pcrtc.c revision 50869
1168404Spjd/*-
2168404Spjd * Copyright (c) 1990 The Regents of the University of California.
3168404Spjd * All rights reserved.
4168404Spjd *
5168404Spjd * This code is derived from software contributed to Berkeley by
6168404Spjd * William Jolitz and Don Ahn.
7168404Spjd *
8168404Spjd * Redistribution and use in source and binary forms, with or without
9168404Spjd * modification, are permitted provided that the following conditions
10168404Spjd * are met:
11168404Spjd * 1. Redistributions of source code must retain the above copyright
12168404Spjd *    notice, this list of conditions and the following disclaimer.
13168404Spjd * 2. Redistributions in binary form must reproduce the above copyright
14168404Spjd *    notice, this list of conditions and the following disclaimer in the
15168404Spjd *    documentation and/or other materials provided with the distribution.
16168404Spjd * 3. All advertising materials mentioning features or use of this software
17168404Spjd *    must display the following acknowledgement:
18168404Spjd *	This product includes software developed by the University of
19168404Spjd *	California, Berkeley and its contributors.
20168404Spjd * 4. Neither the name of the University nor the names of its contributors
21168404Spjd *    may be used to endorse or promote products derived from this software
22219089Spjd *    without specific prior written permission.
23339140Smav *
24251478Sdelphij * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25286575Smav * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26168404Spjd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27168404Spjd * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28168404Spjd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29168404Spjd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30168404Spjd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31168404Spjd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32168404Spjd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33168404Spjd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34168404Spjd * SUCH DAMAGE.
35168404Spjd *
36168404Spjd *	from: @(#)clock.c	7.2 (Berkeley) 5/12/91
37168404Spjd * $FreeBSD: head/sys/pc98/cbus/pcrtc.c 50869 1999-09-04 01:39:52Z kato $
38219089Spjd */
39307265Smav
40168404Spjd/*
41168404Spjd * Routines to handle clock hardware.
42168404Spjd */
43168404Spjd
44168404Spjd/*
45168404Spjd * inittodr, settodr and support routines written
46168404Spjd * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
47168404Spjd *
48168404Spjd * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
49168404Spjd */
50168404Spjd
51168404Spjd/*
52168404Spjd * modified for PC98 by Kakefuda
53168404Spjd */
54168404Spjd
55168404Spjd#include "opt_clock.h"
56168404Spjd#include "apm.h"
57168404Spjd
58168404Spjd#include <sys/param.h>
59219089Spjd#include <sys/systm.h>
60168404Spjd#include <sys/time.h>
61168404Spjd#include <sys/kernel.h>
62168404Spjd#ifndef SMP
63168404Spjd#include <sys/lock.h>
64168404Spjd#endif
65219089Spjd#include <sys/sysctl.h>
66219089Spjd#include <sys/cons.h>
67219089Spjd
68219089Spjd#include <machine/clock.h>
69219089Spjd#ifdef CLK_CALIBRATION_LOOP
70219089Spjd#endif
71270383Sdelphij#include <machine/cputypes.h>
72270383Sdelphij#include <machine/frame.h>
73270383Sdelphij#include <machine/ipl.h>
74270383Sdelphij#include <machine/limits.h>
75168404Spjd#include <machine/md_var.h>
76168404Spjd#include <machine/psl.h>
77270383Sdelphij#ifdef APIC_IO
78168404Spjd#include <machine/segments.h>
79168404Spjd#endif
80219089Spjd#if defined(SMP) || defined(APIC_IO)
81168404Spjd#include <machine/smp.h>
82168404Spjd#endif /* SMP || APIC_IO */
83168404Spjd#include <machine/specialreg.h>
84168404Spjd
85168404Spjd#include <i386/isa/icu.h>
86339109Smav#ifdef PC98
87339109Smav#include <pc98/pc98/pc98.h>
88339109Smav#include <pc98/pc98/pc98_machdep.h>
89339109Smav#include <i386/isa/isa_device.h>
90339109Smav#else
91339109Smav#include <i386/isa/isa.h>
92339109Smav#include <isa/rtc.h>
93168404Spjd#endif
94168404Spjd#include <i386/isa/timerreg.h>
95168404Spjd
96168404Spjd#include <i386/isa/intr_machdep.h>
97168404Spjd
98168404Spjd#include "mca.h"
99168404Spjd#if NMCA > 0
100168404Spjd#include <i386/isa/mca_machdep.h>
101168404Spjd#endif
102168404Spjd
103168404Spjd#ifdef SMP
104168404Spjd#define disable_intr()	CLOCK_DISABLE_INTR()
105168404Spjd#define enable_intr()	CLOCK_ENABLE_INTR()
106168404Spjd
107168404Spjd#ifdef APIC_IO
108168404Spjd#include <i386/isa/intr_machdep.h>
109168404Spjd/* The interrupt triggered by the 8254 (timer) chip */
110168404Spjdint apic_8254_intr;
111168404Spjdstatic u_long read_intr_count __P((int vec));
112168404Spjdstatic void setup_8254_mixed_mode __P((void));
113168404Spjd#endif
114168404Spjd#endif /* SMP */
115168404Spjd
116168404Spjd/*
117168404Spjd * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
118168404Spjd * can use a simple formula for leap years.
119168404Spjd */
120168404Spjd#define	LEAPYEAR(y) ((u_int)(y) % 4 == 0)
121168404Spjd#define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
122168404Spjd
123168404Spjd#define	TIMER_DIV(x) ((timer_freq + (x) / 2) / (x))
124168404Spjd
125168404Spjd/*
126168404Spjd * Time in timer cycles that it takes for microtime() to disable interrupts
127168404Spjd * and latch the count.  microtime() currently uses "cli; outb ..." so it
128168404Spjd * normally takes less than 2 timer cycles.  Add a few for cache misses.
129258632Savg * Add a few more to allow for latency in bogus calls to microtime() with
130258632Savg * interrupts already disabled.
131258632Savg */
132304137Savg#define	TIMER0_LATCH_COUNT	20
133304137Savg
134304137Savg/*
135168404Spjd * Maximum frequency that we are willing to allow for timer0.  Must be
136168404Spjd * low enough to guarantee that the timer interrupt handler returns
137168404Spjd * before the next timer interrupt.
