pcrtc.c revision 76650
1/*-
2 * Copyright (c) 1990 The Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * William Jolitz and Don Ahn.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)clock.c	7.2 (Berkeley) 5/12/91
37 * $FreeBSD: head/sys/pc98/cbus/pcrtc.c 76650 2001-05-15 23:22:29Z jhb $
38 */
39
40/*
41 * Routines to handle clock hardware.
42 */
43
44/*
45 * inittodr, settodr and support routines written
46 * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
47 *
48 * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
49 */
50
51/*
52 * modified for PC98 by Kakefuda
53 */
54
55#include "opt_clock.h"
56#include "opt_apm.h"
57#include "opt_mca.h"
58
59#include <sys/param.h>
60#include <sys/systm.h>
61#include <sys/bus.h>
62#include <sys/lock.h>
63#include <sys/mutex.h>
64#include <sys/proc.h>
65#include <sys/time.h>
66#include <sys/timetc.h>
67#include <sys/kernel.h>
68#include <sys/sysctl.h>
69#include <sys/cons.h>
70
71#include <machine/clock.h>
72#ifdef CLK_CALIBRATION_LOOP
73#endif
74#include <machine/cputypes.h>
75#include <machine/frame.h>
76#include <machine/limits.h>
77#include <machine/md_var.h>
78#include <machine/psl.h>
79#ifdef APIC_IO
80#include <machine/segments.h>
81#endif
82#if defined(SMP) || defined(APIC_IO)
83#include <machine/smp.h>
84#endif /* SMP || APIC_IO */
85#include <machine/specialreg.h>
86
87#include <i386/isa/icu.h>
88#ifdef PC98
89#include <pc98/pc98/pc98.h>
90#include <pc98/pc98/pc98_machdep.h>
91#include <i386/isa/isa_device.h>
92#else
93#include <i386/isa/isa.h>
94#include <isa/rtc.h>
95#endif
96#include <isa/isavar.h>
97#include <i386/isa/timerreg.h>
98
99#include <i386/isa/intr_machdep.h>
100
101#ifdef DEV_MCA
102#include <i386/isa/mca_machdep.h>
103#endif
104
105#ifdef APIC_IO
106#include <i386/isa/intr_machdep.h>
107/* The interrupt triggered by the 8254 (timer) chip */
108int apic_8254_intr;
109static u_long read_intr_count __P((int vec));
110static void setup_8254_mixed_mode __P((void));
111#endif
112
113/*
114 * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
115 * can use a simple formula for leap years.
116 */
117#define	LEAPYEAR(y) ((u_int)(y) % 4 == 0)
118#define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
119
120#define	TIMER_DIV(x) ((timer_freq + (x) / 2) / (x))
121
122/*
123 * Time in timer cycles that it takes for microtime() to disable interrupts
124 * and latch the count.  microtime() currently uses "cli; outb ..." so it
125 * normally takes less than 2 timer cycles.  Add a few for cache misses.
126 * Add a few more to allow for latency in bogus calls to microtime() with
127 * interrupts already disabled.
128 */
129#define	TIMER0_LATCH_COUNT	20
130
131/*
132 * Maximum frequency that we are willing to allow for timer0.  Must be
133 * low enough to guarantee that the timer interrupt handler returns
134 * before the next timer interrupt.
135 */
136#define	TIMER0_MAX_FREQ		20000
137
138int	adjkerntz;		/* local offset from GMT in seconds */
139int	clkintr_pending;
140int	disable_rtc_set;	/* disable resettodr() if != 0 */
141int	statclock_disable;
142#ifndef TIMER_FREQ
143#ifdef PC98
144#define	TIMER_FREQ	2457600;
145#else /* IBM-PC */
146#define	TIMER_FREQ	1193182;
147#endif /* PC98 */
148#endif
149u_int	timer_freq = TIMER_FREQ;
150int	timer0_max_count;
151u_int	tsc_freq;
152int	tsc_is_broken;
153u_int	tsc_present;
154int	wall_cmos_clock;	/* wall CMOS clock assumed if != 0 */
155struct mtx clock_lock;
156
157static	int	beeping = 0;
158static	const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
159static	u_int	hardclock_max_count;
160static	u_int32_t i8254_lastcount;
161static	u_int32_t i8254_offset;
162static	int	i8254_ticked;
163/*
164 * XXX new_function and timer_func should not handle clockframes, but
165 * timer_func currently needs to hold hardclock to handle the
166 * timer0_state == 0 case.  We should use inthand_add()/inthand_remove()
167 * to switch between clkintr() and a slightly different timerintr().
168 */
169static	void	(*new_function) __P((struct clockframe *frame));
170static	u_int	new_rate;
171#ifndef PC98
172static	u_char	rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
173static	u_char	rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
174#endif
175static	u_int	timer0_prescaler_count;
176
177/* Values for timerX_state: */
178#define	RELEASED	0
179#define	RELEASE_PENDING	1
180#define	ACQUIRED	2
181#define	ACQUIRE_PENDING	3
182
183static	u_char	timer0_state;
184#ifdef	PC98
185static 	u_char	timer1_state;
186#endif
187static	u_char	timer2_state;
188static	void	(*timer_func) __P((struct clockframe *frame)) = hardclock;
189#ifdef PC98
190static void rtc_serialcombit __P((int));
191static void rtc_serialcom __P((int));
192static int rtc_inb __P((void));
193static void rtc_outb __P((int));
194#endif
195
196static	unsigned i8254_get_timecount __P((struct timecounter *tc));
197static	unsigned tsc_get_timecount __P((struct timecounter *tc));
198static	void	set_timer_freq(u_int freq, int intr_freq);
199
200static struct timecounter tsc_timecounter = {
201	tsc_get_timecount,	/* get_timecount */
202	0,			/* no poll_pps */
203 	~0u,			/* counter_mask */
204	0,			/* frequency */
205	 "TSC"			/* name */
206};
207
208SYSCTL_OPAQUE(_debug, OID_AUTO, tsc_timecounter, CTLFLAG_RD,
209	&tsc_timecounter, sizeof(tsc_timecounter), "S,timecounter", "");
210
211static struct timecounter i8254_timecounter = {
212	i8254_get_timecount,	/* get_timecount */
213	0,			/* no poll_pps */
214	~0u,			/* counter_mask */
215	0,			/* frequency */
216	"i8254"			/* name */
217};
218
219SYSCTL_OPAQUE(_debug, OID_AUTO, i8254_timecounter, CTLFLAG_RD,
220	&i8254_timecounter, sizeof(i8254_timecounter), "S,timecounter", "");
221
222static void
223clkintr(struct clockframe frame)
224{
225
