pcrtc.c revision 95814
1/*-
2 * Copyright (c) 1990 The Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * William Jolitz and Don Ahn.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)clock.c	7.2 (Berkeley) 5/12/91
37 * $FreeBSD: head/sys/pc98/cbus/pcrtc.c 95814 2002-04-30 19:34:31Z phk $
38 */
39
40/*
41 * Routines to handle clock hardware.
42 */
43
44/*
45 * inittodr, settodr and support routines written
46 * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
47 *
48 * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
49 */
50
51/*
52 * modified for PC98 by Kakefuda
53 */
54
55#include "opt_clock.h"
56#include "opt_isa.h"
57#include "opt_mca.h"
58
59#include <sys/param.h>
60#include <sys/systm.h>
61#include <sys/bus.h>
62#include <sys/lock.h>
63#include <sys/mutex.h>
64#include <sys/proc.h>
65#include <sys/time.h>
66#include <sys/timetc.h>
67#include <sys/kernel.h>
68#include <sys/sysctl.h>
69#include <sys/cons.h>
70#include <sys/power.h>
71
72#include <machine/clock.h>
73#ifdef CLK_CALIBRATION_LOOP
74#endif
75#include <machine/cputypes.h>
76#include <machine/frame.h>
77#include <machine/limits.h>
78#include <machine/md_var.h>
79#include <machine/psl.h>
80#ifdef APIC_IO
81#include <machine/segments.h>
82#endif
83#if defined(SMP) || defined(APIC_IO)
84#include <machine/smp.h>
85#endif /* SMP || APIC_IO */
86#include <machine/specialreg.h>
87
88#include <i386/isa/icu.h>
89#ifdef PC98
90#include <pc98/pc98/pc98.h>
91#include <pc98/pc98/pc98_machdep.h>
92#include <i386/isa/isa_device.h>
93#else
94#include <i386/isa/isa.h>
95#include <isa/rtc.h>
96#endif
97#ifdef DEV_ISA
98#include <isa/isavar.h>
99#endif
100#include <i386/isa/timerreg.h>
101
102#include <i386/isa/intr_machdep.h>
103
104#ifdef DEV_MCA
105#include <i386/isa/mca_machdep.h>
106#endif
107
108#ifdef APIC_IO
109#include <i386/isa/intr_machdep.h>
110/* The interrupt triggered by the 8254 (timer) chip */
111int apic_8254_intr;
112static u_long read_intr_count(int vec);
113static void setup_8254_mixed_mode(void);
114#endif
115
116/*
117 * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
118 * can use a simple formula for leap years.
119 */
120#define	LEAPYEAR(y) ((u_int)(y) % 4 == 0)
121#define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
122
123#define	TIMER_DIV(x) ((timer_freq + (x) / 2) / (x))
124
125/*
126 * Time in timer cycles that it takes for microtime() to disable interrupts
127 * and latch the count.  microtime() currently uses "cli; outb ..." so it
128 * normally takes less than 2 timer cycles.  Add a few for cache misses.
129 * Add a few more to allow for latency in bogus calls to microtime() with
130 * interrupts already disabled.
131 */
132#define	TIMER0_LATCH_COUNT	20
133
134/*
135 * Maximum frequency that we are willing to allow for timer0.  Must be
136 * low enough to guarantee that the timer interrupt handler returns
137 * before the next timer interrupt.
138 */
139#define	TIMER0_MAX_FREQ		20000
140
141int	adjkerntz;		/* local offset from GMT in seconds */
142int	clkintr_pending;
143int	disable_rtc_set;	/* disable resettodr() if != 0 */
144int	statclock_disable;
145#ifndef TIMER_FREQ
146#ifdef PC98
147#define TIMER_FREQ   2457600
148#else /* IBM-PC */
149#define TIMER_FREQ   1193182
150#endif /* PC98 */
151#endif
152u_int	timer_freq = TIMER_FREQ;
153int	timer0_max_count;
154u_int	tsc_freq;
155int	tsc_is_broken;
156u_int	tsc_present;
157int	wall_cmos_clock;	/* wall CMOS clock assumed if != 0 */
158struct mtx clock_lock;
159
160static	int	beeping = 0;
161static	const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
162static	u_int	hardclock_max_count;
163static	u_int32_t i8254_lastcount;
164static	u_int32_t i8254_offset;
165static	int	i8254_ticked;
166/*
167 * XXX new_function and timer_func should not handle clockframes, but
168 * timer_func currently needs to hold hardclock to handle the
169 * timer0_state == 0 case.  We should use inthand_add()/inthand_remove()
170 * to switch between clkintr() and a slightly different timerintr().
171 */
172static	void	(*new_function)(struct clockframe *frame);
173static	u_int	new_rate;
174#ifndef PC98
175static	u_char	rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
176static	u_char	rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
177#endif
178static	u_int	timer0_prescaler_count;
179
180/* Values for timerX_state: */
181#define	RELEASED	0
182#define	RELEASE_PENDING	1
183#define	ACQUIRED	2
184#define	ACQUIRE_PENDING	3
185
186static	u_char	timer0_state;
187#ifdef	PC98
188static 	u_char	timer1_state;
189#endif
190static	u_char	timer2_state;
191static	void	(*timer_func)(struct clockframe *frame) = hardclock;
192#ifdef PC98
193static void rtc_serialcombit(int);
194static void rtc_serialcom(int);
195static int rtc_inb(void);
196static void rtc_outb(int);
197#endif
198
199static	unsigned i8254_get_timecount(struct timecounter *tc);
200static	unsigned tsc_get_timecount(struct timecounter *tc);
201static	void	set_timer_freq(u_int freq, int intr_freq);
202
203static struct timecounter tsc_timecounter = {
204	tsc_get_timecount,	/* get_timecount */
205	0,			/* no poll_pps */
206 	~0u,			/* counter_mask */
207	0,			/* frequency */
208	 "TSC"			/* name */
209};
210
211static struct timecounter i8254_timecounter = {
212	i8254_get_timecount,	/* get_timecount */
213	0,			/* no poll_pps */
214	~0u,			/* counter_mask */
215	0,			/* frequency */
216	"i8254"			/* name */
217};
218
219static void
220clkintr(struct clockframe frame)
221{
222
223	if (timecounter->tc_get_timecount == i8254_get_timecount) {
224		mtx_lock_spin(&clock_lock);
225		if (i8254_ticked)
226			i8254_ticked = 0;
227		else {
228			i8254_offset += timer0_max_count;
229			i8254_lastcount = 0;
230		}
231		clkintr_pending = 0;
232		mtx_unlock_spin(&clock_lock);
233	}
234	timer_func(&frame);
235#ifdef SMP
236	if (timer_func == hardclock)
237		forward_hardclock();
238#endif
239	switch (timer0_state) {
240
241	case RELEASED:
242		break;
243
244	case ACQUIRED:
245		if ((timer0_prescaler_count += timer0_max_count)
246		    >= hardclock_max_count) {
247			timer0_prescaler_count -= hardclock_max_count;
248			hardclock(&frame);
249#ifdef SMP
250			forward_hardclock();
251#endif
252		}
253		break;