138168404Spjd */
139168404Spjd#define	TIMER0_MAX_FREQ		20000
140168404Spjd
141168404Spjdint	adjkerntz;		/* local offset from GMT in seconds */
142168404Spjdint	clkintr_pending;
143168404Spjdint	disable_rtc_set;	/* disable resettodr() if != 0 */
144168404Spjdvolatile u_int	idelayed;
145168404Spjdint	statclock_disable;
146168404Spjdu_int	stat_imask = SWI_CLOCK_MASK;
147168404Spjd#ifndef TIMER_FREQ
148168404Spjd#ifdef PC98
149168404Spjd#define	TIMER_FREQ	2457600;
150168404Spjd#else /* IBM-PC */
151168404Spjd#define	TIMER_FREQ	1193182;
152168404Spjd#endif /* PC98 */
153168404Spjd#endif
154219089Spjdu_int	timer_freq = TIMER_FREQ;
155243524Smmint	timer0_max_count;
156168404Spjdu_int	tsc_freq;
157168404Spjdint	tsc_is_broken;
158168404Spjdint	wall_cmos_clock;	/* wall CMOS clock assumed if != 0 */
159168404Spjd
160168404Spjdstatic	int	beeping = 0;
161168404Spjdstatic	u_int	clk_imask = HWI_MASK | SWI_MASK;
162168404Spjdstatic	const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
163168404Spjdstatic	u_int	hardclock_max_count;
164168404Spjdstatic	u_int32_t i8254_lastcount;
165168404Spjdstatic	u_int32_t i8254_offset;
166168404Spjdstatic	int	i8254_ticked;
167168404Spjd/*
168168404Spjd * XXX new_function and timer_func should not handle clockframes, but
169168404Spjd * timer_func currently needs to hold hardclock to handle the
170219089Spjd * timer0_state == 0 case.  We should use register_intr()/unregister_intr()
171168404Spjd * to switch between clkintr() and a slightly different timerintr().
172168404Spjd */
173219089Spjdstatic	void	(*new_function) __P((struct clockframe *frame));
174168404Spjdstatic	u_int	new_rate;
175219089Spjd#ifndef PC98
176168404Spjdstatic	u_char	rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
177168404Spjdstatic	u_char	rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
178168404Spjd#endif
179219089Spjdstatic	u_int	timer0_prescaler_count;
180168404Spjd
181168404Spjd/* Values for timerX_state: */
182219089Spjd#define	RELEASED	0
183219089Spjd#define	RELEASE_PENDING	1
184168404Spjd#define	ACQUIRED	2
185168404Spjd#define	ACQUIRE_PENDING	3
186168404Spjd
187168404Spjdstatic	u_char	timer0_state;
188168404Spjd#ifdef	PC98
189168404Spjdstatic 	u_char	timer1_state;
190168404Spjd#endif
191168404Spjdstatic	u_char	timer2_state;
192168404Spjdstatic	void	(*timer_func) __P((struct clockframe *frame)) = hardclock;
193168404Spjd#ifdef PC98
194168404Spjdstatic void rtc_serialcombit __P((int));
195168404Spjdstatic void rtc_serialcom __P((int));
196168404Spjdstatic int rtc_inb __P((void));
197168404Spjdstatic void rtc_outb __P((int));
198168404Spjd#endif
199168404Spjdstatic	u_int	tsc_present;
200168404Spjd
201168404Spjdstatic	unsigned i8254_get_timecount __P((struct timecounter *tc));
202168404Spjdstatic	unsigned tsc_get_timecount __P((struct timecounter *tc));
203168404Spjdstatic	void	set_timer_freq(u_int freq, int intr_freq);
204168404Spjd
205168404Spjdstatic struct timecounter tsc_timecounter = {
206168404Spjd	tsc_get_timecount,	/* get_timecount */
207168404Spjd	0,			/* no poll_pps */
208168404Spjd 	~0u,			/* counter_mask */
209168404Spjd	0,			/* frequency */
210168404Spjd	 "TSC"			/* name */
211168404Spjd};
212168404Spjd
213168404SpjdSYSCTL_OPAQUE(_debug, OID_AUTO, tsc_timecounter, CTLFLAG_RD,
214168404Spjd	&tsc_timecounter, sizeof(tsc_timecounter), "S,timecounter", "");
215168404Spjd
216168404Spjdstatic struct timecounter i8254_timecounter = {
217168404Spjd	i8254_get_timecount,	/* get_timecount */
218168404Spjd	0,			/* no poll_pps */
219168404Spjd	~0u,			/* counter_mask */
220168404Spjd	0,			/* frequency */
221168404Spjd	"i8254"			/* name */
222168404Spjd};
223168404Spjd
224168404SpjdSYSCTL_OPAQUE(_debug, OID_AUTO, i8254_timecounter, CTLFLAG_RD,
225168404Spjd	&i8254_timecounter, sizeof(i8254_timecounter), "S,timecounter", "");
226168404Spjd
227168404Spjdstatic void
228168404Spjdclkintr(struct clockframe frame)
229168404Spjd{
230168404Spjd	if (timecounter->tc_get_timecount == i8254_get_timecount) {
231168404Spjd		disable_intr();
232168404Spjd		if (i8254_ticked)
233168404Spjd			i8254_ticked = 0;
234168404Spjd		else {
235168404Spjd			i8254_offset += timer0_max_count;
236168404Spjd			i8254_lastcount = 0;
237269229Sdelphij		}
238168404Spjd		clkintr_pending = 0;
239339109Smav		enable_intr();
240307265Smav	}
241307265Smav	timer_func(&frame);
242339109Smav	switch (timer0_state) {
243339109Smav
244339109Smav	case RELEASED:
245168404Spjd		setdelayed();
246168404Spjd		break;
247286575Smav
248286575Smav	case ACQUIRED:
249168404Spjd		if ((timer0_prescaler_count += timer0_max_count)
250289309Smav		    >= hardclock_max_count) {
251289309Smav			timer0_prescaler_count -= hardclock_max_count;
252289309Smav			hardclock(&frame);
253289309Smav			setdelayed();
254289309Smav		}
255289309Smav		break;
256289309Smav
257289309Smav	case ACQUIRE_PENDING:
258289309Smav		disable_intr();
259289309Smav		i8254_offset = i8254_get_timecount(NULL);
260168404Spjd		i8254_lastcount = 0;
261168404Spjd		timer0_max_count = TIMER_DIV(new_rate);
262289309Smav		outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
263289309Smav		outb(TIMER_CNTR0, timer0_max_count & 0xff);
264289309Smav		outb(TIMER_CNTR0, timer0_max_count >> 8);
