pcrtc.c revision 55456
1/*-
2 * Copyright (c) 1990 The Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * William Jolitz and Don Ahn.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)clock.c	7.2 (Berkeley) 5/12/91
37 * $FreeBSD: head/sys/pc98/cbus/pcrtc.c 55456 2000-01-05 12:35:03Z kato $
38 */
39
40/*
41 * Routines to handle clock hardware.
42 */
43
44/*
45 * inittodr, settodr and support routines written
46 * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
47 *
48 * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
49 */
50
51/*
52 * modified for PC98 by Kakefuda
53 */
54
55#include "opt_clock.h"
56#include "apm.h"
57
58#include <sys/param.h>
59#include <sys/systm.h>
60#include <sys/time.h>
61#include <sys/kernel.h>
62#ifndef SMP
63#include <sys/lock.h>
64#endif
65#include <sys/sysctl.h>
66#include <sys/cons.h>
67
68#include <machine/clock.h>
69#ifdef CLK_CALIBRATION_LOOP
70#endif
71#include <machine/cputypes.h>
72#include <machine/frame.h>
73#include <machine/ipl.h>
74#include <machine/limits.h>
75#include <machine/md_var.h>
76#include <machine/psl.h>
77#ifdef APIC_IO
78#include <machine/segments.h>
79#endif
80#if defined(SMP) || defined(APIC_IO)
81#include <machine/smp.h>
82#endif /* SMP || APIC_IO */
83#include <machine/specialreg.h>
84
85#include <i386/isa/icu.h>
86#ifdef PC98
87#include <pc98/pc98/pc98.h>
88#include <pc98/pc98/pc98_machdep.h>
89#include <i386/isa/isa_device.h>
90#else
91#include <i386/isa/isa.h>
92#include <isa/rtc.h>
93#endif
94#include <i386/isa/timerreg.h>
95
96#include <i386/isa/intr_machdep.h>
97
98#include "mca.h"
99#if NMCA > 0
100#include <i386/isa/mca_machdep.h>
101#endif
102
103#ifdef SMP
104#define disable_intr()	CLOCK_DISABLE_INTR()
105#define enable_intr()	CLOCK_ENABLE_INTR()
106
107#ifdef APIC_IO
108#include <i386/isa/intr_machdep.h>
109/* The interrupt triggered by the 8254 (timer) chip */
110int apic_8254_intr;
111static u_long read_intr_count __P((int vec));
112static void setup_8254_mixed_mode __P((void));
113#endif
114#endif /* SMP */
115
116/*
117 * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
118 * can use a simple formula for leap years.
119 */
120#define	LEAPYEAR(y) ((u_int)(y) % 4 == 0)
121#define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
122
123#define	TIMER_DIV(x) ((timer_freq + (x) / 2) / (x))
124
125/*
126 * Time in timer cycles that it takes for microtime() to disable interrupts
127 * and latch the count.  microtime() currently uses "cli; outb ..." so it
128 * normally takes less than 2 timer cycles.  Add a few for cache misses.
129 * Add a few more to allow for latency in bogus calls to microtime() with
130 * interrupts already disabled.
131 */
132#define	TIMER0_LATCH_COUNT	20
133
134/*
135 * Maximum frequency that we are willing to allow for timer0.  Must be
136 * low enough to guarantee that the timer interrupt handler returns
137 * before the next timer interrupt.
138 */
139#define	TIMER0_MAX_FREQ		20000
140
141int	adjkerntz;		/* local offset from GMT in seconds */
142int	clkintr_pending;
143int	disable_rtc_set;	/* disable resettodr() if != 0 */
144volatile u_int	idelayed;
145int	statclock_disable;
146u_int	stat_imask = SWI_CLOCK_MASK;
147#ifndef TIMER_FREQ
148#ifdef PC98
149#define	TIMER_FREQ	2457600;
150#else /* IBM-PC */
151#define	TIMER_FREQ	1193182;
152#endif /* PC98 */
153#endif
154u_int	timer_freq = TIMER_FREQ;
155int	timer0_max_count;
156u_int	tsc_freq;
157int	tsc_is_broken;
158int	wall_cmos_clock;	/* wall CMOS clock assumed if != 0 */
159
160static	int	beeping = 0;
161static	u_int	clk_imask = HWI_MASK | SWI_MASK;
162static	const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
163static	u_int	hardclock_max_count;
164static	u_int32_t i8254_lastcount;
165static	u_int32_t i8254_offset;
166static	int	i8254_ticked;
167/*
168 * XXX new_function and timer_func should not handle clockframes, but
169 * timer_func currently needs to hold hardclock to handle the
170 * timer0_state == 0 case.  We should use inthand_add()/inthand_remove()
171 * to switch between clkintr() and a slightly different timerintr().
