pcrtc.c revision 61329
1/*-
2 * Copyright (c) 1990 The Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * William Jolitz and Don Ahn.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)clock.c	7.2 (Berkeley) 5/12/91
37 * $FreeBSD: head/sys/pc98/cbus/pcrtc.c 61329 2000-06-06 08:20:22Z kato $
38 */
39
40/*
41 * Routines to handle clock hardware.
42 */
43
44/*
45 * inittodr, settodr and support routines written
46 * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
47 *
48 * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
49 */
50
51/*
52 * modified for PC98 by Kakefuda
53 */
54
55#include "opt_clock.h"
56#include "apm.h"
57
58#include <sys/param.h>
59#include <sys/systm.h>
60#include <sys/time.h>
61#include <sys/timetc.h>
62#include <sys/kernel.h>
63#ifndef SMP
64#include <sys/lock.h>
65#endif
66#include <sys/sysctl.h>
67#include <sys/cons.h>
68
69#include <machine/clock.h>
70#ifdef CLK_CALIBRATION_LOOP
71#endif
72#include <machine/cputypes.h>
73#include <machine/frame.h>
74#include <machine/ipl.h>
75#include <machine/limits.h>
76#include <machine/md_var.h>
77#include <machine/psl.h>
78#ifdef APIC_IO
79#include <machine/segments.h>
80#endif
81#if defined(SMP) || defined(APIC_IO)
82#include <machine/smp.h>
83#endif /* SMP || APIC_IO */
84#include <machine/specialreg.h>
85
86#include <i386/isa/icu.h>
87#ifdef PC98
88#include <pc98/pc98/pc98.h>
89#include <pc98/pc98/pc98_machdep.h>
90#include <i386/isa/isa_device.h>
91#else
92#include <i386/isa/isa.h>
93#include <isa/rtc.h>
94#endif
95#include <i386/isa/timerreg.h>
96
97#include <i386/isa/intr_machdep.h>
98
99#include "mca.h"
100#if NMCA > 0
101#include <i386/isa/mca_machdep.h>
102#endif
103
104#ifdef SMP
105#define disable_intr()	CLOCK_DISABLE_INTR()
106#define enable_intr()	CLOCK_ENABLE_INTR()
107
108#ifdef APIC_IO
109#include <i386/isa/intr_machdep.h>
110/* The interrupt triggered by the 8254 (timer) chip */
111int apic_8254_intr;
112static u_long read_intr_count __P((int vec));
113static void setup_8254_mixed_mode __P((void));
114#endif
115#endif /* SMP */
116
117/*
118 * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
119 * can use a simple formula for leap years.
120 */
121#define	LEAPYEAR(y) ((u_int)(y) % 4 == 0)
122#define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
123
124#define	TIMER_DIV(x) ((timer_freq + (x) / 2) / (x))
125
126/*
127 * Time in timer cycles that it takes for microtime() to disable interrupts
128 * and latch the count.  microtime() currently uses "cli; outb ..." so it
129 * normally takes less than 2 timer cycles.  Add a few for cache misses.
130 * Add a few more to allow for latency in bogus calls to microtime() with
131 * interrupts already disabled.
132 */
133#define	TIMER0_LATCH_COUNT	20
134
135/*
136 * Maximum frequency that we are willing to allow for timer0.  Must be
137 * low enough to guarantee that the timer interrupt handler returns
138 * before the next timer interrupt.
139 */
140#define	TIMER0_MAX_FREQ		20000
141
142int	adjkerntz;		/* local offset from GMT in seconds */
143int	clkintr_pending;
144int	disable_rtc_set;	/* disable resettodr() if != 0 */
145volatile u_int	idelayed;
146int	statclock_disable;
147u_int	stat_imask = SWI_LOW_MASK;
148#ifndef TIMER_FREQ
149#ifdef PC98
150#define	TIMER_FREQ	2457600;
151#else /* IBM-PC */
152#define	TIMER_FREQ	1193182;
153#endif /* PC98 */
154#endif
155u_int	timer_freq = TIMER_FREQ;
156int	timer0_max_count;
157u_int	tsc_freq;
158int	tsc_is_broken;
159int	wall_cmos_clock;	/* wall CMOS clock assumed if != 0 */
160
161static	int	beeping = 0;
162static	u_int	clk_imask = HWI_MASK | SWI_MASK;
163static	const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
164static	u_int	hardclock_max_count;
165static	u_int32_t i8254_lastcount;
166static	u_int32_t i8254_offset;
167static	int	i8254_ticked;
168/*
169 * XXX new_function and timer_func should not handle clockframes, but
170 * timer_func currently needs to hold hardclock to handle the
171 * timer0_state == 0 case.  We should use inthand_add()/inthand_remove()
172 * to switch between clkintr() and a slightly different timerintr().