265289309Smav		enable_intr();
266289309Smav		timer_func = new_function;
267289309Smav		timer0_state = ACQUIRED;
268289309Smav		setdelayed();
269168404Spjd		break;
270168404Spjd
271168404Spjd	case RELEASE_PENDING:
272168404Spjd		if ((timer0_prescaler_count += timer0_max_count)
273168404Spjd		    >= hardclock_max_count) {
274168404Spjd			disable_intr();
275168404Spjd			i8254_offset = i8254_get_timecount(NULL);
276168404Spjd			i8254_lastcount = 0;
277168404Spjd			timer0_max_count = hardclock_max_count;
278168404Spjd			outb(TIMER_MODE,
279168404Spjd			     TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
280168404Spjd			outb(TIMER_CNTR0, timer0_max_count & 0xff);
281286705Smav			outb(TIMER_CNTR0, timer0_max_count >> 8);
282168404Spjd			enable_intr();
283168404Spjd			timer0_prescaler_count = 0;
284185029Spjd			timer_func = hardclock;
285219089Spjd			timer0_state = RELEASED;
286219089Spjd			hardclock(&frame);
287168404Spjd			setdelayed();
288219089Spjd		}
289219089Spjd		break;
290168404Spjd	}
291168404Spjd#if NMCA > 0
292168404Spjd	/* Reset clock interrupt by asserting bit 7 of port 0x61 */
293286705Smav	if (MCA_system)
294286705Smav		outb(0x61, inb(0x61) | 0x80);
295168404Spjd#endif
296168404Spjd}
297286705Smav
298286705Smav/*
299168404Spjd * The acquire and release functions must be called at ipl >= splclock().
300168404Spjd */
301286541Smavint
302286541Smavacquire_timer0(int rate, void (*function) __P((struct clockframe *frame)))
303168404Spjd{
304168404Spjd	static int old_rate;
305168404Spjd
306339140Smav	if (rate <= 0 || rate > TIMER0_MAX_FREQ)
307168404Spjd		return (-1);
308286541Smav	switch (timer0_state) {
309286541Smav
310168404Spjd	case RELEASED:
311168404Spjd		timer0_state = ACQUIRE_PENDING;
312219089Spjd		break;
313168404Spjd
314168404Spjd	case RELEASE_PENDING:
315209962Smm		if (rate != old_rate)
316168404Spjd			return (-1);
317219089Spjd		/*
318268075Sdelphij		 * The timer has been released recently, but is being
319268075Sdelphij		 * re-acquired before the release completed.  In this
320268075Sdelphij		 * case, we simply reclaim it as if it had not been
321168404Spjd		 * released at all.
322307265Smav		 */
323168404Spjd		timer0_state = ACQUIRED;
324168404Spjd		break;
325168404Spjd
326284593Savg	default:
327219089Spjd		return (-1);	/* busy */
328168404Spjd	}
329332525Smav	new_function = function;
330332525Smav	old_rate = new_rate = rate;
331185029Spjd	return (0);
332168404Spjd}
333168404Spjd
334168404Spjd#ifdef PC98
335168404Spjdint
336219089Spjdacquire_timer1(int mode)
337219089Spjd{
338219089Spjd
339219089Spjd	if (timer1_state != RELEASED)
340219089Spjd		return (-1);
341219089Spjd	timer1_state = ACQUIRED;
342168404Spjd
343168404Spjd	/*
344168404Spjd	 * This access to the timer registers is as atomic as possible
345219089Spjd	 * because it is a single instruction.  We could do better if we
346168404Spjd	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
347219089Spjd	 * and this is probably good enough for timer2, so we aren't as
348248571Smm	 * careful with it as with timer0.
349185029Spjd	 */
350219089Spjd	outb(TIMER_MODE, TIMER_SEL1 | (mode & 0x3f));
351219089Spjd
352248571Smm	return (0);
353219089Spjd}
354185029Spjd#endif
355219089Spjd
356219089Spjdint
357248571Smmacquire_timer2(int mode)
358219089Spjd{
359219089Spjd
360325931Savg	if (timer2_state != RELEASED)
361325931Savg		return (-1);
362325931Savg	timer2_state = ACQUIRED;
363325931Savg
364325931Savg	/*
365325931Savg	 * This access to the timer registers is as atomic as possible
366168404Spjd	 * because it is a single instruction.  We could do better if we
367168404Spjd	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
368168404Spjd	 * and this is probably good enough for timer2, so we aren't as
369168404Spjd	 * careful with it as with timer0.
370168404Spjd	 */
371168404Spjd	outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
372168404Spjd
373168404Spjd	return (0);
374168404Spjd}
375168404Spjd
376168404Spjdint
377168404Spjdrelease_timer0()
378168404Spjd{
379168404Spjd	switch (timer0_state) {
380168404Spjd
381168404Spjd	case ACQUIRED:
382168404Spjd		timer0_state = RELEASE_PENDING;
383168404Spjd		break;
384168404Spjd
385168404Spjd	case ACQUIRE_PENDING:
386168404Spjd		/* Nothing happened yet, release quickly. */
387168404Spjd		timer0_state = RELEASED;
388168404Spjd		break;
389168404Spjd
390168404Spjd	default:
391168404Spjd		return (-1);
392260150Sdelphij	}
393168404Spjd	return (0);
394168404Spjd}
395219089Spjd
396168404Spjd#ifdef PC98
397168404Spjdint
398168404Spjdrelease_timer1()
399168404Spjd{
400168404Spjd
401168404Spjd	if (timer1_state != ACQUIRED)
402168404Spjd		return (-1);
403168404Spjd	timer1_state = RELEASED;
404168404Spjd	outb(TIMER_MODE, TIMER_SEL1 | TIMER_SQWAVE | TIMER_16BIT);
405168404Spjd	return (0);
406168404Spjd}
407168404Spjd#endif
408168404Spjd
409168404Spjdint
410168404Spjdrelease_timer2()
411168404Spjd{
412168404Spjd
413168404Spjd	if (timer2_state != ACQUIRED)
414		return (-1);
415	timer2_state = RELEASED;
416	outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
417	return (0);
418}
419
420#ifndef PC98
421/*
422 * This routine receives statistical clock interrupts from the RTC.