172 */
173static	void	(*new_function) __P((struct clockframe *frame));
174static	u_int	new_rate;
175#ifndef PC98
176static	u_char	rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
177static	u_char	rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
178#endif
179static	u_int	timer0_prescaler_count;
180
181/* Values for timerX_state: */
182#define	RELEASED	0
183#define	RELEASE_PENDING	1
184#define	ACQUIRED	2
185#define	ACQUIRE_PENDING	3
186
187static	u_char	timer0_state;
188#ifdef	PC98
189static 	u_char	timer1_state;
190#endif
191static	u_char	timer2_state;
192static	void	(*timer_func) __P((struct clockframe *frame)) = hardclock;
193#ifdef PC98
194static void rtc_serialcombit __P((int));
195static void rtc_serialcom __P((int));
196static int rtc_inb __P((void));
197static void rtc_outb __P((int));
198#endif
199static	u_int	tsc_present;
200
201static	unsigned i8254_get_timecount __P((struct timecounter *tc));
202static	unsigned tsc_get_timecount __P((struct timecounter *tc));
203static	void	set_timer_freq(u_int freq, int intr_freq);
204
205static struct timecounter tsc_timecounter = {
206	tsc_get_timecount,	/* get_timecount */
207	0,			/* no poll_pps */
208 	~0u,			/* counter_mask */
209	0,			/* frequency */
210	 "TSC"			/* name */
211};
212
213SYSCTL_OPAQUE(_debug, OID_AUTO, tsc_timecounter, CTLFLAG_RD,
214	&tsc_timecounter, sizeof(tsc_timecounter), "S,timecounter", "");
215
216static struct timecounter i8254_timecounter = {
217	i8254_get_timecount,	/* get_timecount */
218	0,			/* no poll_pps */
219	~0u,			/* counter_mask */
220	0,			/* frequency */
221	"i8254"			/* name */
222};
223
224SYSCTL_OPAQUE(_debug, OID_AUTO, i8254_timecounter, CTLFLAG_RD,
225	&i8254_timecounter, sizeof(i8254_timecounter), "S,timecounter", "");
226
227static void
228clkintr(struct clockframe frame)
229{
230	if (timecounter->tc_get_timecount == i8254_get_timecount) {
231		disable_intr();
232		if (i8254_ticked)
233			i8254_ticked = 0;
234		else {
235			i8254_offset += timer0_max_count;
236			i8254_lastcount = 0;
237		}
238		clkintr_pending = 0;
239		enable_intr();
240	}
241	timer_func(&frame);
242	switch (timer0_state) {
243
244	case RELEASED:
245		setdelayed();
246		break;
247
248	case ACQUIRED:
249		if ((timer0_prescaler_count += timer0_max_count)
250		    >= hardclock_max_count) {
251			timer0_prescaler_count -= hardclock_max_count;
252			hardclock(&frame);
253			setdelayed();
254		}
255		break;
256
257	case ACQUIRE_PENDING:
258		disable_intr();
259		i8254_offset = i8254_get_timecount(NULL);
260		i8254_lastcount = 0;
261		timer0_max_count = TIMER_DIV(new_rate);
262		outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
263		outb(TIMER_CNTR0, timer0_max_count & 0xff);
264		outb(TIMER_CNTR0, timer0_max_count >> 8);
265		enable_intr();
266		timer_func = new_function;
267		timer0_state = ACQUIRED;
268		setdelayed();
269		break;
270
271	case RELEASE_PENDING:
272		if ((timer0_prescaler_count += timer0_max_count)
273		    >= hardclock_max_count) {
274			disable_intr();
275			i8254_offset = i8254_get_timecount(NULL);
276			i8254_lastcount = 0;
277			timer0_max_count = hardclock_max_count;
278			outb(TIMER_MODE,
279			     TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
280			outb(TIMER_CNTR0, timer0_max_count & 0xff);
281			outb(TIMER_CNTR0, timer0_max_count >> 8);
282			enable_intr();
283			timer0_prescaler_count = 0;
284			timer_func = hardclock;
285			timer0_state = RELEASED;
286			hardclock(&frame);
287			setdelayed();
288		}
289		break;
290	}
291#if NMCA > 0
292	/* Reset clock interrupt by asserting bit 7 of port 0x61 */
293	if (MCA_system)
294		outb(0x61, inb(0x61) | 0x80);
295#endif
296}
297
298/*
299 * The acquire and release functions must be called at ipl >= splclock().
300 */
301int
302acquire_timer0(int rate, void (*function) __P((struct clockframe *frame)))
303{
304	static int old_rate;
305
306	if (rate <= 0 || rate > TIMER0_MAX_FREQ)
307		return (-1);
308	switch (timer0_state) {
309
310	case RELEASED:
311		timer0_state = ACQUIRE_PENDING;
312		break;
313
314	case RELEASE_PENDING:
315		if (rate != old_rate)
316			return (-1);
317		/*
318		 * The timer has been released recently, but is being
319		 * re-acquired before the release completed.  In this
320		 * case, we simply reclaim it as if it had not been
321		 * released at all.
322		 */
323		timer0_state = ACQUIRED;
324		break;
325
326	default:
327		return (-1);	/* busy */
328	}
329	new_function = function;
330	old_rate = new_rate = rate;
331	return (0);
332}
333
334#ifdef PC98
335int
336acquire_timer1(int mode)
337{
338
339	if (timer1_state != RELEASED)
340		return (-1);
341	timer1_state = ACQUIRED;
342
343	/*
344	 * This access to the timer registers is as atomic as possible
345	 * because it is a single instruction.  We could do better if we
346	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
347	 * and this is probably good enough for timer2, so we aren't as
348	 * careful with it as with timer0.
349	 */
350	outb(TIMER_MODE, TIMER_SEL1 | (mode & 0x3f));
351
352	return (0);
353}
354#endif
355
356int
357acquire_timer2(int mode)
358{
359
360	if (timer2_state != RELEASED)
361		return (-1);
362	timer2_state = ACQUIRED;
363
364	/*
365	 * This access to the timer registers is as atomic as possible
366	 * because it is a single instruction.  We could do better if we
367	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
368	 * and this is probably good enough for timer2, so we aren't as
369	 * careful with it as with timer0.
370	 */
371	outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
372
373	return (0);
374}
375
376int
377release_timer0()
378{
379	switch (timer0_state) {
380
381	case ACQUIRED:
382		timer0_state = RELEASE_PENDING;
383		break;
384
385	case ACQUIRE_PENDING:
386		/* Nothing happened yet, release quickly. */
387		timer0_state = RELEASED;
388		break;
389
390	default:
391		return (-1);
392	}
393	return (0);
394}
395
396#ifdef PC98
397int
398release_timer1()
399{
400
401	if (timer1_state != ACQUIRED)
402		return (-1);
403	timer1_state = RELEASED;
404	outb(TIMER_MODE, TIMER_SEL1 | TIMER_SQWAVE | TIMER_16BIT);
405	return (0);
406}
407#endif
408
409int
410release_timer2()
411{
412
413	if (timer2_state != ACQUIRED)
414		return (-1);
415	timer2_state = RELEASED;
416	outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
417	return (0);
418}
419
420#ifndef PC98
421/*
422 * This routine receives statistical clock interrupts from the RTC.
423 * As explained above, these occur at 128 interrupts per second.
424 * When profiling, we receive interrupts at a rate of 1024 Hz.
425 *
426 * This does not actually add as much overhead as it sounds, because
427 * when the statistical clock is active, the hardclock driver no longer
428 * needs to keep (inaccurate) statistics on its own.  This decouples
429 * statistics gathering from scheduling interrupts.
430 *
431 * The RTC chip requires that we read status register C (RTC_INTR)
432 * to acknowledge an interrupt, before it will generate the next one.
