
523	if (msucc != NULL) {
524		KASSERT(msucc->pindex > pindex,
525		    ("vm_reserv_alloc_page: msucc doesn't succeed pindex"));
526		rv = vm_reserv_from_page(msucc);
527		if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
528			goto found;
529	}
530
531	/*
532	 * Could a reservation fit between the first index to the left that
533	 * can be used and the first index to the right that cannot be used?
534	 */
535	first = pindex - VM_RESERV_INDEX(object, pindex);
536	if (mpred != NULL) {
537		if ((rv = vm_reserv_from_page(mpred))->object != object)
538			leftcap = mpred->pindex + 1;
539		else
540			leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
541		if (leftcap > first)
542			return (NULL);
543	}
544	if (msucc != NULL) {
545		if ((rv = vm_reserv_from_page(msucc))->object != object)
546			rightcap = msucc->pindex;
547		else
548			rightcap = rv->pindex;
549		if (first + VM_LEVEL_0_NPAGES > rightcap)
550			return (NULL);
551	}
552
553	/*
554	 * Would a new reservation extend past the end of the object?
555	 */
556	if (first + VM_LEVEL_0_NPAGES > object->size) {
557		/*
558		 * Don't allocate a new reservation if the object is a vnode or
559		 * backed by another object that is a vnode.
560		 */
561		if (object->type == OBJT_VNODE ||
562		    (object->backing_object != NULL &&
563		    object->backing_object->type == OBJT_VNODE))
564			return (NULL);
565		/* Speculate that the object may grow. */
566	}
567
568	/*
569	 * Allocate and populate the new reservation.
570	 */
571	m = vm_phys_alloc_pages(VM_FREEPOOL_DEFAULT, VM_LEVEL_0_ORDER);
572	if (m == NULL)
573		return (NULL);
574	rv = vm_reserv_from_page(m);
575	KASSERT(rv->pages == m,
576	    ("vm_reserv_alloc_page: reserv %p's pages is corrupted", rv));
577	KASSERT(rv->object == NULL,
578	    ("vm_reserv_alloc_page: reserv %p isn't free", rv));
579	LIST_INSERT_HEAD(&object->rvq, rv, objq);
580	rv->object = object;
581	rv->pindex = first;
582	KASSERT(rv->popcnt == 0,
583	    ("vm_reserv_alloc_page: reserv %p's popcnt is corrupted", rv));
584	KASSERT(!rv->inpartpopq,
585	    ("vm_reserv_alloc_page: reserv %p's inpartpopq is TRUE", rv));
586	vm_reserv_populate(rv);
587	return (&rv->pages[VM_RESERV_INDEX(object, pindex)]);
588
589	/*
590	 * Found a matching reservation.
591	 */
592found:
593	m = &rv->pages[VM_RESERV_INDEX(object, pindex)];
594	/* Handle vm_page_rename(m, new_object, ...). */
595	if ((m->flags & (PG_CACHED | PG_FREE)) == 0)
596		return (NULL);
597	vm_reserv_populate(rv);
598	return (m);
599}
600
601/*
602 * Breaks all reservations belonging to the given object.
603 */
604void
605vm_reserv_break_all(vm_object_t object)
606{
607	vm_reserv_t rv;
608	int i;
609
610	mtx_lock(&vm_page_queue_free_mtx);
611	while ((rv = LIST_FIRST(&object->rvq)) != NULL) {
612		KASSERT(rv->object == object,
613		    ("vm_reserv_break_all: reserv %p is corrupted", rv));
614		if (rv->inpartpopq) {
615			TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
616			rv->inpartpopq = FALSE;
617		}
618		LIST_REMOVE(rv, objq);
619		rv->object = NULL;
620		for (i = 0; i < VM_LEVEL_0_NPAGES; i++) {
621			if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
622				vm_phys_free_pages(&rv->pages[i], 0);
623			else
624				rv->popcnt--;
625		}
626		KASSERT(rv->popcnt == 0,
627		    ("vm_reserv_break_all: reserv %p's popcnt is corrupted",
628		    rv));
629		vm_reserv_broken++;
630	}
631	mtx_unlock(&vm_page_queue_free_mtx);
632}
633
634/*
635 * Frees the given page if it belongs to a reservation.  Returns TRUE if the
636 * page is freed and FALSE otherwise.
637 *
638 * The free page queue lock must be held.