423 * As explained above, these occur at 128 interrupts per second.
424 * When profiling, we receive interrupts at a rate of 1024 Hz.
425 *
426 * This does not actually add as much overhead as it sounds, because
427 * when the statistical clock is active, the hardclock driver no longer
428 * needs to keep (inaccurate) statistics on its own.  This decouples
429 * statistics gathering from scheduling interrupts.
430 *
431 * The RTC chip requires that we read status register C (RTC_INTR)
432 * to acknowledge an interrupt, before it will generate the next one.
433 * Under high interrupt load, rtcintr() can be indefinitely delayed and
434 * the clock can tick immediately after the read from RTC_INTR.  In this
435 * case, the mc146818A interrupt signal will not drop for long enough
436 * to register with the 8259 PIC.  If an interrupt is missed, the stat
437 * clock will halt, considerably degrading system performance.  This is
438 * why we use 'while' rather than a more straightforward 'if' below.
439 * Stat clock ticks can still be lost, causing minor loss of accuracy
440 * in the statistics, but the stat clock will no longer stop.
441 */
442static void
443rtcintr(struct clockframe frame)
444{
445	while (rtcin(RTC_INTR) & RTCIR_PERIOD)
446		statclock(&frame);
447}
448
449#include "opt_ddb.h"
450#ifdef DDB
451#include <ddb/ddb.h>
452
453DB_SHOW_COMMAND(rtc, rtc)
454{
455	printf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
456	       rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
457	       rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
458	       rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
459}
460#endif /* DDB */
461#endif /* for PC98 */
462
463static int
464getit(void)
465{
466	u_long ef;
467	int high, low;
468
469	ef = read_eflags();
470	disable_intr();
471
472	/* Select timer0 and latch counter value. */
473	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
474
475	low = inb(TIMER_CNTR0);
476	high = inb(TIMER_CNTR0);
477
478	CLOCK_UNLOCK();
479	write_eflags(ef);
480	return ((high << 8) | low);
481}
482
483/*
484 * Wait "n" microseconds.
485 * Relies on timer 1 counting down from (timer_freq / hz)
486 * Note: timer had better have been programmed before this is first used!
487 */
488void
489DELAY(int n)
490{
491	int delta, prev_tick, tick, ticks_left;
492
493#ifdef DELAYDEBUG
494	int getit_calls = 1;
495	int n1;
496	static int state = 0;
497
498	if (state == 0) {
499		state = 1;
500		for (n1 = 1; n1 <= 10000000; n1 *= 10)
501			DELAY(n1);
502		state = 2;
503	}
504	if (state == 1)
505		printf("DELAY(%d)...", n);
506#endif
507	/*
508	 * Guard against the timer being uninitialized if we are called
509	 * early for console i/o.
510	 */
511	if (timer0_max_count == 0)
512		set_timer_freq(timer_freq, hz);
513
514	/*
515	 * Read the counter first, so that the rest of the setup overhead is
516	 * counted.  Guess the initial overhead is 20 usec (on most systems it
517	 * takes about 1.5 usec for each of the i/o's in getit().  The loop
518	 * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
519	 * multiplications and divisions to scale the count take a while).
520	 */
521	prev_tick = getit();
522	n -= 0;			/* XXX actually guess no initial overhead */
523	/*
524	 * Calculate (n * (timer_freq / 1e6)) without using floating point
525	 * and without any avoidable overflows.
526	 */
527	if (n <= 0)
528		ticks_left = 0;
529	else if (n < 256)
530		/*
531		 * Use fixed point to avoid a slow division by 1000000.
532		 * 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
533		 * 2^15 is the first power of 2 that gives exact results
534		 * for n between 0 and 256.
535		 */
536		ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
537	else
538		/*
539		 * Don't bother using fixed point, although gcc-2.7.2
540		 * generates particularly poor code for the long long
541		 * division, since even the slow way will complete long
542		 * before the delay is up (unless we're interrupted).
543		 */
544		ticks_left = ((u_int)n * (long long)timer_freq + 999999)
545			     / 1000000;
546
547	while (ticks_left > 0) {
548		tick = getit();
549#ifdef DELAYDEBUG
550		++getit_calls;
551#endif
552		delta = prev_tick - tick;
553		prev_tick = tick;
554		if (delta < 0) {
555			delta += timer0_max_count;
556			/*
557			 * Guard against timer0_max_count being wrong.
558			 * This shouldn't happen in normal operation,
559			 * but it may happen if set_timer_freq() is
560			 * traced.