226	if (timecounter->tc_get_timecount == i8254_get_timecount) {
227		mtx_lock_spin(&clock_lock);
228		if (i8254_ticked)
229			i8254_ticked = 0;
230		else {
231			i8254_offset += timer0_max_count;
232			i8254_lastcount = 0;
233		}
234		clkintr_pending = 0;
235		mtx_unlock_spin(&clock_lock);
236	}
237	timer_func(&frame);
238#ifdef SMP
239	if (timer_func == hardclock)
240		forward_hardclock();
241#endif
242	switch (timer0_state) {
243
244	case RELEASED:
245		break;
246
247	case ACQUIRED:
248		if ((timer0_prescaler_count += timer0_max_count)
249		    >= hardclock_max_count) {
250			timer0_prescaler_count -= hardclock_max_count;
251			hardclock(&frame);
252#ifdef SMP
253			forward_hardclock();
254#endif
255		}
256		break;
257
258	case ACQUIRE_PENDING:
259		mtx_lock_spin(&clock_lock);
260		i8254_offset = i8254_get_timecount(NULL);
261		i8254_lastcount = 0;
262		timer0_max_count = TIMER_DIV(new_rate);
263		outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
264		outb(TIMER_CNTR0, timer0_max_count & 0xff);
265		outb(TIMER_CNTR0, timer0_max_count >> 8);
266		mtx_unlock_spin(&clock_lock);
267		timer_func = new_function;
268		timer0_state = ACQUIRED;
269		break;
270
271	case RELEASE_PENDING:
272		if ((timer0_prescaler_count += timer0_max_count)
273		    >= hardclock_max_count) {
274			mtx_lock_spin(&clock_lock);
275			i8254_offset = i8254_get_timecount(NULL);
276			i8254_lastcount = 0;
277			timer0_max_count = hardclock_max_count;
278			outb(TIMER_MODE,
279			     TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
280			outb(TIMER_CNTR0, timer0_max_count & 0xff);
281			outb(TIMER_CNTR0, timer0_max_count >> 8);
282			mtx_unlock_spin(&clock_lock);
283			timer0_prescaler_count = 0;
284			timer_func = hardclock;
285			timer0_state = RELEASED;
286			hardclock(&frame);
287#ifdef SMP
288			forward_hardclock();
289#endif
290		}
291		break;
292	}
293#ifdef DEV_MCA
294	/* Reset clock interrupt by asserting bit 7 of port 0x61 */
295	if (MCA_system)
296		outb(0x61, inb(0x61) | 0x80);
297#endif
298}
299
300/*
301 * The acquire and release functions must be called at ipl >= splclock().
302 */
303int
304acquire_timer0(int rate, void (*function) __P((struct clockframe *frame)))
305{
306	static int old_rate;
307
308	if (rate <= 0 || rate > TIMER0_MAX_FREQ)
309		return (-1);
310	switch (timer0_state) {
311
312	case RELEASED:
313		timer0_state = ACQUIRE_PENDING;
314		break;
315
316	case RELEASE_PENDING:
317		if (rate != old_rate)
318			return (-1);
319		/*
320		 * The timer has been released recently, but is being
321		 * re-acquired before the release completed.  In this
322		 * case, we simply reclaim it as if it had not been
323		 * released at all.
324		 */
325		timer0_state = ACQUIRED;
326		break;
327
328	default:
329		return (-1);	/* busy */
330	}
331	new_function = function;
332	old_rate = new_rate = rate;
333	return (0);
334}
335
336#ifdef PC98
337int
338acquire_timer1(int mode)
339{
340
341	if (timer1_state != RELEASED)
342		return (-1);
343	timer1_state = ACQUIRED;
344
345	/*
346	 * This access to the timer registers is as atomic as possible
347	 * because it is a single instruction.  We could do better if we
348	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
349	 * and this is probably good enough for timer2, so we aren't as
350	 * careful with it as with timer0.
351	 */
352	outb(TIMER_MODE, TIMER_SEL1 | (mode & 0x3f));
353
354	return (0);
355}
356#endif
357
358int
359acquire_timer2(int mode)
360{
361
362	if (timer2_state != RELEASED)
363		return (-1);
364	timer2_state = ACQUIRED;
365
366	/*
367	 * This access to the timer registers is as atomic as possible
368	 * because it is a single instruction.  We could do better if we
369	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
370	 * and this is probably good enough for timer2, so we aren't as
371	 * careful with it as with timer0.
372	 */
373	outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
374
375	return (0);
376}
377
378int
379release_timer0()
380{
381	switch (timer0_state) {
382
383	case ACQUIRED:
384		timer0_state = RELEASE_PENDING;
385		break;
386
387	case ACQUIRE_PENDING:
388		/* Nothing happened yet, release quickly. */
389		timer0_state = RELEASED;
390		break;
391
392	default:
393		return (-1);
394	}
395	return (0);
396}
397
398#ifdef PC98
399int
400release_timer1()
401{
402
403	if (timer1_state != ACQUIRED)
404		return (-1);
405	timer1_state = RELEASED;
406	outb(TIMER_MODE, TIMER_SEL1 | TIMER_SQWAVE | TIMER_16BIT);
407	return (0);
408}
409#endif
410
411int
412release_timer2()
413{
414
415	if (timer2_state != ACQUIRED)
416		return (-1);
417	timer2_state = RELEASED;
418	outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
419	return (0);
420}
421
422#ifndef PC98
423/*
424 * This routine receives statistical clock interrupts from the RTC.
425 * As explained above, these occur at 128 interrupts per second.
426 * When profiling, we receive interrupts at a rate of 1024 Hz.
427 *
428 * This does not actually add as much overhead as it sounds, because
429 * when the statistical clock is active, the hardclock driver no longer
430 * needs to keep (inaccurate) statistics on its own.  This decouples
431 * statistics gathering from scheduling interrupts.
432 *
433 * The RTC chip requires that we read status register C (RTC_INTR)
434 * to acknowledge an interrupt, before it will generate the next one.
435 * Under high interrupt load, rtcintr() can be indefinitely delayed and
436 * the clock can tick immediately after the read from RTC_INTR.  In this
437 * case, the mc146818A interrupt signal will not drop for long enough
438 * to register with the 8259 PIC.  If an interrupt is missed, the stat
439 * clock will halt, considerably degrading system performance.  This is
440 * why we use 'while' rather than a more straightforward 'if' below.