173 */
174static	void	(*new_function) __P((struct clockframe *frame));
175static	u_int	new_rate;
176#ifndef PC98
177static	u_char	rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
178static	u_char	rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
179#endif
180static	u_int	timer0_prescaler_count;
181
182/* Values for timerX_state: */
183#define	RELEASED	0
184#define	RELEASE_PENDING	1
185#define	ACQUIRED	2
186#define	ACQUIRE_PENDING	3
187
188static	u_char	timer0_state;
189#ifdef	PC98
190static 	u_char	timer1_state;
191#endif
192static	u_char	timer2_state;
193static	void	(*timer_func) __P((struct clockframe *frame)) = hardclock;
194#ifdef PC98
195static void rtc_serialcombit __P((int));
196static void rtc_serialcom __P((int));
197static int rtc_inb __P((void));
198static void rtc_outb __P((int));
199#endif
200static	u_int	tsc_present;
201
202static	unsigned i8254_get_timecount __P((struct timecounter *tc));
203static	unsigned tsc_get_timecount __P((struct timecounter *tc));
204static	void	set_timer_freq(u_int freq, int intr_freq);
205
206static struct timecounter tsc_timecounter = {
207	tsc_get_timecount,	/* get_timecount */
208	0,			/* no poll_pps */
209 	~0u,			/* counter_mask */
210	0,			/* frequency */
211	 "TSC"			/* name */
212};
213
214SYSCTL_OPAQUE(_debug, OID_AUTO, tsc_timecounter, CTLFLAG_RD,
215	&tsc_timecounter, sizeof(tsc_timecounter), "S,timecounter", "");
216
217static struct timecounter i8254_timecounter = {
218	i8254_get_timecount,	/* get_timecount */
219	0,			/* no poll_pps */
220	~0u,			/* counter_mask */
221	0,			/* frequency */
222	"i8254"			/* name */
223};
224
225SYSCTL_OPAQUE(_debug, OID_AUTO, i8254_timecounter, CTLFLAG_RD,
226	&i8254_timecounter, sizeof(i8254_timecounter), "S,timecounter", "");
227
228static void
229clkintr(struct clockframe frame)
230{
231	if (timecounter->tc_get_timecount == i8254_get_timecount) {
232		disable_intr();
233		if (i8254_ticked)
234			i8254_ticked = 0;
235		else {
236			i8254_offset += timer0_max_count;
237			i8254_lastcount = 0;
238		}
239		clkintr_pending = 0;
240		enable_intr();
241	}
242	timer_func(&frame);
243	switch (timer0_state) {
244
245	case RELEASED:
246		setdelayed();
247		break;
248
249	case ACQUIRED:
250		if ((timer0_prescaler_count += timer0_max_count)
251		    >= hardclock_max_count) {
252			timer0_prescaler_count -= hardclock_max_count;
253			hardclock(&frame);
254			setdelayed();
255		}
256		break;
257
258	case ACQUIRE_PENDING:
259		disable_intr();
260		i8254_offset = i8254_get_timecount(NULL);
261		i8254_lastcount = 0;
262		timer0_max_count = TIMER_DIV(new_rate);
263		outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
264		outb(TIMER_CNTR0, timer0_max_count & 0xff);
265		outb(TIMER_CNTR0, timer0_max_count >> 8);
266		enable_intr();
267		timer_func = new_function;
268		timer0_state = ACQUIRED;
269		setdelayed();
270		break;
271
272	case RELEASE_PENDING:
273		if ((timer0_prescaler_count += timer0_max_count)
274		    >= hardclock_max_count) {
275			disable_intr();
276			i8254_offset = i8254_get_timecount(NULL);
277			i8254_lastcount = 0;
278			timer0_max_count = hardclock_max_count;
279			outb(TIMER_MODE,
280			     TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
281			outb(TIMER_CNTR0, timer0_max_count & 0xff);
282			outb(TIMER_CNTR0, timer0_max_count >> 8);
283			enable_intr();
284			timer0_prescaler_count = 0;
285			timer_func = hardclock;
286			timer0_state = RELEASED;
287			hardclock(&frame);
288			setdelayed();
289		}
290		break;
291	}
292#if NMCA > 0
293	/* Reset clock interrupt by asserting bit 7 of port 0x61 */
294	if (MCA_system)
295		outb(0x61, inb(0x61) | 0x80);
296#endif
297}
298
299/*
300 * The acquire and release functions must be called at ipl >= splclock().
301 */
302int
303acquire_timer0(int rate, void (*function) __P((struct clockframe *frame)))
304{
305	static int old_rate;
306
307	if (rate <= 0 || rate > TIMER0_MAX_FREQ)
308		return (-1);
309	switch (timer0_state) {
310
311	case RELEASED:
312		timer0_state = ACQUIRE_PENDING;
313		break;
314
315	case RELEASE_PENDING:
316		if (rate != old_rate)
317			return (-1);
318		/*
319		 * The timer has been released recently, but is being
320		 * re-acquired before the release completed.  In this
321		 * case, we simply reclaim it as if it had not been
322		 * released at all.
323		 */
324		timer0_state = ACQUIRED;
325		break;
326
327	default:
328		return (-1);	/* busy */
329	}
330	new_function = function;
331	old_rate = new_rate = rate;
332	return (0);
333}
334
335#ifdef PC98
336int
337acquire_timer1(int mode)
338{
339
340	if (timer1_state != RELEASED)
341		return (-1);
342	timer1_state = ACQUIRED;
343
344	/*
345	 * This access to the timer registers is as atomic as possible
346	 * because it is a single instruction.  We could do better if we
347	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
348	 * and this is probably good enough for timer2, so we aren't as
349	 * careful with it as with timer0.
350	 */
351	outb(TIMER_MODE, TIMER_SEL1 | (mode & 0x3f));
352
353	return (0);
354}
355#endif
356
357int
358acquire_timer2(int mode)
359{
360
361	if (timer2_state != RELEASED)
362		return (-1);
363	timer2_state = ACQUIRED;
364
365	/*
366	 * This access to the timer registers is as atomic as possible
367	 * because it is a single instruction.  We could do better if we
368	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
369	 * and this is probably good enough for timer2, so we aren't as
370	 * careful with it as with timer0.
371	 */
372	outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
373
374	return (0);
375}
376
377int
378release_timer0()
379{
380	switch (timer0_state) {
381
382	case ACQUIRED:
383		timer0_state = RELEASE_PENDING;
384		break;
385
386	case ACQUIRE_PENDING:
387		/* Nothing happened yet, release quickly. */
388		timer0_state = RELEASED;
389		break;
390
391	default:
392		return (-1);
393	}
394	return (0);
395}
396
397#ifdef PC98
398int
399release_timer1()
400{
401
402	if (timer1_state != ACQUIRED)
403		return (-1);
404	timer1_state = RELEASED;
405	outb(TIMER_MODE, TIMER_SEL1 | TIMER_SQWAVE | TIMER_16BIT);
406	return (0);
407}
408#endif
409
410int
411release_timer2()
412{
413
414	if (timer2_state != ACQUIRED)
415		return (-1);
416	timer2_state = RELEASED;
417	outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
418	return (0);
419}
420
421#ifndef PC98
422/*
423 * This routine receives statistical clock interrupts from the RTC.
424 * As explained above, these occur at 128 interrupts per second.
425 * When profiling, we receive interrupts at a rate of 1024 Hz.
426 *
427 * This does not actually add as much overhead as it sounds, because
428 * when the statistical clock is active, the hardclock driver no longer
429 * needs to keep (inaccurate) statistics on its own.  This decouples
430 * statistics gathering from scheduling interrupts.
431 *
432 * The RTC chip requires that we read status register C (RTC_INTR)
433 * to acknowledge an interrupt, before it will generate the next one.