561			 */
562			if (delta < 0)
563				delta = 0;
564		}
565		ticks_left -= delta;
566	}
567#ifdef DELAYDEBUG
568	if (state == 1)
569		printf(" %d calls to getit() at %d usec each\n",
570		       getit_calls, (n + 5) / getit_calls);
571#endif
572}
573
574static void
575sysbeepstop(void *chan)
576{
577#ifdef PC98	/* PC98 */
578	outb(IO_PPI, inb(IO_PPI)|0x08);	/* disable counter1 output to speaker */
579	release_timer1();
580#else
581	outb(IO_PPI, inb(IO_PPI)&0xFC);	/* disable counter2 output to speaker */
582	release_timer2();
583#endif
584	beeping = 0;
585}
586
587int
588sysbeep(int pitch, int period)
589{
590	int x = splclock();
591
592#ifdef PC98
593	if (acquire_timer1(TIMER_SQWAVE|TIMER_16BIT))
594		if (!beeping) {
595			/* Something else owns it. */
596			splx(x);
597			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
598		}
599	disable_intr();
600	outb(0x3fdb, pitch);
601	outb(0x3fdb, (pitch>>8));
602	enable_intr();
603	if (!beeping) {
604		/* enable counter1 output to speaker */
605		outb(IO_PPI, (inb(IO_PPI) & 0xf7));
606		beeping = period;
607		timeout(sysbeepstop, (void *)NULL, period);
608	}
609#else
610	if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
611		if (!beeping) {
612			/* Something else owns it. */
613			splx(x);
614			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
615		}
616	disable_intr();
617	outb(TIMER_CNTR2, pitch);
618	outb(TIMER_CNTR2, (pitch>>8));
619	enable_intr();
620	if (!beeping) {
621		/* enable counter2 output to speaker */
622		outb(IO_PPI, inb(IO_PPI) | 3);
623		beeping = period;
624		timeout(sysbeepstop, (void *)NULL, period);
625	}
626#endif
627	splx(x);
628	return (0);
629}
630
631#ifndef PC98
632/*
633 * RTC support routines
634 */
635
636int
637rtcin(reg)
638	int reg;
639{
640	u_char val;
641
642	outb(IO_RTC, reg);
643	inb(0x84);
644	val = inb(IO_RTC + 1);
645	inb(0x84);
646	return (val);
647}
648
649static __inline void
650writertc(u_char reg, u_char val)
651{
652	inb(0x84);
653	outb(IO_RTC, reg);
654	inb(0x84);
655	outb(IO_RTC + 1, val);
656	inb(0x84);		/* XXX work around wrong order in rtcin() */
657}
658
659static __inline int
660readrtc(int port)
661{
662	return(bcd2bin(rtcin(port)));
663}
664#endif
665
666#ifdef PC98
667unsigned int delaycount;
668#define FIRST_GUESS	0x2000
669static void findcpuspeed(void)
670{
671	int i;
672	int remainder;
673
674	/* Put counter in count down mode */
675	outb(TIMER_MODE, TIMER_SEL0 | TIMER_16BIT | TIMER_RATEGEN);
676	outb(TIMER_CNTR0, 0xff);
677	outb(TIMER_CNTR0, 0xff);
678	for (i = FIRST_GUESS; i; i--)
679		;
680	remainder = getit();
681	delaycount = (FIRST_GUESS * TIMER_DIV(1000)) / (0xffff - remainder);
682}
683#endif
684
685#ifdef PC98
686static u_int
687calibrate_clocks(void)
688{
689	int	timeout;
690	u_int	count, prev_count, tot_count;
691	u_short	sec, start_sec;
692
693	if (bootverbose)
694	        printf("Calibrating clock(s) ... ");
695	/* Check ARTIC. */
696	if (!(PC98_SYSTEM_PARAMETER(0x458) & 0x80) &&
697	    !(PC98_SYSTEM_PARAMETER(0x45b) & 0x04))
698		goto fail;
699	timeout = 100000000;
700
701	/* Read the ARTIC. */
702	sec = inw(0x5e);
703
704	/* Wait for the ARTIC to changes. */
705	start_sec = sec;
706	for (;;) {
707		sec = inw(0x5e);
708		if (sec != start_sec)
709			break;
710		if (--timeout == 0)
711			goto fail;
712	}
713	prev_count = getit();
714	if (prev_count == 0 || prev_count > timer0_max_count)
715		goto fail;
716	tot_count = 0;
717
718	if (tsc_present)
719		wrmsr(0x10, 0LL);	/* XXX 0x10 is the MSR for the TSC */
720	start_sec = sec;
721	for (;;) {
722		sec = inw(0x5e);
723		count = getit();
724		if (count == 0 || count > timer0_max_count)
725			goto fail;
726		if (count > prev_count)
727			tot_count += prev_count - (count - timer0_max_count);
728		else
729			tot_count += prev_count - count;
730		prev_count = count;
731		if ((sec == start_sec + 1200) ||
732		    (sec < start_sec &&
733		        (u_int)sec + 0x10000 == (u_int)start_sec + 1200))
734			break;
735		if (--timeout == 0)
736			goto fail;
737	}
738	/*
739	 * Read the cpu cycle counter.  The timing considerations are
740	 * similar to those for the i8254 clock.
741	 */
742	if (tsc_present)
743		tsc_freq = rdtsc();
744
745	if (bootverbose) {
746		if (tsc_present)
747		        printf("TSC clock: %u Hz, ", tsc_freq);
748	        printf("i8254 clock: %u Hz\n", tot_count);
749	}
750	return (tot_count);
751
752fail:
753	if (bootverbose)
754	        printf("failed, using default i8254 clock of %u Hz\n",
755		       timer_freq);
756	return (timer_freq);
757}
758#else
759static u_int
760calibrate_clocks(void)
761{
762	u_int64_t old_tsc;
763	u_int count, prev_count, tot_count;
764	int sec, start_sec, timeout;
765
766	if (bootverbose)
767	        printf("Calibrating clock(s) ... ");
768	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
769		goto fail;
770	timeout = 100000000;
771
772	/* Read the mc146818A seconds counter. */
773	for (;;) {
774		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
775			sec = rtcin(RTC_SEC);
776			break;
777		}
778		if (--timeout == 0)
779			goto fail;
780	}
781
782	/* Wait for the mC146818A seconds counter to change. */
783	start_sec = sec;
784	for (;;) {
785		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
786			sec = rtcin(RTC_SEC);
787			if (sec != start_sec)
788				break;
789		}
790		if (--timeout == 0)
791			goto fail;
792	}
793
794	/* Start keeping track of the i8254 counter. */
795	prev_count = getit();
796	if (prev_count == 0 || prev_count > timer0_max_count)
797		goto fail;
798	tot_count = 0;
799
800	if (tsc_present)
801		old_tsc = rdtsc();
802	else
803		old_tsc = 0;		/* shut up gcc */
804
805	/*
806	 * Wait for the mc146818A seconds counter to change.  Read the i8254
807	 * counter for each iteration since this is convenient and only
808	 * costs a few usec of inaccuracy. The timing of the final reads
809	 * of the counters almost matches the timing of the initial reads,
810	 * so the main cause of inaccuracy is the varying latency from
811	 * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
812	 * rtcin(RTC_SEC) that returns a changed seconds count.  The
813	 * maximum inaccuracy from this cause is < 10 usec on 486's.