441 * Stat clock ticks can still be lost, causing minor loss of accuracy
442 * in the statistics, but the stat clock will no longer stop.
443 */
444static void
445rtcintr(struct clockframe frame)
446{
447	while (rtcin(RTC_INTR) & RTCIR_PERIOD) {
448		statclock(&frame);
449#ifdef SMP
450		forward_statclock();
451#endif
452	}
453}
454
455#include "opt_ddb.h"
456#ifdef DDB
457#include <ddb/ddb.h>
458
459DB_SHOW_COMMAND(rtc, rtc)
460{
461	printf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
462	       rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
463	       rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
464	       rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
465}
466#endif /* DDB */
467#endif /* for PC98 */
468
469static int
470getit(void)
471{
472	int high, low;
473
474	mtx_lock_spin(&clock_lock);
475
476	/* Select timer0 and latch counter value. */
477	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
478
479	low = inb(TIMER_CNTR0);
480	high = inb(TIMER_CNTR0);
481
482	mtx_unlock_spin(&clock_lock);
483	return ((high << 8) | low);
484}
485
486/*
487 * Wait "n" microseconds.
488 * Relies on timer 1 counting down from (timer_freq / hz)
489 * Note: timer had better have been programmed before this is first used!
490 */
491void
492DELAY(int n)
493{
494	int delta, prev_tick, tick, ticks_left;
495
496#ifdef DELAYDEBUG
497	int getit_calls = 1;
498	int n1;
499	static int state = 0;
500
501	if (state == 0) {
502		state = 1;
503		for (n1 = 1; n1 <= 10000000; n1 *= 10)
504			DELAY(n1);
505		state = 2;
506	}
507	if (state == 1)
508		printf("DELAY(%d)...", n);
509#endif
510	/*
511	 * Guard against the timer being uninitialized if we are called
512	 * early for console i/o.
513	 */
514	if (timer0_max_count == 0)
515		set_timer_freq(timer_freq, hz);
516
517	/*
518	 * Read the counter first, so that the rest of the setup overhead is
519	 * counted.  Guess the initial overhead is 20 usec (on most systems it
520	 * takes about 1.5 usec for each of the i/o's in getit().  The loop
521	 * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
522	 * multiplications and divisions to scale the count take a while).
523	 */
524	prev_tick = getit();
525	n -= 0;			/* XXX actually guess no initial overhead */
526	/*
527	 * Calculate (n * (timer_freq / 1e6)) without using floating point
528	 * and without any avoidable overflows.
529	 */
530	if (n <= 0)
531		ticks_left = 0;
532	else if (n < 256)
533		/*
534		 * Use fixed point to avoid a slow division by 1000000.
535		 * 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
536		 * 2^15 is the first power of 2 that gives exact results
537		 * for n between 0 and 256.
538		 */
539		ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
540	else
541		/*
542		 * Don't bother using fixed point, although gcc-2.7.2
543		 * generates particularly poor code for the long long
544		 * division, since even the slow way will complete long
545		 * before the delay is up (unless we're interrupted).
546		 */
547		ticks_left = ((u_int)n * (long long)timer_freq + 999999)
548			     / 1000000;
549
550	while (ticks_left > 0) {
551		tick = getit();
552#ifdef DELAYDEBUG
553		++getit_calls;
554#endif
555		delta = prev_tick - tick;
556		prev_tick = tick;
557		if (delta < 0) {
558			delta += timer0_max_count;
559			/*
560			 * Guard against timer0_max_count being wrong.
561			 * This shouldn't happen in normal operation,
562			 * but it may happen if set_timer_freq() is
563			 * traced.
564			 */
565			if (delta < 0)
566				delta = 0;
567		}
568		ticks_left -= delta;
569	}
570#ifdef DELAYDEBUG
571	if (state == 1)
572		printf(" %d calls to getit() at %d usec each\n",
573		       getit_calls, (n + 5) / getit_calls);
574#endif
575}
576
577static void
578sysbeepstop(void *chan)
579{
580#ifdef PC98	/* PC98 */
581	outb(IO_PPI, inb(IO_PPI)|0x08);	/* disable counter1 output to speaker */
582	release_timer1();
583#else
584	outb(IO_PPI, inb(IO_PPI)&0xFC);	/* disable counter2 output to speaker */
585	release_timer2();
586#endif
587	beeping = 0;
588}
589
590int
591sysbeep(int pitch, int period)
592{
593	int x = splclock();
594
595#ifdef PC98
596	if (acquire_timer1(TIMER_SQWAVE|TIMER_16BIT))
597		if (!beeping) {
598			/* Something else owns it. */
599			splx(x);
600			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
601		}
602	disable_intr();
603	outb(0x3fdb, pitch);
604	outb(0x3fdb, (pitch>>8));
605	enable_intr();
606	if (!beeping) {
607		/* enable counter1 output to speaker */
608		outb(IO_PPI, (inb(IO_PPI) & 0xf7));
609		beeping = period;
610		timeout(sysbeepstop, (void *)NULL, period);
611	}
612#else
613	if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
614		if (!beeping) {
615			/* Something else owns it. */
616			splx(x);
617			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
618		}
619	mtx_lock_spin(&clock_lock);
620	outb(TIMER_CNTR2, pitch);
621	outb(TIMER_CNTR2, (pitch>>8));
622	mtx_unlock_spin(&clock_lock);
623	if (!beeping) {
624		/* enable counter2 output to speaker */
625		outb(IO_PPI, inb(IO_PPI) | 3);
626		beeping = period;
627		timeout(sysbeepstop, (void *)NULL, period);
628	}
629#endif
630	splx(x);
631	return (0);
632}
633
634#ifndef PC98
635/*
636 * RTC support routines
637 */
638
639int
640rtcin(reg)
641	int reg;
642{
643	int s;
644	u_char val;
645
646	s = splhigh();
647	outb(IO_RTC, reg);
648	inb(0x84);
649	val = inb(IO_RTC + 1);
650	inb(0x84);
651	splx(s);
652	return (val);
653}
654
655static __inline void
656writertc(u_char reg, u_char val)
657{
658	int s;
659
660	s = splhigh();
661	inb(0x84);
662	outb(IO_RTC, reg);
663	inb(0x84);
664	outb(IO_RTC + 1, val);
665	inb(0x84);		/* XXX work around wrong order in rtcin() */
666	splx(s);
667}
668