254
255	case ACQUIRE_PENDING:
256		mtx_lock_spin(&clock_lock);
257		i8254_offset = i8254_get_timecount(NULL);
258		i8254_lastcount = 0;
259		timer0_max_count = TIMER_DIV(new_rate);
260		outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
261		outb(TIMER_CNTR0, timer0_max_count & 0xff);
262		outb(TIMER_CNTR0, timer0_max_count >> 8);
263		mtx_unlock_spin(&clock_lock);
264		timer_func = new_function;
265		timer0_state = ACQUIRED;
266		break;
267
268	case RELEASE_PENDING:
269		if ((timer0_prescaler_count += timer0_max_count)
270		    >= hardclock_max_count) {
271			mtx_lock_spin(&clock_lock);
272			i8254_offset = i8254_get_timecount(NULL);
273			i8254_lastcount = 0;
274			timer0_max_count = hardclock_max_count;
275			outb(TIMER_MODE,
276			     TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
277			outb(TIMER_CNTR0, timer0_max_count & 0xff);
278			outb(TIMER_CNTR0, timer0_max_count >> 8);
279			mtx_unlock_spin(&clock_lock);
280			timer0_prescaler_count = 0;
281			timer_func = hardclock;
282			timer0_state = RELEASED;
283			hardclock(&frame);
284#ifdef SMP
285			forward_hardclock();
286#endif
287		}
288		break;
289	}
290#ifdef DEV_MCA
291	/* Reset clock interrupt by asserting bit 7 of port 0x61 */
292	if (MCA_system)
293		outb(0x61, inb(0x61) | 0x80);
294#endif
295}
296
297/*
298 * The acquire and release functions must be called at ipl >= splclock().
299 */
300int
301acquire_timer0(int rate, void (*function)(struct clockframe *frame))
302{
303	static int old_rate;
304
305	if (rate <= 0 || rate > TIMER0_MAX_FREQ)
306		return (-1);
307	switch (timer0_state) {
308
309	case RELEASED:
310		timer0_state = ACQUIRE_PENDING;
311		break;
312
313	case RELEASE_PENDING:
314		if (rate != old_rate)
315			return (-1);
316		/*
317		 * The timer has been released recently, but is being
318		 * re-acquired before the release completed.  In this
319		 * case, we simply reclaim it as if it had not been
320		 * released at all.
321		 */
322		timer0_state = ACQUIRED;
323		break;
324
325	default:
326		return (-1);	/* busy */
327	}
328	new_function = function;
329	old_rate = new_rate = rate;
330	return (0);
331}
332
333#ifdef PC98
334int
335acquire_timer1(int mode)
336{
337
338	if (timer1_state != RELEASED)
339		return (-1);
340	timer1_state = ACQUIRED;
341
342	/*
343	 * This access to the timer registers is as atomic as possible
344	 * because it is a single instruction.  We could do better if we
345	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
346	 * and this is probably good enough for timer2, so we aren't as
347	 * careful with it as with timer0.
348	 */
349	outb(TIMER_MODE, TIMER_SEL1 | (mode & 0x3f));
350
351	return (0);
352}
353#endif
354
355int
356acquire_timer2(int mode)
357{
358
359	if (timer2_state != RELEASED)
360		return (-1);
361	timer2_state = ACQUIRED;
362
363	/*
364	 * This access to the timer registers is as atomic as possible
365	 * because it is a single instruction.  We could do better if we
366	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
367	 * and this is probably good enough for timer2, so we aren't as
368	 * careful with it as with timer0.
369	 */
370	outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
371
372	return (0);
373}
374
375int
376release_timer0()
377{
378	switch (timer0_state) {
379
380	case ACQUIRED:
381		timer0_state = RELEASE_PENDING;
382		break;
383
384	case ACQUIRE_PENDING:
385		/* Nothing happened yet, release quickly. */
386		timer0_state = RELEASED;
387		break;
388
389	default:
390		return (-1);
391	}
392	return (0);
393}
394
395#ifdef PC98
396int
397release_timer1()
398{
399
400	if (timer1_state != ACQUIRED)
401		return (-1);
402	timer1_state = RELEASED;
403	outb(TIMER_MODE, TIMER_SEL1 | TIMER_SQWAVE | TIMER_16BIT);
404	return (0);
405}
406#endif
407
408int
409release_timer2()
410{
411
412	if (timer2_state != ACQUIRED)
413		return (-1);
414	timer2_state = RELEASED;
415	outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
416	return (0);
417}
418
419#ifndef PC98
420/*
421 * This routine receives statistical clock interrupts from the RTC.
422 * As explained above, these occur at 128 interrupts per second.
423 * When profiling, we receive interrupts at a rate of 1024 Hz.
424 *
425 * This does not actually add as much overhead as it sounds, because
426 * when the statistical clock is active, the hardclock driver no longer
427 * needs to keep (inaccurate) statistics on its own.  This decouples
428 * statistics gathering from scheduling interrupts.
429 *
430 * The RTC chip requires that we read status register C (RTC_INTR)
431 * to acknowledge an interrupt, before it will generate the next one.
432 * Under high interrupt load, rtcintr() can be indefinitely delayed and
433 * the clock can tick immediately after the read from RTC_INTR.  In this
434 * case, the mc146818A interrupt signal will not drop for long enough
435 * to register with the 8259 PIC.  If an interrupt is missed, the stat
436 * clock will halt, considerably degrading system performance.  This is
437 * why we use 'while' rather than a more straightforward 'if' below.
438 * Stat clock ticks can still be lost, causing minor loss of accuracy
439 * in the statistics, but the stat clock will no longer stop.
440 */
441static void
442rtcintr(struct clockframe frame)
443{
444	while (rtcin(RTC_INTR) & RTCIR_PERIOD) {
445		statclock(&frame);
446#ifdef SMP
447		forward_statclock();
448#endif
449	}
450}
451
452#include "opt_ddb.h"
453#ifdef DDB
454#include <ddb/ddb.h>
455
456DB_SHOW_COMMAND(rtc, rtc)
457{
458	printf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
459	       rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
460	       rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
461	       rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
462}
463#endif /* DDB */
464#endif /* for PC98 */
465
466static int
467getit(void)
468{
469	int high, low;
470
471	mtx_lock_spin(&clock_lock);
472
473	/* Select timer0 and latch counter value. */
474	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
475
476	low = inb(TIMER_CNTR0);
477	high = inb(TIMER_CNTR0);
478
479	mtx_unlock_spin(&clock_lock);
480	return ((high << 8) | low);
481}
482
483/*
484 * Wait "n" microseconds.