814	 */
815	start_sec = sec;
816	for (;;) {
817		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
818			sec = rtcin(RTC_SEC);
819		count = getit();
820		if (count == 0 || count > timer0_max_count)
821			goto fail;
822		if (count > prev_count)
823			tot_count += prev_count - (count - timer0_max_count);
824		else
825			tot_count += prev_count - count;
826		prev_count = count;
827		if (sec != start_sec)
828			break;
829		if (--timeout == 0)
830			goto fail;
831	}
832
833	/*
834	 * Read the cpu cycle counter.  The timing considerations are
835	 * similar to those for the i8254 clock.
836	 */
837	if (tsc_present)
838		tsc_freq = rdtsc() - old_tsc;
839
840	if (bootverbose) {
841		if (tsc_present)
842		        printf("TSC clock: %u Hz, ", tsc_freq);
843	        printf("i8254 clock: %u Hz\n", tot_count);
844	}
845	return (tot_count);
846
847fail:
848	if (bootverbose)
849	        printf("failed, using default i8254 clock of %u Hz\n",
850		       timer_freq);
851	return (timer_freq);
852}
853#endif	/* !PC98 */
854
855static void
856set_timer_freq(u_int freq, int intr_freq)
857{
858	u_long ef;
859	int new_timer0_max_count;
860
861	ef = read_eflags();
862	disable_intr();
863	timer_freq = freq;
864	new_timer0_max_count = hardclock_max_count = TIMER_DIV(intr_freq);
865	if (new_timer0_max_count != timer0_max_count) {
866		timer0_max_count = new_timer0_max_count;
867		outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
868		outb(TIMER_CNTR0, timer0_max_count & 0xff);
869		outb(TIMER_CNTR0, timer0_max_count >> 8);
870	}
871	CLOCK_UNLOCK();
872	write_eflags(ef);
873}
874
875/*
876 * Initialize 8254 timer 0 early so that it can be used in DELAY().
877 * XXX initialization of other timers is unintentionally left blank.
878 */
879void
880startrtclock()
881{
882	u_int delta, freq;
883
884#ifdef PC98
885	findcpuspeed();
886	if (pc98_machine_type & M_8M)
887		timer_freq = 1996800L; /* 1.9968 MHz */
888	else
889		timer_freq = 2457600L; /* 2.4576 MHz */
890#endif /* PC98 */
891
892	if (cpu_feature & CPUID_TSC)
893		tsc_present = 1;
894	else
895		tsc_present = 0;
896
897#ifndef PC98
898	writertc(RTC_STATUSA, rtc_statusa);
899	writertc(RTC_STATUSB, RTCSB_24HR);
900#endif
901
902	set_timer_freq(timer_freq, hz);
903	freq = calibrate_clocks();
904#ifdef CLK_CALIBRATION_LOOP
905	if (bootverbose) {
906		printf(
907		"Press a key on the console to abort clock calibration\n");
908		while (cncheckc() == -1)
909			calibrate_clocks();
910	}
911#endif
912
913	/*
914	 * Use the calibrated i8254 frequency if it seems reasonable.
915	 * Otherwise use the default, and don't use the calibrated i586
916	 * frequency.
917	 */
918	delta = freq > timer_freq ? freq - timer_freq : timer_freq - freq;
919	if (delta < timer_freq / 100) {
920#ifndef CLK_USE_I8254_CALIBRATION
921		if (bootverbose)
922			printf(
923"CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
924		freq = timer_freq;
925#endif
926		timer_freq = freq;
927	} else {
928		if (bootverbose)
929			printf(
930		    "%d Hz differs from default of %d Hz by more than 1%%\n",
931			       freq, timer_freq);
932		tsc_freq = 0;
933	}
934
935	set_timer_freq(timer_freq, hz);
936	i8254_timecounter.tc_frequency = timer_freq;
937	init_timecounter(&i8254_timecounter);
938
939#ifndef CLK_USE_TSC_CALIBRATION
940	if (tsc_freq != 0) {
941		if (bootverbose)
942			printf(
943"CLK_USE_TSC_CALIBRATION not specified - using old calibration method\n");
944		tsc_freq = 0;
945	}
946#endif
947	if (tsc_present && tsc_freq == 0) {
948		/*
949		 * Calibration of the i586 clock relative to the mc146818A
950		 * clock failed.  Do a less accurate calibration relative
951		 * to the i8254 clock.
952		 */
953		u_int64_t old_tsc = rdtsc();
954
955		DELAY(1000000);
956		tsc_freq = rdtsc() - old_tsc;
957#ifdef CLK_USE_TSC_CALIBRATION
958		if (bootverbose)
959			printf("TSC clock: %u Hz (Method B)\n", tsc_freq);
960#endif
961	}
962
963#if !defined(SMP)
964	/*
965	 * We can not use the TSC in SMP mode, until we figure out a
966	 * cheap (impossible), reliable and precise (yeah right!)  way
967	 * to synchronize the TSCs of all the CPUs.
968	 * Curse Intel for leaving the counter out of the I/O APIC.
969	 */
970
971#if NAPM > 0
972	/*
973	 * We can not use the TSC if we support APM. Precise timekeeping
974	 * on an APM'ed machine is at best a fools pursuit, since
975	 * any and all of the time spent in various SMM code can't
976	 * be reliably accounted for.  Reading the RTC is your only
977	 * source of reliable time info.  The i8254 looses too of course
978	 * but we need to have some kind of time...
979	 * We don't know at this point whether APM is going to be used
980	 * or not, nor when it might be activated.  Play it safe.