669static __inline int
670readrtc(int port)
671{
672	return(bcd2bin(rtcin(port)));
673}
674#endif
675
676#ifdef PC98
677unsigned int delaycount;
678#define FIRST_GUESS	0x2000
679static void findcpuspeed(void)
680{
681	int i;
682	int remainder;
683
684	/* Put counter in count down mode */
685	outb(TIMER_MODE, TIMER_SEL0 | TIMER_16BIT | TIMER_RATEGEN);
686	outb(TIMER_CNTR0, 0xff);
687	outb(TIMER_CNTR0, 0xff);
688	for (i = FIRST_GUESS; i; i--)
689		;
690	remainder = getit();
691	delaycount = (FIRST_GUESS * TIMER_DIV(1000)) / (0xffff - remainder);
692}
693#endif
694
695#ifdef PC98
696static u_int
697calibrate_clocks(void)
698{
699	int	timeout;
700	u_int	count, prev_count, tot_count;
701	u_short	sec, start_sec;
702
703	if (bootverbose)
704	        printf("Calibrating clock(s) ... ");
705	/* Check ARTIC. */
706	if (!(PC98_SYSTEM_PARAMETER(0x458) & 0x80) &&
707	    !(PC98_SYSTEM_PARAMETER(0x45b) & 0x04))
708		goto fail;
709	timeout = 100000000;
710
711	/* Read the ARTIC. */
712	sec = inw(0x5e);
713
714	/* Wait for the ARTIC to changes. */
715	start_sec = sec;
716	for (;;) {
717		sec = inw(0x5e);
718		if (sec != start_sec)
719			break;
720		if (--timeout == 0)
721			goto fail;
722	}
723	prev_count = getit();
724	if (prev_count == 0 || prev_count > timer0_max_count)
725		goto fail;
726	tot_count = 0;
727
728	if (tsc_present)
729		wrmsr(0x10, 0LL);	/* XXX 0x10 is the MSR for the TSC */
730	start_sec = sec;
731	for (;;) {
732		sec = inw(0x5e);
733		count = getit();
734		if (count == 0 || count > timer0_max_count)
735			goto fail;
736		if (count > prev_count)
737			tot_count += prev_count - (count - timer0_max_count);
738		else
739			tot_count += prev_count - count;
740		prev_count = count;
741		if ((sec == start_sec + 1200) ||
742		    (sec < start_sec &&
743		        (u_int)sec + 0x10000 == (u_int)start_sec + 1200))
744			break;
745		if (--timeout == 0)
746			goto fail;
747	}
748	/*
749	 * Read the cpu cycle counter.  The timing considerations are
750	 * similar to those for the i8254 clock.
751	 */
752	if (tsc_present)
753		tsc_freq = rdtsc();
754
755	if (bootverbose) {
756		if (tsc_present)
757		        printf("TSC clock: %u Hz, ", tsc_freq);
758	        printf("i8254 clock: %u Hz\n", tot_count);
759	}
760	return (tot_count);
761
762fail:
763	if (bootverbose)
764	        printf("failed, using default i8254 clock of %u Hz\n",
765		       timer_freq);
766	return (timer_freq);
767}
768#else
769static u_int
770calibrate_clocks(void)
771{
772	u_int64_t old_tsc;
773	u_int count, prev_count, tot_count;
774	int sec, start_sec, timeout;
775
776	if (bootverbose)
777	        printf("Calibrating clock(s) ... ");
778	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
779		goto fail;
780	timeout = 100000000;
781
782	/* Read the mc146818A seconds counter. */
783	for (;;) {
784		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
785			sec = rtcin(RTC_SEC);
786			break;
787		}
788		if (--timeout == 0)
789			goto fail;
790	}
791
792	/* Wait for the mC146818A seconds counter to change. */
793	start_sec = sec;
794	for (;;) {
795		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
796			sec = rtcin(RTC_SEC);
797			if (sec != start_sec)
798				break;
799		}
800		if (--timeout == 0)
801			goto fail;
802	}
803
804	/* Start keeping track of the i8254 counter. */
805	prev_count = getit();
806	if (prev_count == 0 || prev_count > timer0_max_count)
807		goto fail;
808	tot_count = 0;
809
810	if (tsc_present)
811		old_tsc = rdtsc();
812	else
813		old_tsc = 0;		/* shut up gcc */
814
815	/*
816	 * Wait for the mc146818A seconds counter to change.  Read the i8254
817	 * counter for each iteration since this is convenient and only
818	 * costs a few usec of inaccuracy. The timing of the final reads
819	 * of the counters almost matches the timing of the initial reads,
820	 * so the main cause of inaccuracy is the varying latency from
821	 * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
822	 * rtcin(RTC_SEC) that returns a changed seconds count.  The
823	 * maximum inaccuracy from this cause is < 10 usec on 486's.
824	 */
825	start_sec = sec;
826	for (;;) {
827		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
828			sec = rtcin(RTC_SEC);
829		count = getit();
830		if (count == 0 || count > timer0_max_count)
831			goto fail;
832		if (count > prev_count)
833			tot_count += prev_count - (count - timer0_max_count);
834		else
835			tot_count += prev_count - count;
836		prev_count = count;
837		if (sec != start_sec)
838			break;
839		if (--timeout == 0)
840			goto fail;
841	}
842
843	/*
844	 * Read the cpu cycle counter.  The timing considerations are
845	 * similar to those for the i8254 clock.
846	 */
847	if (tsc_present)
848		tsc_freq = rdtsc() - old_tsc;
849
850	if (bootverbose) {
851		if (tsc_present)
852		        printf("TSC clock: %u Hz, ", tsc_freq);
853	        printf("i8254 clock: %u Hz\n", tot_count);
854	}
855	return (tot_count);
856
857fail:
858	if (bootverbose)
859	        printf("failed, using default i8254 clock of %u Hz\n",
860		       timer_freq);
861	return (timer_freq);
862}
863#endif	/* !PC98 */
864
865static void
866set_timer_freq(u_int freq, int intr_freq)
867{
868	int new_timer0_max_count;
869
870	mtx_lock_spin(&clock_lock);
871	timer_freq = freq;
872	new_timer0_max_count = hardclock_max_count = TIMER_DIV(intr_freq);
873	if (new_timer0_max_count != timer0_max_count) {
874		timer0_max_count = new_timer0_max_count;
875		outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
876		outb(TIMER_CNTR0, timer0_max_count & 0xff);
877		outb(TIMER_CNTR0, timer0_max_count >> 8);
878	}
879	mtx_unlock_spin(&clock_lock);
880}
881
882/*
883 * i8254_restore is called from apm_default_resume() to reload
884 * the countdown register.