434 * Under high interrupt load, rtcintr() can be indefinitely delayed and
435 * the clock can tick immediately after the read from RTC_INTR.  In this
436 * case, the mc146818A interrupt signal will not drop for long enough
437 * to register with the 8259 PIC.  If an interrupt is missed, the stat
438 * clock will halt, considerably degrading system performance.  This is
439 * why we use 'while' rather than a more straightforward 'if' below.
440 * Stat clock ticks can still be lost, causing minor loss of accuracy
441 * in the statistics, but the stat clock will no longer stop.
442 */
443static void
444rtcintr(struct clockframe frame)
445{
446	while (rtcin(RTC_INTR) & RTCIR_PERIOD)
447		statclock(&frame);
448}
449
450#include "opt_ddb.h"
451#ifdef DDB
452#include <ddb/ddb.h>
453
454DB_SHOW_COMMAND(rtc, rtc)
455{
456	printf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
457	       rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
458	       rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
459	       rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
460}
461#endif /* DDB */
462#endif /* for PC98 */
463
464static int
465getit(void)
466{
467	u_long ef;
468	int high, low;
469
470	ef = read_eflags();
471	disable_intr();
472
473	/* Select timer0 and latch counter value. */
474	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
475
476	low = inb(TIMER_CNTR0);
477	high = inb(TIMER_CNTR0);
478
479	CLOCK_UNLOCK();
480	write_eflags(ef);
481	return ((high << 8) | low);
482}
483
484/*
485 * Wait "n" microseconds.
486 * Relies on timer 1 counting down from (timer_freq / hz)
487 * Note: timer had better have been programmed before this is first used!
488 */
489void
490DELAY(int n)
491{
492	int delta, prev_tick, tick, ticks_left;
493
494#ifdef DELAYDEBUG
495	int getit_calls = 1;
496	int n1;
497	static int state = 0;
498
499	if (state == 0) {
500		state = 1;
501		for (n1 = 1; n1 <= 10000000; n1 *= 10)
502			DELAY(n1);
503		state = 2;
504	}
505	if (state == 1)
506		printf("DELAY(%d)...", n);
507#endif
508	/*
509	 * Guard against the timer being uninitialized if we are called
510	 * early for console i/o.
511	 */
512	if (timer0_max_count == 0)
513		set_timer_freq(timer_freq, hz);
514
515	/*
516	 * Read the counter first, so that the rest of the setup overhead is
517	 * counted.  Guess the initial overhead is 20 usec (on most systems it
518	 * takes about 1.5 usec for each of the i/o's in getit().  The loop
519	 * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
520	 * multiplications and divisions to scale the count take a while).
521	 */
522	prev_tick = getit();
523	n -= 0;			/* XXX actually guess no initial overhead */
524	/*
525	 * Calculate (n * (timer_freq / 1e6)) without using floating point
526	 * and without any avoidable overflows.
527	 */
528	if (n <= 0)
529		ticks_left = 0;
530	else if (n < 256)
531		/*
532		 * Use fixed point to avoid a slow division by 1000000.
533		 * 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
534		 * 2^15 is the first power of 2 that gives exact results
535		 * for n between 0 and 256.
536		 */
537		ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
538	else
539		/*
540		 * Don't bother using fixed point, although gcc-2.7.2
541		 * generates particularly poor code for the long long
542		 * division, since even the slow way will complete long
543		 * before the delay is up (unless we're interrupted).
544		 */
545		ticks_left = ((u_int)n * (long long)timer_freq + 999999)
546			     / 1000000;
547
548	while (ticks_left > 0) {
549		tick = getit();
550#ifdef DELAYDEBUG
551		++getit_calls;
552#endif
553		delta = prev_tick - tick;
554		prev_tick = tick;
555		if (delta < 0) {
556			delta += timer0_max_count;
557			/*
558			 * Guard against timer0_max_count being wrong.
559			 * This shouldn't happen in normal operation,
560			 * but it may happen if set_timer_freq() is
561			 * traced.
562			 */
563			if (delta < 0)
564				delta = 0;
565		}
566		ticks_left -= delta;
567	}
568#ifdef DELAYDEBUG
569	if (state == 1)
570		printf(" %d calls to getit() at %d usec each\n",
571		       getit_calls, (n + 5) / getit_calls);
572#endif
573}
574
575static void
576sysbeepstop(void *chan)
577{
578#ifdef PC98	/* PC98 */
579	outb(IO_PPI, inb(IO_PPI)|0x08);	/* disable counter1 output to speaker */
580	release_timer1();
581#else
582	outb(IO_PPI, inb(IO_PPI)&0xFC);	/* disable counter2 output to speaker */
583	release_timer2();
584#endif
585	beeping = 0;
586}
587
588int
589sysbeep(int pitch, int period)
590{
591	int x = splclock();
592
593#ifdef PC98
594	if (acquire_timer1(TIMER_SQWAVE|TIMER_16BIT))
595		if (!beeping) {
596			/* Something else owns it. */
597			splx(x);
598			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
599		}
600	disable_intr();
601	outb(0x3fdb, pitch);
602	outb(0x3fdb, (pitch>>8));
603	enable_intr();
604	if (!beeping) {
605		/* enable counter1 output to speaker */
606		outb(IO_PPI, (inb(IO_PPI) & 0xf7));
607		beeping = period;
608		timeout(sysbeepstop, (void *)NULL, period);
609	}
610#else
611	if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
612		if (!beeping) {
613			/* Something else owns it. */
614			splx(x);
615			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
616		}
617	disable_intr();
618	outb(TIMER_CNTR2, pitch);
619	outb(TIMER_CNTR2, (pitch>>8));
620	enable_intr();
621	if (!beeping) {