485 * Relies on timer 1 counting down from (timer_freq / hz)
486 * Note: timer had better have been programmed before this is first used!
487 */
488void
489DELAY(int n)
490{
491	int delta, prev_tick, tick, ticks_left;
492
493#ifdef DELAYDEBUG
494	int getit_calls = 1;
495	int n1;
496	static int state = 0;
497
498	if (state == 0) {
499		state = 1;
500		for (n1 = 1; n1 <= 10000000; n1 *= 10)
501			DELAY(n1);
502		state = 2;
503	}
504	if (state == 1)
505		printf("DELAY(%d)...", n);
506#endif
507	/*
508	 * Guard against the timer being uninitialized if we are called
509	 * early for console i/o.
510	 */
511	if (timer0_max_count == 0)
512		set_timer_freq(timer_freq, hz);
513
514	/*
515	 * Read the counter first, so that the rest of the setup overhead is
516	 * counted.  Guess the initial overhead is 20 usec (on most systems it
517	 * takes about 1.5 usec for each of the i/o's in getit().  The loop
518	 * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
519	 * multiplications and divisions to scale the count take a while).
520	 */
521	prev_tick = getit();
522	n -= 0;			/* XXX actually guess no initial overhead */
523	/*
524	 * Calculate (n * (timer_freq / 1e6)) without using floating point
525	 * and without any avoidable overflows.
526	 */
527	if (n <= 0)
528		ticks_left = 0;
529	else if (n < 256)
530		/*
531		 * Use fixed point to avoid a slow division by 1000000.
532		 * 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
533		 * 2^15 is the first power of 2 that gives exact results
534		 * for n between 0 and 256.
535		 */
536		ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
537	else
538		/*
539		 * Don't bother using fixed point, although gcc-2.7.2
540		 * generates particularly poor code for the long long
541		 * division, since even the slow way will complete long
542		 * before the delay is up (unless we're interrupted).
543		 */
544		ticks_left = ((u_int)n * (long long)timer_freq + 999999)
545			     / 1000000;
546
547	while (ticks_left > 0) {
548		tick = getit();
549#ifdef DELAYDEBUG
550		++getit_calls;
551#endif
552		delta = prev_tick - tick;
553		prev_tick = tick;
554		if (delta < 0) {
555			delta += timer0_max_count;
556			/*
557			 * Guard against timer0_max_count being wrong.
558			 * This shouldn't happen in normal operation,
559			 * but it may happen if set_timer_freq() is
560			 * traced.
561			 */
562			if (delta < 0)
563				delta = 0;
564		}
565		ticks_left -= delta;
566	}
567#ifdef DELAYDEBUG
568	if (state == 1)
569		printf(" %d calls to getit() at %d usec each\n",
570		       getit_calls, (n + 5) / getit_calls);
571#endif
572}
573
574static void
575sysbeepstop(void *chan)
576{
577#ifdef PC98	/* PC98 */
578	outb(IO_PPI, inb(IO_PPI)|0x08);	/* disable counter1 output to speaker */
579	release_timer1();
580#else
581	outb(IO_PPI, inb(IO_PPI)&0xFC);	/* disable counter2 output to speaker */
582	release_timer2();
583#endif
584	beeping = 0;
585}
586
587int
588sysbeep(int pitch, int period)
589{
590	int x = splclock();
591
592#ifdef PC98
593	if (acquire_timer1(TIMER_SQWAVE|TIMER_16BIT))
594		if (!beeping) {
595			/* Something else owns it. */
596			splx(x);
597			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
598		}
599	disable_intr();
600	outb(0x3fdb, pitch);
601	outb(0x3fdb, (pitch>>8));
602	enable_intr();
603	if (!beeping) {
604		/* enable counter1 output to speaker */
605		outb(IO_PPI, (inb(IO_PPI) & 0xf7));
606		beeping = period;
607		timeout(sysbeepstop, (void *)NULL, period);
608	}
609#else
610	if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
611		if (!beeping) {
612			/* Something else owns it. */
613			splx(x);
614			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
615		}
616	mtx_lock_spin(&clock_lock);
617	outb(TIMER_CNTR2, pitch);
618	outb(TIMER_CNTR2, (pitch>>8));
619	mtx_unlock_spin(&clock_lock);
620	if (!beeping) {
621		/* enable counter2 output to speaker */
622		outb(IO_PPI, inb(IO_PPI) | 3);
623		beeping = period;
624		timeout(sysbeepstop, (void *)NULL, period);
625	}
626#endif
627	splx(x);
628	return (0);
629}
630
631#ifndef PC98
632/*
633 * RTC support routines
634 */
635
636int
637rtcin(reg)
638	int reg;
639{
640	int s;
641	u_char val;
642
643	s = splhigh();
644	outb(IO_RTC, reg);
645	inb(0x84);
646	val = inb(IO_RTC + 1);
647	inb(0x84);
648	splx(s);
649	return (val);
650}
651
652static __inline void
653writertc(u_char reg, u_char val)
654{
655	int s;
656
657	s = splhigh();
658	inb(0x84);
659	outb(IO_RTC, reg);
660	inb(0x84);
661	outb(IO_RTC + 1, val);
662	inb(0x84);		/* XXX work around wrong order in rtcin() */
663	splx(s);
664}
665
666static __inline int
667readrtc(int port)
668{
669	return(bcd2bin(rtcin(port)));
670}
671#endif
672
673#ifdef PC98
674unsigned int delaycount;
675#define FIRST_GUESS	0x2000
676static void findcpuspeed(void)
677{
678	int i;
679	int remainder;
680
681	/* Put counter in count down mode */
682	outb(TIMER_MODE, TIMER_SEL0 | TIMER_16BIT | TIMER_RATEGEN);
683	outb(TIMER_CNTR0, 0xff);
684	outb(TIMER_CNTR0, 0xff);
685	for (i = FIRST_GUESS; i; i--)
686		;
687	remainder = getit();
688	delaycount = (FIRST_GUESS * TIMER_DIV(1000)) / (0xffff - remainder);
689}
690#endif
691
692#ifdef PC98
693static u_int
694calibrate_clocks(void)
695{
696	int	timeout;
697	u_int	count, prev_count, tot_count;
698	u_short	sec, start_sec;
699
700	if (bootverbose)
701	        printf("Calibrating clock(s) ... ");
702	/* Check ARTIC. */
703	if (!(PC98_SYSTEM_PARAMETER(0x458) & 0x80) &&
704	    !(PC98_SYSTEM_PARAMETER(0x45b) & 0x04))
705		goto fail;
706	timeout = 100000000;
707
708	/* Read the ARTIC. */
709	sec = inw(0x5e);
710
711	/* Wait for the ARTIC to changes. */
712	start_sec = sec;
713	for (;;) {
714		sec = inw(0x5e);
715		if (sec != start_sec)
716			break;
717		if (--timeout == 0)
718			goto fail;
719	}
720	prev_count = getit();
721	if (prev_count == 0 || prev_count > timer0_max_count)
722		goto fail;
723	tot_count = 0;
724
725	if (tsc_present)
726		wrmsr(0x10, 0LL);	/* XXX 0x10 is the MSR for the TSC */
727	start_sec = sec;
728	for (;;) {
729		sec = inw(0x5e);
730		count = getit();
731		if (count == 0 || count > timer0_max_count)
732			goto fail;
733		if (count > prev_count)
734			tot_count += prev_count - (count - timer0_max_count);
735		else
736			tot_count += prev_count - count;
737		prev_count = count;
738		if ((sec == start_sec + 1200) ||
739		    (sec < start_sec &&
740		        (u_int)sec + 0x10000 == (u_int)start_sec + 1200))
741			break;
742		if (--timeout == 0)
743			goto fail;
744	}
745	/*
746	 * Read the cpu cycle counter.  The timing considerations are
747	 * similar to those for the i8254 clock.
