pmap.c revision 201758
1193323Sed/*-
2193323Sed * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
3193323Sed * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
4193323Sed * All rights reserved.
5193323Sed *
6193323Sed * Redistribution and use in source and binary forms, with or without
7193323Sed * modification, are permitted provided that the following conditions
8193323Sed * are met:
9193323Sed * 1. Redistributions of source code must retain the above copyright
10193323Sed *    notice, this list of conditions and the following disclaimer.
11193323Sed * 2. Redistributions in binary form must reproduce the above copyright
12193323Sed *    notice, this list of conditions and the following disclaimer in the
13193323Sed *    documentation and/or other materials provided with the distribution.
14193323Sed *
15193323Sed * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16193323Sed * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17193323Sed * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
18224145Sdim * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19226633Sdim * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20193323Sed * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21224145Sdim * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22226633Sdim * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23208599Srdivacky * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24224145Sdim * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25234353Sdim *
26223017Sdim * Some hw specific parts of this pmap were derived or influenced
27223017Sdim * by NetBSD's ibm4xx pmap module. More generic code is shared with
28193323Sed * a few other pmap modules from the FreeBSD tree.
29223017Sdim */
30193323Sed
31193323Sed /*
32193323Sed  * VM layout notes:
33223017Sdim  *
34193323Sed  * Kernel and user threads run within one common virtual address space
35234353Sdim  * defined by AS=0.
36234353Sdim  *
37234353Sdim  * Virtual address space layout:
38239462Sdim  * -----------------------------
39239462Sdim  * 0x0000_0000 - 0xafff_ffff	: user process
40239462Sdim  * 0xb000_0000 - 0xbfff_ffff	: pmap_mapdev()-ed area (PCI/PCIE etc.)
41239462Sdim  * 0xc000_0000 - 0xc0ff_ffff	: kernel reserved
42234353Sdim  *   0xc000_0000 - data_end	: kernel code+data, env, metadata etc.
43243830Sdim  * 0xc100_0000 - 0xfeef_ffff	: KVA
44234353Sdim  *   0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
45234353Sdim  *   0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
46239462Sdim  *   0xc200_4000 - 0xc200_8fff : guard page + kstack0
47234353Sdim  *   0xc200_9000 - 0xfeef_ffff	: actual free KVA space
48239462Sdim  * 0xfef0_0000 - 0xffff_ffff	: I/O devices region
49239462Sdim  */
50234353Sdim
51234353Sdim#include <sys/cdefs.h>
52234353Sdim__FBSDID("$FreeBSD: head/sys/powerpc/booke/pmap.c 201758 2010-01-07 21:01:37Z mbr $");
53234353Sdim
54234353Sdim#include <sys/types.h>
55234353Sdim#include <sys/param.h>
56234353Sdim#include <sys/malloc.h>
57234353Sdim#include <sys/ktr.h>
58234353Sdim#include <sys/proc.h>
59234353Sdim#include <sys/user.h>
60234353Sdim#include <sys/queue.h>
61234353Sdim#include <sys/systm.h>
62234353Sdim#include <sys/kernel.h>
63234353Sdim#include <sys/msgbuf.h>
64234353Sdim#include <sys/lock.h>
65234353Sdim#include <sys/mutex.h>
66234353Sdim#include <sys/smp.h>
67234353Sdim#include <sys/vmmeter.h>
68234353Sdim
69234353Sdim#include <vm/vm.h>
70234353Sdim#include <vm/vm_page.h>
71234353Sdim#include <vm/vm_kern.h>
72234353Sdim#include <vm/vm_pageout.h>
73234353Sdim#include <vm/vm_extern.h>
74234353Sdim#include <vm/vm_object.h>
75239462Sdim#include <vm/vm_param.h>
76234353Sdim#include <vm/vm_map.h>
77234353Sdim#include <vm/vm_pager.h>
78234353Sdim#include <vm/uma.h>
79234353Sdim
80234353Sdim#include <machine/bootinfo.h>
81234353Sdim#include <machine/cpu.h>
82234353Sdim#include <machine/pcb.h>
83234353Sdim#include <machine/platform.h>
84234353Sdim
85234353Sdim#include <machine/tlb.h>
86234353Sdim#include <machine/spr.h>
87243830Sdim#include <machine/vmparam.h>
88243830Sdim#include <machine/md_var.h>
89243830Sdim#include <machine/mmuvar.h>
90234353Sdim#include <machine/pmap.h>
91234353Sdim#include <machine/pte.h>
92234353Sdim
93234353Sdim#include "mmu_if.h"
94193323Sed
95193323Sed#define DEBUG
96193323Sed#undef DEBUG
97221345Sdim
98221345Sdim#ifdef  DEBUG
99234353Sdim#define debugf(fmt, args...) printf(fmt, ##args)
100223017Sdim#else
101223017Sdim#define debugf(fmt, args...)
102234353Sdim#endif
103234353Sdim
104223017Sdim#define TODO			panic("%s: not implemented", __func__);
105223017Sdim
106223017Sdim#include "opt_sched.h"
107223017Sdim#ifndef SCHED_4BSD
108223017Sdim#error "e500 only works with SCHED_4BSD which uses a global scheduler lock."
109239462Sdim#endif
110239462Sdimextern struct mtx sched_lock;
111239462Sdim
112239462Sdimextern int dumpsys_minidump;
113239462Sdim
114223017Sdimextern unsigned char _etext[];
115239462Sdimextern unsigned char _end[];
116223017Sdim
117239462Sdim/* Kernel physical load address. */
118239462Sdimextern uint32_t kernload;
119239462Sdimvm_offset_t kernstart;
120239462Sdimvm_size_t kernsize;
121239462Sdim
122239462Sdim/* Message buffer and tables. */
123239462Sdimstatic vm_offset_t data_start;
124223017Sdimstatic vm_size_t data_end;
125223017Sdim
126223017Sdim/* Phys/avail memory regions. */
127223017Sdimstatic struct mem_region *availmem_regions;
128223017Sdimstatic int availmem_regions_sz;
129224145Sdimstatic struct mem_region *physmem_regions;
130234353Sdimstatic int physmem_regions_sz;
131234353Sdim
132224145Sdim/* Reserved KVA space and mutex for mmu_booke_zero_page. */
133239462Sdimstatic vm_offset_t zero_page_va;
134239462Sdimstatic struct mtx zero_page_mutex;
135239462Sdim
136239462Sdimstatic struct mtx tlbivax_mutex;
137239462Sdim
138239462Sdim/*
139234353Sdim * Reserved KVA space for mmu_booke_zero_page_idle. This is used
140224145Sdim * by idle thred only, no lock required.
141239462Sdim */
142239462Sdimstatic vm_offset_t zero_page_idle_va;
143239462Sdim
144224145Sdim/* Reserved KVA space and mutex for mmu_booke_copy_page. */
145224145Sdimstatic vm_offset_t copy_page_src_va;
146224145Sdimstatic vm_offset_t copy_page_dst_va;
147224145Sdimstatic struct mtx copy_page_mutex;
148224145Sdim
149239462Sdim/**************************************************************************/
150239462Sdim/* PMAP */
151239462Sdim/**************************************************************************/
152239462Sdim
153239462Sdimstatic void mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t,
154239462Sdim    vm_prot_t, boolean_t);
155239462Sdim
156239462Sdimunsigned int kptbl_min;		/* Index of the first kernel ptbl. */
157239462Sdimunsigned int kernel_ptbls;	/* Number of KVA ptbls. */
158239462Sdim
159239462Sdim/*
160239462Sdim * If user pmap is processed with mmu_booke_remove and the resident count
161239462Sdim * drops to 0, there are no more pages to remove, so we need not continue.
162239462Sdim */
163239462Sdim#define PMAP_REMOVE_DONE(pmap) \
164239462Sdim	((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
165239462Sdim
166234353Sdimextern void tlb_lock(uint32_t *);
167234353Sdimextern void tlb_unlock(uint32_t *);
168234353Sdimextern void tid_flush(tlbtid_t);
169239462Sdim
170239462Sdim/**************************************************************************/
171239462Sdim/* TLB and TID handling */
172234353Sdim/**************************************************************************/
173239462Sdim
174234353Sdim/* Translation ID busy table */
175234353Sdimstatic volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
176239462Sdim
177239462Sdim/*
178239462Sdim * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
179239462Sdim * core revisions and should be read from h/w registers during early config.
180239462Sdim */
181234353Sdimuint32_t tlb0_entries;
182234353Sdimuint32_t tlb0_ways;
183234353Sdimuint32_t tlb0_entries_per_way;
184234353Sdim
185234353Sdim#define TLB0_ENTRIES		(tlb0_entries)
186234353Sdim#define TLB0_WAYS		(tlb0_ways)
187234353Sdim#define TLB0_ENTRIES_PER_WAY	(tlb0_entries_per_way)
188234353Sdim
189234353Sdim#define TLB1_ENTRIES 16
190234353Sdim
191234353Sdim/* In-ram copy of the TLB1 */
192224145Sdimstatic tlb_entry_t tlb1[TLB1_ENTRIES];
193224145Sdim
194224145Sdim/* Next free entry in the TLB1 */
195224145Sdimstatic unsigned int tlb1_idx;
196226633Sdim
197224145Sdimstatic tlbtid_t tid_alloc(struct pmap *);
198224145Sdim
199224145Sdimstatic void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
200224145Sdim
201224145Sdimstatic int tlb1_set_entry(vm_offset_t, vm_offset_t, vm_size_t, uint32_t);
202224145Sdimstatic void tlb1_write_entry(unsigned int);
203224145Sdimstatic int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
204239462Sdimstatic vm_size_t tlb1_mapin_region(vm_offset_t, vm_offset_t, vm_size_t);
205239462Sdim
206239462Sdimstatic vm_size_t tsize2size(unsigned int);
207223017Sdimstatic unsigned int size2tsize(vm_size_t);
208223017Sdimstatic unsigned int ilog2(unsigned int);
209239462Sdim
210239462Sdimstatic void set_mas4_defaults(void);
211239462Sdim
212239462Sdimstatic inline void tlb0_flush_entry(vm_offset_t);
213239462Sdimstatic inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
214239462Sdim
215239462Sdim/**************************************************************************/
216239462Sdim/* Page table management */
217239462Sdim/**************************************************************************/
218239462Sdim
219239462Sdim/* Data for the pv entry allocation mechanism */
220239462Sdimstatic uma_zone_t pvzone;
221239462Sdimstatic struct vm_object pvzone_obj;
222223017Sdimstatic int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
223224145Sdim
224239462Sdim#define PV_ENTRY_ZONE_MIN	2048	/* min pv entries in uma zone */
225234353Sdim
226193323Sed#ifndef PMAP_SHPGPERPROC
227193323Sed#define PMAP_SHPGPERPROC	200
228193323Sed#endif
229224145Sdim
230224145Sdimstatic void ptbl_init(void);
231226633Sdimstatic struct ptbl_buf *ptbl_buf_alloc(void);
232226633Sdimstatic void ptbl_buf_free(struct ptbl_buf *);
233226633Sdimstatic void ptbl_free_pmap_ptbl(pmap_t, pte_t *);
234226633Sdim
235226633Sdimstatic pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int);
236226633Sdimstatic void ptbl_free(mmu_t, pmap_t, unsigned int);
237226633Sdimstatic void ptbl_hold(mmu_t, pmap_t, unsigned int);
238226633Sdimstatic int ptbl_unhold(mmu_t, pmap_t, unsigned int);
239226633Sdim
240226633Sdimstatic vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t);
241226633Sdimstatic pte_t *pte_find(mmu_t, pmap_t, vm_offset_t);
242226633Sdimstatic void pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t);
243226633Sdimstatic int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t);
244226633Sdim
245234353Sdimstatic pv_entry_t pv_alloc(void);
246234353Sdimstatic void pv_free(pv_entry_t);
247234353Sdimstatic void pv_insert(pmap_t, vm_offset_t, vm_page_t);
248226633Sdimstatic void pv_remove(pmap_t, vm_offset_t, vm_page_t);
249234353Sdim
250234353Sdim/* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */
251234353Sdim#define PTBL_BUFS		(128 * 16)
252234353Sdim
253234353Sdimstruct ptbl_buf {
254234353Sdim	TAILQ_ENTRY(ptbl_buf) link;	/* list link */
255234353Sdim	vm_offset_t kva;		/* va of mapping */
256234353Sdim};
257239462Sdim
258239462Sdim/* ptbl free list and a lock used for access synchronization. */
259239462Sdimstatic TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist;
260239462Sdimstatic struct mtx ptbl_buf_freelist_lock;
261224145Sdim
262226633Sdim/* Base address of kva space allocated fot ptbl bufs. */
263193323Sedstatic vm_offset_t ptbl_buf_pool_vabase;
264193323Sed
265193323Sed/* Pointer to ptbl_buf structures. */
266193323Sedstatic struct ptbl_buf *ptbl_bufs;
267193323Sed
268223017Sdimvoid pmap_bootstrap_ap(volatile uint32_t *);
269224145Sdim
270193323Sed/*
271226633Sdim * Kernel MMU interface
272226633Sdim */
273226633Sdimstatic void		mmu_booke_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
274226633Sdimstatic void		mmu_booke_clear_modify(mmu_t, vm_page_t);
275226633Sdimstatic void		mmu_booke_clear_reference(mmu_t, vm_page_t);
276226633Sdimstatic void		mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t,
277193323Sed    vm_size_t, vm_offset_t);
278193323Sedstatic void		mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t);
279221345Sdimstatic void		mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t,
280193323Sed    vm_prot_t, boolean_t);
281193323Sedstatic void		mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
282193323Sed    vm_page_t, vm_prot_t);
283234353Sdimstatic void		mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t,
284193323Sed    vm_prot_t);
285221345Sdimstatic vm_paddr_t	mmu_booke_extract(mmu_t, pmap_t, vm_offset_t);
286224145Sdimstatic vm_page_t	mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t,
287224145Sdim    vm_prot_t);
288221345Sdimstatic void		mmu_booke_init(mmu_t);
289224145Sdimstatic boolean_t	mmu_booke_is_modified(mmu_t, vm_page_t);
290212904Sdimstatic boolean_t	mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
291221345Sdimstatic boolean_t	mmu_booke_ts_referenced(mmu_t, vm_page_t);
292212904Sdimstatic vm_offset_t	mmu_booke_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t,
293212904Sdim    int);
294212904Sdimstatic int		mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t);