639 */
640boolean_t
641vm_reserv_free_page(vm_page_t m)
642{
643	vm_reserv_t rv;
644
645	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
646	rv = vm_reserv_from_page(m);
647	if (rv->object == NULL)
648		return (FALSE);
649	if ((m->flags & PG_CACHED) != 0 && m->pool != VM_FREEPOOL_CACHE)
650		vm_phys_set_pool(VM_FREEPOOL_CACHE, rv->pages,
651		    VM_LEVEL_0_ORDER);
652	vm_reserv_depopulate(rv);
653	return (TRUE);
654}
655
656/*
657 * Initializes the reservation management system.  Specifically, initializes
658 * the reservation array.
659 *
660 * Requires that vm_page_array and first_page are initialized!
661 */
662void
663vm_reserv_init(void)
664{
665	vm_paddr_t paddr;
666	int i;
667
668	/*
669	 * Initialize the reservation array.  Specifically, initialize the
670	 * "pages" field for every element that has an underlying superpage.
671	 */
672	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
673		paddr = roundup2(phys_avail[i], VM_LEVEL_0_SIZE);
674		while (paddr + VM_LEVEL_0_SIZE <= phys_avail[i + 1]) {
675			vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT].pages =
676			    PHYS_TO_VM_PAGE(paddr);
677			paddr += VM_LEVEL_0_SIZE;
678		}
679	}
680}
681
682/*
683 * Returns a reservation level if the given page belongs to a fully-populated
684 * reservation and -1 otherwise.
685 */
686int
687vm_reserv_level_iffullpop(vm_page_t m)
688{
689	vm_reserv_t rv;
690
691	rv = vm_reserv_from_page(m);
692	return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1);
693}
694
695/*
696 * Prepare for the reactivation of a cached page.
697 *
698 * First, suppose that the given page "m" was allocated individually, i.e., not
699 * as part of a reservation, and cached.  Then, suppose a reservation
700 * containing "m" is allocated by the same object.  Although "m" and the
701 * reservation belong to the same object, "m"'s pindex may not match the
702 * reservation's.
703 *
704 * The free page queue must be locked.
705 */
706boolean_t
707vm_reserv_reactivate_page(vm_page_t m)
708{
709	vm_reserv_t rv;
710	int i, m_index;
711
712	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
713	rv = vm_reserv_from_page(m);
714	if (rv->object == NULL)
715		return (FALSE);
716	KASSERT((m->flags & PG_CACHED) != 0,
717	    ("vm_reserv_uncache_page: page %p is not cached", m));
718	if (m->object == rv->object &&
719	    m->pindex - rv->pindex == VM_RESERV_INDEX(m->object, m->pindex))
720		vm_reserv_populate(rv);
721	else {
722		KASSERT(rv->inpartpopq,
723		    ("vm_reserv_uncache_page: reserv %p's inpartpopq is FALSE",
724		    rv));
725		TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
726		rv->inpartpopq = FALSE;
727		LIST_REMOVE(rv, objq);
728		rv->object = NULL;
729		/* Don't vm_phys_free_pages(m, 0). */
730		m_index = m - rv->pages;
731		for (i = 0; i < m_index; i++) {
732			if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
733				vm_phys_free_pages(&rv->pages[i], 0);
734			else
735				rv->popcnt--;
736		}
737		for (i++; i < VM_LEVEL_0_NPAGES; i++) {
738			if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
739				vm_phys_free_pages(&rv->pages[i], 0);
740			else
741				rv->popcnt--;
742		}
743		KASSERT(rv->popcnt == 0,
744		    ("vm_reserv_uncache_page: reserv %p's popcnt is corrupted",
745		    rv));
746		vm_reserv_broken++;
747	}
748	return (TRUE);
749}
750
751/*
752 * Breaks the given partially-populated reservation, releasing its cached and
753 * free pages to the physical memory allocator.
754 *
755 * The free page queue lock must be held.
756 */
757static void
758vm_reserv_reclaim(vm_reserv_t rv)
759{
760	int i;
761
762	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
763	KASSERT(rv->inpartpopq,
764	    ("vm_reserv_reclaim: reserv %p's inpartpopq is corrupted", rv));
765	TAILQ_REMOVE(&vm_rvq_partpop, rv, partpopq);
766	rv->inpartpopq = FALSE;
767	KASSERT(rv->object != NULL,
768	    ("vm_reserv_reclaim: reserv %p is free", rv));
769	LIST_REMOVE(rv, objq);
770	rv->object = NULL;
771	for (i = 0; i < VM_LEVEL_0_NPAGES; i++) {
772		if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0)
773			vm_phys_free_pages(&rv->pages[i], 0);
774		else
775			rv->popcnt--;
776	}
777	KASSERT(rv->popcnt == 0,
778	    ("vm_reserv_reclaim: reserv %p's popcnt is corrupted", rv));
779	vm_reserv_reclaimed++;
780}
781
782/*
783 * Breaks the reservation at the head of the partially-populated reservation
784 * queue, releasing its cached and free pages to the physical memory
785 * allocator.  Returns TRUE if a reservation is broken and FALSE otherwise.