748	 */
749	if (tsc_present)
750		tsc_freq = rdtsc();
751
752	if (bootverbose) {
753		if (tsc_present)
754		        printf("TSC clock: %u Hz, ", tsc_freq);
755	        printf("i8254 clock: %u Hz\n", tot_count);
756	}
757	return (tot_count);
758
759fail:
760	if (bootverbose)
761	        printf("failed, using default i8254 clock of %u Hz\n",
762		       timer_freq);
763	return (timer_freq);
764}
765#else
766static u_int
767calibrate_clocks(void)
768{
769	u_int64_t old_tsc;
770	u_int count, prev_count, tot_count;
771	int sec, start_sec, timeout;
772
773	if (bootverbose)
774	        printf("Calibrating clock(s) ... ");
775	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
776		goto fail;
777	timeout = 100000000;
778
779	/* Read the mc146818A seconds counter. */
780	for (;;) {
781		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
782			sec = rtcin(RTC_SEC);
783			break;
784		}
785		if (--timeout == 0)
786			goto fail;
787	}
788
789	/* Wait for the mC146818A seconds counter to change. */
790	start_sec = sec;
791	for (;;) {
792		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
793			sec = rtcin(RTC_SEC);
794			if (sec != start_sec)
795				break;
796		}
797		if (--timeout == 0)
798			goto fail;
799	}
800
801	/* Start keeping track of the i8254 counter. */
802	prev_count = getit();
803	if (prev_count == 0 || prev_count > timer0_max_count)
804		goto fail;
805	tot_count = 0;
806
807	if (tsc_present)
808		old_tsc = rdtsc();
809	else
810		old_tsc = 0;		/* shut up gcc */
811
812	/*
813	 * Wait for the mc146818A seconds counter to change.  Read the i8254
814	 * counter for each iteration since this is convenient and only
815	 * costs a few usec of inaccuracy. The timing of the final reads
816	 * of the counters almost matches the timing of the initial reads,
817	 * so the main cause of inaccuracy is the varying latency from
818	 * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
819	 * rtcin(RTC_SEC) that returns a changed seconds count.  The
820	 * maximum inaccuracy from this cause is < 10 usec on 486's.
821	 */
822	start_sec = sec;
823	for (;;) {
824		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
825			sec = rtcin(RTC_SEC);
826		count = getit();
827		if (count == 0 || count > timer0_max_count)
828			goto fail;
829		if (count > prev_count)
830			tot_count += prev_count - (count - timer0_max_count);
831		else
832			tot_count += prev_count - count;
833		prev_count = count;
834		if (sec != start_sec)
835			break;
836		if (--timeout == 0)
837			goto fail;
838	}
839
840	/*
841	 * Read the cpu cycle counter.  The timing considerations are
842	 * similar to those for the i8254 clock.
843	 */
844	if (tsc_present)
845		tsc_freq = rdtsc() - old_tsc;
846
847	if (bootverbose) {
848		if (tsc_present)
849		        printf("TSC clock: %u Hz, ", tsc_freq);
850	        printf("i8254 clock: %u Hz\n", tot_count);
851	}
852	return (tot_count);
853
854fail:
855	if (bootverbose)
856	        printf("failed, using default i8254 clock of %u Hz\n",
857		       timer_freq);
858	return (timer_freq);
859}
860#endif	/* !PC98 */
861
862static void
863set_timer_freq(u_int freq, int intr_freq)
864{
865	int new_timer0_max_count;
866
867	mtx_lock_spin(&clock_lock);
868	timer_freq = freq;
869	new_timer0_max_count = hardclock_max_count = TIMER_DIV(intr_freq);
870	if (new_timer0_max_count != timer0_max_count) {
871		timer0_max_count = new_timer0_max_count;
872		outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
873		outb(TIMER_CNTR0, timer0_max_count & 0xff);
874		outb(TIMER_CNTR0, timer0_max_count >> 8);
875	}
876	mtx_unlock_spin(&clock_lock);
877}
878
879/*
880 * i8254_restore is called from apm_default_resume() to reload
881 * the countdown register.
882 * this should not be necessary but there are broken laptops that
883 * do not restore the countdown register on resume.
884 * when it happnes, it messes up the hardclock interval and system clock,
885 * which leads to the infamous "calcru: negative time" problem.
886 */
887static void
888i8254_restore(void)
889{
890
891	mtx_lock_spin(&clock_lock);
892	outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
893	outb(TIMER_CNTR0, timer0_max_count & 0xff);
894	outb(TIMER_CNTR0, timer0_max_count >> 8);
895	mtx_unlock_spin(&clock_lock);
896}
897
898#ifndef PC98
899static void
900rtc_restore(void)
901{
902
903	/* Reenable RTC updates and interrupts. */
904	/* XXX locking is needed for RTC access? */
905	writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
906	writertc(RTC_STATUSB, rtc_statusb);
907}
908#endif
909
910/*
911 * Restore all the timers atomically.