981	 */
982	return;
983#endif /* NAPM > 0 */
984
985	if (tsc_present && tsc_freq != 0 && !tsc_is_broken) {
986		tsc_timecounter.tc_frequency = tsc_freq;
987		init_timecounter(&tsc_timecounter);
988	}
989
990#endif /* !defined(SMP) */
991}
992
993#ifdef PC98
994static void
995rtc_serialcombit(int i)
996{
997	outb(IO_RTC, ((i&0x01)<<5)|0x07);
998	DELAY(1);
999	outb(IO_RTC, ((i&0x01)<<5)|0x17);
1000	DELAY(1);
1001	outb(IO_RTC, ((i&0x01)<<5)|0x07);
1002	DELAY(1);
1003}
1004
1005static void
1006rtc_serialcom(int i)
1007{
1008	rtc_serialcombit(i&0x01);
1009	rtc_serialcombit((i&0x02)>>1);
1010	rtc_serialcombit((i&0x04)>>2);
1011	rtc_serialcombit((i&0x08)>>3);
1012	outb(IO_RTC, 0x07);
1013	DELAY(1);
1014	outb(IO_RTC, 0x0f);
1015	DELAY(1);
1016	outb(IO_RTC, 0x07);
1017 	DELAY(1);
1018}
1019
1020static void
1021rtc_outb(int val)
1022{
1023	int s;
1024	int sa = 0;
1025
1026	for (s=0;s<8;s++) {
1027	    sa = ((val >> s) & 0x01) ? 0x27 : 0x07;
1028	    outb(IO_RTC, sa);		/* set DI & CLK 0 */
1029	    DELAY(1);
1030	    outb(IO_RTC, sa | 0x10);	/* CLK 1 */
1031	    DELAY(1);
1032	}
1033	outb(IO_RTC, sa & 0xef);	/* CLK 0 */
1034}
1035
1036static int
1037rtc_inb(void)
1038{
1039	int s;
1040	int sa = 0;
1041
1042	for (s=0;s<8;s++) {
1043	    sa |= ((inb(0x33) & 0x01) << s);
1044	    outb(IO_RTC, 0x17);	/* CLK 1 */
1045	    DELAY(1);
1046	    outb(IO_RTC, 0x07);	/* CLK 0 */
1047	    DELAY(2);
1048	}
1049	return sa;
1050}
1051#endif /* PC-98 */
1052
1053/*
1054 * Initialize the time of day register, based on the time base which is, e.g.
1055 * from a filesystem.
1056 */
1057void
1058inittodr(time_t base)
1059{
1060	unsigned long	sec, days;
1061#ifndef PC98
1062	int		yd;
1063#endif
1064	int		year, month;
1065	int		y, m, s;
1066	struct timespec ts;
1067#ifdef PC98
1068	int		second, min, hour;
1069#endif
1070
1071	if (base) {
1072		s = splclock();
1073		ts.tv_sec = base;
1074		ts.tv_nsec = 0;
1075		set_timecounter(&ts);
1076		splx(s);
1077	}
1078
1079#ifdef PC98
1080	rtc_serialcom(0x03);	/* Time Read */
1081	rtc_serialcom(0x01);	/* Register shift command. */
1082	DELAY(20);
1083
1084	second = bcd2bin(rtc_inb() & 0xff);	/* sec */
1085	min = bcd2bin(rtc_inb() & 0xff);	/* min */
1086	hour = bcd2bin(rtc_inb() & 0xff);	/* hour */
1087	days = bcd2bin(rtc_inb() & 0xff) - 1;	/* date */
1088
1089	month = (rtc_inb() >> 4) & 0x0f;	/* month */
1090	for (m = 1; m <	month; m++)
1091		days +=	daysinmonth[m-1];
1092	year = bcd2bin(rtc_inb() & 0xff) + 1900;	/* year */
1093	/* 2000 year problem */
1094	if (year < 1995)
1095		year += 100;
1096	if (year < 1970)
1097		goto wrong_time;
1098	for (y = 1970; y < year; y++)
1099		days +=	DAYSPERYEAR + LEAPYEAR(y);
1100	if ((month > 2)	&& LEAPYEAR(year))
1101		days ++;
1102	sec = ((( days * 24 +
1103		  hour) * 60 +
1104		  min) * 60 +
1105		  second);
1106	/* sec now contains the	number of seconds, since Jan 1 1970,
1107	   in the local	time zone */
1108#else	/* IBM-PC */
1109	/* Look if we have a RTC present and the time is valid */
1110	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
1111		goto wrong_time;
1112
1113	/* wait for time update to complete */
1114	/* If RTCSA_TUP is zero, we have at least 244us before next update */
1115	while (rtcin(RTC_STATUSA) & RTCSA_TUP);
1116
1117	days = 0;
1118#ifdef USE_RTC_CENTURY
1119	year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
1120#else
1121	year = readrtc(RTC_YEAR) + 1900;
1122	if (year < 1970)
1123		year += 100;
1124#endif
1125	if (year < 1970)
1126		goto wrong_time;
1127	month = readrtc(RTC_MONTH);
1128	for (m = 1; m < month; m++)
1129		days += daysinmonth[m-1];
1130	if ((month > 2) && LEAPYEAR(year))
1131		days ++;
1132	days += readrtc(RTC_DAY) - 1;
1133	yd = days;
1134	for (y = 1970; y < year; y++)
1135		days += DAYSPERYEAR + LEAPYEAR(y);
1136	sec = ((( days * 24 +
1137		  readrtc(RTC_HRS)) * 60 +
1138		  readrtc(RTC_MIN)) * 60 +
1139		  readrtc(RTC_SEC));
1140	/* sec now contains the number of seconds, since Jan 1 1970,
1141	   in the local time zone */
1142#endif
1143
1144	sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1145
1146	y = time_second - sec;
1147	if (y <= -2 || y >= 2) {
1148		/* badly off, adjust it */
1149		s = splclock();
1150		ts.tv_sec = sec;
1151		ts.tv_nsec = 0;
1152		set_timecounter(&ts);
1153		splx(s);
1154	}
1155	return;
1156
1157wrong_time:
1158	printf("Invalid time in real time clock.\n");
1159	printf("Check and reset the date immediately!\n");
1160}
1161
1162/*
1163 * Write system time back to RTC
1164 */
1165void
1166resettodr()
1167{
1168	unsigned long	tm;
1169	int		y, m, s;
1170#ifdef PC98
1171	int		wd;
1172#endif
1173
1174	if (disable_rtc_set)
1175		return;
1176
1177	s = splclock();
1178	tm = time_second;
1179	splx(s);
1180
1181#ifdef PC98
1182	rtc_serialcom(0x01);	/* Register shift command. */
1183