433 * Under high interrupt load, rtcintr() can be indefinitely delayed and
434 * the clock can tick immediately after the read from RTC_INTR.  In this
435 * case, the mc146818A interrupt signal will not drop for long enough
436 * to register with the 8259 PIC.  If an interrupt is missed, the stat
437 * clock will halt, considerably degrading system performance.  This is
438 * why we use 'while' rather than a more straightforward 'if' below.
439 * Stat clock ticks can still be lost, causing minor loss of accuracy
440 * in the statistics, but the stat clock will no longer stop.
441 */
442static void
443rtcintr(struct clockframe frame)
444{
445	while (rtcin(RTC_INTR) & RTCIR_PERIOD)
446		statclock(&frame);
447}
448
449#include "opt_ddb.h"
450#ifdef DDB
451#include <ddb/ddb.h>
452
453DB_SHOW_COMMAND(rtc, rtc)
454{
455	printf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
456	       rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
457	       rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
458	       rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
459}
460#endif /* DDB */
461#endif /* for PC98 */
462
463static int
464getit(void)
465{
466	u_long ef;
467	int high, low;
468
469	ef = read_eflags();
470	disable_intr();
471
472	/* Select timer0 and latch counter value. */
473	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
474
475	low = inb(TIMER_CNTR0);
476	high = inb(TIMER_CNTR0);
477
478	CLOCK_UNLOCK();
479	write_eflags(ef);
480	return ((high << 8) | low);
481}
482
483/*
484 * Wait "n" microseconds.
485 * Relies on timer 1 counting down from (timer_freq / hz)
486 * Note: timer had better have been programmed before this is first used!
487 */
488void
489DELAY(int n)
490{
491	int delta, prev_tick, tick, ticks_left;
492
493#ifdef DELAYDEBUG
494	int getit_calls = 1;
495	int n1;
496	static int state = 0;
497
498	if (state == 0) {
499		state = 1;
500		for (n1 = 1; n1 <= 10000000; n1 *= 10)
501			DELAY(n1);
502		state = 2;
503	}
504	if (state == 1)
505		printf("DELAY(%d)...", n);
506#endif
507	/*
508	 * Guard against the timer being uninitialized if we are called
509	 * early for console i/o.
510	 */
511	if (timer0_max_count == 0)
512		set_timer_freq(timer_freq, hz);
513
514	/*
515	 * Read the counter first, so that the rest of the setup overhead is
516	 * counted.  Guess the initial overhead is 20 usec (on most systems it
517	 * takes about 1.5 usec for each of the i/o's in getit().  The loop
518	 * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
519	 * multiplications and divisions to scale the count take a while).
520	 */
521	prev_tick = getit();
522	n -= 0;			/* XXX actually guess no initial overhead */
523	/*
524	 * Calculate (n * (timer_freq / 1e6)) without using floating point
525	 * and without any avoidable overflows.
526	 */
527	if (n <= 0)
528		ticks_left = 0;
529	else if (n < 256)
530		/*
531		 * Use fixed point to avoid a slow division by 1000000.
532		 * 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
533		 * 2^15 is the first power of 2 that gives exact results
534		 * for n between 0 and 256.
535		 */
536		ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
537	else
538		/*
539		 * Don't bother using fixed point, although gcc-2.7.2
540		 * generates particularly poor code for the long long
541		 * division, since even the slow way will complete long
542		 * before the delay is up (unless we're interrupted).
543		 */
544		ticks_left = ((u_int)n * (long long)timer_freq + 999999)
545			     / 1000000;
546
547	while (ticks_left > 0) {
548		tick = getit();
549#ifdef DELAYDEBUG
550		++getit_calls;
551#endif
552		delta = prev_tick - tick;
553		prev_tick = tick;
554		if (delta < 0) {
555			delta += timer0_max_count;
556			/*
557			 * Guard against timer0_max_count being wrong.
558			 * This shouldn't happen in normal operation,
559			 * but it may happen if set_timer_freq() is
560			 * traced.
561			 */
562			if (delta < 0)
563				delta = 0;
564		}
565		ticks_left -= delta;
566	}
567#ifdef DELAYDEBUG
568	if (state == 1)
569		printf(" %d calls to getit() at %d usec each\n",
570		       getit_calls, (n + 5) / getit_calls);
571#endif
572}
573
574static void
575sysbeepstop(void *chan)
576{
577#ifdef PC98	/* PC98 */
578	outb(IO_PPI, inb(IO_PPI)|0x08);	/* disable counter1 output to speaker */
579	release_timer1();
580#else
581	outb(IO_PPI, inb(IO_PPI)&0xFC);	/* disable counter2 output to speaker */
582	release_timer2();
583#endif
584	beeping = 0;
585}
586
587int
588sysbeep(int pitch, int period)
589{
590	int x = splclock();
591
592#ifdef PC98
593	if (acquire_timer1(TIMER_SQWAVE|TIMER_16BIT))
594		if (!beeping) {
595			/* Something else owns it. */
596			splx(x);
597			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
598		}
599	disable_intr();
600	outb(0x3fdb, pitch);
601	outb(0x3fdb, (pitch>>8));
602	enable_intr();
603	if (!beeping) {
604		/* enable counter1 output to speaker */
605		outb(IO_PPI, (inb(IO_PPI) & 0xf7));
606		beeping = period;
607		timeout(sysbeepstop, (void *)NULL, period);
608	}
609#else
610	if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
611		if (!beeping) {
612			/* Something else owns it. */
613			splx(x);
614			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
615		}
616	disable_intr();
617	outb(TIMER_CNTR2, pitch);
618	outb(TIMER_CNTR2, (pitch>>8));
619	enable_intr();
620	if (!beeping) {