295212904Sdimstatic void		mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t,
296212904Sdim    vm_object_t, vm_pindex_t, vm_size_t);
297212904Sdimstatic boolean_t	mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t);
298226633Sdimstatic void		mmu_booke_page_init(mmu_t, vm_page_t);
299226633Sdimstatic int		mmu_booke_page_wired_mappings(mmu_t, vm_page_t);
300226633Sdimstatic void		mmu_booke_pinit(mmu_t, pmap_t);
301193323Sedstatic void		mmu_booke_pinit0(mmu_t, pmap_t);
302226633Sdimstatic void		mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t,
303226633Sdim    vm_prot_t);
304234353Sdimstatic void		mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
305234353Sdimstatic void		mmu_booke_qremove(mmu_t, vm_offset_t, int);
306226633Sdimstatic void		mmu_booke_release(mmu_t, pmap_t);
307226633Sdimstatic void		mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
308226633Sdimstatic void		mmu_booke_remove_all(mmu_t, vm_page_t);
309234353Sdimstatic void		mmu_booke_remove_write(mmu_t, vm_page_t);
310234353Sdimstatic void		mmu_booke_zero_page(mmu_t, vm_page_t);
311226633Sdimstatic void		mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int);
312226633Sdimstatic void		mmu_booke_zero_page_idle(mmu_t, vm_page_t);
313226633Sdimstatic void		mmu_booke_activate(mmu_t, struct thread *);
314234353Sdimstatic void		mmu_booke_deactivate(mmu_t, struct thread *);
315234353Sdimstatic void		mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
316234353Sdimstatic void		*mmu_booke_mapdev(mmu_t, vm_offset_t, vm_size_t);
317234353Sdimstatic void		mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t);
318234353Sdimstatic vm_offset_t	mmu_booke_kextract(mmu_t, vm_offset_t);
319234353Sdimstatic void		mmu_booke_kenter(mmu_t, vm_offset_t, vm_offset_t);
320234353Sdimstatic void		mmu_booke_kremove(mmu_t, vm_offset_t);
321234353Sdimstatic boolean_t	mmu_booke_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t);
322234353Sdimstatic void		mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t,
323234353Sdim    vm_size_t);
324226633Sdimstatic vm_offset_t	mmu_booke_dumpsys_map(mmu_t, struct pmap_md *,
325226633Sdim    vm_size_t, vm_size_t *);
326226633Sdimstatic void		mmu_booke_dumpsys_unmap(mmu_t, struct pmap_md *,
327226633Sdim    vm_size_t, vm_offset_t);
328226633Sdimstatic struct pmap_md	*mmu_booke_scan_md(mmu_t, struct pmap_md *);
329226633Sdim
330226633Sdimstatic mmu_method_t mmu_booke_methods[] = {
331226633Sdim	/* pmap dispatcher interface */
332226633Sdim	MMUMETHOD(mmu_change_wiring,	mmu_booke_change_wiring),
333226633Sdim	MMUMETHOD(mmu_clear_modify,	mmu_booke_clear_modify),
334226633Sdim	MMUMETHOD(mmu_clear_reference,	mmu_booke_clear_reference),
335224145Sdim	MMUMETHOD(mmu_copy,		mmu_booke_copy),
336224145Sdim	MMUMETHOD(mmu_copy_page,	mmu_booke_copy_page),
337224145Sdim	MMUMETHOD(mmu_enter,		mmu_booke_enter),
338224145Sdim	MMUMETHOD(mmu_enter_object,	mmu_booke_enter_object),
339226633Sdim	MMUMETHOD(mmu_enter_quick,	mmu_booke_enter_quick),
340224145Sdim	MMUMETHOD(mmu_extract,		mmu_booke_extract),
341212904Sdim	MMUMETHOD(mmu_extract_and_hold,	mmu_booke_extract_and_hold),
342224145Sdim	MMUMETHOD(mmu_init,		mmu_booke_init),
343226633Sdim	MMUMETHOD(mmu_is_modified,	mmu_booke_is_modified),
344212904Sdim	MMUMETHOD(mmu_is_prefaultable,	mmu_booke_is_prefaultable),
345226633Sdim	MMUMETHOD(mmu_ts_referenced,	mmu_booke_ts_referenced),
346226633Sdim	MMUMETHOD(mmu_map,		mmu_booke_map),
347226633Sdim	MMUMETHOD(mmu_mincore,		mmu_booke_mincore),
348226633Sdim	MMUMETHOD(mmu_object_init_pt,	mmu_booke_object_init_pt),
349239462Sdim	MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick),
350239462Sdim	MMUMETHOD(mmu_page_init,	mmu_booke_page_init),
351239462Sdim	MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings),
352234353Sdim	MMUMETHOD(mmu_pinit,		mmu_booke_pinit),
353234353Sdim	MMUMETHOD(mmu_pinit0,		mmu_booke_pinit0),
354234353Sdim	MMUMETHOD(mmu_protect,		mmu_booke_protect),
355224145Sdim	MMUMETHOD(mmu_qenter,		mmu_booke_qenter),
356226633Sdim	MMUMETHOD(mmu_qremove,		mmu_booke_qremove),
357226633Sdim	MMUMETHOD(mmu_release,		mmu_booke_release),
358226633Sdim	MMUMETHOD(mmu_remove,		mmu_booke_remove),
359226633Sdim	MMUMETHOD(mmu_remove_all,	mmu_booke_remove_all),
360226633Sdim	MMUMETHOD(mmu_remove_write,	mmu_booke_remove_write),
361226633Sdim	MMUMETHOD(mmu_sync_icache,	mmu_booke_sync_icache),
362226633Sdim	MMUMETHOD(mmu_zero_page,	mmu_booke_zero_page),
363226633Sdim	MMUMETHOD(mmu_zero_page_area,	mmu_booke_zero_page_area),
364226633Sdim	MMUMETHOD(mmu_zero_page_idle,	mmu_booke_zero_page_idle),
365226633Sdim	MMUMETHOD(mmu_activate,		mmu_booke_activate),
366226633Sdim	MMUMETHOD(mmu_deactivate,	mmu_booke_deactivate),
367226633Sdim
368226633Sdim	/* Internal interfaces */
369226633Sdim	MMUMETHOD(mmu_bootstrap,	mmu_booke_bootstrap),
370226633Sdim	MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped),
371226633Sdim	MMUMETHOD(mmu_mapdev,		mmu_booke_mapdev),
372226633Sdim	MMUMETHOD(mmu_kenter,		mmu_booke_kenter),
373226633Sdim	MMUMETHOD(mmu_kextract,		mmu_booke_kextract),
374226633Sdim/*	MMUMETHOD(mmu_kremove,		mmu_booke_kremove),	*/
375226633Sdim	MMUMETHOD(mmu_unmapdev,		mmu_booke_unmapdev),
376226633Sdim
377226633Sdim	/* dumpsys() support */
378226633Sdim	MMUMETHOD(mmu_dumpsys_map,	mmu_booke_dumpsys_map),
379226633Sdim	MMUMETHOD(mmu_dumpsys_unmap,	mmu_booke_dumpsys_unmap),
380226633Sdim	MMUMETHOD(mmu_scan_md,		mmu_booke_scan_md),
381226633Sdim
382226633Sdim	{ 0, 0 }
383239462Sdim};
384226633Sdim
385226633Sdimstatic mmu_def_t booke_mmu = {
386226633Sdim	MMU_TYPE_BOOKE,
387193323Sed	mmu_booke_methods,
388223017Sdim	0
389239462Sdim};
390239462SdimMMU_DEF(booke_mmu);
391239462Sdim
392239462Sdimstatic inline void
393239462Sdimtlb_miss_lock(void)
394239462Sdim{
395239462Sdim#ifdef SMP
396239462Sdim	struct pcpu *pc;
397239462Sdim
398239462Sdim	if (!smp_started)
399239462Sdim		return;
400239462Sdim
401239462Sdim	SLIST_FOREACH(pc, &cpuhead, pc_allcpu) {
402239462Sdim		if (pc != pcpup) {
403239462Sdim
404239462Sdim			CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
405239462Sdim			    "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke_tlb_lock);
406239462Sdim
407239462Sdim			KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
408239462Sdim			    ("tlb_miss_lock: tried to lock self"));
409239462Sdim
410239462Sdim			tlb_lock(pc->pc_booke_tlb_lock);
411239462Sdim
412239462Sdim			CTR1(KTR_PMAP, "%s: locked", __func__);
413239462Sdim		}
414234353Sdim	}
415234353Sdim#endif
416234353Sdim}
417234353Sdim
418234353Sdimstatic inline void
419234353Sdimtlb_miss_unlock(void)
420234353Sdim{
421234353Sdim#ifdef SMP
422239462Sdim	struct pcpu *pc;
423239462Sdim
424239462Sdim	if (!smp_started)
425239462Sdim		return;
426223017Sdim
427223017Sdim	SLIST_FOREACH(pc, &cpuhead, pc_allcpu) {
428223017Sdim		if (pc != pcpup) {
429224145Sdim			CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
430224145Sdim			    __func__, pc->pc_cpuid);
431234353Sdim
432234353Sdim			tlb_unlock(pc->pc_booke_tlb_lock);
433234353Sdim
434234353Sdim			CTR1(KTR_PMAP, "%s: unlocked", __func__);
435239462Sdim		}
436239462Sdim	}
437239462Sdim#endif
438239462Sdim}
439239462Sdim
440239462Sdim/* Return number of entries in TLB0. */
441234353Sdimstatic __inline void
442224145Sdimtlb0_get_tlbconf(void)
443243830Sdim{
444223017Sdim	uint32_t tlb0_cfg;
445234353Sdim
446223017Sdim	tlb0_cfg = mfspr(SPR_TLB0CFG);
447239462Sdim	tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
448234353Sdim	tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
449239462Sdim	tlb0_entries_per_way = tlb0_entries / tlb0_ways;
450239462Sdim}
451239462Sdim
452226633Sdim/* Initialize pool of kva ptbl buffers. */
453226633Sdimstatic void
454224145Sdimptbl_init(void)
455226633Sdim{
456226633Sdim	int i;
457224145Sdim
458234353Sdim	CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__,
459234353Sdim	    (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS);
460234353Sdim	CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)",
461234353Sdim	    __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE);
462234353Sdim
463234353Sdim	mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF);
464234353Sdim	TAILQ_INIT(&ptbl_buf_freelist);
465234353Sdim
466234353Sdim	for (i = 0; i < PTBL_BUFS; i++) {
467226633Sdim		ptbl_bufs[i].kva = ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE;
468226633Sdim		TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link);
469226633Sdim	}
470234353Sdim}
471234353Sdim
472234353Sdim/* Get a ptbl_buf from the freelist. */
473234353Sdimstatic struct ptbl_buf *
474234353Sdimptbl_buf_alloc(void)
475226633Sdim{
476226633Sdim	struct ptbl_buf *buf;
477234353Sdim
478234353Sdim	mtx_lock(&ptbl_buf_freelist_lock);
479234353Sdim	buf = TAILQ_FIRST(&ptbl_buf_freelist);
480234353Sdim	if (buf != NULL)
481226633Sdim		TAILQ_REMOVE(&ptbl_buf_freelist, buf, link);
482234353Sdim	mtx_unlock(&ptbl_buf_freelist_lock);
483234353Sdim
484223017Sdim	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
485234353Sdim
486234353Sdim	return (buf);
487234353Sdim}
488234353Sdim
489234353Sdim/* Return ptbl buff to free pool. */
490234353Sdimstatic void
491223017Sdimptbl_buf_free(struct ptbl_buf *buf)
492223017Sdim{
493223017Sdim
494243830Sdim	CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf);
495243830Sdim
496243830Sdim	mtx_lock(&ptbl_buf_freelist_lock);
497223017Sdim	TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link);
498223017Sdim	mtx_unlock(&ptbl_buf_freelist_lock);
499223017Sdim}
500224145Sdim
501224145Sdim/*
502223017Sdim * Search the list of allocated ptbl bufs and find on list of allocated ptbls
503223017Sdim */
504223017Sdimstatic void
505234353Sdimptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl)
506223017Sdim{
507234353Sdim	struct ptbl_buf *pbuf;
508234353Sdim
509223017Sdim	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
510223017Sdim
511234353Sdim	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
512234353Sdim
513223017Sdim	TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link)
514239462Sdim		if (pbuf->kva == (vm_offset_t)ptbl) {
515239462Sdim			/* Remove from pmap ptbl buf list. */
516239462Sdim			TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link);
517239462Sdim
518239462Sdim			/* Free corresponding ptbl buf. */
519239462Sdim			ptbl_buf_free(pbuf);
520239462Sdim			break;
521239462Sdim		}
522239462Sdim}
523239462Sdim
524239462Sdim/* Allocate page table. */
525224145Sdimstatic pte_t *
526243830Sdimptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
527243830Sdim{
528243830Sdim	vm_page_t mtbl[PTBL_PAGES];
529223017Sdim	vm_page_t m;
530223017Sdim	struct ptbl_buf *pbuf;
531223017Sdim	unsigned int pidx;
532223017Sdim	pte_t *ptbl;
533234353Sdim	int i;
534234353Sdim
535234353Sdim	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
536234353Sdim	    (pmap == kernel_pmap), pdir_idx);
537234353Sdim
538239462Sdim	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
539239462Sdim	    ("ptbl_alloc: invalid pdir_idx"));
540239462Sdim	KASSERT((pmap->pm_pdir[pdir_idx] == NULL),
541239462Sdim	    ("pte_alloc: valid ptbl entry exists!"));
542239462Sdim
543239462Sdim	pbuf = ptbl_buf_alloc();
544239462Sdim	if (pbuf == NULL)
545239462Sdim		panic("pte_alloc: couldn't alloc kernel virtual memory");
546239462Sdim
547239462Sdim	ptbl = (pte_t *)pbuf->kva;
548239462Sdim
549239462Sdim	CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl);
550239462Sdim
551239462Sdim	/* Allocate ptbl pages, this will sleep! */
552239462Sdim	for (i = 0; i < PTBL_PAGES; i++) {
553239462Sdim		pidx = (PTBL_PAGES * pdir_idx) + i;
554239462Sdim		while ((m = vm_page_alloc(NULL, pidx,
555239462Sdim		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
556239462Sdim
557239462Sdim			PMAP_UNLOCK(pmap);
558239462Sdim			vm_page_unlock_queues();
559239462Sdim			VM_WAIT;
560234353Sdim			vm_page_lock_queues();
561234353Sdim			PMAP_LOCK(pmap);
562234353Sdim		}
563239462Sdim		mtbl[i] = m;
564239462Sdim	}
565239462Sdim
566234353Sdim	/* Map allocated pages into kernel_pmap. */
567234353Sdim	mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES);
568234353Sdim
569234353Sdim	/* Zero whole ptbl. */
570234353Sdim	bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE);
571234353Sdim
572234353Sdim	/* Add pbuf to the pmap ptbl bufs list. */
573234353Sdim	TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link);
574234353Sdim
575239462Sdim	return (ptbl);
576239462Sdim}
577239462Sdim
578239462Sdim/* Free ptbl pages and invalidate pdir entry. */
579239462Sdimstatic void
580239462Sdimptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
581239462Sdim{
582226633Sdim	pte_t *ptbl;
583224145Sdim	vm_paddr_t pa;
584224145Sdim	vm_offset_t va;
585224145Sdim	vm_page_t m;
586224145Sdim	int i;
587224145Sdim
588224145Sdim	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
589224145Sdim	    (pmap == kernel_pmap), pdir_idx);
590224145Sdim
591224145Sdim	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
592224145Sdim	    ("ptbl_free: invalid pdir_idx"));
593224145Sdim
594224145Sdim	ptbl = pmap->pm_pdir[pdir_idx];
595224145Sdim
596234353Sdim	CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl);
597234353Sdim
598234353Sdim	KASSERT((ptbl != NULL), ("ptbl_free: null ptbl"));
599234353Sdim
600234353Sdim	/*
601239462Sdim	 * Invalidate the pdir entry as soon as possible, so that other CPUs
602234353Sdim	 * don't attempt to look up the page tables we are releasing.