912 */
913void
914timer_restore(void)
915{
916
917	i8254_restore();		/* restore timer_freq and hz */
918#ifndef PC98
919	rtc_restore();			/* reenable RTC interrupts */
920#endif
921}
922
923/*
924 * Initialize 8254 timer 0 early so that it can be used in DELAY().
925 * XXX initialization of other timers is unintentionally left blank.
926 */
927void
928startrtclock()
929{
930	u_int delta, freq;
931
932#ifdef PC98
933	findcpuspeed();
934	if (pc98_machine_type & M_8M)
935		timer_freq = 1996800L; /* 1.9968 MHz */
936	else
937		timer_freq = 2457600L; /* 2.4576 MHz */
938#endif /* PC98 */
939
940	if (cpu_feature & CPUID_TSC)
941		tsc_present = 1;
942	else
943		tsc_present = 0;
944
945#ifndef PC98
946	writertc(RTC_STATUSA, rtc_statusa);
947	writertc(RTC_STATUSB, RTCSB_24HR);
948#endif
949
950	set_timer_freq(timer_freq, hz);
951	freq = calibrate_clocks();
952#ifdef CLK_CALIBRATION_LOOP
953	if (bootverbose) {
954		printf(
955		"Press a key on the console to abort clock calibration\n");
956		while (cncheckc() == -1)
957			calibrate_clocks();
958	}
959#endif
960
961	/*
962	 * Use the calibrated i8254 frequency if it seems reasonable.
963	 * Otherwise use the default, and don't use the calibrated i586
964	 * frequency.
965	 */
966	delta = freq > timer_freq ? freq - timer_freq : timer_freq - freq;
967	if (delta < timer_freq / 100) {
968#ifndef CLK_USE_I8254_CALIBRATION
969		if (bootverbose)
970			printf(
971"CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
972		freq = timer_freq;
973#endif
974		timer_freq = freq;
975	} else {
976		if (bootverbose)
977			printf(
978		    "%d Hz differs from default of %d Hz by more than 1%%\n",
979			       freq, timer_freq);
980		tsc_freq = 0;
981	}
982
983	set_timer_freq(timer_freq, hz);
984	i8254_timecounter.tc_frequency = timer_freq;
985	tc_init(&i8254_timecounter);
986
987#ifndef CLK_USE_TSC_CALIBRATION
988	if (tsc_freq != 0) {
989		if (bootverbose)
990			printf(
991"CLK_USE_TSC_CALIBRATION not specified - using old calibration method\n");
992		tsc_freq = 0;
993	}
994#endif
995	if (tsc_present && tsc_freq == 0) {
996		/*
997		 * Calibration of the i586 clock relative to the mc146818A
998		 * clock failed.  Do a less accurate calibration relative
999		 * to the i8254 clock.
1000		 */
1001		u_int64_t old_tsc = rdtsc();
1002
1003		DELAY(1000000);
1004		tsc_freq = rdtsc() - old_tsc;
1005#ifdef CLK_USE_TSC_CALIBRATION
1006		if (bootverbose)
1007			printf("TSC clock: %u Hz (Method B)\n", tsc_freq);
1008#endif
1009	}
1010
1011#if !defined(SMP)
1012	/*
1013	 * We can not use the TSC in SMP mode, until we figure out a
1014	 * cheap (impossible), reliable and precise (yeah right!)  way
1015	 * to synchronize the TSCs of all the CPUs.
1016	 * Curse Intel for leaving the counter out of the I/O APIC.
1017	 */
1018
1019	/*
1020	 * We can not use the TSC if we support APM. Precise timekeeping
1021	 * on an APM'ed machine is at best a fools pursuit, since
1022	 * any and all of the time spent in various SMM code can't
1023	 * be reliably accounted for.  Reading the RTC is your only
1024	 * source of reliable time info.  The i8254 looses too of course
1025	 * but we need to have some kind of time...
1026	 * We don't know at this point whether APM is going to be used
1027	 * or not, nor when it might be activated.  Play it safe.
1028	 */
1029	if (power_pm_get_type() == POWER_PM_TYPE_APM) {
1030		if (bootverbose)
1031			printf("TSC initialization skipped: APM enabled.\n");
1032		return;
1033	}
1034
1035	if (tsc_present && tsc_freq != 0 && !tsc_is_broken) {
1036		tsc_timecounter.tc_frequency = tsc_freq;
1037		tc_init(&tsc_timecounter);
1038	}
1039
1040#endif /* !defined(SMP) */
1041}
1042
1043#ifdef PC98
1044static void
1045rtc_serialcombit(int i)
1046{
1047	outb(IO_RTC, ((i&0x01)<<5)|0x07);
1048	DELAY(1);
1049	outb(IO_RTC, ((i&0x01)<<5)|0x17);
1050	DELAY(1);
1051	outb(IO_RTC, ((i&0x01)<<5)|0x07);
1052	DELAY(1);
1053}
1054
1055static void
1056rtc_serialcom(int i)
1057{
1058	rtc_serialcombit(i&0x01);
1059	rtc_serialcombit((i&0x02)>>1);
1060	rtc_serialcombit((i&0x04)>>2);
1061	rtc_serialcombit((i&0x08)>>3);
1062	outb(IO_RTC, 0x07);
1063	DELAY(1);
1064	outb(IO_RTC, 0x0f);
1065	DELAY(1);
1066	outb(IO_RTC, 0x07);
1067 	DELAY(1);
1068}
1069
1070static void
1071rtc_outb(int val)
1072{
1073	int s;
1074	int sa = 0;
1075
1076	for (s=0;s<8;s++) {
1077	    sa = ((val >> s) & 0x01) ? 0x27 : 0x07;
1078	    outb(IO_RTC, sa);		/* set DI & CLK 0 */
1079	    DELAY(1);
1080	    outb(IO_RTC, sa | 0x10);	/* CLK 1 */
1081	    DELAY(1);
1082	}
1083	outb(IO_RTC, sa & 0xef);	/* CLK 0 */
1084}
1085
1086static int
1087rtc_inb(void)
1088{
1089	int s;
1090	int sa = 0;
1091
1092	for (s=0;s<8;s++) {
1093	    sa |= ((inb(0x33) & 0x01) << s);
1094	    outb(IO_RTC, 0x17);	/* CLK 1 */
1095	    DELAY(1);
1096	    outb(IO_RTC, 0x07);	/* CLK 0 */
1097	    DELAY(2);
1098	}
1099	return sa;
1100}
1101#endif /* PC-98 */
1102
1103/*
1104 * Initialize the time of day register, based on the time base which is, e.g.
1105 * from a filesystem.