786 *
787 * The free page queue lock must be held.
788 */
789boolean_t
790vm_reserv_reclaim_inactive(void)
791{
792	vm_reserv_t rv;
793
794	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
795	if ((rv = TAILQ_FIRST(&vm_rvq_partpop)) != NULL) {
796		vm_reserv_reclaim(rv);
797		return (TRUE);
798	}
799	return (FALSE);
800}
801
802/*
803 * Searches the partially-populated reservation queue for the least recently
804 * active reservation with unused pages, i.e., cached or free, that satisfy the
805 * given request for contiguous physical memory.  If a satisfactory reservation
806 * is found, it is broken.  Returns TRUE if a reservation is broken and FALSE
807 * otherwise.
808 *
809 * The free page queue lock must be held.
810 */
811boolean_t
812vm_reserv_reclaim_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
813    u_long alignment, vm_paddr_t boundary)
814{
815	vm_paddr_t pa, pa_length, size;
816	vm_reserv_t rv;
817	int i;
818
819	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
820	if (npages > VM_LEVEL_0_NPAGES - 1)
821		return (FALSE);
822	size = npages << PAGE_SHIFT;
823	TAILQ_FOREACH(rv, &vm_rvq_partpop, partpopq) {
824		pa = VM_PAGE_TO_PHYS(&rv->pages[VM_LEVEL_0_NPAGES - 1]);
825		if (pa + PAGE_SIZE - size < low) {
826			/* this entire reservation is too low; go to next */
827			continue;
828		}
829		pa_length = 0;
830		for (i = 0; i < VM_LEVEL_0_NPAGES; i++)
831			if ((rv->pages[i].flags & (PG_CACHED | PG_FREE)) != 0) {
832				pa_length += PAGE_SIZE;
833				if (pa_length == PAGE_SIZE) {
834					pa = VM_PAGE_TO_PHYS(&rv->pages[i]);
835					if (pa + size > high) {
836						/* skip to next reservation */
837						break;
838					} else if (pa < low ||
839					    (pa & (alignment - 1)) != 0 ||
840					    ((pa ^ (pa + size - 1)) &
841					    ~(boundary - 1)) != 0)
842						pa_length = 0;
843				}
844				if (pa_length >= size) {
845					vm_reserv_reclaim(rv);
846					return (TRUE);
847				}
848			} else
849				pa_length = 0;
850	}
851	return (FALSE);
852}
853
854/*
855 * Transfers the reservation underlying the given page to a new object.
856 *
857 * The object must be locked.
858 */
859void
860vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object,
861    vm_pindex_t old_object_offset)
862{
863	vm_reserv_t rv;
864
865	VM_OBJECT_ASSERT_WLOCKED(new_object);
866	rv = vm_reserv_from_page(m);
867	if (rv->object == old_object) {
868		mtx_lock(&vm_page_queue_free_mtx);
869		if (rv->object == old_object) {
870			LIST_REMOVE(rv, objq);
871			LIST_INSERT_HEAD(&new_object->rvq, rv, objq);
872			rv->object = new_object;
873			rv->pindex -= old_object_offset;
874		}
875		mtx_unlock(&vm_page_queue_free_mtx);
876	}
877}
878
879/*
880 * Allocates the virtual and physical memory required by the reservation
881 * management system's data structures, in particular, the reservation array.
882 */
883vm_paddr_t
884vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t high_water)
885{
886	vm_paddr_t new_end;
887	size_t size;
888
889	/*
890	 * Calculate the size (in bytes) of the reservation array.  Round up
891	 * from "high_water" because every small page is mapped to an element
892	 * in the reservation array based on its physical address.  Thus, the
893	 * number of elements in the reservation array can be greater than the
894	 * number of superpages.
895	 */
896	size = howmany(high_water, VM_LEVEL_0_SIZE) * sizeof(struct vm_reserv);
897
898	/*
899	 * Allocate and map the physical memory for the reservation array.  The
900	 * next available virtual address is returned by reference.
901	 */
902	new_end = end - round_page(size);
903	vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end,
904	    VM_PROT_READ | VM_PROT_WRITE);
905	bzero(vm_reserv_array, size);
906
907	/*
908	 * Return the next available physical address.
909	 */
910	return (new_end);
911}
912
913#endif	/* VM_NRESERVLEVEL > 0 */
914