885 * this should not be necessary but there are broken laptops that
886 * do not restore the countdown register on resume.
887 * when it happnes, it messes up the hardclock interval and system clock,
888 * which leads to the infamous "calcru: negative time" problem.
889 */
890void
891i8254_restore(void)
892{
893
894	mtx_lock_spin(&clock_lock);
895	outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
896	outb(TIMER_CNTR0, timer0_max_count & 0xff);
897	outb(TIMER_CNTR0, timer0_max_count >> 8);
898	mtx_unlock_spin(&clock_lock);
899}
900
901/*
902 * Initialize 8254 timer 0 early so that it can be used in DELAY().
903 * XXX initialization of other timers is unintentionally left blank.
904 */
905void
906startrtclock()
907{
908	u_int delta, freq;
909
910#ifdef PC98
911	findcpuspeed();
912	if (pc98_machine_type & M_8M)
913		timer_freq = 1996800L; /* 1.9968 MHz */
914	else
915		timer_freq = 2457600L; /* 2.4576 MHz */
916#endif /* PC98 */
917
918	if (cpu_feature & CPUID_TSC)
919		tsc_present = 1;
920	else
921		tsc_present = 0;
922
923#ifndef PC98
924	writertc(RTC_STATUSA, rtc_statusa);
925	writertc(RTC_STATUSB, RTCSB_24HR);
926#endif
927
928	set_timer_freq(timer_freq, hz);
929	freq = calibrate_clocks();
930#ifdef CLK_CALIBRATION_LOOP
931	if (bootverbose) {
932		printf(
933		"Press a key on the console to abort clock calibration\n");
934		while (cncheckc() == -1)
935			calibrate_clocks();
936	}
937#endif
938
939	/*
940	 * Use the calibrated i8254 frequency if it seems reasonable.
941	 * Otherwise use the default, and don't use the calibrated i586
942	 * frequency.
943	 */
944	delta = freq > timer_freq ? freq - timer_freq : timer_freq - freq;
945	if (delta < timer_freq / 100) {
946#ifndef CLK_USE_I8254_CALIBRATION
947		if (bootverbose)
948			printf(
949"CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
950		freq = timer_freq;
951#endif
952		timer_freq = freq;
953	} else {
954		if (bootverbose)
955			printf(
956		    "%d Hz differs from default of %d Hz by more than 1%%\n",
957			       freq, timer_freq);
958		tsc_freq = 0;
959	}
960
961	set_timer_freq(timer_freq, hz);
962	i8254_timecounter.tc_frequency = timer_freq;
963	tc_init(&i8254_timecounter);
964
965#ifndef CLK_USE_TSC_CALIBRATION
966	if (tsc_freq != 0) {
967		if (bootverbose)
968			printf(
969"CLK_USE_TSC_CALIBRATION not specified - using old calibration method\n");
970		tsc_freq = 0;
971	}
972#endif
973	if (tsc_present && tsc_freq == 0) {
974		/*
975		 * Calibration of the i586 clock relative to the mc146818A
976		 * clock failed.  Do a less accurate calibration relative
977		 * to the i8254 clock.
978		 */
979		u_int64_t old_tsc = rdtsc();
980
981		DELAY(1000000);
982		tsc_freq = rdtsc() - old_tsc;
983#ifdef CLK_USE_TSC_CALIBRATION
984		if (bootverbose)
985			printf("TSC clock: %u Hz (Method B)\n", tsc_freq);
986#endif
987	}
988
989#if !defined(SMP)
990	/*
991	 * We can not use the TSC in SMP mode, until we figure out a
992	 * cheap (impossible), reliable and precise (yeah right!)  way
993	 * to synchronize the TSCs of all the CPUs.
994	 * Curse Intel for leaving the counter out of the I/O APIC.
995	 */
996
997#ifdef DEV_APM
998	/*
999	 * We can not use the TSC if we support APM. Precise timekeeping
1000	 * on an APM'ed machine is at best a fools pursuit, since
1001	 * any and all of the time spent in various SMM code can't
1002	 * be reliably accounted for.  Reading the RTC is your only
1003	 * source of reliable time info.  The i8254 looses too of course
1004	 * but we need to have some kind of time...
1005	 * We don't know at this point whether APM is going to be used
1006	 * or not, nor when it might be activated.  Play it safe.
1007	 */
1008	{
1009	int disabled = 0;
1010	resource_int_value("apm", 0, "disabled", &disabled);
1011	if (disabled == 0)
1012		return;
1013	}
1014#endif /* DEV_APM */
1015
1016	if (tsc_present && tsc_freq != 0 && !tsc_is_broken) {
1017		tsc_timecounter.tc_frequency = tsc_freq;
1018		tc_init(&tsc_timecounter);
1019	}
1020
1021#endif /* !defined(SMP) */
1022}
1023
1024#ifdef PC98
1025static void
1026rtc_serialcombit(int i)
1027{
1028	outb(IO_RTC, ((i&0x01)<<5)|0x07);
1029	DELAY(1);
1030	outb(IO_RTC, ((i&0x01)<<5)|0x17);
1031	DELAY(1);
1032	outb(IO_RTC, ((i&0x01)<<5)|0x07);
1033	DELAY(1);
1034}
1035
1036static void
1037rtc_serialcom(int i)
1038{
1039	rtc_serialcombit(i&0x01);
1040	rtc_serialcombit((i&0x02)>>1);
1041	rtc_serialcombit((i&0x04)>>2);
1042	rtc_serialcombit((i&0x08)>>3);
1043	outb(IO_RTC, 0x07);
1044	DELAY(1);
1045	outb(IO_RTC, 0x0f);
1046	DELAY(1);
1047	outb(IO_RTC, 0x07);
1048 	DELAY(1);
1049}
1050
1051static void
1052rtc_outb(int val)
1053{
1054	int s;
1055	int sa = 0;
1056
1057	for (s=0;s<8;s++) {
1058	    sa = ((val >> s) & 0x01) ? 0x27 : 0x07;
1059	    outb(IO_RTC, sa);		/* set DI & CLK 0 */
1060	    DELAY(1);
1061	    outb(IO_RTC, sa | 0x10);	/* CLK 1 */
1062	    DELAY(1);
1063	}
1064	outb(IO_RTC, sa & 0xef);	/* CLK 0 */
1065}
1066
1067static int
1068rtc_inb(void)
1069{
1070	int s;
1071	int sa = 0;
1072
1073	for (s=0;s<8;s++) {
1074	    sa |= ((inb(0x33) & 0x01) << s);
1075	    outb(IO_RTC, 0x17);	/* CLK 1 */
1076	    DELAY(1);
1077	    outb(IO_RTC, 0x07);	/* CLK 0 */
1078	    DELAY(2);
1079	}
1080	return sa;
1081}
1082#endif /* PC-98 */
1083
1084/*
1085 * Initialize the time of day register, based on the time base which is, e.g.