621		/* enable counter2 output to speaker */
622		outb(IO_PPI, inb(IO_PPI) | 3);
623		beeping = period;
624		timeout(sysbeepstop, (void *)NULL, period);
625	}
626#endif
627	splx(x);
628	return (0);
629}
630
631#ifndef PC98
632/*
633 * RTC support routines
634 */
635
636int
637rtcin(reg)
638	int reg;
639{
640	int s;
641	u_char val;
642
643	s = splhigh();
644	outb(IO_RTC, reg);
645	inb(0x84);
646	val = inb(IO_RTC + 1);
647	inb(0x84);
648	splx(s);
649	return (val);
650}
651
652static __inline void
653writertc(u_char reg, u_char val)
654{
655	int s;
656
657	s = splhigh();
658	inb(0x84);
659	outb(IO_RTC, reg);
660	inb(0x84);
661	outb(IO_RTC + 1, val);
662	inb(0x84);		/* XXX work around wrong order in rtcin() */
663	splx(s);
664}
665
666static __inline int
667readrtc(int port)
668{
669	return(bcd2bin(rtcin(port)));
670}
671#endif
672
673#ifdef PC98
674unsigned int delaycount;
675#define FIRST_GUESS	0x2000
676static void findcpuspeed(void)
677{
678	int i;
679	int remainder;
680
681	/* Put counter in count down mode */
682	outb(TIMER_MODE, TIMER_SEL0 | TIMER_16BIT | TIMER_RATEGEN);
683	outb(TIMER_CNTR0, 0xff);
684	outb(TIMER_CNTR0, 0xff);
685	for (i = FIRST_GUESS; i; i--)
686		;
687	remainder = getit();
688	delaycount = (FIRST_GUESS * TIMER_DIV(1000)) / (0xffff - remainder);
689}
690#endif
691
692#ifdef PC98
693static u_int
694calibrate_clocks(void)
695{
696	int	timeout;
697	u_int	count, prev_count, tot_count;
698	u_short	sec, start_sec;
699
700	if (bootverbose)
701	        printf("Calibrating clock(s) ... ");
702	/* Check ARTIC. */
703	if (!(PC98_SYSTEM_PARAMETER(0x458) & 0x80) &&
704	    !(PC98_SYSTEM_PARAMETER(0x45b) & 0x04))
705		goto fail;
706	timeout = 100000000;
707
708	/* Read the ARTIC. */
709	sec = inw(0x5e);
710
711	/* Wait for the ARTIC to changes. */
712	start_sec = sec;
713	for (;;) {
714		sec = inw(0x5e);
715		if (sec != start_sec)
716			break;
717		if (--timeout == 0)
718			goto fail;
719	}
720	prev_count = getit();
721	if (prev_count == 0 || prev_count > timer0_max_count)
722		goto fail;
723	tot_count = 0;
724
725	if (tsc_present)
726		wrmsr(0x10, 0LL);	/* XXX 0x10 is the MSR for the TSC */
727	start_sec = sec;
728	for (;;) {
729		sec = inw(0x5e);
730		count = getit();
731		if (count == 0 || count > timer0_max_count)
732			goto fail;
733		if (count > prev_count)
734			tot_count += prev_count - (count - timer0_max_count);
735		else
736			tot_count += prev_count - count;
737		prev_count = count;
738		if ((sec == start_sec + 1200) ||
739		    (sec < start_sec &&
740		        (u_int)sec + 0x10000 == (u_int)start_sec + 1200))
741			break;
742		if (--timeout == 0)
743			goto fail;
744	}
745	/*
746	 * Read the cpu cycle counter.  The timing considerations are
747	 * similar to those for the i8254 clock.
748	 */
749	if (tsc_present)
750		tsc_freq = rdtsc();
751
752	if (bootverbose) {
753		if (tsc_present)
754		        printf("TSC clock: %u Hz, ", tsc_freq);
755	        printf("i8254 clock: %u Hz\n", tot_count);
756	}
757	return (tot_count);
758
759fail:
760	if (bootverbose)
761	        printf("failed, using default i8254 clock of %u Hz\n",
762		       timer_freq);
763	return (timer_freq);
764}
765#else
766static u_int
767calibrate_clocks(void)
768{
769	u_int64_t old_tsc;
770	u_int count, prev_count, tot_count;
771	int sec, start_sec, timeout;
772
773	if (bootverbose)
774	        printf("Calibrating clock(s) ... ");
775	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
776		goto fail;
777	timeout = 100000000;
778
779	/* Read the mc146818A seconds counter. */
780	for (;;) {
781		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
782			sec = rtcin(RTC_SEC);
783			break;
784		}
785		if (--timeout == 0)
786			goto fail;
787	}
788
789	/* Wait for the mC146818A seconds counter to change. */
790	start_sec = sec;
791	for (;;) {
792		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
793			sec = rtcin(RTC_SEC);
794			if (sec != start_sec)
795				break;
796		}
797		if (--timeout == 0)
798			goto fail;
799	}
800
801	/* Start keeping track of the i8254 counter. */
802	prev_count = getit();
803	if (prev_count == 0 || prev_count > timer0_max_count)
804		goto fail;
805	tot_count = 0;
806
807	if (tsc_present)
808		old_tsc = rdtsc();
809	else
810		old_tsc = 0;		/* shut up gcc */
811
812	/*
813	 * Wait for the mc146818A seconds counter to change.  Read the i8254
814	 * counter for each iteration since this is convenient and only
815	 * costs a few usec of inaccuracy. The timing of the final reads
816	 * of the counters almost matches the timing of the initial reads,
817	 * so the main cause of inaccuracy is the varying latency from
818	 * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
819	 * rtcin(RTC_SEC) that returns a changed seconds count.  The
820	 * maximum inaccuracy from this cause is < 10 usec on 486's.
821	 */
822	start_sec = sec;
823	for (;;) {
824		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
825			sec = rtcin(RTC_SEC);
826		count = getit();
827		if (count == 0 || count > timer0_max_count)
828			goto fail;
829		if (count > prev_count)
830			tot_count += prev_count - (count - timer0_max_count);
831		else
832			tot_count += prev_count - count;
833		prev_count = count;
834		if (sec != start_sec)
835			break;
836		if (--timeout == 0)
837			goto fail;
838	}
839
840	/*
841	 * Read the cpu cycle counter.  The timing considerations are
842	 * similar to those for the i8254 clock.