622		/* enable counter2 output to speaker */
623		outb(IO_PPI, inb(IO_PPI) | 3);
624		beeping = period;
625		timeout(sysbeepstop, (void *)NULL, period);
626	}
627#endif
628	splx(x);
629	return (0);
630}
631
632#ifndef PC98
633/*
634 * RTC support routines
635 */
636
637int
638rtcin(reg)
639	int reg;
640{
641	int s;
642	u_char val;
643
644	s = splhigh();
645	outb(IO_RTC, reg);
646	inb(0x84);
647	val = inb(IO_RTC + 1);
648	inb(0x84);
649	splx(s);
650	return (val);
651}
652
653static __inline void
654writertc(u_char reg, u_char val)
655{
656	int s;
657
658	s = splhigh();
659	inb(0x84);
660	outb(IO_RTC, reg);
661	inb(0x84);
662	outb(IO_RTC + 1, val);
663	inb(0x84);		/* XXX work around wrong order in rtcin() */
664	splx(s);
665}
666
667static __inline int
668readrtc(int port)
669{
670	return(bcd2bin(rtcin(port)));
671}
672#endif
673
674#ifdef PC98
675unsigned int delaycount;
676#define FIRST_GUESS	0x2000
677static void findcpuspeed(void)
678{
679	int i;
680	int remainder;
681
682	/* Put counter in count down mode */
683	outb(TIMER_MODE, TIMER_SEL0 | TIMER_16BIT | TIMER_RATEGEN);
684	outb(TIMER_CNTR0, 0xff);
685	outb(TIMER_CNTR0, 0xff);
686	for (i = FIRST_GUESS; i; i--)
687		;
688	remainder = getit();
689	delaycount = (FIRST_GUESS * TIMER_DIV(1000)) / (0xffff - remainder);
690}
691#endif
692
693#ifdef PC98
694static u_int
695calibrate_clocks(void)
696{
697	int	timeout;
698	u_int	count, prev_count, tot_count;
699	u_short	sec, start_sec;
700
701	if (bootverbose)
702	        printf("Calibrating clock(s) ... ");
703	/* Check ARTIC. */
704	if (!(PC98_SYSTEM_PARAMETER(0x458) & 0x80) &&
705	    !(PC98_SYSTEM_PARAMETER(0x45b) & 0x04))
706		goto fail;
707	timeout = 100000000;
708
709	/* Read the ARTIC. */
710	sec = inw(0x5e);
711
712	/* Wait for the ARTIC to changes. */
713	start_sec = sec;
714	for (;;) {
715		sec = inw(0x5e);
716		if (sec != start_sec)
717			break;
718		if (--timeout == 0)
719			goto fail;
720	}
721	prev_count = getit();
722	if (prev_count == 0 || prev_count > timer0_max_count)
723		goto fail;
724	tot_count = 0;
725
726	if (tsc_present)
727		wrmsr(0x10, 0LL);	/* XXX 0x10 is the MSR for the TSC */
728	start_sec = sec;
729	for (;;) {
730		sec = inw(0x5e);
731		count = getit();
732		if (count == 0 || count > timer0_max_count)
733			goto fail;
734		if (count > prev_count)
735			tot_count += prev_count - (count - timer0_max_count);
736		else
737			tot_count += prev_count - count;
738		prev_count = count;
739		if ((sec == start_sec + 1200) ||
740		    (sec < start_sec &&
741		        (u_int)sec + 0x10000 == (u_int)start_sec + 1200))
742			break;
743		if (--timeout == 0)
744			goto fail;
745	}
746	/*
747	 * Read the cpu cycle counter.  The timing considerations are
748	 * similar to those for the i8254 clock.
749	 */
750	if (tsc_present)
751		tsc_freq = rdtsc();
752
753	if (bootverbose) {
754		if (tsc_present)
755		        printf("TSC clock: %u Hz, ", tsc_freq);
756	        printf("i8254 clock: %u Hz\n", tot_count);
757	}
758	return (tot_count);
759
760fail:
761	if (bootverbose)
762	        printf("failed, using default i8254 clock of %u Hz\n",
763		       timer_freq);
764	return (timer_freq);
765}
766#else
767static u_int
768calibrate_clocks(void)
769{
770	u_int64_t old_tsc;
771	u_int count, prev_count, tot_count;
772	int sec, start_sec, timeout;
773
774	if (bootverbose)
775	        printf("Calibrating clock(s) ... ");
776	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
777		goto fail;
778	timeout = 100000000;
779
780	/* Read the mc146818A seconds counter. */
781	for (;;) {
782		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
783			sec = rtcin(RTC_SEC);
784			break;
785		}
786		if (--timeout == 0)
787			goto fail;
788	}
789
790	/* Wait for the mC146818A seconds counter to change. */
791	start_sec = sec;
792	for (;;) {
793		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
794			sec = rtcin(RTC_SEC);
795			if (sec != start_sec)
796				break;
797		}
798		if (--timeout == 0)
799			goto fail;
800	}
801
802	/* Start keeping track of the i8254 counter. */
803	prev_count = getit();
804	if (prev_count == 0 || prev_count > timer0_max_count)
805		goto fail;
806	tot_count = 0;
807
808	if (tsc_present)
809		old_tsc = rdtsc();
810	else
811		old_tsc = 0;		/* shut up gcc */
812
813	/*
814	 * Wait for the mc146818A seconds counter to change.  Read the i8254
815	 * counter for each iteration since this is convenient and only
816	 * costs a few usec of inaccuracy. The timing of the final reads
817	 * of the counters almost matches the timing of the initial reads,
818	 * so the main cause of inaccuracy is the varying latency from
819	 * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
820	 * rtcin(RTC_SEC) that returns a changed seconds count.  The
821	 * maximum inaccuracy from this cause is < 10 usec on 486's.
822	 */
823	start_sec = sec;
824	for (;;) {
825		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
826			sec = rtcin(RTC_SEC);
827		count = getit();
828		if (count == 0 || count > timer0_max_count)
829			goto fail;
830		if (count > prev_count)
831			tot_count += prev_count - (count - timer0_max_count);
832		else
833			tot_count += prev_count - count;
834		prev_count = count;
835		if (sec != start_sec)
836			break;
837		if (--timeout == 0)
838			goto fail;
839	}
840
841	/*
842	 * Read the cpu cycle counter.  The timing considerations are
843	 * similar to those for the i8254 clock.