1086 * from a filesystem.
1087 */
1088void
1089inittodr(time_t base)
1090{
1091	unsigned long	sec, days;
1092#ifndef PC98
1093	int		yd;
1094#endif
1095	int		year, month;
1096	int		y, m, s;
1097	struct timespec ts;
1098#ifdef PC98
1099	int		second, min, hour;
1100#endif
1101
1102	if (base) {
1103		s = splclock();
1104		ts.tv_sec = base;
1105		ts.tv_nsec = 0;
1106		tc_setclock(&ts);
1107		splx(s);
1108	}
1109
1110#ifdef PC98
1111	rtc_serialcom(0x03);	/* Time Read */
1112	rtc_serialcom(0x01);	/* Register shift command. */
1113	DELAY(20);
1114
1115	second = bcd2bin(rtc_inb() & 0xff);	/* sec */
1116	min = bcd2bin(rtc_inb() & 0xff);	/* min */
1117	hour = bcd2bin(rtc_inb() & 0xff);	/* hour */
1118	days = bcd2bin(rtc_inb() & 0xff) - 1;	/* date */
1119
1120	month = (rtc_inb() >> 4) & 0x0f;	/* month */
1121	for (m = 1; m <	month; m++)
1122		days +=	daysinmonth[m-1];
1123	year = bcd2bin(rtc_inb() & 0xff) + 1900;	/* year */
1124	/* 2000 year problem */
1125	if (year < 1995)
1126		year += 100;
1127	if (year < 1970)
1128		goto wrong_time;
1129	for (y = 1970; y < year; y++)
1130		days +=	DAYSPERYEAR + LEAPYEAR(y);
1131	if ((month > 2)	&& LEAPYEAR(year))
1132		days ++;
1133	sec = ((( days * 24 +
1134		  hour) * 60 +
1135		  min) * 60 +
1136		  second);
1137	/* sec now contains the	number of seconds, since Jan 1 1970,
1138	   in the local	time zone */
1139
1140	s = splhigh();
1141#else	/* IBM-PC */
1142	/* Look if we have a RTC present and the time is valid */
1143	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
1144		goto wrong_time;
1145
1146	/* wait for time update to complete */
1147	/* If RTCSA_TUP is zero, we have at least 244us before next update */
1148	s = splhigh();
1149	while (rtcin(RTC_STATUSA) & RTCSA_TUP) {
1150		splx(s);
1151		s = splhigh();
1152	}
1153
1154	days = 0;
1155#ifdef USE_RTC_CENTURY
1156	year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
1157#else
1158	year = readrtc(RTC_YEAR) + 1900;
1159	if (year < 1970)
1160		year += 100;
1161#endif
1162	if (year < 1970) {
1163		splx(s);
1164		goto wrong_time;
1165	}
1166	month = readrtc(RTC_MONTH);
1167	for (m = 1; m < month; m++)
1168		days += daysinmonth[m-1];
1169	if ((month > 2) && LEAPYEAR(year))
1170		days ++;
1171	days += readrtc(RTC_DAY) - 1;
1172	yd = days;
1173	for (y = 1970; y < year; y++)
1174		days += DAYSPERYEAR + LEAPYEAR(y);
1175	sec = ((( days * 24 +
1176		  readrtc(RTC_HRS)) * 60 +
1177		  readrtc(RTC_MIN)) * 60 +
1178		  readrtc(RTC_SEC));
1179	/* sec now contains the number of seconds, since Jan 1 1970,
1180	   in the local time zone */
1181#endif
1182
1183	sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1184
1185	y = time_second - sec;
1186	if (y <= -2 || y >= 2) {
1187		/* badly off, adjust it */
1188		ts.tv_sec = sec;
1189		ts.tv_nsec = 0;
1190		tc_setclock(&ts);
1191	}
1192	splx(s);
1193	return;
1194
1195wrong_time:
1196	printf("Invalid time in real time clock.\n");
1197	printf("Check and reset the date immediately!\n");
1198}
1199
1200/*
1201 * Write system time back to RTC
1202 */
1203void
1204resettodr()
1205{
1206	unsigned long	tm;
1207	int		y, m, s;
1208#ifdef PC98
1209	int		wd;
1210#endif
1211
1212	if (disable_rtc_set)
1213		return;
1214
1215	s = splclock();
1216	tm = time_second;
1217	splx(s);
1218
1219#ifdef PC98
1220	rtc_serialcom(0x01);	/* Register shift command. */
1221
1222	/* Calculate local time	to put in RTC */
1223
1224	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1225
1226	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
1227	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
1228	rtc_outb(bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
1229
1230	/* We have now the days	since 01-01-1970 in tm */
1231	wd = (tm+4)%7;
1232	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1233	     tm >= m;
1234	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1235	     tm -= m;
1236
1237	/* Now we have the years in y and the day-of-the-year in tm */
1238	for (m = 0; ; m++) {
1239		int ml;
1240
1241		ml = daysinmonth[m];
1242		if (m == 1 && LEAPYEAR(y))
1243			ml++;
1244		if (tm < ml)
1245			break;
1246		tm -= ml;
1247	}
1248
1249	m++;
1250	rtc_outb(bin2bcd(tm+1));		/* Write back Day     */
1251	rtc_outb((m << 4) | wd);		/* Write back Month & Weekday  */
1252	rtc_outb(bin2bcd(y%100));		/* Write back Year    */
1253
1254	rtc_serialcom(0x02);	/* Time set & Counter hold command. */
1255	rtc_serialcom(0x00);	/* Register hold command. */
1256#else
1257	/* Disable RTC updates and interrupts. */
1258	writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
1259
1260	/* Calculate local time to put in RTC */
1261
1262	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1263
1264	writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
1265	writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
1266	writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
1267
1268	/* We have now the days since 01-01-1970 in tm */
1269	writertc(RTC_WDAY, (tm+4)%7);			/* Write back Weekday */
1270	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1271	     tm >= m;
1272	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1273	     tm -= m;
1274
1275	/* Now we have the years in y and the day-of-the-year in tm */
1276	writertc(RTC_YEAR, bin2bcd(y%100));		/* Write back Year    */
1277#ifdef USE_RTC_CENTURY
1278	writertc(RTC_CENTURY, bin2bcd(y/100));		/* ... and Century    */
1279#endif
1280	for (m = 0; ; m++) {
1281		int ml;
1282
1283		ml = daysinmonth[m];
1284		if (m == 1 && LEAPYEAR(y))
1285			ml++;
1286		if (tm < ml)
1287			break;
1288		tm -= ml;
1289	}
1290
1291	writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
1292	writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
1293
1294	/* Reenable RTC updates and interrupts. */
1295	writertc(RTC_STATUSB, rtc_statusb);
1296#endif /* PC98 */
1297}
1298
1299
1300/*
1301 * Start both clocks running.