1106 */
1107void
1108inittodr(time_t base)
1109{
1110	unsigned long	sec, days;
1111	int		year, month;
1112	int		y, m, s;
1113	struct timespec ts;
1114#ifdef PC98
1115	int		second, min, hour;
1116#endif
1117
1118	if (base) {
1119		s = splclock();
1120		ts.tv_sec = base;
1121		ts.tv_nsec = 0;
1122		tc_setclock(&ts);
1123		splx(s);
1124	}
1125
1126#ifdef PC98
1127	rtc_serialcom(0x03);	/* Time Read */
1128	rtc_serialcom(0x01);	/* Register shift command. */
1129	DELAY(20);
1130
1131	second = bcd2bin(rtc_inb() & 0xff);	/* sec */
1132	min = bcd2bin(rtc_inb() & 0xff);	/* min */
1133	hour = bcd2bin(rtc_inb() & 0xff);	/* hour */
1134	days = bcd2bin(rtc_inb() & 0xff) - 1;	/* date */
1135
1136	month = (rtc_inb() >> 4) & 0x0f;	/* month */
1137	for (m = 1; m <	month; m++)
1138		days +=	daysinmonth[m-1];
1139	year = bcd2bin(rtc_inb() & 0xff) + 1900;	/* year */
1140	/* 2000 year problem */
1141	if (year < 1995)
1142		year += 100;
1143	if (year < 1970)
1144		goto wrong_time;
1145	for (y = 1970; y < year; y++)
1146		days +=	DAYSPERYEAR + LEAPYEAR(y);
1147	if ((month > 2)	&& LEAPYEAR(year))
1148		days ++;
1149	sec = ((( days * 24 +
1150		  hour) * 60 +
1151		  min) * 60 +
1152		  second);
1153	/* sec now contains the	number of seconds, since Jan 1 1970,
1154	   in the local	time zone */
1155
1156	s = splhigh();
1157#else	/* IBM-PC */
1158	/* Look if we have a RTC present and the time is valid */
1159	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
1160		goto wrong_time;
1161
1162	/* wait for time update to complete */
1163	/* If RTCSA_TUP is zero, we have at least 244us before next update */
1164	s = splhigh();
1165	while (rtcin(RTC_STATUSA) & RTCSA_TUP) {
1166		splx(s);
1167		s = splhigh();
1168	}
1169
1170	days = 0;
1171#ifdef USE_RTC_CENTURY
1172	year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
1173#else
1174	year = readrtc(RTC_YEAR) + 1900;
1175	if (year < 1970)
1176		year += 100;
1177#endif
1178	if (year < 1970) {
1179		splx(s);
1180		goto wrong_time;
1181	}
1182	month = readrtc(RTC_MONTH);
1183	for (m = 1; m < month; m++)
1184		days += daysinmonth[m-1];
1185	if ((month > 2) && LEAPYEAR(year))
1186		days ++;
1187	days += readrtc(RTC_DAY) - 1;
1188	for (y = 1970; y < year; y++)
1189		days += DAYSPERYEAR + LEAPYEAR(y);
1190	sec = ((( days * 24 +
1191		  readrtc(RTC_HRS)) * 60 +
1192		  readrtc(RTC_MIN)) * 60 +
1193		  readrtc(RTC_SEC));
1194	/* sec now contains the number of seconds, since Jan 1 1970,
1195	   in the local time zone */
1196#endif
1197
1198	sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1199
1200	y = time_second - sec;
1201	if (y <= -2 || y >= 2) {
1202		/* badly off, adjust it */
1203		ts.tv_sec = sec;
1204		ts.tv_nsec = 0;
1205		tc_setclock(&ts);
1206	}
1207	splx(s);
1208	return;
1209
1210wrong_time:
1211	printf("Invalid time in real time clock.\n");
1212	printf("Check and reset the date immediately!\n");
1213}
1214
1215/*
1216 * Write system time back to RTC
1217 */
1218void
1219resettodr()
1220{
1221	unsigned long	tm;
1222	int		y, m, s;
1223#ifdef PC98
1224	int		wd;
1225#endif
1226
1227	if (disable_rtc_set)
1228		return;
1229
1230	s = splclock();
1231	tm = time_second;
1232	splx(s);
1233
1234#ifdef PC98
1235	rtc_serialcom(0x01);	/* Register shift command. */
1236
1237	/* Calculate local time	to put in RTC */
1238
1239	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1240
1241	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
1242	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
1243	rtc_outb(bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
1244
1245	/* We have now the days	since 01-01-1970 in tm */
1246	wd = (tm+4)%7;
1247	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1248	     tm >= m;
1249	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1250	     tm -= m;
1251
1252	/* Now we have the years in y and the day-of-the-year in tm */
1253	for (m = 0; ; m++) {
1254		int ml;
1255
1256		ml = daysinmonth[m];
1257		if (m == 1 && LEAPYEAR(y))
1258			ml++;
1259		if (tm < ml)
1260			break;
1261		tm -= ml;
1262	}
1263
1264	m++;
1265	rtc_outb(bin2bcd(tm+1));		/* Write back Day     */
1266	rtc_outb((m << 4) | wd);		/* Write back Month & Weekday  */
1267	rtc_outb(bin2bcd(y%100));		/* Write back Year    */
1268
1269	rtc_serialcom(0x02);	/* Time set & Counter hold command. */
1270	rtc_serialcom(0x00);	/* Register hold command. */
1271#else
1272	/* Disable RTC updates and interrupts. */
1273	writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
1274
1275	/* Calculate local time to put in RTC */
1276
1277	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1278
1279	writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
1280	writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
1281	writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
1282
1283	/* We have now the days since 01-01-1970 in tm */
1284	writertc(RTC_WDAY, (tm+4)%7);			/* Write back Weekday */
1285	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1286	     tm >= m;
1287	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1288	     tm -= m;
1289
1290	/* Now we have the years in y and the day-of-the-year in tm */
1291	writertc(RTC_YEAR, bin2bcd(y%100));		/* Write back Year    */
1292#ifdef USE_RTC_CENTURY
1293	writertc(RTC_CENTURY, bin2bcd(y/100));		/* ... and Century    */
1294#endif
1295	for (m = 0; ; m++) {
1296		int ml;
1297
1298		ml = daysinmonth[m];
1299		if (m == 1 && LEAPYEAR(y))
1300			ml++;
1301		if (tm < ml)
1302			break;
1303		tm -= ml;
1304	}
1305
1306	writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
1307	writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
1308
1309	/* Reenable RTC updates and interrupts. */
1310	writertc(RTC_STATUSB, rtc_statusb);
1311#endif /* PC98 */
1312}
1313
1314
1315/*
1316 * Start both clocks running.