843	 */
844	if (tsc_present)
845		tsc_freq = rdtsc() - old_tsc;
846
847	if (bootverbose) {
848		if (tsc_present)
849		        printf("TSC clock: %u Hz, ", tsc_freq);
850	        printf("i8254 clock: %u Hz\n", tot_count);
851	}
852	return (tot_count);
853
854fail:
855	if (bootverbose)
856	        printf("failed, using default i8254 clock of %u Hz\n",
857		       timer_freq);
858	return (timer_freq);
859}
860#endif	/* !PC98 */
861
862static void
863set_timer_freq(u_int freq, int intr_freq)
864{
865	u_long ef;
866	int new_timer0_max_count;
867
868	ef = read_eflags();
869	disable_intr();
870	timer_freq = freq;
871	new_timer0_max_count = hardclock_max_count = TIMER_DIV(intr_freq);
872	if (new_timer0_max_count != timer0_max_count) {
873		timer0_max_count = new_timer0_max_count;
874		outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
875		outb(TIMER_CNTR0, timer0_max_count & 0xff);
876		outb(TIMER_CNTR0, timer0_max_count >> 8);
877	}
878	CLOCK_UNLOCK();
879	write_eflags(ef);
880}
881
882/*
883 * i8254_restore is called from apm_default_resume() to reload
884 * the countdown register.
885 * this should not be necessary but there are broken laptops that
886 * do not restore the countdown register on resume.
887 * when it happnes, it messes up the hardclock interval and system clock,
888 * which leads to the infamous "calcru: negative time" problem.
889 */
890void
891i8254_restore(void)
892{
893	u_long ef;
894
895	ef = read_eflags();
896	disable_intr();
897	outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
898	outb(TIMER_CNTR0, timer0_max_count & 0xff);
899	outb(TIMER_CNTR0, timer0_max_count >> 8);
900	CLOCK_UNLOCK();
901	write_eflags(ef);
902}
903
904/*
905 * Initialize 8254 timer 0 early so that it can be used in DELAY().
906 * XXX initialization of other timers is unintentionally left blank.
907 */
908void
909startrtclock()
910{
911	u_int delta, freq;
912
913#ifdef PC98
914	findcpuspeed();
915	if (pc98_machine_type & M_8M)
916		timer_freq = 1996800L; /* 1.9968 MHz */
917	else
918		timer_freq = 2457600L; /* 2.4576 MHz */
919#endif /* PC98 */
920
921	if (cpu_feature & CPUID_TSC)
922		tsc_present = 1;
923	else
924		tsc_present = 0;
925
926#ifndef PC98
927	writertc(RTC_STATUSA, rtc_statusa);
928	writertc(RTC_STATUSB, RTCSB_24HR);
929#endif
930
931	set_timer_freq(timer_freq, hz);
932	freq = calibrate_clocks();
933#ifdef CLK_CALIBRATION_LOOP
934	if (bootverbose) {
935		printf(
936		"Press a key on the console to abort clock calibration\n");
937		while (cncheckc() == -1)
938			calibrate_clocks();
939	}
940#endif
941
942	/*
943	 * Use the calibrated i8254 frequency if it seems reasonable.
944	 * Otherwise use the default, and don't use the calibrated i586
945	 * frequency.
946	 */
947	delta = freq > timer_freq ? freq - timer_freq : timer_freq - freq;
948	if (delta < timer_freq / 100) {
949#ifndef CLK_USE_I8254_CALIBRATION
950		if (bootverbose)
951			printf(
952"CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
953		freq = timer_freq;
954#endif
955		timer_freq = freq;
956	} else {
957		if (bootverbose)
958			printf(
959		    "%d Hz differs from default of %d Hz by more than 1%%\n",
960			       freq, timer_freq);
961		tsc_freq = 0;
962	}
963
964	set_timer_freq(timer_freq, hz);
965	i8254_timecounter.tc_frequency = timer_freq;
966	init_timecounter(&i8254_timecounter);
967
968#ifndef CLK_USE_TSC_CALIBRATION
969	if (tsc_freq != 0) {
970		if (bootverbose)
971			printf(
972"CLK_USE_TSC_CALIBRATION not specified - using old calibration method\n");
973		tsc_freq = 0;
974	}
975#endif
976	if (tsc_present && tsc_freq == 0) {
977		/*
978		 * Calibration of the i586 clock relative to the mc146818A
979		 * clock failed.  Do a less accurate calibration relative
980		 * to the i8254 clock.
981		 */
982		u_int64_t old_tsc = rdtsc();
983
984		DELAY(1000000);
985		tsc_freq = rdtsc() - old_tsc;
986#ifdef CLK_USE_TSC_CALIBRATION
987		if (bootverbose)
988			printf("TSC clock: %u Hz (Method B)\n", tsc_freq);
989#endif
990	}
991
992#if !defined(SMP)
993	/*
994	 * We can not use the TSC in SMP mode, until we figure out a
995	 * cheap (impossible), reliable and precise (yeah right!)  way
996	 * to synchronize the TSCs of all the CPUs.
997	 * Curse Intel for leaving the counter out of the I/O APIC.
998	 */
999
1000#if NAPM > 0
1001	/*
1002	 * We can not use the TSC if we support APM. Precise timekeeping
1003	 * on an APM'ed machine is at best a fools pursuit, since
1004	 * any and all of the time spent in various SMM code can't
1005	 * be reliably accounted for.  Reading the RTC is your only
1006	 * source of reliable time info.  The i8254 looses too of course
1007	 * but we need to have some kind of time...
1008	 * We don't know at this point whether APM is going to be used
1009	 * or not, nor when it might be activated.  Play it safe.