603234353Sdim	 */
604234353Sdim	mtx_lock_spin(&tlbivax_mutex);
605234353Sdim	tlb_miss_lock();
606234353Sdim
607239462Sdim	pmap->pm_pdir[pdir_idx] = NULL;
608234353Sdim
609234353Sdim	tlb_miss_unlock();
610234353Sdim	mtx_unlock_spin(&tlbivax_mutex);
611234353Sdim
612234353Sdim	for (i = 0; i < PTBL_PAGES; i++) {
613234353Sdim		va = ((vm_offset_t)ptbl + (i * PAGE_SIZE));
614234353Sdim		pa = pte_vatopa(mmu, kernel_pmap, va);
615234353Sdim		m = PHYS_TO_VM_PAGE(pa);
616234353Sdim		vm_page_free_zero(m);
617234353Sdim		atomic_subtract_int(&cnt.v_wire_count, 1);
618234353Sdim		mmu_booke_kremove(mmu, va);
619234353Sdim	}
620234353Sdim
621234353Sdim	ptbl_free_pmap_ptbl(pmap, ptbl);
622234353Sdim}
623234353Sdim
624234353Sdim/*
625234353Sdim * Decrement ptbl pages hold count and attempt to free ptbl pages.
626223017Sdim * Called when removing pte entry from ptbl.
627223017Sdim *
628224145Sdim * Return 1 if ptbl pages were freed.
629234353Sdim */
630234353Sdimstatic int
631234353Sdimptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
632234353Sdim{
633234353Sdim	pte_t *ptbl;
634234353Sdim	vm_paddr_t pa;
635234353Sdim	vm_page_t m;
636234353Sdim	int i;
637223017Sdim
638193323Sed	CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap,
639193323Sed	    (pmap == kernel_pmap), pdir_idx);
640193323Sed
641	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
642	    ("ptbl_unhold: invalid pdir_idx"));
643	KASSERT((pmap != kernel_pmap),
644	    ("ptbl_unhold: unholding kernel ptbl!"));
645
646	ptbl = pmap->pm_pdir[pdir_idx];
647
648	//debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl);
649	KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS),
650	    ("ptbl_unhold: non kva ptbl"));
651
652	/* decrement hold count */
653	for (i = 0; i < PTBL_PAGES; i++) {
654		pa = pte_vatopa(mmu, kernel_pmap,
655		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
656		m = PHYS_TO_VM_PAGE(pa);
657		m->wire_count--;
658	}
659
660	/*
661	 * Free ptbl pages if there are no pte etries in this ptbl.
662	 * wire_count has the same value for all ptbl pages, so check the last
663	 * page.
664	 */
665	if (m->wire_count == 0) {
666		ptbl_free(mmu, pmap, pdir_idx);
667
668		//debugf("ptbl_unhold: e (freed ptbl)\n");
669		return (1);
670	}
671
672	return (0);
673}
674
675/*
676 * Increment hold count for ptbl pages. This routine is used when a new pte
677 * entry is being inserted into the ptbl.
678 */
679static void
680ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx)
681{
682	vm_paddr_t pa;
683	pte_t *ptbl;
684	vm_page_t m;
685	int i;
686
687	CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap,
688	    pdir_idx);
689
690	KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)),
691	    ("ptbl_hold: invalid pdir_idx"));
692	KASSERT((pmap != kernel_pmap),
693	    ("ptbl_hold: holding kernel ptbl!"));
694
695	ptbl = pmap->pm_pdir[pdir_idx];
696
697	KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl"));
698
699	for (i = 0; i < PTBL_PAGES; i++) {
700		pa = pte_vatopa(mmu, kernel_pmap,
701		    (vm_offset_t)ptbl + (i * PAGE_SIZE));
702		m = PHYS_TO_VM_PAGE(pa);
703		m->wire_count++;
704	}
705}
706
707/* Allocate pv_entry structure. */
708pv_entry_t
709pv_alloc(void)
710{
711	pv_entry_t pv;
712
713	pv_entry_count++;
714	if (pv_entry_count > pv_entry_high_water)
715		pagedaemon_wakeup();
716	pv = uma_zalloc(pvzone, M_NOWAIT);
717
718	return (pv);
719}
720
721/* Free pv_entry structure. */
722static __inline void
723pv_free(pv_entry_t pve)
724{
725
726	pv_entry_count--;
727	uma_zfree(pvzone, pve);
728}
729
730
731/* Allocate and initialize pv_entry structure. */
732static void
733pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
734{
735	pv_entry_t pve;
736
737	//int su = (pmap == kernel_pmap);
738	//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
739	//	(u_int32_t)pmap, va, (u_int32_t)m);
740
741	pve = pv_alloc();
742	if (pve == NULL)
743		panic("pv_insert: no pv entries!");
744
745	pve->pv_pmap = pmap;
746	pve->pv_va = va;
747
748	/* add to pv_list */
749	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
750	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
751
752	TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
753
754	//debugf("pv_insert: e\n");
755}
756
757/* Destroy pv entry. */
758static void
759pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
760{
761	pv_entry_t pve;
762
763	//int su = (pmap == kernel_pmap);
764	//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
765
766	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
767	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
768
769	/* find pv entry */
770	TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
771		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
772			/* remove from pv_list */
773			TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
774			if (TAILQ_EMPTY(&m->md.pv_list))
775				vm_page_flag_clear(m, PG_WRITEABLE);
776
777			/* free pv entry struct */
778			pv_free(pve);
779			break;
780		}
781	}
782
783	//debugf("pv_remove: e\n");
784}
785
786/*
787 * Clean pte entry, try to free page table page if requested.
788 *
789 * Return 1 if ptbl pages were freed, otherwise return 0.
790 */
791static int
792pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags)
793{
794	unsigned int pdir_idx = PDIR_IDX(va);
795	unsigned int ptbl_idx = PTBL_IDX(va);
796	vm_page_t m;
797	pte_t *ptbl;
798	pte_t *pte;
799
800	//int su = (pmap == kernel_pmap);
801	//debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n",
802	//		su, (u_int32_t)pmap, va, flags);
803
804	ptbl = pmap->pm_pdir[pdir_idx];
805	KASSERT(ptbl, ("pte_remove: null ptbl"));
806
807	pte = &ptbl[ptbl_idx];
808
809	if (pte == NULL || !PTE_ISVALID(pte))
810		return (0);
811
812	if (PTE_ISWIRED(pte))
813		pmap->pm_stats.wired_count--;
814
815	/* Handle managed entry. */
816	if (PTE_ISMANAGED(pte)) {
817		/* Get vm_page_t for mapped pte. */
818		m = PHYS_TO_VM_PAGE(PTE_PA(pte));
819
820		if (PTE_ISMODIFIED(pte))
821			vm_page_dirty(m);
822
823		if (PTE_ISREFERENCED(pte))
824			vm_page_flag_set(m, PG_REFERENCED);
825
826		pv_remove(pmap, va, m);
827	}
828
829	mtx_lock_spin(&tlbivax_mutex);
830	tlb_miss_lock();
831
832	tlb0_flush_entry(va);
833	pte->flags = 0;
834	pte->rpn = 0;
835
836	tlb_miss_unlock();
837	mtx_unlock_spin(&tlbivax_mutex);
838
839	pmap->pm_stats.resident_count--;
840
841	if (flags & PTBL_UNHOLD) {
842		//debugf("pte_remove: e (unhold)\n");
843		return (ptbl_unhold(mmu, pmap, pdir_idx));
844	}
845
846	//debugf("pte_remove: e\n");
847	return (0);
848}
849
850/*
851 * Insert PTE for a given page and virtual address.
852 */
853static void
854pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags)
855{
856	unsigned int pdir_idx = PDIR_IDX(va);
857	unsigned int ptbl_idx = PTBL_IDX(va);
858	pte_t *ptbl, *pte;
859
860	CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__,
861	    pmap == kernel_pmap, pmap, va);
862
863	/* Get the page table pointer. */
864	ptbl = pmap->pm_pdir[pdir_idx];
865
866	if (ptbl == NULL) {
867		/* Allocate page table pages. */
868		ptbl = ptbl_alloc(mmu, pmap, pdir_idx);
869	} else {
870		/*
871		 * Check if there is valid mapping for requested
872		 * va, if there is, remove it.
873		 */
874		pte = &pmap->pm_pdir[pdir_idx][ptbl_idx];
875		if (PTE_ISVALID(pte)) {
876			pte_remove(mmu, pmap, va, PTBL_HOLD);
877		} else {
878			/*
879			 * pte is not used, increment hold count
880			 * for ptbl pages.
881			 */
882			if (pmap != kernel_pmap)
883				ptbl_hold(mmu, pmap, pdir_idx);
884		}
885	}
886
887	/*
888	 * Insert pv_entry into pv_list for mapped page if part of managed
889	 * memory.
890	 */
891        if ((m->flags & PG_FICTITIOUS) == 0) {
892		if ((m->flags & PG_UNMANAGED) == 0) {
893			flags |= PTE_MANAGED;
894
895			/* Create and insert pv entry. */
896			pv_insert(pmap, va, m);
897		}
898	}
899
900	pmap->pm_stats.resident_count++;
901
902	mtx_lock_spin(&tlbivax_mutex);
903	tlb_miss_lock();
904
905	tlb0_flush_entry(va);
906	if (pmap->pm_pdir[pdir_idx] == NULL) {
907		/*
908		 * If we just allocated a new page table, hook it in
909		 * the pdir.
910		 */
911		pmap->pm_pdir[pdir_idx] = ptbl;
912	}
913	pte = &(pmap->pm_pdir[pdir_idx][ptbl_idx]);
914	pte->rpn = VM_PAGE_TO_PHYS(m) & ~PTE_PA_MASK;
915	pte->flags |= (PTE_VALID | flags);
916
917	tlb_miss_unlock();
918	mtx_unlock_spin(&tlbivax_mutex);
919}
920
921/* Return the pa for the given pmap/va. */
922static vm_paddr_t
923pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va)
924{
925	vm_paddr_t pa = 0;
926	pte_t *pte;
927
928	pte = pte_find(mmu, pmap, va);
929	if ((pte != NULL) && PTE_ISVALID(pte))
930		pa = (PTE_PA(pte) | (va & PTE_PA_MASK));
931	return (pa);
932}
933
934/* Get a pointer to a PTE in a page table. */
935static pte_t *
936pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va)
937{
938	unsigned int pdir_idx = PDIR_IDX(va);
939	unsigned int ptbl_idx = PTBL_IDX(va);
940
941	KASSERT((pmap != NULL), ("pte_find: invalid pmap"));
942
943	if (pmap->pm_pdir[pdir_idx])
944		return (&(pmap->pm_pdir[pdir_idx][ptbl_idx]));
945
946	return (NULL);
947}
948
949/**************************************************************************/
950/* PMAP related */
951/**************************************************************************/
952
953/*
954 * This is called during e500_init, before the system is really initialized.