1317 */
1318void
1319cpu_initclocks()
1320{
1321#ifndef PC98
1322	int diag;
1323#endif
1324#ifdef APIC_IO
1325	int apic_8254_trial;
1326	void *clkdesc;
1327#endif /* APIC_IO */
1328	register_t crit;
1329
1330#ifndef PC98
1331	if (statclock_disable) {
1332		/*
1333		 * The stat interrupt mask is different without the
1334		 * statistics clock.  Also, don't set the interrupt
1335		 * flag which would normally cause the RTC to generate
1336		 * interrupts.
1337		 */
1338		rtc_statusb = RTCSB_24HR;
1339	} else {
1340	        /* Setting stathz to nonzero early helps avoid races. */
1341		stathz = RTC_NOPROFRATE;
1342		profhz = RTC_PROFRATE;
1343        }
1344#endif
1345
1346	/* Finish initializing 8253 timer 0. */
1347#ifdef APIC_IO
1348
1349	apic_8254_intr = isa_apic_irq(0);
1350	apic_8254_trial = 0;
1351	if (apic_8254_intr >= 0 ) {
1352		if (apic_int_type(0, 0) == 3)
1353			apic_8254_trial = 1;
1354	} else {
1355		/* look for ExtInt on pin 0 */
1356		if (apic_int_type(0, 0) == 3) {
1357			apic_8254_intr = apic_irq(0, 0);
1358			setup_8254_mixed_mode();
1359		} else
1360			panic("APIC_IO: Cannot route 8254 interrupt to CPU");
1361	}
1362
1363	inthand_add("clk", apic_8254_intr, (driver_intr_t *)clkintr, NULL,
1364	    INTR_TYPE_CLK | INTR_FAST, &clkdesc);
1365	crit = intr_disable();
1366	mtx_lock_spin(&icu_lock);
1367	INTREN(1 << apic_8254_intr);
1368	mtx_unlock_spin(&icu_lock);
1369	intr_restore(crit);
1370
1371#else /* APIC_IO */
1372
1373	/*
1374	 * XXX Check the priority of this interrupt handler.  I
1375	 * couldn't find anything suitable in the BSD/OS code (grog,
1376	 * 19 July 2000).
1377	 */
1378	inthand_add("clk", 0, (driver_intr_t *)clkintr, NULL,
1379	    INTR_TYPE_CLK | INTR_FAST, NULL);
1380	crit = intr_disable();
1381	mtx_lock_spin(&icu_lock);
1382	INTREN(IRQ0);
1383	mtx_unlock_spin(&icu_lock);
1384	intr_restore(crit);
1385
1386#endif /* APIC_IO */
1387
1388#ifndef PC98
1389	/* Initialize RTC. */
1390	writertc(RTC_STATUSA, rtc_statusa);
1391	writertc(RTC_STATUSB, RTCSB_24HR);
1392
1393	/* Don't bother enabling the statistics clock. */
1394	if (statclock_disable)
1395		return;
1396	diag = rtcin(RTC_DIAG);
1397	if (diag != 0)
1398		printf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
1399#endif /* !PC98 */
1400
1401#ifndef PC98
1402#ifdef APIC_IO
1403	if (isa_apic_irq(8) != 8)
1404		panic("APIC RTC != 8");
1405#endif /* APIC_IO */
1406
1407	inthand_add("rtc", 8, (driver_intr_t *)rtcintr, NULL,
1408	    INTR_TYPE_CLK | INTR_FAST, NULL);
1409
1410	crit = intr_disable();
1411	mtx_lock_spin(&icu_lock);
1412#ifdef APIC_IO
1413	INTREN(APIC_IRQ8);
1414#else
1415	INTREN(IRQ8);
1416#endif /* APIC_IO */
1417	mtx_unlock_spin(&icu_lock);
1418	intr_restore(crit);
1419
1420	writertc(RTC_STATUSB, rtc_statusb);
1421#endif /* PC98 */
1422
1423#ifdef APIC_IO
1424	if (apic_8254_trial) {
1425
1426		printf("APIC_IO: Testing 8254 interrupt delivery\n");
1427		while (read_intr_count(8) < 6)
1428			;	/* nothing */
1429		if (read_intr_count(apic_8254_intr) < 3) {
1430			/*
1431			 * The MP table is broken.
1432			 * The 8254 was not connected to the specified pin
1433			 * on the IO APIC.
1434			 * Workaround: Limited variant of mixed mode.
1435			 */
1436			crit = intr_disable();
1437			mtx_lock_spin(&icu_lock);
1438			INTRDIS(1 << apic_8254_intr);
1439			mtx_unlock_spin(&icu_lock);
1440			intr_restore(crit);
1441			inthand_remove(clkdesc);
1442			printf("APIC_IO: Broken MP table detected: "
1443			       "8254 is not connected to "
1444			       "IOAPIC #%d intpin %d\n",
1445			       int_to_apicintpin[apic_8254_intr].ioapic,
1446			       int_to_apicintpin[apic_8254_intr].int_pin);
1447			/*
1448			 * Revoke current ISA IRQ 0 assignment and
1449			 * configure a fallback interrupt routing from
1450			 * the 8254 Timer via the 8259 PIC to the
1451			 * an ExtInt interrupt line on IOAPIC #0 intpin 0.
1452			 * We reuse the low level interrupt handler number.