1302 */
1303void
1304cpu_initclocks()
1305{
1306#ifdef APIC_IO
1307	int apic_8254_trial;
1308	void *clkdesc;
1309#endif /* APIC_IO */
1310#ifndef PC98
1311	int diag;
1312
1313	if (statclock_disable) {
1314		/*
1315		 * The stat interrupt mask is different without the
1316		 * statistics clock.  Also, don't set the interrupt
1317		 * flag which would normally cause the RTC to generate
1318		 * interrupts.
1319		 */
1320		rtc_statusb = RTCSB_24HR;
1321	} else {
1322	        /* Setting stathz to nonzero early helps avoid races. */
1323		stathz = RTC_NOPROFRATE;
1324		profhz = RTC_PROFRATE;
1325        }
1326#endif
1327
1328	/* Finish initializing 8253 timer 0. */
1329#ifdef APIC_IO
1330
1331	apic_8254_intr = isa_apic_irq(0);
1332	apic_8254_trial = 0;
1333	if (apic_8254_intr >= 0 ) {
1334		if (apic_int_type(0, 0) == 3)
1335			apic_8254_trial = 1;
1336	} else {
1337		/* look for ExtInt on pin 0 */
1338		if (apic_int_type(0, 0) == 3) {
1339			apic_8254_intr = apic_irq(0, 0);
1340			setup_8254_mixed_mode();
1341		} else
1342			panic("APIC_IO: Cannot route 8254 interrupt to CPU");
1343	}
1344
1345	inthand_add("clk", apic_8254_intr, (driver_intr_t *)clkintr, NULL,
1346	    INTR_TYPE_CLK | INTR_FAST, &clkdesc);
1347	INTREN(1 << apic_8254_intr);
1348
1349#else /* APIC_IO */
1350
1351	/*
1352	 * XXX Check the priority of this interrupt handler.  I
1353	 * couldn't find anything suitable in the BSD/OS code (grog,
1354	 * 19 July 2000).
1355	 */
1356	inthand_add("clk", 0, (driver_intr_t *)clkintr, NULL,
1357	    INTR_TYPE_CLK | INTR_FAST, NULL);
1358	INTREN(IRQ0);
1359
1360#endif /* APIC_IO */
1361
1362#ifndef PC98
1363	/* Initialize RTC. */
1364	writertc(RTC_STATUSA, rtc_statusa);
1365	writertc(RTC_STATUSB, RTCSB_24HR);
1366
1367	/* Don't bother enabling the statistics clock. */
1368	if (statclock_disable)
1369		return;
1370	diag = rtcin(RTC_DIAG);
1371	if (diag != 0)
1372		printf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
1373#endif /* !PC98 */
1374
1375#ifndef PC98
1376#ifdef APIC_IO
1377	if (isa_apic_irq(8) != 8)
1378		panic("APIC RTC != 8");
1379#endif /* APIC_IO */
1380
1381	inthand_add("rtc", 8, (driver_intr_t *)rtcintr, NULL,
1382	    INTR_TYPE_CLK | INTR_FAST, NULL);
1383
1384#ifdef APIC_IO
1385	INTREN(APIC_IRQ8);
1386#else
1387	INTREN(IRQ8);
1388#endif /* APIC_IO */
1389
1390	writertc(RTC_STATUSB, rtc_statusb);
1391#endif /* PC98 */
1392
1393#ifdef APIC_IO
1394	if (apic_8254_trial) {
1395
1396		printf("APIC_IO: Testing 8254 interrupt delivery\n");
1397		while (read_intr_count(8) < 6)
1398			;	/* nothing */
1399		if (read_intr_count(apic_8254_intr) < 3) {
1400			/*
1401			 * The MP table is broken.
1402			 * The 8254 was not connected to the specified pin
1403			 * on the IO APIC.
1404			 * Workaround: Limited variant of mixed mode.
1405			 */
1406			INTRDIS(1 << apic_8254_intr);
1407			inthand_remove(clkdesc);
1408			printf("APIC_IO: Broken MP table detected: "
1409			       "8254 is not connected to "
1410			       "IOAPIC #%d intpin %d\n",
1411			       int_to_apicintpin[apic_8254_intr].ioapic,
1412			       int_to_apicintpin[apic_8254_intr].int_pin);
1413			/*
1414			 * Revoke current ISA IRQ 0 assignment and
1415			 * configure a fallback interrupt routing from
1416			 * the 8254 Timer via the 8259 PIC to the
1417			 * an ExtInt interrupt line on IOAPIC #0 intpin 0.
1418			 * We reuse the low level interrupt handler number.