844	 */
845	if (tsc_present)
846		tsc_freq = rdtsc() - old_tsc;
847
848	if (bootverbose) {
849		if (tsc_present)
850		        printf("TSC clock: %u Hz, ", tsc_freq);
851	        printf("i8254 clock: %u Hz\n", tot_count);
852	}
853	return (tot_count);
854
855fail:
856	if (bootverbose)
857	        printf("failed, using default i8254 clock of %u Hz\n",
858		       timer_freq);
859	return (timer_freq);
860}
861#endif	/* !PC98 */
862
863static void
864set_timer_freq(u_int freq, int intr_freq)
865{
866	u_long ef;
867	int new_timer0_max_count;
868
869	ef = read_eflags();
870	disable_intr();
871	timer_freq = freq;
872	new_timer0_max_count = hardclock_max_count = TIMER_DIV(intr_freq);
873	if (new_timer0_max_count != timer0_max_count) {
874		timer0_max_count = new_timer0_max_count;
875		outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
876		outb(TIMER_CNTR0, timer0_max_count & 0xff);
877		outb(TIMER_CNTR0, timer0_max_count >> 8);
878	}
879	CLOCK_UNLOCK();
880	write_eflags(ef);
881}
882
883/*
884 * i8254_restore is called from apm_default_resume() to reload
885 * the countdown register.
886 * this should not be necessary but there are broken laptops that
887 * do not restore the countdown register on resume.
888 * when it happnes, it messes up the hardclock interval and system clock,
889 * which leads to the infamous "calcru: negative time" problem.
890 */
891void
892i8254_restore(void)
893{
894	u_long ef;
895
896	ef = read_eflags();
897	disable_intr();
898	outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
899	outb(TIMER_CNTR0, timer0_max_count & 0xff);
900	outb(TIMER_CNTR0, timer0_max_count >> 8);
901	CLOCK_UNLOCK();
902	write_eflags(ef);
903}
904
905/*
906 * Initialize 8254 timer 0 early so that it can be used in DELAY().
907 * XXX initialization of other timers is unintentionally left blank.
908 */
909void
910startrtclock()
911{
912	u_int delta, freq;
913
914#ifdef PC98
915	findcpuspeed();
916	if (pc98_machine_type & M_8M)
917		timer_freq = 1996800L; /* 1.9968 MHz */
918	else
919		timer_freq = 2457600L; /* 2.4576 MHz */
920#endif /* PC98 */
921
922	if (cpu_feature & CPUID_TSC)
923		tsc_present = 1;
924	else
925		tsc_present = 0;
926
927#ifndef PC98
928	writertc(RTC_STATUSA, rtc_statusa);
929	writertc(RTC_STATUSB, RTCSB_24HR);
930#endif
931
932	set_timer_freq(timer_freq, hz);
933	freq = calibrate_clocks();
934#ifdef CLK_CALIBRATION_LOOP
935	if (bootverbose) {
936		printf(
937		"Press a key on the console to abort clock calibration\n");
938		while (cncheckc() == -1)
939			calibrate_clocks();
940	}
941#endif
942
943	/*
944	 * Use the calibrated i8254 frequency if it seems reasonable.
945	 * Otherwise use the default, and don't use the calibrated i586
946	 * frequency.
947	 */
948	delta = freq > timer_freq ? freq - timer_freq : timer_freq - freq;
949	if (delta < timer_freq / 100) {
950#ifndef CLK_USE_I8254_CALIBRATION
951		if (bootverbose)
952			printf(
953"CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
954		freq = timer_freq;
955#endif
956		timer_freq = freq;
957	} else {
958		if (bootverbose)
959			printf(
960		    "%d Hz differs from default of %d Hz by more than 1%%\n",
961			       freq, timer_freq);
962		tsc_freq = 0;
963	}
964
965	set_timer_freq(timer_freq, hz);
966	i8254_timecounter.tc_frequency = timer_freq;
967	tc_init(&i8254_timecounter);
968
969#ifndef CLK_USE_TSC_CALIBRATION
970	if (tsc_freq != 0) {
971		if (bootverbose)
972			printf(
973"CLK_USE_TSC_CALIBRATION not specified - using old calibration method\n");
974		tsc_freq = 0;
975	}
976#endif
977	if (tsc_present && tsc_freq == 0) {
978		/*
979		 * Calibration of the i586 clock relative to the mc146818A
980		 * clock failed.  Do a less accurate calibration relative
981		 * to the i8254 clock.
982		 */
983		u_int64_t old_tsc = rdtsc();
984
985		DELAY(1000000);
986		tsc_freq = rdtsc() - old_tsc;
987#ifdef CLK_USE_TSC_CALIBRATION
988		if (bootverbose)
989			printf("TSC clock: %u Hz (Method B)\n", tsc_freq);
990#endif
991	}
992
993#if !defined(SMP)
994	/*
995	 * We can not use the TSC in SMP mode, until we figure out a
996	 * cheap (impossible), reliable and precise (yeah right!)  way
997	 * to synchronize the TSCs of all the CPUs.
998	 * Curse Intel for leaving the counter out of the I/O APIC.
999	 */
1000
1001#if NAPM > 0
1002	/*
1003	 * We can not use the TSC if we support APM. Precise timekeeping
1004	 * on an APM'ed machine is at best a fools pursuit, since
1005	 * any and all of the time spent in various SMM code can't
1006	 * be reliably accounted for.  Reading the RTC is your only
1007	 * source of reliable time info.  The i8254 looses too of course
1008	 * but we need to have some kind of time...
1009	 * We don't know at this point whether APM is going to be used
1010	 * or not, nor when it might be activated.  Play it safe.