955 */
956static void
957mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend)
958{
959	vm_offset_t phys_kernelend;
960	struct mem_region *mp, *mp1;
961	int cnt, i, j;
962	u_int s, e, sz;
963	u_int phys_avail_count;
964	vm_size_t physsz, hwphyssz, kstack0_sz;
965	vm_offset_t kernel_pdir, kstack0, va;
966	vm_paddr_t kstack0_phys;
967	void *dpcpu;
968	pte_t *pte;
969
970	debugf("mmu_booke_bootstrap: entered\n");
971
972	/* Initialize invalidation mutex */
973	mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
974
975	/* Read TLB0 size and associativity. */
976	tlb0_get_tlbconf();
977
978	/* Align kernel start and end address (kernel image). */
979	kernstart = trunc_page(start);
980	data_start = round_page(kernelend);
981	kernsize = data_start - kernstart;
982
983	data_end = data_start;
984
985	/* Allocate space for the message buffer. */
986	msgbufp = (struct msgbuf *)data_end;
987	data_end += MSGBUF_SIZE;
988	debugf(" msgbufp at 0x%08x end = 0x%08x\n", (uint32_t)msgbufp,
989	    data_end);
990
991	data_end = round_page(data_end);
992
993	/* Allocate the dynamic per-cpu area. */
994	dpcpu = (void *)data_end;
995	data_end += DPCPU_SIZE;
996	dpcpu_init(dpcpu, 0);
997
998	/* Allocate space for ptbl_bufs. */
999	ptbl_bufs = (struct ptbl_buf *)data_end;
1000	data_end += sizeof(struct ptbl_buf) * PTBL_BUFS;
1001	debugf(" ptbl_bufs at 0x%08x end = 0x%08x\n", (uint32_t)ptbl_bufs,
1002	    data_end);
1003
1004	data_end = round_page(data_end);
1005
1006	/* Allocate PTE tables for kernel KVA. */
1007	kernel_pdir = data_end;
1008	kernel_ptbls = (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS +
1009	    PDIR_SIZE - 1) / PDIR_SIZE;
1010	data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE;
1011	debugf(" kernel ptbls: %d\n", kernel_ptbls);
1012	debugf(" kernel pdir at 0x%08x end = 0x%08x\n", kernel_pdir, data_end);
1013
1014	debugf(" data_end: 0x%08x\n", data_end);
1015	if (data_end - kernstart > 0x1000000) {
1016		data_end = (data_end + 0x3fffff) & ~0x3fffff;
1017		tlb1_mapin_region(kernstart + 0x1000000,
1018		    kernload + 0x1000000, data_end - kernstart - 0x1000000);
1019	} else
1020		data_end = (data_end + 0xffffff) & ~0xffffff;
1021
1022	debugf(" updated data_end: 0x%08x\n", data_end);
1023
1024	kernsize += data_end - data_start;
1025
1026	/*
1027	 * Clear the structures - note we can only do it safely after the
1028	 * possible additional TLB1 translations are in place (above) so that
1029	 * all range up to the currently calculated 'data_end' is covered.
1030	 */
1031	memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE);
1032	memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE);
1033
1034	/*******************************************************/
1035	/* Set the start and end of kva. */
1036	/*******************************************************/
1037	virtual_avail = round_page(data_end);
1038	virtual_end = VM_MAX_KERNEL_ADDRESS;
1039
1040	/* Allocate KVA space for page zero/copy operations. */
1041	zero_page_va = virtual_avail;
1042	virtual_avail += PAGE_SIZE;
1043	zero_page_idle_va = virtual_avail;
1044	virtual_avail += PAGE_SIZE;
1045	copy_page_src_va = virtual_avail;
1046	virtual_avail += PAGE_SIZE;
1047	copy_page_dst_va = virtual_avail;
1048	virtual_avail += PAGE_SIZE;
1049	debugf("zero_page_va = 0x%08x\n", zero_page_va);
1050	debugf("zero_page_idle_va = 0x%08x\n", zero_page_idle_va);
1051	debugf("copy_page_src_va = 0x%08x\n", copy_page_src_va);
1052	debugf("copy_page_dst_va = 0x%08x\n", copy_page_dst_va);
1053
1054	/* Initialize page zero/copy mutexes. */
1055	mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
1056	mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
1057
1058	/* Allocate KVA space for ptbl bufs. */
1059	ptbl_buf_pool_vabase = virtual_avail;
1060	virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
1061	debugf("ptbl_buf_pool_vabase = 0x%08x end = 0x%08x\n",
1062	    ptbl_buf_pool_vabase, virtual_avail);
1063
1064	/* Calculate corresponding physical addresses for the kernel region. */
1065	phys_kernelend = kernload + kernsize;
1066	debugf("kernel image and allocated data:\n");
1067	debugf(" kernload    = 0x%08x\n", kernload);
1068	debugf(" kernstart   = 0x%08x\n", kernstart);
1069	debugf(" kernsize    = 0x%08x\n", kernsize);
1070
1071	if (sizeof(phys_avail) / sizeof(phys_avail[0]) < availmem_regions_sz)
1072		panic("mmu_booke_bootstrap: phys_avail too small");
1073
1074	/*
1075	 * Remove kernel physical address range from avail regions list. Page
1076	 * align all regions.  Non-page aligned memory isn't very interesting
1077	 * to us.  Also, sort the entries for ascending addresses.
1078	 */
1079
1080	/* Retrieve phys/avail mem regions */
1081	mem_regions(&physmem_regions, &physmem_regions_sz,
1082	    &availmem_regions, &availmem_regions_sz);
1083	sz = 0;
1084	cnt = availmem_regions_sz;
1085	debugf("processing avail regions:\n");
1086	for (mp = availmem_regions; mp->mr_size; mp++) {
1087		s = mp->mr_start;
1088		e = mp->mr_start + mp->mr_size;
1089		debugf(" %08x-%08x -> ", s, e);
1090		/* Check whether this region holds all of the kernel. */
1091		if (s < kernload && e > phys_kernelend) {
1092			availmem_regions[cnt].mr_start = phys_kernelend;
1093			availmem_regions[cnt++].mr_size = e - phys_kernelend;
1094			e = kernload;
1095		}
1096		/* Look whether this regions starts within the kernel. */
1097		if (s >= kernload && s < phys_kernelend) {
1098			if (e <= phys_kernelend)
1099				goto empty;
1100			s = phys_kernelend;
1101		}
1102		/* Now look whether this region ends within the kernel. */
1103		if (e > kernload && e <= phys_kernelend) {
1104			if (s >= kernload)
1105				goto empty;
1106			e = kernload;
1107		}
1108		/* Now page align the start and size of the region. */
1109		s = round_page(s);
1110		e = trunc_page(e);
1111		if (e < s)
1112			e = s;
1113		sz = e - s;
1114		debugf("%08x-%08x = %x\n", s, e, sz);
1115
1116		/* Check whether some memory is left here. */
1117		if (sz == 0) {
1118		empty:
1119			memmove(mp, mp + 1,
1120			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
1121			cnt--;
1122			mp--;
1123			continue;
1124		}
1125
1126		/* Do an insertion sort. */
1127		for (mp1 = availmem_regions; mp1 < mp; mp1++)
1128			if (s < mp1->mr_start)
1129				break;
1130		if (mp1 < mp) {
1131			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1132			mp1->mr_start = s;
1133			mp1->mr_size = sz;
1134		} else {
1135			mp->mr_start = s;
1136			mp->mr_size = sz;
1137		}
1138	}
1139	availmem_regions_sz = cnt;
1140
1141	/*******************************************************/
1142	/* Steal physical memory for kernel stack from the end */
1143	/* of the first avail region                           */
1144	/*******************************************************/
1145	kstack0_sz = KSTACK_PAGES * PAGE_SIZE;
1146	kstack0_phys = availmem_regions[0].mr_start +
1147	    availmem_regions[0].mr_size;
1148	kstack0_phys -= kstack0_sz;
1149	availmem_regions[0].mr_size -= kstack0_sz;
1150
1151	/*******************************************************/
1152	/* Fill in phys_avail table, based on availmem_regions */
1153	/*******************************************************/
1154	phys_avail_count = 0;
1155	physsz = 0;
1156	hwphyssz = 0;
1157	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
1158
1159	debugf("fill in phys_avail:\n");
1160	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
1161
1162		debugf(" region: 0x%08x - 0x%08x (0x%08x)\n",
1163		    availmem_regions[i].mr_start,
1164		    availmem_regions[i].mr_start +
1165		        availmem_regions[i].mr_size,
1166		    availmem_regions[i].mr_size);
1167
1168		if (hwphyssz != 0 &&
1169		    (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
1170			debugf(" hw.physmem adjust\n");
1171			if (physsz < hwphyssz) {
1172				phys_avail[j] = availmem_regions[i].mr_start;
1173				phys_avail[j + 1] =
1174				    availmem_regions[i].mr_start +
1175				    hwphyssz - physsz;
1176				physsz = hwphyssz;
1177				phys_avail_count++;
1178			}
1179			break;
1180		}
1181
1182		phys_avail[j] = availmem_regions[i].mr_start;
1183		phys_avail[j + 1] = availmem_regions[i].mr_start +
1184		    availmem_regions[i].mr_size;
1185		phys_avail_count++;
1186		physsz += availmem_regions[i].mr_size;
1187	}
1188	physmem = btoc(physsz);
1189
1190	/* Calculate the last available physical address. */
1191	for (i = 0; phys_avail[i + 2] != 0; i += 2)
1192		;
1193	Maxmem = powerpc_btop(phys_avail[i + 1]);
1194
1195	debugf("Maxmem = 0x%08lx\n", Maxmem);
1196	debugf("phys_avail_count = %d\n", phys_avail_count);
1197	debugf("physsz = 0x%08x physmem = %ld (0x%08lx)\n", physsz, physmem,
1198	    physmem);
1199
1200	/*******************************************************/
1201	/* Initialize (statically allocated) kernel pmap. */
1202	/*******************************************************/
1203	PMAP_LOCK_INIT(kernel_pmap);
1204	kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE;
1205
1206	debugf("kernel_pmap = 0x%08x\n", (uint32_t)kernel_pmap);
1207	debugf("kptbl_min = %d, kernel_ptbls = %d\n", kptbl_min, kernel_ptbls);
1208	debugf("kernel pdir range: 0x%08x - 0x%08x\n",
1209	    kptbl_min * PDIR_SIZE, (kptbl_min + kernel_ptbls) * PDIR_SIZE - 1);
1210
1211	/* Initialize kernel pdir */
1212	for (i = 0; i < kernel_ptbls; i++)
1213		kernel_pmap->pm_pdir[kptbl_min + i] =
1214		    (pte_t *)(kernel_pdir + (i * PAGE_SIZE * PTBL_PAGES));
1215
1216	for (i = 0; i < MAXCPU; i++) {
1217		kernel_pmap->pm_tid[i] = TID_KERNEL;
1218
1219		/* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
1220		tidbusy[i][0] = kernel_pmap;
1221	}
1222
1223	/*
1224	 * Fill in PTEs covering kernel code and data. They are not required
1225	 * for address translation, as this area is covered by static TLB1
1226	 * entries, but for pte_vatopa() to work correctly with kernel area
1227	 * addresses.
1228	 */
1229	for (va = KERNBASE; va < data_end; va += PAGE_SIZE) {
1230		pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]);
1231		pte->rpn = kernload + (va - KERNBASE);
1232		pte->flags = PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED |
1233		    PTE_VALID;
1234	}
1235	/* Mark kernel_pmap active on all CPUs */
1236	kernel_pmap->pm_active = ~0;
1237
1238	/*******************************************************/
1239	/* Final setup */
1240	/*******************************************************/
1241
1242	/* Enter kstack0 into kernel map, provide guard page */
1243	kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1244	thread0.td_kstack = kstack0;
1245	thread0.td_kstack_pages = KSTACK_PAGES;
1246
1247	debugf("kstack_sz = 0x%08x\n", kstack0_sz);
1248	debugf("kstack0_phys at 0x%08x - 0x%08x\n",
1249	    kstack0_phys, kstack0_phys + kstack0_sz);
1250	debugf("kstack0 at 0x%08x - 0x%08x\n", kstack0, kstack0 + kstack0_sz);
1251
1252	virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
1253	for (i = 0; i < KSTACK_PAGES; i++) {
1254		mmu_booke_kenter(mmu, kstack0, kstack0_phys);
1255		kstack0 += PAGE_SIZE;
1256		kstack0_phys += PAGE_SIZE;
1257	}
1258
1259	debugf("virtual_avail = %08x\n", virtual_avail);
1260	debugf("virtual_end   = %08x\n", virtual_end);
1261
1262	debugf("mmu_booke_bootstrap: exit\n");
1263}
1264
1265void
1266pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
1267{
1268	int i;
1269
1270	/*
1271	 * Finish TLB1 configuration: the BSP already set up its TLB1 and we
1272	 * have the snapshot of its contents in the s/w tlb1[] table, so use
1273	 * these values directly to (re)program AP's TLB1 hardware.
1274	 */
1275	for (i = 0; i < tlb1_idx; i ++) {
1276		/* Skip invalid entries */
1277		if (!(tlb1[i].mas1 & MAS1_VALID))
1278			continue;
1279
1280		tlb1_write_entry(i);
1281	}
1282
1283	set_mas4_defaults();
1284}
1285
1286/*
1287 * Get the physical page address for the given pmap/virtual address.
1288 */
1289static vm_paddr_t
1290mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1291{
1292	vm_paddr_t pa;
1293
1294	PMAP_LOCK(pmap);
1295	pa = pte_vatopa(mmu, pmap, va);
1296	PMAP_UNLOCK(pmap);
1297
1298	return (pa);
1299}
1300
1301/*
1302 * Extract the physical page address associated with the given
1303 * kernel virtual address.
1304 */
1305static vm_paddr_t
1306mmu_booke_kextract(mmu_t mmu, vm_offset_t va)
1307{
1308
1309	return (pte_vatopa(mmu, kernel_pmap, va));
1310}
1311
1312/*
1313 * Initialize the pmap module.