1010	 */
1011	return;
1012#endif /* NAPM > 0 */
1013
1014	if (tsc_present && tsc_freq != 0 && !tsc_is_broken) {
1015		tsc_timecounter.tc_frequency = tsc_freq;
1016		init_timecounter(&tsc_timecounter);
1017	}
1018
1019#endif /* !defined(SMP) */
1020}
1021
1022#ifdef PC98
1023static void
1024rtc_serialcombit(int i)
1025{
1026	outb(IO_RTC, ((i&0x01)<<5)|0x07);
1027	DELAY(1);
1028	outb(IO_RTC, ((i&0x01)<<5)|0x17);
1029	DELAY(1);
1030	outb(IO_RTC, ((i&0x01)<<5)|0x07);
1031	DELAY(1);
1032}
1033
1034static void
1035rtc_serialcom(int i)
1036{
1037	rtc_serialcombit(i&0x01);
1038	rtc_serialcombit((i&0x02)>>1);
1039	rtc_serialcombit((i&0x04)>>2);
1040	rtc_serialcombit((i&0x08)>>3);
1041	outb(IO_RTC, 0x07);
1042	DELAY(1);
1043	outb(IO_RTC, 0x0f);
1044	DELAY(1);
1045	outb(IO_RTC, 0x07);
1046 	DELAY(1);
1047}
1048
1049static void
1050rtc_outb(int val)
1051{
1052	int s;
1053	int sa = 0;
1054
1055	for (s=0;s<8;s++) {
1056	    sa = ((val >> s) & 0x01) ? 0x27 : 0x07;
1057	    outb(IO_RTC, sa);		/* set DI & CLK 0 */
1058	    DELAY(1);
1059	    outb(IO_RTC, sa | 0x10);	/* CLK 1 */
1060	    DELAY(1);
1061	}
1062	outb(IO_RTC, sa & 0xef);	/* CLK 0 */
1063}
1064
1065static int
1066rtc_inb(void)
1067{
1068	int s;
1069	int sa = 0;
1070
1071	for (s=0;s<8;s++) {
1072	    sa |= ((inb(0x33) & 0x01) << s);
1073	    outb(IO_RTC, 0x17);	/* CLK 1 */
1074	    DELAY(1);
1075	    outb(IO_RTC, 0x07);	/* CLK 0 */
1076	    DELAY(2);
1077	}
1078	return sa;
1079}
1080#endif /* PC-98 */
1081
1082/*
1083 * Initialize the time of day register, based on the time base which is, e.g.
1084 * from a filesystem.
1085 */
1086void
1087inittodr(time_t base)
1088{
1089	unsigned long	sec, days;
1090#ifndef PC98
1091	int		yd;
1092#endif
1093	int		year, month;
1094	int		y, m, s;
1095	struct timespec ts;
1096#ifdef PC98
1097	int		second, min, hour;
1098#endif
1099
1100	if (base) {
1101		s = splclock();
1102		ts.tv_sec = base;
1103		ts.tv_nsec = 0;
1104		set_timecounter(&ts);
1105		splx(s);
1106	}
1107
1108#ifdef PC98
1109	rtc_serialcom(0x03);	/* Time Read */
1110	rtc_serialcom(0x01);	/* Register shift command. */
1111	DELAY(20);
1112
1113	second = bcd2bin(rtc_inb() & 0xff);	/* sec */
1114	min = bcd2bin(rtc_inb() & 0xff);	/* min */
1115	hour = bcd2bin(rtc_inb() & 0xff);	/* hour */
1116	days = bcd2bin(rtc_inb() & 0xff) - 1;	/* date */
1117
1118	month = (rtc_inb() >> 4) & 0x0f;	/* month */
1119	for (m = 1; m <	month; m++)
1120		days +=	daysinmonth[m-1];
1121	year = bcd2bin(rtc_inb() & 0xff) + 1900;	/* year */
1122	/* 2000 year problem */
1123	if (year < 1995)
1124		year += 100;
1125	if (year < 1970)
1126		goto wrong_time;
1127	for (y = 1970; y < year; y++)
1128		days +=	DAYSPERYEAR + LEAPYEAR(y);
1129	if ((month > 2)	&& LEAPYEAR(year))
1130		days ++;
1131	sec = ((( days * 24 +
1132		  hour) * 60 +
1133		  min) * 60 +
1134		  second);
1135	/* sec now contains the	number of seconds, since Jan 1 1970,
1136	   in the local	time zone */
1137#else	/* IBM-PC */
1138	/* Look if we have a RTC present and the time is valid */
1139	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
1140		goto wrong_time;
1141
1142	/* wait for time update to complete */
1143	/* If RTCSA_TUP is zero, we have at least 244us before next update */
1144	s = splhigh();
1145	while (rtcin(RTC_STATUSA) & RTCSA_TUP) {
1146		splx(s);
1147		s = splhigh();
1148	}
1149
1150	days = 0;
1151#ifdef USE_RTC_CENTURY
1152	year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
1153#else
1154	year = readrtc(RTC_YEAR) + 1900;
1155	if (year < 1970)
1156		year += 100;
1157#endif
1158	if (year < 1970) {
1159		splx(s);
1160		goto wrong_time;
1161	}
1162	month = readrtc(RTC_MONTH);
1163	for (m = 1; m < month; m++)
1164		days += daysinmonth[m-1];
1165	if ((month > 2) && LEAPYEAR(year))
1166		days ++;
1167	days += readrtc(RTC_DAY) - 1;
1168	yd = days;
1169	for (y = 1970; y < year; y++)
1170		days += DAYSPERYEAR + LEAPYEAR(y);
1171	sec = ((( days * 24 +
1172		  readrtc(RTC_HRS)) * 60 +
1173		  readrtc(RTC_MIN)) * 60 +
1174		  readrtc(RTC_SEC));
1175	/* sec now contains the number of seconds, since Jan 1 1970,
1176	   in the local time zone */
1177#endif
1178
1179	sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1180
1181	y = time_second - sec;
1182	if (y <= -2 || y >= 2) {
1183		/* badly off, adjust it */
1184		ts.tv_sec = sec;
1185		ts.tv_nsec = 0;
1186		set_timecounter(&ts);
1187	}
1188	splx(s);
1189	return;
1190
1191wrong_time:
1192	printf("Invalid time in real time clock.\n");
1193	printf("Check and reset the date immediately!\n");
1194}
1195
1196/*
1197 * Write system time back to RTC
1198 */
1199void
1200resettodr()
1201{
1202	unsigned long	tm;
1203	int		y, m, s;
1204#ifdef PC98
1205	int		wd;
1206#endif
1207
1208	if (disable_rtc_set)
1209		return;
1210
1211	s = splclock();
1212	tm = time_second;
1213	splx(s);
1214
1215#ifdef PC98
1216	rtc_serialcom(0x01);	/* Register shift command. */
1217
1218	/* Calculate local time	to put in RTC */
1219
1220	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1221
1222	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
1223	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
1224	rtc_outb(bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
1225
1226	/* We have now the days	since 01-01-1970 in tm */
1227	wd = (tm+4)%7;