1011	 */
1012	return;
1013#endif /* NAPM > 0 */
1014
1015	if (tsc_present && tsc_freq != 0 && !tsc_is_broken) {
1016		tsc_timecounter.tc_frequency = tsc_freq;
1017		tc_init(&tsc_timecounter);
1018	}
1019
1020#endif /* !defined(SMP) */
1021}
1022
1023#ifdef PC98
1024static void
1025rtc_serialcombit(int i)
1026{
1027	outb(IO_RTC, ((i&0x01)<<5)|0x07);
1028	DELAY(1);
1029	outb(IO_RTC, ((i&0x01)<<5)|0x17);
1030	DELAY(1);
1031	outb(IO_RTC, ((i&0x01)<<5)|0x07);
1032	DELAY(1);
1033}
1034
1035static void
1036rtc_serialcom(int i)
1037{
1038	rtc_serialcombit(i&0x01);
1039	rtc_serialcombit((i&0x02)>>1);
1040	rtc_serialcombit((i&0x04)>>2);
1041	rtc_serialcombit((i&0x08)>>3);
1042	outb(IO_RTC, 0x07);
1043	DELAY(1);
1044	outb(IO_RTC, 0x0f);
1045	DELAY(1);
1046	outb(IO_RTC, 0x07);
1047 	DELAY(1);
1048}
1049
1050static void
1051rtc_outb(int val)
1052{
1053	int s;
1054	int sa = 0;
1055
1056	for (s=0;s<8;s++) {
1057	    sa = ((val >> s) & 0x01) ? 0x27 : 0x07;
1058	    outb(IO_RTC, sa);		/* set DI & CLK 0 */
1059	    DELAY(1);
1060	    outb(IO_RTC, sa | 0x10);	/* CLK 1 */
1061	    DELAY(1);
1062	}
1063	outb(IO_RTC, sa & 0xef);	/* CLK 0 */
1064}
1065
1066static int
1067rtc_inb(void)
1068{
1069	int s;
1070	int sa = 0;
1071
1072	for (s=0;s<8;s++) {
1073	    sa |= ((inb(0x33) & 0x01) << s);
1074	    outb(IO_RTC, 0x17);	/* CLK 1 */
1075	    DELAY(1);
1076	    outb(IO_RTC, 0x07);	/* CLK 0 */
1077	    DELAY(2);
1078	}
1079	return sa;
1080}
1081#endif /* PC-98 */
1082
1083/*
1084 * Initialize the time of day register, based on the time base which is, e.g.
1085 * from a filesystem.
1086 */
1087void
1088inittodr(time_t base)
1089{
1090	unsigned long	sec, days;
1091#ifndef PC98
1092	int		yd;
1093#endif
1094	int		year, month;
1095	int		y, m, s;
1096	struct timespec ts;
1097#ifdef PC98
1098	int		second, min, hour;
1099#endif
1100
1101	if (base) {
1102		s = splclock();
1103		ts.tv_sec = base;
1104		ts.tv_nsec = 0;
1105		tc_setclock(&ts);
1106		splx(s);
1107	}
1108
1109#ifdef PC98
1110	rtc_serialcom(0x03);	/* Time Read */
1111	rtc_serialcom(0x01);	/* Register shift command. */
1112	DELAY(20);
1113
1114	second = bcd2bin(rtc_inb() & 0xff);	/* sec */
1115	min = bcd2bin(rtc_inb() & 0xff);	/* min */
1116	hour = bcd2bin(rtc_inb() & 0xff);	/* hour */
1117	days = bcd2bin(rtc_inb() & 0xff) - 1;	/* date */
1118
1119	month = (rtc_inb() >> 4) & 0x0f;	/* month */
1120	for (m = 1; m <	month; m++)
1121		days +=	daysinmonth[m-1];
1122	year = bcd2bin(rtc_inb() & 0xff) + 1900;	/* year */
1123	/* 2000 year problem */
1124	if (year < 1995)
1125		year += 100;
1126	if (year < 1970)
1127		goto wrong_time;
1128	for (y = 1970; y < year; y++)
1129		days +=	DAYSPERYEAR + LEAPYEAR(y);
1130	if ((month > 2)	&& LEAPYEAR(year))
1131		days ++;
1132	sec = ((( days * 24 +
1133		  hour) * 60 +
1134		  min) * 60 +
1135		  second);
1136	/* sec now contains the	number of seconds, since Jan 1 1970,
1137	   in the local	time zone */
1138#else	/* IBM-PC */
1139	/* Look if we have a RTC present and the time is valid */
1140	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
1141		goto wrong_time;
1142
1143	/* wait for time update to complete */
1144	/* If RTCSA_TUP is zero, we have at least 244us before next update */
1145	s = splhigh();
1146	while (rtcin(RTC_STATUSA) & RTCSA_TUP) {
1147		splx(s);
1148		s = splhigh();
1149	}
1150
1151	days = 0;
1152#ifdef USE_RTC_CENTURY
1153	year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
1154#else
1155	year = readrtc(RTC_YEAR) + 1900;
1156	if (year < 1970)
1157		year += 100;
1158#endif
1159	if (year < 1970) {
1160		splx(s);
1161		goto wrong_time;
1162	}
1163	month = readrtc(RTC_MONTH);
1164	for (m = 1; m < month; m++)
1165		days += daysinmonth[m-1];
1166	if ((month > 2) && LEAPYEAR(year))
1167		days ++;
1168	days += readrtc(RTC_DAY) - 1;
1169	yd = days;
1170	for (y = 1970; y < year; y++)
1171		days += DAYSPERYEAR + LEAPYEAR(y);
1172	sec = ((( days * 24 +
1173		  readrtc(RTC_HRS)) * 60 +
1174		  readrtc(RTC_MIN)) * 60 +
1175		  readrtc(RTC_SEC));
1176	/* sec now contains the number of seconds, since Jan 1 1970,
1177	   in the local time zone */
1178#endif
1179
1180	sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1181
1182	y = time_second - sec;
1183	if (y <= -2 || y >= 2) {
1184		/* badly off, adjust it */
1185		ts.tv_sec = sec;
1186		ts.tv_nsec = 0;
1187		tc_setclock(&ts);
1188	}
1189	splx(s);
1190	return;
1191
1192wrong_time:
1193	printf("Invalid time in real time clock.\n");
1194	printf("Check and reset the date immediately!\n");
1195}
1196
1197/*
1198 * Write system time back to RTC
1199 */
1200void
1201resettodr()
1202{
1203	unsigned long	tm;
1204	int		y, m, s;
1205#ifdef PC98
1206	int		wd;
1207#endif
1208
1209	if (disable_rtc_set)
1210		return;
1211
1212	s = splclock();
1213	tm = time_second;
1214	splx(s);
1215
1216#ifdef PC98
1217	rtc_serialcom(0x01);	/* Register shift command. */
1218
1219	/* Calculate local time	to put in RTC */
1220
1221	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1222
1223	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
1224	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
1225	rtc_outb(bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
1226
1227	/* We have now the days	since 01-01-1970 in tm */
1228	wd = (tm+4)%7;