1314 * Called by vm_init, to initialize any structures that the pmap
1315 * system needs to map virtual memory.
1316 */
1317static void
1318mmu_booke_init(mmu_t mmu)
1319{
1320	int shpgperproc = PMAP_SHPGPERPROC;
1321
1322	/*
1323	 * Initialize the address space (zone) for the pv entries.  Set a
1324	 * high water mark so that the system can recover from excessive
1325	 * numbers of pv entries.
1326	 */
1327	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1328	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1329
1330	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1331	pv_entry_max = shpgperproc * maxproc + cnt.v_page_count;
1332
1333	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1334	pv_entry_high_water = 9 * (pv_entry_max / 10);
1335
1336	uma_zone_set_obj(pvzone, &pvzone_obj, pv_entry_max);
1337
1338	/* Pre-fill pvzone with initial number of pv entries. */
1339	uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1340
1341	/* Initialize ptbl allocation. */
1342	ptbl_init();
1343}
1344
1345/*
1346 * Map a list of wired pages into kernel virtual address space.  This is
1347 * intended for temporary mappings which do not need page modification or
1348 * references recorded.  Existing mappings in the region are overwritten.
1349 */
1350static void
1351mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1352{
1353	vm_offset_t va;
1354
1355	va = sva;
1356	while (count-- > 0) {
1357		mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1358		va += PAGE_SIZE;
1359		m++;
1360	}
1361}
1362
1363/*
1364 * Remove page mappings from kernel virtual address space.  Intended for
1365 * temporary mappings entered by mmu_booke_qenter.
1366 */
1367static void
1368mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count)
1369{
1370	vm_offset_t va;
1371
1372	va = sva;
1373	while (count-- > 0) {
1374		mmu_booke_kremove(mmu, va);
1375		va += PAGE_SIZE;
1376	}
1377}
1378
1379/*
1380 * Map a wired page into kernel virtual address space.
1381 */
1382static void
1383mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa)
1384{
1385	unsigned int pdir_idx = PDIR_IDX(va);
1386	unsigned int ptbl_idx = PTBL_IDX(va);
1387	uint32_t flags;
1388	pte_t *pte;
1389
1390	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1391	    (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
1392
1393	flags = 0;
1394	flags |= (PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID);
1395	flags |= PTE_M;
1396
1397	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1398
1399	mtx_lock_spin(&tlbivax_mutex);
1400	tlb_miss_lock();
1401
1402	if (PTE_ISVALID(pte)) {
1403
1404		CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
1405
1406		/* Flush entry from TLB0 */
1407		tlb0_flush_entry(va);
1408	}
1409
1410	pte->rpn = pa & ~PTE_PA_MASK;
1411	pte->flags = flags;
1412
1413	//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1414	//		"pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1415	//		pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1416
1417	/* Flush the real memory from the instruction cache. */
1418	if ((flags & (PTE_I | PTE_G)) == 0) {
1419		__syncicache((void *)va, PAGE_SIZE);
1420	}
1421
1422	tlb_miss_unlock();
1423	mtx_unlock_spin(&tlbivax_mutex);
1424}
1425
1426/*
1427 * Remove a page from kernel page table.
1428 */
1429static void
1430mmu_booke_kremove(mmu_t mmu, vm_offset_t va)
1431{
1432	unsigned int pdir_idx = PDIR_IDX(va);
1433	unsigned int ptbl_idx = PTBL_IDX(va);
1434	pte_t *pte;
1435
1436//	CTR2(KTR_PMAP,("%s: s (va = 0x%08x)\n", __func__, va));
1437
1438	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1439	    (va <= VM_MAX_KERNEL_ADDRESS)),
1440	    ("mmu_booke_kremove: invalid va"));
1441
1442	pte = &(kernel_pmap->pm_pdir[pdir_idx][ptbl_idx]);
1443
1444	if (!PTE_ISVALID(pte)) {
1445
1446		CTR1(KTR_PMAP, "%s: invalid pte", __func__);
1447
1448		return;
1449	}
1450
1451	mtx_lock_spin(&tlbivax_mutex);
1452	tlb_miss_lock();
1453
1454	/* Invalidate entry in TLB0, update PTE. */
1455	tlb0_flush_entry(va);
1456	pte->flags = 0;
1457	pte->rpn = 0;
1458
1459	tlb_miss_unlock();
1460	mtx_unlock_spin(&tlbivax_mutex);
1461}
1462
1463/*
1464 * Initialize pmap associated with process 0.
1465 */
1466static void
1467mmu_booke_pinit0(mmu_t mmu, pmap_t pmap)
1468{
1469
1470	mmu_booke_pinit(mmu, pmap);
1471	PCPU_SET(curpmap, pmap);
1472}
1473
1474/*
1475 * Initialize a preallocated and zeroed pmap structure,
1476 * such as one in a vmspace structure.
1477 */
1478static void
1479mmu_booke_pinit(mmu_t mmu, pmap_t pmap)
1480{
1481	int i;
1482
1483	CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap,
1484	    curthread->td_proc->p_pid, curthread->td_proc->p_comm);
1485
1486	KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap"));
1487
1488	PMAP_LOCK_INIT(pmap);
1489	for (i = 0; i < MAXCPU; i++)
1490		pmap->pm_tid[i] = TID_NONE;
1491	pmap->pm_active = 0;
1492	bzero(&pmap->pm_stats, sizeof(pmap->pm_stats));
1493	bzero(&pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES);
1494	TAILQ_INIT(&pmap->pm_ptbl_list);
1495}
1496
1497/*
1498 * Release any resources held by the given physical map.
1499 * Called when a pmap initialized by mmu_booke_pinit is being released.
1500 * Should only be called if the map contains no valid mappings.
1501 */
1502static void
1503mmu_booke_release(mmu_t mmu, pmap_t pmap)
1504{
1505
1506	printf("mmu_booke_release: s\n");
1507
1508	KASSERT(pmap->pm_stats.resident_count == 0,
1509	    ("pmap_release: pmap resident count %ld != 0",
1510	    pmap->pm_stats.resident_count));
1511
1512	PMAP_LOCK_DESTROY(pmap);
1513}
1514
1515/*
1516 * Insert the given physical page at the specified virtual address in the
1517 * target physical map with the protection requested. If specified the page
1518 * will be wired down.
1519 */
1520static void
1521mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1522    vm_prot_t prot, boolean_t wired)
1523{
1524
1525	vm_page_lock_queues();
1526	PMAP_LOCK(pmap);
1527	mmu_booke_enter_locked(mmu, pmap, va, m, prot, wired);
1528	vm_page_unlock_queues();
1529	PMAP_UNLOCK(pmap);
1530}
1531
1532static void
1533mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1534    vm_prot_t prot, boolean_t wired)
1535{
1536	pte_t *pte;
1537	vm_paddr_t pa;
1538	uint32_t flags;
1539	int su, sync;
1540
1541	pa = VM_PAGE_TO_PHYS(m);
1542	su = (pmap == kernel_pmap);
1543	sync = 0;
1544
1545	//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1546	//		"pa=0x%08x prot=0x%08x wired=%d)\n",
1547	//		(u_int32_t)pmap, su, pmap->pm_tid,
1548	//		(u_int32_t)m, va, pa, prot, wired);
1549
1550	if (su) {
1551		KASSERT(((va >= virtual_avail) &&
1552		    (va <= VM_MAX_KERNEL_ADDRESS)),
1553		    ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1554	} else {
1555		KASSERT((va <= VM_MAXUSER_ADDRESS),
1556		    ("mmu_booke_enter_locked: user pmap, non user va"));
1557	}
1558
1559	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1560
1561	/*
1562	 * If there is an existing mapping, and the physical address has not
1563	 * changed, must be protection or wiring change.
1564	 */
1565	if (((pte = pte_find(mmu, pmap, va)) != NULL) &&
1566	    (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1567
1568		/*
1569		 * Before actually updating pte->flags we calculate and
1570		 * prepare its new value in a helper var.
1571		 */
1572		flags = pte->flags;
1573		flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1574
1575		/* Wiring change, just update stats. */
1576		if (wired) {
1577			if (!PTE_ISWIRED(pte)) {
1578				flags |= PTE_WIRED;
1579				pmap->pm_stats.wired_count++;
1580			}
1581		} else {
1582			if (PTE_ISWIRED(pte)) {
1583				flags &= ~PTE_WIRED;
1584				pmap->pm_stats.wired_count--;
1585			}
1586		}
1587
1588		if (prot & VM_PROT_WRITE) {
1589			/* Add write permissions. */
1590			flags |= PTE_SW;
1591			if (!su)
1592				flags |= PTE_UW;
1593
1594			vm_page_flag_set(m, PG_WRITEABLE);
1595		} else {
1596			/* Handle modified pages, sense modify status. */
1597
1598			/*
1599			 * The PTE_MODIFIED flag could be set by underlying
1600			 * TLB misses since we last read it (above), possibly
1601			 * other CPUs could update it so we check in the PTE
1602			 * directly rather than rely on that saved local flags
1603			 * copy.
1604			 */
1605			if (PTE_ISMODIFIED(pte))
1606				vm_page_dirty(m);
1607		}
1608
1609		if (prot & VM_PROT_EXECUTE) {
1610			flags |= PTE_SX;
1611			if (!su)
1612				flags |= PTE_UX;
1613
1614			/*
1615			 * Check existing flags for execute permissions: if we
1616			 * are turning execute permissions on, icache should
1617			 * be flushed.
1618			 */
1619			if ((flags & (PTE_UX | PTE_SX)) == 0)
1620				sync++;
1621		}
1622
1623		flags &= ~PTE_REFERENCED;
1624
1625		/*
1626		 * The new flags value is all calculated -- only now actually
1627		 * update the PTE.
1628		 */
1629		mtx_lock_spin(&tlbivax_mutex);
1630		tlb_miss_lock();
1631
1632		tlb0_flush_entry(va);
1633		pte->flags = flags;
1634
1635		tlb_miss_unlock();
1636		mtx_unlock_spin(&tlbivax_mutex);
1637
1638	} else {
1639		/*
1640		 * If there is an existing mapping, but it's for a different
1641		 * physical address, pte_enter() will delete the old mapping.
1642		 */
1643		//if ((pte != NULL) && PTE_ISVALID(pte))
1644		//	debugf("mmu_booke_enter_locked: replace\n");
1645		//else
1646		//	debugf("mmu_booke_enter_locked: new\n");
1647
1648		/* Now set up the flags and install the new mapping. */
1649		flags = (PTE_SR | PTE_VALID);
1650		flags |= PTE_M;
1651
1652		if (!su)
1653			flags |= PTE_UR;
1654
1655		if (prot & VM_PROT_WRITE) {
1656			flags |= PTE_SW;
1657			if (!su)
1658				flags |= PTE_UW;
1659
1660			vm_page_flag_set(m, PG_WRITEABLE);
1661		}
1662
1663		if (prot & VM_PROT_EXECUTE) {
1664			flags |= PTE_SX;
1665			if (!su)
1666				flags |= PTE_UX;
1667		}
1668
1669		/* If its wired update stats. */
1670		if (wired) {
1671			pmap->pm_stats.wired_count++;
1672			flags |= PTE_WIRED;
1673		}
1674
1675		pte_enter(mmu, pmap, m, va, flags);
1676
1677		/* Flush the real memory from the instruction cache. */
1678		if (prot & VM_PROT_EXECUTE)
1679			sync++;
1680	}
1681
1682	if (sync && (su || pmap == PCPU_GET(curpmap))) {
1683		__syncicache((void *)va, PAGE_SIZE);
1684		sync = 0;
1685	}
1686}
1687
1688/*
1689 * Maps a sequence of resident pages belonging to the same object.
1690 * The sequence begins with the given page m_start.  This page is
1691 * mapped at the given virtual address start.  Each subsequent page is
1692 * mapped at a virtual address that is offset from start by the same
1693 * amount as the page is offset from m_start within the object.  The
1694 * last page in the sequence is the page with the largest offset from
1695 * m_start that can be mapped at a virtual address less than the given
1696 * virtual address end.  Not every virtual page between start and end
1697 * is mapped; only those for which a resident page exists with the
1698 * corresponding offset from m_start are mapped.
1699 */
1700static void
1701mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start,
1702    vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1703{
1704	vm_page_t m;
1705	vm_pindex_t diff, psize;
1706
1707	psize = atop(end - start);
1708	m = m_start;
1709	PMAP_LOCK(pmap);
1710	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1711		mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m,
1712		    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1713		m = TAILQ_NEXT(m, listq);
1714	}
1715	PMAP_UNLOCK(pmap);
1716}
1717
1718static void
1719mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1720    vm_prot_t prot)
1721{
1722
1723	PMAP_LOCK(pmap);
1724	mmu_booke_enter_locked(mmu, pmap, va, m,
1725	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1726	PMAP_UNLOCK(pmap);
1727}
1728
1729/*
1730 * Remove the given range of addresses from the specified map.
1731 *
1732 * It is assumed that the start and end are properly rounded to the page size.
1733 */
1734static void
1735mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1736{
1737	pte_t *pte;
1738	uint8_t hold_flag;
1739
1740	int su = (pmap == kernel_pmap);
1741
1742	//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1743	//		su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1744
1745	if (su) {
1746		KASSERT(((va >= virtual_avail) &&
1747		    (va <= VM_MAX_KERNEL_ADDRESS)),
1748		    ("mmu_booke_remove: kernel pmap, non kernel va"));
1749	} else {
1750		KASSERT((va <= VM_MAXUSER_ADDRESS),
1751		    ("mmu_booke_remove: user pmap, non user va"));
1752	}
1753
1754	if (PMAP_REMOVE_DONE(pmap)) {
1755		//debugf("mmu_booke_remove: e (empty)\n");
1756		return;
1757	}
1758
1759	hold_flag = PTBL_HOLD_FLAG(pmap);
1760	//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1761
1762	vm_page_lock_queues();
1763	PMAP_LOCK(pmap);
1764	for (; va < endva; va += PAGE_SIZE) {
1765		pte = pte_find(mmu, pmap, va);
1766		if ((pte != NULL) && PTE_ISVALID(pte))
1767			pte_remove(mmu, pmap, va, hold_flag);
1768	}
1769	PMAP_UNLOCK(pmap);
1770	vm_page_unlock_queues();
1771
1772	//debugf("mmu_booke_remove: e\n");
1773}
1774
1775/*
1776 * Remove physical page from all pmaps in which it resides.