1419			 */
1420			if (apic_irq(0, 0) < 0) {
1421				revoke_apic_irq(apic_8254_intr);
1422				assign_apic_irq(0, 0, apic_8254_intr);
1423			}
1424			apic_8254_intr = apic_irq(0, 0);
1425			setup_8254_mixed_mode();
1426			inthand_add("clk", apic_8254_intr,
1427				    (driver_intr_t *)clkintr, NULL,
1428				    INTR_TYPE_CLK | INTR_FAST, NULL);
1429			INTREN(1 << apic_8254_intr);
1430		}
1431
1432	}
1433	if (apic_int_type(0, 0) != 3 ||
1434	    int_to_apicintpin[apic_8254_intr].ioapic != 0 ||
1435	    int_to_apicintpin[apic_8254_intr].int_pin != 0)
1436		printf("APIC_IO: routing 8254 via IOAPIC #%d intpin %d\n",
1437		       int_to_apicintpin[apic_8254_intr].ioapic,
1438		       int_to_apicintpin[apic_8254_intr].int_pin);
1439	else
1440		printf("APIC_IO: "
1441		       "routing 8254 via 8259 and IOAPIC #0 intpin 0\n");
1442#endif
1443
1444}
1445
1446#ifdef APIC_IO
1447static u_long
1448read_intr_count(int vec)
1449{
1450	u_long *up;
1451	up = intr_countp[vec];
1452	if (up)
1453		return *up;
1454	return 0UL;
1455}
1456
1457static void
1458setup_8254_mixed_mode()
1459{
1460	/*
1461	 * Allow 8254 timer to INTerrupt 8259:
1462	 *  re-initialize master 8259:
1463	 *   reset; prog 4 bytes, single ICU, edge triggered
1464	 */
1465	outb(IO_ICU1, 0x13);
1466#ifdef PC98
1467	outb(IO_ICU1 + 2, NRSVIDT);	/* start vector (unused) */
1468	outb(IO_ICU1 + 2, 0x00);	/* ignore slave */
1469	outb(IO_ICU1 + 2, 0x03);	/* auto EOI, 8086 */
1470	outb(IO_ICU1 + 2, 0xfe);	/* unmask INT0 */
1471#else
1472	outb(IO_ICU1 + 1, NRSVIDT);	/* start vector (unused) */
1473	outb(IO_ICU1 + 1, 0x00);	/* ignore slave */
1474	outb(IO_ICU1 + 1, 0x03);	/* auto EOI, 8086 */
1475	outb(IO_ICU1 + 1, 0xfe);	/* unmask INT0 */
1476#endif
1477	/* program IO APIC for type 3 INT on INT0 */
1478	if (ext_int_setup(0, 0) < 0)
1479		panic("8254 redirect via APIC pin0 impossible!");
1480}
1481#endif
1482
1483void
1484setstatclockrate(int newhz)
1485{
1486#ifndef PC98
1487	if (newhz == RTC_PROFRATE)
1488		rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
1489	else
1490		rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
1491	writertc(RTC_STATUSA, rtc_statusa);
1492#endif
1493}
1494
1495static int
1496sysctl_machdep_i8254_freq(SYSCTL_HANDLER_ARGS)
1497{
1498	int error;
1499	u_int freq;
1500
1501	/*
1502	 * Use `i8254' instead of `timer' in external names because `timer'
1503	 * is is too generic.  Should use it everywhere.
1504	 */
1505	freq = timer_freq;
1506	error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
1507	if (error == 0 && req->newptr != NULL) {
1508		if (timer0_state != RELEASED)
1509			return (EBUSY);	/* too much trouble to handle */
1510		set_timer_freq(freq, hz);
1511		i8254_timecounter.tc_frequency = freq;
1512		tc_update(&i8254_timecounter);
1513	}
1514	return (error);
1515}
1516
1517SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
1518    0, sizeof(u_int), sysctl_machdep_i8254_freq, "I", "");
1519
1520static int
1521sysctl_machdep_tsc_freq(SYSCTL_HANDLER_ARGS)
1522{
1523	int error;
1524	u_int freq;
1525
1526	if (tsc_timecounter.tc_frequency == 0)
1527		return (EOPNOTSUPP);
1528	freq = tsc_freq;
1529	error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
1530	if (error == 0 && req->newptr != NULL) {
1531		tsc_freq = freq;
1532		tsc_timecounter.tc_frequency = tsc_freq;
1533		tc_update(&tsc_timecounter);
1534	}
1535	return (error);
1536}
1537
1538SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq, CTLTYPE_INT | CTLFLAG_RW,
1539    0, sizeof(u_int), sysctl_machdep_tsc_freq, "I", "");
1540
1541static unsigned
1542i8254_get_timecount(struct timecounter *tc)
1543{
1544	u_int count;
1545	u_int high, low;
1546	u_int eflags;
1547
1548	eflags = read_eflags();
1549	mtx_lock_spin(&clock_lock);
1550
1551	/* Select timer0 and latch counter value. */
1552	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
1553
1554	low = inb(TIMER_CNTR0);
1555	high = inb(TIMER_CNTR0);
1556	count = timer0_max_count - ((high << 8) | low);
1557	if (count < i8254_lastcount ||
1558	    (!i8254_ticked && (clkintr_pending ||
1559	    ((count < 20 || (!(eflags & PSL_I) && count < timer0_max_count / 2u)) &&
1560#ifdef APIC_IO
1561#define	lapic_irr1	((volatile u_int *)&lapic)[0x210 / 4]	/* XXX XXX */
1562	    /* XXX this assumes that apic_8254_intr is < 24. */
1563	    (lapic_irr1 & (1 << apic_8254_intr))))
1564#else
1565	    (inb(IO_ICU1) & 1)))
1566#endif
1567	    )) {
1568		i8254_ticked = 1;
1569		i8254_offset += timer0_max_count;
1570	}
1571	i8254_lastcount = count;
1572	count += i8254_offset;
1573	mtx_unlock_spin(&clock_lock);
1574	return (count);
1575}
1576
1577static unsigned
1578tsc_get_timecount(struct timecounter *tc)
1579{
1580	return (rdtsc());
1581}
1582
1583/*
1584 * Attach to the ISA PnP descriptors for the timer and realtime clock.
1585 */
1586static struct isa_pnp_id attimer_ids[] = {
1587	{ 0x0001d041 /* PNP0100 */, "AT timer" },
1588	{ 0x000bd041 /* PNP0B00 */, "AT realtime clock" },
1589	{ 0 }
1590};
1591
1592static int
1593attimer_probe(device_t dev)
1594{
1595	int result;
1596
1597	if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, attimer_ids)) <= 0)
1598		device_quiet(dev);
1599	return(result);
1600}
1601
1602static int
1603attimer_attach(device_t dev)
1604{
1605	return(0);
1606}
1607
1608static device_method_t attimer_methods[] = {
1609	/* Device interface */
1610	DEVMETHOD(device_probe,		attimer_probe),
1611	DEVMETHOD(device_attach,	attimer_attach),
1612	DEVMETHOD(device_detach,	bus_generic_detach),
1613	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1614	DEVMETHOD(device_suspend,	bus_generic_suspend),	/* XXX stop statclock? */
1615	DEVMETHOD(device_resume,	bus_generic_resume),	/* XXX restart statclock? */
1616	{ 0, 0 }
1617};
1618
1619static driver_t attimer_driver = {
1620	"attimer",
1621	attimer_methods,
1622	1,		/* no softc */
1623};
1624
1625static devclass_t attimer_devclass;
1626
1627DRIVER_MODULE(attimer, isa, attimer_driver, attimer_devclass, 0, 0);
1628