1229	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1230	     tm >= m;
1231	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1232	     tm -= m;
1233
1234	/* Now we have the years in y and the day-of-the-year in tm */
1235	for (m = 0; ; m++) {
1236		int ml;
1237
1238		ml = daysinmonth[m];
1239		if (m == 1 && LEAPYEAR(y))
1240			ml++;
1241		if (tm < ml)
1242			break;
1243		tm -= ml;
1244	}
1245
1246	m++;
1247	rtc_outb(bin2bcd(tm+1));		/* Write back Day     */
1248	rtc_outb((m << 4) | wd);		/* Write back Month & Weekday  */
1249	rtc_outb(bin2bcd(y%100));		/* Write back Year    */
1250
1251	rtc_serialcom(0x02);	/* Time set & Counter hold command. */
1252	rtc_serialcom(0x00);	/* Register hold command. */
1253#else
1254	/* Disable RTC updates and interrupts. */
1255	writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
1256
1257	/* Calculate local time to put in RTC */
1258
1259	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1260
1261	writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
1262	writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
1263	writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
1264
1265	/* We have now the days since 01-01-1970 in tm */
1266	writertc(RTC_WDAY, (tm+4)%7);			/* Write back Weekday */
1267	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1268	     tm >= m;
1269	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1270	     tm -= m;
1271
1272	/* Now we have the years in y and the day-of-the-year in tm */
1273	writertc(RTC_YEAR, bin2bcd(y%100));		/* Write back Year    */
1274#ifdef USE_RTC_CENTURY
1275	writertc(RTC_CENTURY, bin2bcd(y/100));		/* ... and Century    */
1276#endif
1277	for (m = 0; ; m++) {
1278		int ml;
1279
1280		ml = daysinmonth[m];
1281		if (m == 1 && LEAPYEAR(y))
1282			ml++;
1283		if (tm < ml)
1284			break;
1285		tm -= ml;
1286	}
1287
1288	writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
1289	writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
1290
1291	/* Reenable RTC updates and interrupts. */
1292	writertc(RTC_STATUSB, rtc_statusb);
1293#endif
1294}
1295
1296
1297/*
1298 * Start both clocks running.
1299 */
1300void
1301cpu_initclocks()
1302{
1303#ifdef APIC_IO
1304	int apic_8254_trial;
1305	struct intrec *clkdesc;
1306#endif /* APIC_IO */
1307#ifndef PC98
1308	int diag;
1309
1310	if (statclock_disable) {
1311		/*
1312		 * The stat interrupt mask is different without the
1313		 * statistics clock.  Also, don't set the interrupt
1314		 * flag which would normally cause the RTC to generate
1315		 * interrupts.
1316		 */
1317		stat_imask = HWI_MASK | SWI_MASK;
1318		rtc_statusb = RTCSB_24HR;
1319	} else {
1320	        /* Setting stathz to nonzero early helps avoid races. */
1321		stathz = RTC_NOPROFRATE;
1322		profhz = RTC_PROFRATE;
1323        }
1324#endif
1325
1326	/* Finish initializing 8253 timer 0. */
1327#ifdef APIC_IO
1328
1329	apic_8254_intr = isa_apic_irq(0);
1330	apic_8254_trial = 0;
1331	if (apic_8254_intr >= 0 ) {
1332		if (apic_int_type(0, 0) == 3)
1333			apic_8254_trial = 1;
1334	} else {
1335		/* look for ExtInt on pin 0 */
1336		if (apic_int_type(0, 0) == 3) {
1337			apic_8254_intr = apic_irq(0, 0);
1338			setup_8254_mixed_mode();
1339		} else
1340			panic("APIC_IO: Cannot route 8254 interrupt to CPU");
1341	}
1342
1343	clkdesc = inthand_add("clk", apic_8254_intr, (inthand2_t *)clkintr,
1344			      NULL, &clk_imask, INTR_EXCL);
1345	INTREN(1 << apic_8254_intr);
1346
1347#else /* APIC_IO */
1348
1349	inthand_add("clk", 0, (inthand2_t *)clkintr, NULL, &clk_imask,
1350		    INTR_EXCL);
1351	INTREN(IRQ0);
1352
1353#endif /* APIC_IO */
1354
1355#ifndef PC98
1356	/* Initialize RTC. */
1357	writertc(RTC_STATUSA, rtc_statusa);
1358	writertc(RTC_STATUSB, RTCSB_24HR);
1359
1360	/* Don't bother enabling the statistics clock. */
1361	if (statclock_disable)
1362		return;
1363	diag = rtcin(RTC_DIAG);
1364	if (diag != 0)
1365		printf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
1366
1367#ifdef APIC_IO
1368	if (isa_apic_irq(8) != 8)
1369		panic("APIC RTC != 8");
1370#endif /* APIC_IO */
1371
1372	inthand_add("rtc", 8, (inthand2_t *)rtcintr, NULL, &stat_imask,
1373		    INTR_EXCL);
1374
1375#ifdef APIC_IO
1376	INTREN(APIC_IRQ8);
1377#else
1378	INTREN(IRQ8);
1379#endif /* APIC_IO */
1380
1381	writertc(RTC_STATUSB, rtc_statusb);
1382#endif /* !PC98 */
1383
1384#ifdef APIC_IO
1385	if (apic_8254_trial) {
1386
1387		printf("APIC_IO: Testing 8254 interrupt delivery\n");
1388		while (read_intr_count(8) < 6)
1389			;	/* nothing */
1390		if (read_intr_count(apic_8254_intr) < 3) {
1391			/*
1392			 * The MP table is broken.
1393			 * The 8254 was not connected to the specified pin
1394			 * on the IO APIC.
1395			 * Workaround: Limited variant of mixed mode.
1396			 */
1397			INTRDIS(1 << apic_8254_intr);
1398			inthand_remove(clkdesc);
1399			printf("APIC_IO: Broken MP table detected: "
1400			       "8254 is not connected to "
1401			       "IOAPIC #%d intpin %d\n",
1402			       int_to_apicintpin[apic_8254_intr].ioapic,
1403			       int_to_apicintpin[apic_8254_intr].int_pin);
1404			/*
1405			 * Revoke current ISA IRQ 0 assignment and
1406			 * configure a fallback interrupt routing from
1407			 * the 8254 Timer via the 8259 PIC to the
1408			 * an ExtInt interrupt line on IOAPIC #0 intpin 0.