1777 */
1778static void
1779mmu_booke_remove_all(mmu_t mmu, vm_page_t m)
1780{
1781	pv_entry_t pv, pvn;
1782	uint8_t hold_flag;
1783
1784	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1785
1786	for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) {
1787		pvn = TAILQ_NEXT(pv, pv_link);
1788
1789		PMAP_LOCK(pv->pv_pmap);
1790		hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1791		pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag);
1792		PMAP_UNLOCK(pv->pv_pmap);
1793	}
1794	vm_page_flag_clear(m, PG_WRITEABLE);
1795}
1796
1797/*
1798 * Map a range of physical addresses into kernel virtual address space.
1799 */
1800static vm_offset_t
1801mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start,
1802    vm_offset_t pa_end, int prot)
1803{
1804	vm_offset_t sva = *virt;
1805	vm_offset_t va = sva;
1806
1807	//debugf("mmu_booke_map: s (sva = 0x%08x pa_start = 0x%08x pa_end = 0x%08x)\n",
1808	//		sva, pa_start, pa_end);
1809
1810	while (pa_start < pa_end) {
1811		mmu_booke_kenter(mmu, va, pa_start);
1812		va += PAGE_SIZE;
1813		pa_start += PAGE_SIZE;
1814	}
1815	*virt = va;
1816
1817	//debugf("mmu_booke_map: e (va = 0x%08x)\n", va);
1818	return (sva);
1819}
1820
1821/*
1822 * The pmap must be activated before it's address space can be accessed in any
1823 * way.
1824 */
1825static void
1826mmu_booke_activate(mmu_t mmu, struct thread *td)
1827{
1828	pmap_t pmap;
1829
1830	pmap = &td->td_proc->p_vmspace->vm_pmap;
1831
1832	CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%08x)",
1833	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1834
1835	KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1836
1837	mtx_lock_spin(&sched_lock);
1838
1839	atomic_set_int(&pmap->pm_active, PCPU_GET(cpumask));
1840	PCPU_SET(curpmap, pmap);
1841
1842	if (pmap->pm_tid[PCPU_GET(cpuid)] == TID_NONE)
1843		tid_alloc(pmap);
1844
1845	/* Load PID0 register with pmap tid value. */
1846	mtspr(SPR_PID0, pmap->pm_tid[PCPU_GET(cpuid)]);
1847	__asm __volatile("isync");
1848
1849	mtx_unlock_spin(&sched_lock);
1850
1851	CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
1852	    pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
1853}
1854
1855/*
1856 * Deactivate the specified process's address space.
1857 */
1858static void
1859mmu_booke_deactivate(mmu_t mmu, struct thread *td)
1860{
1861	pmap_t pmap;
1862
1863	pmap = &td->td_proc->p_vmspace->vm_pmap;
1864
1865	CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%08x",
1866	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1867
1868	atomic_clear_int(&pmap->pm_active, PCPU_GET(cpumask));
1869	PCPU_SET(curpmap, NULL);
1870}
1871
1872/*
1873 * Copy the range specified by src_addr/len
1874 * from the source map to the range dst_addr/len
1875 * in the destination map.
1876 *
1877 * This routine is only advisory and need not do anything.
1878 */
1879static void
1880mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap,
1881    vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
1882{
1883
1884}
1885
1886/*
1887 * Set the physical protection on the specified range of this map as requested.
1888 */
1889static void
1890mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1891    vm_prot_t prot)
1892{
1893	vm_offset_t va;
1894	vm_page_t m;
1895	pte_t *pte;
1896
1897	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1898		mmu_booke_remove(mmu, pmap, sva, eva);
1899		return;
1900	}
1901
1902	if (prot & VM_PROT_WRITE)
1903		return;
1904
1905	vm_page_lock_queues();
1906	PMAP_LOCK(pmap);
1907	for (va = sva; va < eva; va += PAGE_SIZE) {
1908		if ((pte = pte_find(mmu, pmap, va)) != NULL) {
1909			if (PTE_ISVALID(pte)) {
1910				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1911
1912				mtx_lock_spin(&tlbivax_mutex);
1913				tlb_miss_lock();
1914
1915				/* Handle modified pages. */
1916				if (PTE_ISMODIFIED(pte))
1917					vm_page_dirty(m);
1918
1919				/* Referenced pages. */
1920				if (PTE_ISREFERENCED(pte))
1921					vm_page_flag_set(m, PG_REFERENCED);
1922
1923				tlb0_flush_entry(va);
1924				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED |
1925				    PTE_REFERENCED);
1926
1927				tlb_miss_unlock();
1928				mtx_unlock_spin(&tlbivax_mutex);
1929			}
1930		}
1931	}
1932	PMAP_UNLOCK(pmap);
1933	vm_page_unlock_queues();
1934}
1935
1936/*
1937 * Clear the write and modified bits in each of the given page's mappings.
1938 */
1939static void
1940mmu_booke_remove_write(mmu_t mmu, vm_page_t m)
1941{
1942	pv_entry_t pv;
1943	pte_t *pte;
1944
1945	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1946	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
1947	    (m->flags & PG_WRITEABLE) == 0)
1948		return;
1949
1950	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1951		PMAP_LOCK(pv->pv_pmap);
1952		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
1953			if (PTE_ISVALID(pte)) {
1954				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1955
1956				mtx_lock_spin(&tlbivax_mutex);
1957				tlb_miss_lock();
1958
1959				/* Handle modified pages. */
1960				if (PTE_ISMODIFIED(pte))
1961					vm_page_dirty(m);
1962
1963				/* Referenced pages. */
1964				if (PTE_ISREFERENCED(pte))
1965					vm_page_flag_set(m, PG_REFERENCED);
1966
1967				/* Flush mapping from TLB0. */
1968				pte->flags &= ~(PTE_UW | PTE_SW | PTE_MODIFIED |
1969				    PTE_REFERENCED);
1970
1971				tlb_miss_unlock();
1972				mtx_unlock_spin(&tlbivax_mutex);
1973			}
1974		}
1975		PMAP_UNLOCK(pv->pv_pmap);
1976	}
1977	vm_page_flag_clear(m, PG_WRITEABLE);
1978}
1979
1980static void
1981mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
1982{
1983	pte_t *pte;
1984	pmap_t pmap;
1985	vm_page_t m;
1986	vm_offset_t addr;
1987	vm_paddr_t pa;
1988	int active, valid;
1989
1990	va = trunc_page(va);
1991	sz = round_page(sz);
1992
1993	vm_page_lock_queues();
1994	pmap = PCPU_GET(curpmap);
1995	active = (pm == kernel_pmap || pm == pmap) ? 1 : 0;
1996	while (sz > 0) {
1997		PMAP_LOCK(pm);
1998		pte = pte_find(mmu, pm, va);
1999		valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0;
2000		if (valid)
2001			pa = PTE_PA(pte);
2002		PMAP_UNLOCK(pm);
2003		if (valid) {
2004			if (!active) {
2005				/* Create a mapping in the active pmap. */
2006				addr = 0;
2007				m = PHYS_TO_VM_PAGE(pa);
2008				PMAP_LOCK(pmap);
2009				pte_enter(mmu, pmap, m, addr,
2010				    PTE_SR | PTE_VALID | PTE_UR);
2011				__syncicache((void *)addr, PAGE_SIZE);
2012				pte_remove(mmu, pmap, addr, PTBL_UNHOLD);
2013				PMAP_UNLOCK(pmap);
2014			} else
2015				__syncicache((void *)va, PAGE_SIZE);
2016		}
2017		va += PAGE_SIZE;
2018		sz -= PAGE_SIZE;
2019	}
2020	vm_page_unlock_queues();
2021}
2022
2023/*
2024 * Atomically extract and hold the physical page with the given
2025 * pmap and virtual address pair if that mapping permits the given
2026 * protection.
2027 */
2028static vm_page_t
2029mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va,
2030    vm_prot_t prot)
2031{
2032	pte_t *pte;
2033	vm_page_t m;
2034	uint32_t pte_wbit;
2035
2036	m = NULL;
2037	vm_page_lock_queues();
2038	PMAP_LOCK(pmap);
2039
2040	pte = pte_find(mmu, pmap, va);
2041	if ((pte != NULL) && PTE_ISVALID(pte)) {
2042		if (pmap == kernel_pmap)
2043			pte_wbit = PTE_SW;
2044		else
2045			pte_wbit = PTE_UW;
2046
2047		if ((pte->flags & pte_wbit) || ((prot & VM_PROT_WRITE) == 0)) {
2048			m = PHYS_TO_VM_PAGE(PTE_PA(pte));
2049			vm_page_hold(m);
2050		}
2051	}
2052
2053	vm_page_unlock_queues();
2054	PMAP_UNLOCK(pmap);
2055	return (m);
2056}
2057
2058/*
2059 * Initialize a vm_page's machine-dependent fields.
2060 */
2061static void
2062mmu_booke_page_init(mmu_t mmu, vm_page_t m)
2063{
2064
2065	TAILQ_INIT(&m->md.pv_list);
2066}
2067
2068/*
2069 * mmu_booke_zero_page_area zeros the specified hardware page by
2070 * mapping it into virtual memory and using bzero to clear
2071 * its contents.
2072 *
2073 * off and size must reside within a single page.
2074 */
2075static void
2076mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
2077{
2078	vm_offset_t va;
2079
2080	/* XXX KASSERT off and size are within a single page? */
2081
2082	mtx_lock(&zero_page_mutex);
2083	va = zero_page_va;
2084
2085	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2086	bzero((caddr_t)va + off, size);
2087	mmu_booke_kremove(mmu, va);
2088
2089	mtx_unlock(&zero_page_mutex);
2090}
2091
2092/*
2093 * mmu_booke_zero_page zeros the specified hardware page.
2094 */
2095static void
2096mmu_booke_zero_page(mmu_t mmu, vm_page_t m)
2097{
2098
2099	mmu_booke_zero_page_area(mmu, m, 0, PAGE_SIZE);
2100}
2101
2102/*
2103 * mmu_booke_copy_page copies the specified (machine independent) page by
2104 * mapping the page into virtual memory and using memcopy to copy the page,
2105 * one machine dependent page at a time.
2106 */
2107static void
2108mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm)
2109{
2110	vm_offset_t sva, dva;
2111
2112	sva = copy_page_src_va;
2113	dva = copy_page_dst_va;
2114
2115	mtx_lock(&copy_page_mutex);
2116	mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm));
2117	mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm));
2118	memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE);
2119	mmu_booke_kremove(mmu, dva);
2120	mmu_booke_kremove(mmu, sva);
2121	mtx_unlock(&copy_page_mutex);
2122}
2123
2124/*
2125 * mmu_booke_zero_page_idle zeros the specified hardware page by mapping it
2126 * into virtual memory and using bzero to clear its contents. This is intended
2127 * to be called from the vm_pagezero process only and outside of Giant. No
2128 * lock is required.
2129 */
2130static void
2131mmu_booke_zero_page_idle(mmu_t mmu, vm_page_t m)
2132{
2133	vm_offset_t va;
2134
2135	va = zero_page_idle_va;
2136	mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m));
2137	bzero((caddr_t)va, PAGE_SIZE);
2138	mmu_booke_kremove(mmu, va);
2139}
2140
2141/*
2142 * Return whether or not the specified physical page was modified
2143 * in any of physical maps.
2144 */
2145static boolean_t
2146mmu_booke_is_modified(mmu_t mmu, vm_page_t m)
2147{
2148	pte_t *pte;
2149	pv_entry_t pv;
2150
2151	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2152	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2153		return (FALSE);
2154
2155	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2156		PMAP_LOCK(pv->pv_pmap);
2157		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2158			if (!PTE_ISVALID(pte))
2159				goto make_sure_to_unlock;
2160
2161			if (PTE_ISMODIFIED(pte)) {
2162				PMAP_UNLOCK(pv->pv_pmap);
2163				return (TRUE);
2164			}
2165		}
2166make_sure_to_unlock:
2167		PMAP_UNLOCK(pv->pv_pmap);
2168	}
2169	return (FALSE);
2170}
2171
2172/*
2173 * Return whether or not the specified virtual address is eligible
2174 * for prefault.
2175 */
2176static boolean_t
2177mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2178{
2179
2180	return (FALSE);
2181}
2182
2183/*
2184 * Clear the modify bits on the specified physical page.
2185 */
2186static void
2187mmu_booke_clear_modify(mmu_t mmu, vm_page_t m)
2188{
2189	pte_t *pte;
2190	pv_entry_t pv;
2191
2192	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2193	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2194		return;
2195
2196	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2197		PMAP_LOCK(pv->pv_pmap);
2198		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2199			if (!PTE_ISVALID(pte))
2200				goto make_sure_to_unlock;
2201
2202			mtx_lock_spin(&tlbivax_mutex);
2203			tlb_miss_lock();
2204
2205			if (pte->flags & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
2206				tlb0_flush_entry(pv->pv_va);
2207				pte->flags &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
2208				    PTE_REFERENCED);
2209			}
2210
2211			tlb_miss_unlock();
2212			mtx_unlock_spin(&tlbivax_mutex);
2213		}
2214make_sure_to_unlock:
2215		PMAP_UNLOCK(pv->pv_pmap);
2216	}
2217}
2218
2219/*
2220 * Return a count of reference bits for a page, clearing those bits.