1228	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1229	     tm >= m;
1230	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1231	     tm -= m;
1232
1233	/* Now we have the years in y and the day-of-the-year in tm */
1234	for (m = 0; ; m++) {
1235		int ml;
1236
1237		ml = daysinmonth[m];
1238		if (m == 1 && LEAPYEAR(y))
1239			ml++;
1240		if (tm < ml)
1241			break;
1242		tm -= ml;
1243	}
1244
1245	m++;
1246	rtc_outb(bin2bcd(tm+1));		/* Write back Day     */
1247	rtc_outb((m << 4) | wd);		/* Write back Month & Weekday  */
1248	rtc_outb(bin2bcd(y%100));		/* Write back Year    */
1249
1250	rtc_serialcom(0x02);	/* Time set & Counter hold command. */
1251	rtc_serialcom(0x00);	/* Register hold command. */
1252#else
1253	/* Disable RTC updates and interrupts. */
1254	writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
1255
1256	/* Calculate local time to put in RTC */
1257
1258	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1259
1260	writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
1261	writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
1262	writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
1263
1264	/* We have now the days since 01-01-1970 in tm */
1265	writertc(RTC_WDAY, (tm+4)%7);			/* Write back Weekday */
1266	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1267	     tm >= m;
1268	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1269	     tm -= m;
1270
1271	/* Now we have the years in y and the day-of-the-year in tm */
1272	writertc(RTC_YEAR, bin2bcd(y%100));		/* Write back Year    */
1273#ifdef USE_RTC_CENTURY
1274	writertc(RTC_CENTURY, bin2bcd(y/100));		/* ... and Century    */
1275#endif
1276	for (m = 0; ; m++) {
1277		int ml;
1278
1279		ml = daysinmonth[m];
1280		if (m == 1 && LEAPYEAR(y))
1281			ml++;
1282		if (tm < ml)
1283			break;
1284		tm -= ml;
1285	}
1286
1287	writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
1288	writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
1289
1290	/* Reenable RTC updates and interrupts. */
1291	writertc(RTC_STATUSB, rtc_statusb);
1292#endif
1293}
1294
1295
1296/*
1297 * Start both clocks running.
1298 */
1299void
1300cpu_initclocks()
1301{
1302#ifdef APIC_IO
1303	int apic_8254_trial;
1304	struct intrec *clkdesc;
1305#endif /* APIC_IO */
1306#ifndef PC98
1307	int diag;
1308
1309	if (statclock_disable) {
1310		/*
1311		 * The stat interrupt mask is different without the
1312		 * statistics clock.  Also, don't set the interrupt
1313		 * flag which would normally cause the RTC to generate
1314		 * interrupts.
1315		 */
1316		stat_imask = HWI_MASK | SWI_MASK;
1317		rtc_statusb = RTCSB_24HR;
1318	} else {
1319	        /* Setting stathz to nonzero early helps avoid races. */
1320		stathz = RTC_NOPROFRATE;
1321		profhz = RTC_PROFRATE;
1322        }
1323#endif
1324
1325	/* Finish initializing 8253 timer 0. */
1326#ifdef APIC_IO
1327
1328	apic_8254_intr = isa_apic_irq(0);
1329	apic_8254_trial = 0;
1330	if (apic_8254_intr >= 0 ) {
1331		if (apic_int_type(0, 0) == 3)
1332			apic_8254_trial = 1;
1333	} else {
1334		/* look for ExtInt on pin 0 */
1335		if (apic_int_type(0, 0) == 3) {
1336			apic_8254_intr = apic_irq(0, 0);
1337			setup_8254_mixed_mode();
1338		} else
1339			panic("APIC_IO: Cannot route 8254 interrupt to CPU");
1340	}
1341
1342	clkdesc = inthand_add("clk", apic_8254_intr, (inthand2_t *)clkintr,
1343			      NULL, &clk_imask, INTR_EXCL);
1344	INTREN(1 << apic_8254_intr);
1345
1346#else /* APIC_IO */
1347
1348	inthand_add("clk", 0, (inthand2_t *)clkintr, NULL, &clk_imask,
1349		    INTR_EXCL);
1350	INTREN(IRQ0);
1351
1352#endif /* APIC_IO */
1353
1354#ifndef PC98
1355	/* Initialize RTC. */
1356	writertc(RTC_STATUSA, rtc_statusa);
1357	writertc(RTC_STATUSB, RTCSB_24HR);
1358
1359	/* Don't bother enabling the statistics clock. */
1360	if (statclock_disable)
1361		return;
1362	diag = rtcin(RTC_DIAG);
1363	if (diag != 0)
1364		printf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
1365
1366#ifdef APIC_IO
1367	if (isa_apic_irq(8) != 8)
1368		panic("APIC RTC != 8");
1369#endif /* APIC_IO */
1370
1371	inthand_add("rtc", 8, (inthand2_t *)rtcintr, NULL, &stat_imask,
1372		    INTR_EXCL);
1373
1374#ifdef APIC_IO
1375	INTREN(APIC_IRQ8);
1376#else
1377	INTREN(IRQ8);
1378#endif /* APIC_IO */
1379
1380	writertc(RTC_STATUSB, rtc_statusb);
1381#endif /* !PC98 */
1382
1383#ifdef APIC_IO
1384	if (apic_8254_trial) {
1385
1386		printf("APIC_IO: Testing 8254 interrupt delivery\n");
1387		while (read_intr_count(8) < 6)
1388			;	/* nothing */
1389		if (read_intr_count(apic_8254_intr) < 3) {
1390			/*
1391			 * The MP table is broken.
1392			 * The 8254 was not connected to the specified pin
1393			 * on the IO APIC.
1394			 * Workaround: Limited variant of mixed mode.
1395			 */
1396			INTRDIS(1 << apic_8254_intr);
1397			inthand_remove(clkdesc);
1398			printf("APIC_IO: Broken MP table detected: "
1399			       "8254 is not connected to "
1400			       "IOAPIC #%d intpin %d\n",
1401			       int_to_apicintpin[apic_8254_intr].ioapic,
1402			       int_to_apicintpin[apic_8254_intr].int_pin);
1403			/*
1404			 * Revoke current ISA IRQ 0 assignment and
1405			 * configure a fallback interrupt routing from
1406			 * the 8254 Timer via the 8259 PIC to the
1407			 * an ExtInt interrupt line on IOAPIC #0 intpin 0.