1409			 * We reuse the low level interrupt handler number.
1410			 */
1411			if (apic_irq(0, 0) < 0) {
1412				revoke_apic_irq(apic_8254_intr);
1413				assign_apic_irq(0, 0, apic_8254_intr);
1414			}
1415			apic_8254_intr = apic_irq(0, 0);
1416			setup_8254_mixed_mode();
1417			inthand_add("clk", apic_8254_intr,
1418				    (inthand2_t *)clkintr,
1419				    NULL, &clk_imask, INTR_EXCL);
1420			INTREN(1 << apic_8254_intr);
1421		}
1422
1423	}
1424	if (apic_int_type(0, 0) != 3 ||
1425	    int_to_apicintpin[apic_8254_intr].ioapic != 0 ||
1426	    int_to_apicintpin[apic_8254_intr].int_pin != 0)
1427		printf("APIC_IO: routing 8254 via IOAPIC #%d intpin %d\n",
1428		       int_to_apicintpin[apic_8254_intr].ioapic,
1429		       int_to_apicintpin[apic_8254_intr].int_pin);
1430	else
1431		printf("APIC_IO: "
1432		       "routing 8254 via 8259 and IOAPIC #0 intpin 0\n");
1433#endif
1434
1435}
1436
1437#ifdef APIC_IO
1438static u_long
1439read_intr_count(int vec)
1440{
1441	u_long *up;
1442	up = intr_countp[vec];
1443	if (up)
1444		return *up;
1445	return 0UL;
1446}
1447
1448static void
1449setup_8254_mixed_mode()
1450{
1451	/*
1452	 * Allow 8254 timer to INTerrupt 8259:
1453	 *  re-initialize master 8259:
1454	 *   reset; prog 4 bytes, single ICU, edge triggered
1455	 */
1456	outb(IO_ICU1, 0x13);
1457#ifdef PC98
1458	outb(IO_ICU1 + 2, NRSVIDT);	/* start vector (unused) */
1459	outb(IO_ICU1 + 2, 0x00);	/* ignore slave */
1460	outb(IO_ICU1 + 2, 0x03);	/* auto EOI, 8086 */
1461	outb(IO_ICU1 + 2, 0xfe);	/* unmask INT0 */
1462#else
1463	outb(IO_ICU1 + 1, NRSVIDT);	/* start vector (unused) */
1464	outb(IO_ICU1 + 1, 0x00);	/* ignore slave */
1465	outb(IO_ICU1 + 1, 0x03);	/* auto EOI, 8086 */
1466	outb(IO_ICU1 + 1, 0xfe);	/* unmask INT0 */
1467#endif
1468	/* program IO APIC for type 3 INT on INT0 */
1469	if (ext_int_setup(0, 0) < 0)
1470		panic("8254 redirect via APIC pin0 impossible!");
1471}
1472#endif
1473
1474void
1475setstatclockrate(int newhz)
1476{
1477#ifndef PC98
1478	if (newhz == RTC_PROFRATE)
1479		rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
1480	else
1481		rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
1482	writertc(RTC_STATUSA, rtc_statusa);
1483#endif
1484}
1485
1486static int
1487sysctl_machdep_i8254_freq SYSCTL_HANDLER_ARGS
1488{
1489	int error;
1490	u_int freq;
1491
1492	/*
1493	 * Use `i8254' instead of `timer' in external names because `timer'
1494	 * is is too generic.  Should use it everywhere.
1495	 */
1496	freq = timer_freq;
1497	error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
1498	if (error == 0 && req->newptr != NULL) {
1499		if (timer0_state != RELEASED)
1500			return (EBUSY);	/* too much trouble to handle */
1501		set_timer_freq(freq, hz);
1502		i8254_timecounter.tc_frequency = freq;
1503		tc_update(&i8254_timecounter);
1504	}
1505	return (error);
1506}
1507
1508SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
1509    0, sizeof(u_int), sysctl_machdep_i8254_freq, "I", "");
1510
1511static int
1512sysctl_machdep_tsc_freq SYSCTL_HANDLER_ARGS
1513{
1514	int error;
1515	u_int freq;
1516
1517	if (tsc_timecounter.tc_frequency == 0)
1518		return (EOPNOTSUPP);
1519	freq = tsc_freq;
1520	error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
1521	if (error == 0 && req->newptr != NULL) {
1522		tsc_freq = freq;
1523		tsc_timecounter.tc_frequency = tsc_freq;
1524		tc_update(&tsc_timecounter);
1525	}
1526	return (error);
1527}
1528
1529SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq, CTLTYPE_INT | CTLFLAG_RW,
1530    0, sizeof(u_int), sysctl_machdep_tsc_freq, "I", "");
1531
1532static unsigned
1533i8254_get_timecount(struct timecounter *tc)
1534{
1535	u_int count;
1536	u_long ef;
1537	u_int high, low;
1538
1539	ef = read_eflags();
1540	disable_intr();
1541
1542	/* Select timer0 and latch counter value. */
1543	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
1544
1545	low = inb(TIMER_CNTR0);
1546	high = inb(TIMER_CNTR0);
1547	count = timer0_max_count - ((high << 8) | low);
1548	if (count < i8254_lastcount ||
1549	    (!i8254_ticked && (clkintr_pending ||
1550	    ((count < 20 || (!(ef & PSL_I) && count < timer0_max_count / 2u)) &&
1551#ifdef APIC_IO
1552#define	lapic_irr1	((volatile u_int *)&lapic)[0x210 / 4]	/* XXX XXX */
1553	    /* XXX this assumes that apic_8254_intr is < 24. */
1554	    (lapic_irr1 & (1 << apic_8254_intr))))
1555#else
1556	    (inb(IO_ICU1) & 1)))
1557#endif
1558	    )) {
1559		i8254_ticked = 1;
1560		i8254_offset += timer0_max_count;
1561	}
1562	i8254_lastcount = count;
1563	count += i8254_offset;
1564	CLOCK_UNLOCK();
1565	write_eflags(ef);
1566	return (count);
1567}
1568
1569static unsigned
1570tsc_get_timecount(struct timecounter *tc)
1571{
1572	return (rdtsc());
1573}
1574