2221 * It is not necessary for every reference bit to be cleared, but it
2222 * is necessary that 0 only be returned when there are truly no
2223 * reference bits set.
2224 *
2225 * XXX: The exact number of bits to check and clear is a matter that
2226 * should be tested and standardized at some point in the future for
2227 * optimal aging of shared pages.
2228 */
2229static int
2230mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m)
2231{
2232	pte_t *pte;
2233	pv_entry_t pv;
2234	int count;
2235
2236	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2237	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2238		return (0);
2239
2240	count = 0;
2241	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2242		PMAP_LOCK(pv->pv_pmap);
2243		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2244			if (!PTE_ISVALID(pte))
2245				goto make_sure_to_unlock;
2246
2247			if (PTE_ISREFERENCED(pte)) {
2248				mtx_lock_spin(&tlbivax_mutex);
2249				tlb_miss_lock();
2250
2251				tlb0_flush_entry(pv->pv_va);
2252				pte->flags &= ~PTE_REFERENCED;
2253
2254				tlb_miss_unlock();
2255				mtx_unlock_spin(&tlbivax_mutex);
2256
2257				if (++count > 4) {
2258					PMAP_UNLOCK(pv->pv_pmap);
2259					break;
2260				}
2261			}
2262		}
2263make_sure_to_unlock:
2264		PMAP_UNLOCK(pv->pv_pmap);
2265	}
2266	return (count);
2267}
2268
2269/*
2270 * Clear the reference bit on the specified physical page.
2271 */
2272static void
2273mmu_booke_clear_reference(mmu_t mmu, vm_page_t m)
2274{
2275	pte_t *pte;
2276	pv_entry_t pv;
2277
2278	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2279	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2280		return;
2281
2282	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2283		PMAP_LOCK(pv->pv_pmap);
2284		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) {
2285			if (!PTE_ISVALID(pte))
2286				goto make_sure_to_unlock;
2287
2288			if (PTE_ISREFERENCED(pte)) {
2289				mtx_lock_spin(&tlbivax_mutex);
2290				tlb_miss_lock();
2291
2292				tlb0_flush_entry(pv->pv_va);
2293				pte->flags &= ~PTE_REFERENCED;
2294
2295				tlb_miss_unlock();
2296				mtx_unlock_spin(&tlbivax_mutex);
2297			}
2298		}
2299make_sure_to_unlock:
2300		PMAP_UNLOCK(pv->pv_pmap);
2301	}
2302}
2303
2304/*
2305 * Change wiring attribute for a map/virtual-address pair.
2306 */
2307static void
2308mmu_booke_change_wiring(mmu_t mmu, pmap_t pmap, vm_offset_t va, boolean_t wired)
2309{
2310	pte_t *pte;
2311
2312	PMAP_LOCK(pmap);
2313	if ((pte = pte_find(mmu, pmap, va)) != NULL) {
2314		if (wired) {
2315			if (!PTE_ISWIRED(pte)) {
2316				pte->flags |= PTE_WIRED;
2317				pmap->pm_stats.wired_count++;
2318			}
2319		} else {
2320			if (PTE_ISWIRED(pte)) {
2321				pte->flags &= ~PTE_WIRED;
2322				pmap->pm_stats.wired_count--;
2323			}
2324		}
2325	}
2326	PMAP_UNLOCK(pmap);
2327}
2328
2329/*
2330 * Return true if the pmap's pv is one of the first 16 pvs linked to from this
2331 * page.  This count may be changed upwards or downwards in the future; it is
2332 * only necessary that true be returned for a small subset of pmaps for proper
2333 * page aging.
2334 */
2335static boolean_t
2336mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2337{
2338	pv_entry_t pv;
2339	int loops;
2340
2341	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2342	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
2343		return (FALSE);
2344
2345	loops = 0;
2346	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2347		if (pv->pv_pmap == pmap)
2348			return (TRUE);
2349
2350		if (++loops >= 16)
2351			break;
2352	}
2353	return (FALSE);
2354}
2355
2356/*
2357 * Return the number of managed mappings to the given physical page that are
2358 * wired.
2359 */
2360static int
2361mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m)
2362{
2363	pv_entry_t pv;
2364	pte_t *pte;
2365	int count = 0;
2366
2367	if ((m->flags & PG_FICTITIOUS) != 0)
2368		return (count);
2369	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
2370
2371	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2372		PMAP_LOCK(pv->pv_pmap);
2373		if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL)
2374			if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2375				count++;
2376		PMAP_UNLOCK(pv->pv_pmap);
2377	}
2378
2379	return (count);
2380}
2381
2382static int
2383mmu_booke_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2384{
2385	int i;
2386	vm_offset_t va;
2387
2388	/*
2389	 * This currently does not work for entries that
2390	 * overlap TLB1 entries.
2391	 */
2392	for (i = 0; i < tlb1_idx; i ++) {
2393		if (tlb1_iomapped(i, pa, size, &va) == 0)
2394			return (0);
2395	}
2396
2397	return (EFAULT);
2398}
2399
2400vm_offset_t
2401mmu_booke_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2402    vm_size_t *sz)
2403{
2404	vm_paddr_t pa, ppa;
2405	vm_offset_t va;
2406	vm_size_t gran;
2407
2408	/* Raw physical memory dumps don't have a virtual address. */
2409	if (md->md_vaddr == ~0UL) {
2410		/* We always map a 256MB page at 256M. */
2411		gran = 256 * 1024 * 1024;
2412		pa = md->md_paddr + ofs;
2413		ppa = pa & ~(gran - 1);
2414		ofs = pa - ppa;
2415		va = gran;
2416		tlb1_set_entry(va, ppa, gran, _TLB_ENTRY_IO);
2417		if (*sz > (gran - ofs))
2418			*sz = gran - ofs;
2419		return (va + ofs);
2420	}
2421
2422	/* Minidumps are based on virtual memory addresses. */
2423	va = md->md_vaddr + ofs;
2424	if (va >= kernstart + kernsize) {
2425		gran = PAGE_SIZE - (va & PAGE_MASK);
2426		if (*sz > gran)
2427			*sz = gran;
2428	}
2429	return (va);
2430}
2431
2432void
2433mmu_booke_dumpsys_unmap(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2434    vm_offset_t va)
2435{
2436
2437	/* Raw physical memory dumps don't have a virtual address. */
2438	if (md->md_vaddr == ~0UL) {
2439		tlb1_idx--;
2440		tlb1[tlb1_idx].mas1 = 0;
2441		tlb1[tlb1_idx].mas2 = 0;
2442		tlb1[tlb1_idx].mas3 = 0;
2443		tlb1_write_entry(tlb1_idx);
2444		return;
2445	}
2446
2447	/* Minidumps are based on virtual memory addresses. */
2448	/* Nothing to do... */
2449}
2450
2451struct pmap_md *
2452mmu_booke_scan_md(mmu_t mmu, struct pmap_md *prev)
2453{
2454	static struct pmap_md md;
2455	struct bi_mem_region *mr;
2456	pte_t *pte;
2457	vm_offset_t va;
2458
2459	if (dumpsys_minidump) {
2460		md.md_paddr = ~0UL;	/* Minidumps use virtual addresses. */
2461		if (prev == NULL) {
2462			/* 1st: kernel .data and .bss. */
2463			md.md_index = 1;
2464			md.md_vaddr = trunc_page((uintptr_t)_etext);
2465			md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
2466			return (&md);
2467		}
2468		switch (prev->md_index) {
2469		case 1:
2470			/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2471			md.md_index = 2;
2472			md.md_vaddr = data_start;
2473			md.md_size = data_end - data_start;
2474			break;
2475		case 2:
2476			/* 3rd: kernel VM. */
2477			va = prev->md_vaddr + prev->md_size;
2478			/* Find start of next chunk (from va). */
2479			while (va < virtual_end) {
2480				/* Don't dump the buffer cache. */
2481				if (va >= kmi.buffer_sva &&
2482				    va < kmi.buffer_eva) {
2483					va = kmi.buffer_eva;
2484					continue;
2485				}
2486				pte = pte_find(mmu, kernel_pmap, va);
2487				if (pte != NULL && PTE_ISVALID(pte))
2488					break;
2489				va += PAGE_SIZE;
2490			}
2491			if (va < virtual_end) {
2492				md.md_vaddr = va;
2493				va += PAGE_SIZE;
2494				/* Find last page in chunk. */
2495				while (va < virtual_end) {
2496					/* Don't run into the buffer cache. */
2497					if (va == kmi.buffer_sva)
2498						break;
2499					pte = pte_find(mmu, kernel_pmap, va);
2500					if (pte == NULL || !PTE_ISVALID(pte))
2501						break;
2502					va += PAGE_SIZE;
2503				}
2504				md.md_size = va - md.md_vaddr;
2505				break;
2506			}
2507			md.md_index = 3;
2508			/* FALLTHROUGH */
2509		default:
2510			return (NULL);
2511		}
2512	} else { /* minidumps */
2513		mr = bootinfo_mr();
2514		if (prev == NULL) {
2515			/* first physical chunk. */
2516			md.md_paddr = mr->mem_base;
2517			md.md_size = mr->mem_size;
2518			md.md_vaddr = ~0UL;
2519			md.md_index = 1;
2520		} else if (md.md_index < bootinfo->bi_mem_reg_no) {
2521			md.md_paddr = mr[md.md_index].mem_base;
2522			md.md_size = mr[md.md_index].mem_size;
2523			md.md_vaddr = ~0UL;
2524			md.md_index++;
2525		} else {
2526			/* There's no next physical chunk. */
2527			return (NULL);
2528		}
2529	}
2530
2531	return (&md);
2532}
2533
2534/*
2535 * Map a set of physical memory pages into the kernel virtual address space.
2536 * Return a pointer to where it is mapped. This routine is intended to be used
2537 * for mapping device memory, NOT real memory.
2538 */
2539static void *
2540mmu_booke_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2541{
2542	void *res;
2543	uintptr_t va;
2544	vm_size_t sz;
2545
2546	va = (pa >= 0x80000000) ? pa : (0xe2000000 + pa);
2547	res = (void *)va;
2548
2549	do {
2550		sz = 1 << (ilog2(size) & ~1);
2551		if (bootverbose)
2552			printf("Wiring VA=%x to PA=%x (size=%x), "
2553			    "using TLB1[%d]\n", va, pa, sz, tlb1_idx);
2554		tlb1_set_entry(va, pa, sz, _TLB_ENTRY_IO);
2555		size -= sz;
2556		pa += sz;
2557		va += sz;
2558	} while (size > 0);
2559
2560	return (res);
2561}
2562
2563/*
2564 * 'Unmap' a range mapped by mmu_booke_mapdev().
2565 */
2566static void
2567mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2568{
2569	vm_offset_t base, offset;
2570
2571	/*
2572	 * Unmap only if this is inside kernel virtual space.
2573	 */
2574	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2575		base = trunc_page(va);
2576		offset = va & PAGE_MASK;
2577		size = roundup(offset + size, PAGE_SIZE);
2578		kmem_free(kernel_map, base, size);
2579	}
2580}
2581
2582/*
2583 * mmu_booke_object_init_pt preloads the ptes for a given object into the
2584 * specified pmap. This eliminates the blast of soft faults on process startup
2585 * and immediately after an mmap.
2586 */
2587static void
2588mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr,
2589    vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2590{
2591
2592	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2593	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2594	    ("mmu_booke_object_init_pt: non-device object"));
2595}
2596
2597/*
2598 * Perform the pmap work for mincore.
2599 */
2600static int
2601mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr)
2602{
2603
2604	TODO;
2605	return (0);
2606}
2607
2608/**************************************************************************/
2609/* TID handling */
2610/**************************************************************************/
2611
2612/*
2613 * Allocate a TID. If necessary, steal one from someone else.
2614 * The new TID is flushed from the TLB before returning.
2615 */
2616static tlbtid_t
2617tid_alloc(pmap_t pmap)
2618{
2619	tlbtid_t tid;
2620	int thiscpu;
2621
2622	KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
2623
2624	CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
2625
2626	thiscpu = PCPU_GET(cpuid);
2627
2628	tid = PCPU_GET(tid_next);
2629	if (tid > TID_MAX)
2630		tid = TID_MIN;
2631	PCPU_SET(tid_next, tid + 1);
2632
2633	/* If we are stealing TID then clear the relevant pmap's field */
2634	if (tidbusy[thiscpu][tid] != NULL) {
2635
2636		CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
2637
2638		tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
2639
2640		/* Flush all entries from TLB0 matching this TID. */
2641		tid_flush(tid);
2642	}
2643
2644	tidbusy[thiscpu][tid] = pmap;
2645	pmap->pm_tid[thiscpu] = tid;
2646	__asm __volatile("msync; isync");
2647
2648	CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
2649	    PCPU_GET(tid_next));
2650
2651	return (tid);
2652}
2653
2654/**************************************************************************/
2655/* TLB0 handling */
2656/**************************************************************************/
2657
2658static void
2659tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
2660    uint32_t mas7)
2661{
2662	int as;
2663	char desc[3];
2664	tlbtid_t tid;
2665	vm_size_t size;
2666	unsigned int tsize;
2667
2668	desc[2] = '\0';
2669	if (mas1 & MAS1_VALID)
2670		desc[0] = 'V';
2671	else
2672		desc[0] = ' ';
2673
2674	if (mas1 & MAS1_IPROT)
2675		desc[1] = 'P';
2676	else
2677		desc[1] = ' ';
2678
2679	as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
2680	tid = MAS1_GETTID(mas1);
2681
2682	tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2683	size = 0;
2684	if (tsize)
2685		size = tsize2size(tsize);
2686
2687	debugf("%3d: (%s) [AS=%d] "
2688	    "sz = 0x%08x tsz = %d tid = %d mas1 = 0x%08x "
2689	    "mas2(va) = 0x%08x mas3(pa) = 0x%08x mas7 = 0x%08x\n",
2690	    i, desc, as, size, tsize, tid, mas1, mas2, mas3, mas7);
2691}
2692
2693/* Convert TLB0 va and way number to tlb0[] table index. */
2694static inline unsigned int
2695tlb0_tableidx(vm_offset_t va, unsigned int way)
2696{
2697	unsigned int idx;
2698
2699	idx = (way * TLB0_ENTRIES_PER_WAY);
2700	idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
2701	return (idx);
2702}
2703
2704/*
2705 * Invalidate TLB0 entry.