1408			 * We reuse the low level interrupt handler number.
1409			 */
1410			if (apic_irq(0, 0) < 0) {
1411				revoke_apic_irq(apic_8254_intr);
1412				assign_apic_irq(0, 0, apic_8254_intr);
1413			}
1414			apic_8254_intr = apic_irq(0, 0);
1415			setup_8254_mixed_mode();
1416			inthand_add("clk", apic_8254_intr,
1417				    (inthand2_t *)clkintr,
1418				    NULL, &clk_imask, INTR_EXCL);
1419			INTREN(1 << apic_8254_intr);
1420		}
1421
1422	}
1423	if (apic_int_type(0, 0) != 3 ||
1424	    int_to_apicintpin[apic_8254_intr].ioapic != 0 ||
1425	    int_to_apicintpin[apic_8254_intr].int_pin != 0)
1426		printf("APIC_IO: routing 8254 via IOAPIC #%d intpin %d\n",
1427		       int_to_apicintpin[apic_8254_intr].ioapic,
1428		       int_to_apicintpin[apic_8254_intr].int_pin);
1429	else
1430		printf("APIC_IO: "
1431		       "routing 8254 via 8259 and IOAPIC #0 intpin 0\n");
1432#endif
1433
1434}
1435
1436#ifdef APIC_IO
1437static u_long
1438read_intr_count(int vec)
1439{
1440	u_long *up;
1441	up = intr_countp[vec];
1442	if (up)
1443		return *up;
1444	return 0UL;
1445}
1446
1447static void
1448setup_8254_mixed_mode()
1449{
1450	/*
1451	 * Allow 8254 timer to INTerrupt 8259:
1452	 *  re-initialize master 8259:
1453	 *   reset; prog 4 bytes, single ICU, edge triggered
1454	 */
1455	outb(IO_ICU1, 0x13);
1456#ifdef PC98
1457	outb(IO_ICU1 + 2, NRSVIDT);	/* start vector (unused) */
1458	outb(IO_ICU1 + 2, 0x00);	/* ignore slave */
1459	outb(IO_ICU1 + 2, 0x03);	/* auto EOI, 8086 */
1460	outb(IO_ICU1 + 2, 0xfe);	/* unmask INT0 */
1461#else
1462	outb(IO_ICU1 + 1, NRSVIDT);	/* start vector (unused) */
1463	outb(IO_ICU1 + 1, 0x00);	/* ignore slave */
1464	outb(IO_ICU1 + 1, 0x03);	/* auto EOI, 8086 */
1465	outb(IO_ICU1 + 1, 0xfe);	/* unmask INT0 */
1466#endif
1467	/* program IO APIC for type 3 INT on INT0 */
1468	if (ext_int_setup(0, 0) < 0)
1469		panic("8254 redirect via APIC pin0 impossible!");
1470}
1471#endif
1472
1473void
1474setstatclockrate(int newhz)
1475{
1476#ifndef PC98
1477	if (newhz == RTC_PROFRATE)
1478		rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
1479	else
1480		rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
1481	writertc(RTC_STATUSA, rtc_statusa);
1482#endif
1483}
1484
1485static int
1486sysctl_machdep_i8254_freq SYSCTL_HANDLER_ARGS
1487{
1488	int error;
1489	u_int freq;
1490
1491	/*
1492	 * Use `i8254' instead of `timer' in external names because `timer'
1493	 * is is too generic.  Should use it everywhere.
1494	 */
1495	freq = timer_freq;
1496	error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
1497	if (error == 0 && req->newptr != NULL) {
1498		if (timer0_state != RELEASED)
1499			return (EBUSY);	/* too much trouble to handle */
1500		set_timer_freq(freq, hz);
1501		i8254_timecounter.tc_frequency = freq;
1502		update_timecounter(&i8254_timecounter);
1503	}
1504	return (error);
1505}
1506
1507SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
1508    0, sizeof(u_int), sysctl_machdep_i8254_freq, "I", "");
1509
1510static int
1511sysctl_machdep_tsc_freq SYSCTL_HANDLER_ARGS
1512{
1513	int error;
1514	u_int freq;
1515
1516	if (tsc_timecounter.tc_frequency == 0)
1517		return (EOPNOTSUPP);
1518	freq = tsc_freq;
1519	error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
1520	if (error == 0 && req->newptr != NULL) {
1521		tsc_freq = freq;
1522		tsc_timecounter.tc_frequency = tsc_freq;
1523		update_timecounter(&tsc_timecounter);
1524	}
1525	return (error);
1526}
1527
1528SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq, CTLTYPE_INT | CTLFLAG_RW,
1529    0, sizeof(u_int), sysctl_machdep_tsc_freq, "I", "");
1530
1531static unsigned
1532i8254_get_timecount(struct timecounter *tc)
1533{
1534	u_int count;
1535	u_long ef;
1536	u_int high, low;
1537
1538	ef = read_eflags();
1539	disable_intr();
1540
1541	/* Select timer0 and latch counter value. */
1542	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
1543
1544	low = inb(TIMER_CNTR0);
1545	high = inb(TIMER_CNTR0);
1546	count = timer0_max_count - ((high << 8) | low);
1547	if (count < i8254_lastcount ||
1548	    (!i8254_ticked && (clkintr_pending ||
1549	    ((count < 20 || (!(ef & PSL_I) && count < timer0_max_count / 2u)) &&
1550#ifdef APIC_IO
1551#define	lapic_irr1	((volatile u_int *)&lapic)[0x210 / 4]	/* XXX XXX */
1552	    /* XXX this assumes that apic_8254_intr is < 24. */
1553	    (lapic_irr1 & (1 << apic_8254_intr))))
1554#else
1555	    (inb(IO_ICU1) & 1)))
1556#endif
1557	    )) {
1558		i8254_ticked = 1;
1559		i8254_offset += timer0_max_count;
1560	}
1561	i8254_lastcount = count;
1562	count += i8254_offset;
1563	CLOCK_UNLOCK();
1564	write_eflags(ef);
1565	return (count);
1566}
1567
1568static unsigned
1569tsc_get_timecount(struct timecounter *tc)
1570{
1571	return (rdtsc());
1572}
1573