1453			 */
1454			if (apic_irq(0, 0) < 0) {
1455				revoke_apic_irq(apic_8254_intr);
1456				assign_apic_irq(0, 0, apic_8254_intr);
1457			}
1458			apic_8254_intr = apic_irq(0, 0);
1459			setup_8254_mixed_mode();
1460			inthand_add("clk", apic_8254_intr,
1461				    (driver_intr_t *)clkintr, NULL,
1462				    INTR_TYPE_CLK | INTR_FAST, NULL);
1463			crit = intr_disable();
1464			mtx_lock_spin(&icu_lock);
1465			INTREN(1 << apic_8254_intr);
1466			mtx_unlock_spin(&icu_lock);
1467			intr_restore(crit);
1468		}
1469
1470	}
1471	if (apic_int_type(0, 0) != 3 ||
1472	    int_to_apicintpin[apic_8254_intr].ioapic != 0 ||
1473	    int_to_apicintpin[apic_8254_intr].int_pin != 0)
1474		printf("APIC_IO: routing 8254 via IOAPIC #%d intpin %d\n",
1475		       int_to_apicintpin[apic_8254_intr].ioapic,
1476		       int_to_apicintpin[apic_8254_intr].int_pin);
1477	else
1478		printf("APIC_IO: "
1479		       "routing 8254 via 8259 and IOAPIC #0 intpin 0\n");
1480#endif
1481
1482}
1483
1484#ifdef APIC_IO
1485static u_long
1486read_intr_count(int vec)
1487{
1488	u_long *up;
1489	up = intr_countp[vec];
1490	if (up)
1491		return *up;
1492	return 0UL;
1493}
1494
1495static void
1496setup_8254_mixed_mode()
1497{
1498	/*
1499	 * Allow 8254 timer to INTerrupt 8259:
1500	 *  re-initialize master 8259:
1501	 *   reset; prog 4 bytes, single ICU, edge triggered
1502	 */
1503	outb(IO_ICU1, 0x13);
1504#ifdef PC98
1505	outb(IO_ICU1 + 2, NRSVIDT);	/* start vector (unused) */
1506	outb(IO_ICU1 + 2, 0x00);	/* ignore slave */
1507	outb(IO_ICU1 + 2, 0x03);	/* auto EOI, 8086 */
1508	outb(IO_ICU1 + 2, 0xfe);	/* unmask INT0 */
1509#else
1510	outb(IO_ICU1 + 1, NRSVIDT);	/* start vector (unused) */
1511	outb(IO_ICU1 + 1, 0x00);	/* ignore slave */
1512	outb(IO_ICU1 + 1, 0x03);	/* auto EOI, 8086 */
1513	outb(IO_ICU1 + 1, 0xfe);	/* unmask INT0 */
1514#endif
1515
1516	/* program IO APIC for type 3 INT on INT0 */
1517	if (ext_int_setup(0, 0) < 0)
1518		panic("8254 redirect via APIC pin0 impossible!");
1519}
1520#endif
1521
1522void
1523setstatclockrate(int newhz)
1524{
1525#ifndef PC98
1526	if (newhz == RTC_PROFRATE)
1527		rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
1528	else
1529		rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
1530	writertc(RTC_STATUSA, rtc_statusa);
1531#endif
1532}
1533
1534static int
1535sysctl_machdep_i8254_freq(SYSCTL_HANDLER_ARGS)
1536{
1537	int error;
1538	u_int freq;
1539
1540	/*
1541	 * Use `i8254' instead of `timer' in external names because `timer'
1542	 * is is too generic.  Should use it everywhere.
1543	 */
1544	freq = timer_freq;
1545	error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
1546	if (error == 0 && req->newptr != NULL) {
1547		if (timer0_state != RELEASED)
1548			return (EBUSY);	/* too much trouble to handle */
1549		set_timer_freq(freq, hz);
1550		i8254_timecounter.tc_frequency = freq;
1551	}
1552	return (error);
1553}
1554
1555SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
1556    0, sizeof(u_int), sysctl_machdep_i8254_freq, "I", "");
1557
1558static int
1559sysctl_machdep_tsc_freq(SYSCTL_HANDLER_ARGS)
1560{
1561	int error;
1562	u_int freq;
1563
1564	if (tsc_timecounter.tc_frequency == 0)
1565		return (EOPNOTSUPP);
1566	freq = tsc_freq;
1567	error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
1568	if (error == 0 && req->newptr != NULL) {
1569		tsc_freq = freq;
1570		tsc_timecounter.tc_frequency = tsc_freq;
1571	}
1572	return (error);
1573}
1574
1575SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq, CTLTYPE_INT | CTLFLAG_RW,
1576    0, sizeof(u_int), sysctl_machdep_tsc_freq, "I", "");
1577
1578static unsigned
1579i8254_get_timecount(struct timecounter *tc)
1580{
1581	u_int count;
1582	u_int high, low;
1583	u_int eflags;
1584
1585	eflags = read_eflags();
1586	mtx_lock_spin(&clock_lock);
1587
1588	/* Select timer0 and latch counter value. */
1589	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
1590
1591	low = inb(TIMER_CNTR0);
1592	high = inb(TIMER_CNTR0);
1593	count = timer0_max_count - ((high << 8) | low);
1594	if (count < i8254_lastcount ||
1595	    (!i8254_ticked && (clkintr_pending ||
1596	    ((count < 20 || (!(eflags & PSL_I) && count < timer0_max_count / 2u)) &&
1597#ifdef APIC_IO
1598#define	lapic_irr1	((volatile u_int *)&lapic)[0x210 / 4]	/* XXX XXX */
1599	    /* XXX this assumes that apic_8254_intr is < 24. */
1600	    (lapic_irr1 & (1 << apic_8254_intr))))
1601#else
1602	    (inb(IO_ICU1) & 1)))
1603#endif
1604	    )) {
1605		i8254_ticked = 1;
1606		i8254_offset += timer0_max_count;
1607	}
1608	i8254_lastcount = count;
1609	count += i8254_offset;
1610	mtx_unlock_spin(&clock_lock);
1611	return (count);
1612}
1613
1614static unsigned
1615tsc_get_timecount(struct timecounter *tc)
1616{
1617	return (rdtsc());
1618}
1619
1620#ifdef DEV_ISA
1621/*
1622 * Attach to the ISA PnP descriptors for the timer and realtime clock.
1623 */
1624static struct isa_pnp_id attimer_ids[] = {
1625	{ 0x0001d041 /* PNP0100 */, "AT timer" },
1626	{ 0x000bd041 /* PNP0B00 */, "AT realtime clock" },
1627	{ 0 }
1628};
1629
1630static int
1631attimer_probe(device_t dev)
1632{
1633	int result;
1634
1635	if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, attimer_ids)) <= 0)
1636		device_quiet(dev);
1637	return(result);
1638}
1639
1640static int
1641attimer_attach(device_t dev)
1642{
1643	return(0);
1644}
1645
1646static device_method_t attimer_methods[] = {
1647	/* Device interface */
1648	DEVMETHOD(device_probe,		attimer_probe),
1649	DEVMETHOD(device_attach,	attimer_attach),
1650	DEVMETHOD(device_detach,	bus_generic_detach),
1651	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1652	DEVMETHOD(device_suspend,	bus_generic_suspend),	/* XXX stop statclock? */
1653	DEVMETHOD(device_resume,	bus_generic_resume),	/* XXX restart statclock? */
1654	{ 0, 0 }
1655};
1656
1657static driver_t attimer_driver = {
1658	"attimer",
1659	attimer_methods,
1660	1,		/* no softc */
1661};
1662
1663static devclass_t attimer_devclass;
1664
1665DRIVER_MODULE(attimer, isa, attimer_driver, attimer_devclass, 0, 0);
1666#ifndef PC98
1667DRIVER_MODULE(attimer, acpi, attimer_driver, attimer_devclass, 0, 0);
1668#endif
1669#endif /* DEV_ISA */
1670