2706 */
2707static inline void
2708tlb0_flush_entry(vm_offset_t va)
2709{
2710
2711	CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
2712
2713	mtx_assert(&tlbivax_mutex, MA_OWNED);
2714
2715	__asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
2716	__asm __volatile("isync; msync");
2717	__asm __volatile("tlbsync; msync");
2718
2719	CTR1(KTR_PMAP, "%s: e", __func__);
2720}
2721
2722/* Print out contents of the MAS registers for each TLB0 entry */
2723void
2724tlb0_print_tlbentries(void)
2725{
2726	uint32_t mas0, mas1, mas2, mas3, mas7;
2727	int entryidx, way, idx;
2728
2729	debugf("TLB0 entries:\n");
2730	for (way = 0; way < TLB0_WAYS; way ++)
2731		for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
2732
2733			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
2734			mtspr(SPR_MAS0, mas0);
2735			__asm __volatile("isync");
2736
2737			mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
2738			mtspr(SPR_MAS2, mas2);
2739
2740			__asm __volatile("isync; tlbre");
2741
2742			mas1 = mfspr(SPR_MAS1);
2743			mas2 = mfspr(SPR_MAS2);
2744			mas3 = mfspr(SPR_MAS3);
2745			mas7 = mfspr(SPR_MAS7);
2746
2747			idx = tlb0_tableidx(mas2, way);
2748			tlb_print_entry(idx, mas1, mas2, mas3, mas7);
2749		}
2750}
2751
2752/**************************************************************************/
2753/* TLB1 handling */
2754/**************************************************************************/
2755
2756/*
2757 * TLB1 mapping notes:
2758 *
2759 * TLB1[0]	CCSRBAR
2760 * TLB1[1]	Kernel text and data.
2761 * TLB1[2-15]	Additional kernel text and data mappings (if required), PCI
2762 *		windows, other devices mappings.
2763 */
2764
2765/*
2766 * Write given entry to TLB1 hardware.
2767 * Use 32 bit pa, clear 4 high-order bits of RPN (mas7).
2768 */
2769static void
2770tlb1_write_entry(unsigned int idx)
2771{
2772	uint32_t mas0, mas7;
2773
2774	//debugf("tlb1_write_entry: s\n");
2775
2776	/* Clear high order RPN bits */
2777	mas7 = 0;
2778
2779	/* Select entry */
2780	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
2781	//debugf("tlb1_write_entry: mas0 = 0x%08x\n", mas0);
2782
2783	mtspr(SPR_MAS0, mas0);
2784	__asm __volatile("isync");
2785	mtspr(SPR_MAS1, tlb1[idx].mas1);
2786	__asm __volatile("isync");
2787	mtspr(SPR_MAS2, tlb1[idx].mas2);
2788	__asm __volatile("isync");
2789	mtspr(SPR_MAS3, tlb1[idx].mas3);
2790	__asm __volatile("isync");
2791	mtspr(SPR_MAS7, mas7);
2792	__asm __volatile("isync; tlbwe; isync; msync");
2793
2794	//debugf("tlb1_write_entry: e\n");
2795}
2796
2797/*
2798 * Return the largest uint value log such that 2^log <= num.
2799 */
2800static unsigned int
2801ilog2(unsigned int num)
2802{
2803	int lz;
2804
2805	__asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num));
2806	return (31 - lz);
2807}
2808
2809/*
2810 * Convert TLB TSIZE value to mapped region size.
2811 */
2812static vm_size_t
2813tsize2size(unsigned int tsize)
2814{
2815
2816	/*
2817	 * size = 4^tsize KB
2818	 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
2819	 */
2820
2821	return ((1 << (2 * tsize)) * 1024);
2822}
2823
2824/*
2825 * Convert region size (must be power of 4) to TLB TSIZE value.
2826 */
2827static unsigned int
2828size2tsize(vm_size_t size)
2829{
2830
2831	return (ilog2(size) / 2 - 5);
2832}
2833
2834/*
2835 * Register permanent kernel mapping in TLB1.
2836 *
2837 * Entries are created starting from index 0 (current free entry is
2838 * kept in tlb1_idx) and are not supposed to be invalidated.
2839 */
2840static int
2841tlb1_set_entry(vm_offset_t va, vm_offset_t pa, vm_size_t size,
2842    uint32_t flags)
2843{
2844	uint32_t ts, tid;
2845	int tsize;
2846
2847	if (tlb1_idx >= TLB1_ENTRIES) {
2848		printf("tlb1_set_entry: TLB1 full!\n");
2849		return (-1);
2850	}
2851
2852	/* Convert size to TSIZE */
2853	tsize = size2tsize(size);
2854
2855	tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
2856	/* XXX TS is hard coded to 0 for now as we only use single address space */
2857	ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
2858
2859	/* XXX LOCK tlb1[] */
2860
2861	tlb1[tlb1_idx].mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
2862	tlb1[tlb1_idx].mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
2863	tlb1[tlb1_idx].mas2 = (va & MAS2_EPN_MASK) | flags;
2864
2865	/* Set supervisor RWX permission bits */
2866	tlb1[tlb1_idx].mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
2867
2868	tlb1_write_entry(tlb1_idx++);
2869
2870	/* XXX UNLOCK tlb1[] */
2871
2872	/*
2873	 * XXX in general TLB1 updates should be propagated between CPUs,
2874	 * since current design assumes to have the same TLB1 set-up on all
2875	 * cores.
2876	 */
2877	return (0);
2878}
2879
2880static int
2881tlb1_entry_size_cmp(const void *a, const void *b)
2882{
2883	const vm_size_t *sza;
2884	const vm_size_t *szb;
2885
2886	sza = a;
2887	szb = b;
2888	if (*sza > *szb)
2889		return (-1);
2890	else if (*sza < *szb)
2891		return (1);
2892	else
2893		return (0);
2894}
2895
2896/*
2897 * Map in contiguous RAM region into the TLB1 using maximum of
2898 * KERNEL_REGION_MAX_TLB_ENTRIES entries.
2899 *
2900 * If necessary round up last entry size and return total size
2901 * used by all allocated entries.
2902 */
2903vm_size_t
2904tlb1_mapin_region(vm_offset_t va, vm_offset_t pa, vm_size_t size)
2905{
2906	vm_size_t entry_size[KERNEL_REGION_MAX_TLB_ENTRIES];
2907	vm_size_t mapped_size, sz, esz;
2908	unsigned int log;
2909	int i;
2910
2911	CTR4(KTR_PMAP, "%s: region size = 0x%08x va = 0x%08x pa = 0x%08x",
2912	    __func__, size, va, pa);
2913
2914	mapped_size = 0;
2915	sz = size;
2916	memset(entry_size, 0, sizeof(entry_size));
2917
2918	/* Calculate entry sizes. */
2919	for (i = 0; i < KERNEL_REGION_MAX_TLB_ENTRIES && sz > 0; i++) {
2920
2921		/* Largest region that is power of 4 and fits within size */
2922		log = ilog2(sz) / 2;
2923		esz = 1 << (2 * log);
2924
2925		/* If this is last entry cover remaining size. */
2926		if (i ==  KERNEL_REGION_MAX_TLB_ENTRIES - 1) {
2927			while (esz < sz)
2928				esz = esz << 2;
2929		}
2930
2931		entry_size[i] = esz;
2932		mapped_size += esz;
2933		if (esz < sz)
2934			sz -= esz;
2935		else
2936			sz = 0;
2937	}
2938
2939	/* Sort entry sizes, required to get proper entry address alignment. */
2940	qsort(entry_size, KERNEL_REGION_MAX_TLB_ENTRIES,
2941	    sizeof(vm_size_t), tlb1_entry_size_cmp);
2942
2943	/* Load TLB1 entries. */
2944	for (i = 0; i < KERNEL_REGION_MAX_TLB_ENTRIES; i++) {
2945		esz = entry_size[i];
2946		if (!esz)
2947			break;
2948
2949		CTR5(KTR_PMAP, "%s: entry %d: sz  = 0x%08x (va = 0x%08x "
2950		    "pa = 0x%08x)", __func__, tlb1_idx, esz, va, pa);
2951
2952		tlb1_set_entry(va, pa, esz, _TLB_ENTRY_MEM);
2953
2954		va += esz;
2955		pa += esz;
2956	}
2957
2958	CTR3(KTR_PMAP, "%s: mapped size 0x%08x (wasted space 0x%08x)",
2959	    __func__, mapped_size, mapped_size - size);
2960
2961	return (mapped_size);
2962}
2963
2964/*
2965 * TLB1 initialization routine, to be called after the very first
2966 * assembler level setup done in locore.S.
2967 */
2968void
2969tlb1_init(vm_offset_t ccsrbar)
2970{
2971	uint32_t mas0;
2972
2973	/* TLB1[1] is used to map the kernel. Save that entry. */
2974	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(1);
2975	mtspr(SPR_MAS0, mas0);
2976	__asm __volatile("isync; tlbre");
2977
2978	tlb1[1].mas1 = mfspr(SPR_MAS1);
2979	tlb1[1].mas2 = mfspr(SPR_MAS2);
2980	tlb1[1].mas3 = mfspr(SPR_MAS3);
2981
2982	/* Map in CCSRBAR in TLB1[0] */
2983	tlb1_idx = 0;
2984	tlb1_set_entry(CCSRBAR_VA, ccsrbar, CCSRBAR_SIZE, _TLB_ENTRY_IO);
2985	/*
2986	 * Set the next available TLB1 entry index. Note TLB[1] is reserved
2987	 * for initial mapping of kernel text+data, which was set early in
2988	 * locore, we need to skip this [busy] entry.
2989	 */
2990	tlb1_idx = 2;
2991
2992	/* Setup TLB miss defaults */
2993	set_mas4_defaults();
2994}
2995
2996/*
2997 * Setup MAS4 defaults.
2998 * These values are loaded to MAS0-2 on a TLB miss.
2999 */
3000static void
3001set_mas4_defaults(void)
3002{
3003	uint32_t mas4;
3004
3005	/* Defaults: TLB0, PID0, TSIZED=4K */
3006	mas4 = MAS4_TLBSELD0;
3007	mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
3008#ifdef SMP
3009	mas4 |= MAS4_MD;
3010#endif
3011	mtspr(SPR_MAS4, mas4);
3012	__asm __volatile("isync");
3013}
3014
3015/*
3016 * Print out contents of the MAS registers for each TLB1 entry
3017 */
3018void
3019tlb1_print_tlbentries(void)
3020{
3021	uint32_t mas0, mas1, mas2, mas3, mas7;
3022	int i;
3023
3024	debugf("TLB1 entries:\n");
3025	for (i = 0; i < TLB1_ENTRIES; i++) {
3026
3027		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3028		mtspr(SPR_MAS0, mas0);
3029
3030		__asm __volatile("isync; tlbre");
3031
3032		mas1 = mfspr(SPR_MAS1);
3033		mas2 = mfspr(SPR_MAS2);
3034		mas3 = mfspr(SPR_MAS3);
3035		mas7 = mfspr(SPR_MAS7);
3036
3037		tlb_print_entry(i, mas1, mas2, mas3, mas7);
3038	}
3039}
3040
3041/*
3042 * Print out contents of the in-ram tlb1 table.
3043 */
3044void
3045tlb1_print_entries(void)
3046{
3047	int i;
3048
3049	debugf("tlb1[] table entries:\n");
3050	for (i = 0; i < TLB1_ENTRIES; i++)
3051		tlb_print_entry(i, tlb1[i].mas1, tlb1[i].mas2, tlb1[i].mas3, 0);
3052}
3053
3054/*
3055 * Return 0 if the physical IO range is encompassed by one of the
3056 * the TLB1 entries, otherwise return related error code.
3057 */
3058static int
3059tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
3060{
3061	uint32_t prot;
3062	vm_paddr_t pa_start;
3063	vm_paddr_t pa_end;
3064	unsigned int entry_tsize;
3065	vm_size_t entry_size;
3066
3067	*va = (vm_offset_t)NULL;
3068
3069	/* Skip invalid entries */
3070	if (!(tlb1[i].mas1 & MAS1_VALID))
3071		return (EINVAL);
3072
3073	/*
3074	 * The entry must be cache-inhibited, guarded, and r/w
3075	 * so it can function as an i/o page
3076	 */
3077	prot = tlb1[i].mas2 & (MAS2_I | MAS2_G);
3078	if (prot != (MAS2_I | MAS2_G))
3079		return (EPERM);
3080
3081	prot = tlb1[i].mas3 & (MAS3_SR | MAS3_SW);
3082	if (prot != (MAS3_SR | MAS3_SW))
3083		return (EPERM);
3084
3085	/* The address should be within the entry range. */
3086	entry_tsize = (tlb1[i].mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3087	KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
3088
3089	entry_size = tsize2size(entry_tsize);
3090	pa_start = tlb1[i].mas3 & MAS3_RPN;
3091	pa_end = pa_start + entry_size - 1;
3092
3093	if ((pa < pa_start) || ((pa + size) > pa_end))
3094		return (ERANGE);
3095
3096	/* Return virtual address of this mapping. */
3097	*va = (tlb1[i].mas2 & MAS2_EPN_MASK) + (pa - pa_start);
3098	return (0);
3099}
3100