1184	/* Calculate local time	to put in RTC */
1185
1186	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1187
1188	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
1189	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
1190	rtc_outb(bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
1191
1192	/* We have now the days	since 01-01-1970 in tm */
1193	wd = (tm+4)%7;
1194	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1195	     tm >= m;
1196	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1197	     tm -= m;
1198
1199	/* Now we have the years in y and the day-of-the-year in tm */
1200	for (m = 0; ; m++) {
1201		int ml;
1202
1203		ml = daysinmonth[m];
1204		if (m == 1 && LEAPYEAR(y))
1205			ml++;
1206		if (tm < ml)
1207			break;
1208		tm -= ml;
1209	}
1210
1211	m++;
1212	rtc_outb(bin2bcd(tm+1));		/* Write back Day     */
1213	rtc_outb((m << 4) | wd);		/* Write back Month & Weekday  */
1214	rtc_outb(bin2bcd(y%100));		/* Write back Year    */
1215
1216	rtc_serialcom(0x02);	/* Time set & Counter hold command. */
1217	rtc_serialcom(0x00);	/* Register hold command. */
1218#else
1219	/* Disable RTC updates and interrupts. */
1220	writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
1221
1222	/* Calculate local time to put in RTC */
1223
1224	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1225
1226	writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
1227	writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
1228	writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
1229
1230	/* We have now the days since 01-01-1970 in tm */
1231	writertc(RTC_WDAY, (tm+4)%7);			/* Write back Weekday */
1232	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1233	     tm >= m;
1234	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1235	     tm -= m;
1236
1237	/* Now we have the years in y and the day-of-the-year in tm */
1238	writertc(RTC_YEAR, bin2bcd(y%100));		/* Write back Year    */
1239#ifdef USE_RTC_CENTURY
1240	writertc(RTC_CENTURY, bin2bcd(y/100));		/* ... and Century    */
1241#endif
1242	for (m = 0; ; m++) {
1243		int ml;
1244
1245		ml = daysinmonth[m];
1246		if (m == 1 && LEAPYEAR(y))
1247			ml++;
1248		if (tm < ml)
1249			break;
1250		tm -= ml;
1251	}
1252
1253	writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
1254	writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
1255
1256	/* Reenable RTC updates and interrupts. */
1257	writertc(RTC_STATUSB, rtc_statusb);
1258#endif
1259}
1260
1261
1262/*
1263 * Start both clocks running.
1264 */
1265void
1266cpu_initclocks()
1267{
1268#ifdef APIC_IO
1269	int apic_8254_trial;
1270	struct intrec *clkdesc;
1271#endif /* APIC_IO */
1272#ifndef PC98
1273	int diag;
1274
1275	if (statclock_disable) {
1276		/*
1277		 * The stat interrupt mask is different without the
1278		 * statistics clock.  Also, don't set the interrupt
1279		 * flag which would normally cause the RTC to generate
1280		 * interrupts.
1281		 */
1282		stat_imask = HWI_MASK | SWI_MASK;
1283		rtc_statusb = RTCSB_24HR;
1284	} else {
1285	        /* Setting stathz to nonzero early helps avoid races. */
1286		stathz = RTC_NOPROFRATE;
1287		profhz = RTC_PROFRATE;
1288        }
1289#endif
1290
1291	/* Finish initializing 8253 timer 0. */
1292#ifdef APIC_IO
1293
1294	apic_8254_intr = isa_apic_irq(0);
1295	apic_8254_trial = 0;
1296	if (apic_8254_intr >= 0 ) {
1297		if (apic_int_type(0, 0) == 3)
1298			apic_8254_trial = 1;
1299	} else {
1300		/* look for ExtInt on pin 0 */
1301		if (apic_int_type(0, 0) == 3) {
1302			apic_8254_intr = 0;
1303			setup_8254_mixed_mode();
1304		} else
1305			panic("APIC_IO: Cannot route 8254 interrupt to CPU");
1306	}
1307
1308	clkdesc = inthand_add("clk", apic_8254_intr, (inthand2_t *)clkintr,
1309			      NULL, &clk_imask, INTR_EXCL);
1310	INTREN(1 << apic_8254_intr);
1311
1312#else /* APIC_IO */
1313
1314	inthand_add("clk", 0, (inthand2_t *)clkintr, NULL, &clk_imask,
1315		    INTR_EXCL);
1316	INTREN(IRQ0);
1317
1318#endif /* APIC_IO */
1319
1320#ifndef PC98
1321	/* Initialize RTC. */
1322	writertc(RTC_STATUSA, rtc_statusa);
1323	writertc(RTC_STATUSB, RTCSB_24HR);
1324
1325	/* Don't bother enabling the statistics clock. */
1326	if (statclock_disable)
1327		return;
1328	diag = rtcin(RTC_DIAG);
1329	if (diag != 0)
1330		printf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
1331
1332#ifdef APIC_IO
1333	if (isa_apic_irq(8) != 8)
1334		panic("APIC RTC != 8");
1335#endif /* APIC_IO */
1336
1337	inthand_add("rtc", 8, (inthand2_t *)rtcintr, NULL, &stat_imask,
1338		    INTR_EXCL);
1339
1340#ifdef APIC_IO
1341	INTREN(APIC_IRQ8);
1342#else
1343	INTREN(IRQ8);
1344#endif /* APIC_IO */
1345
1346	writertc(RTC_STATUSB, rtc_statusb);
1347#endif /* !PC98 */
1348
1349#ifdef APIC_IO
1350	if (apic_8254_trial) {
1351
1352		printf("APIC_IO: Testing 8254 interrupt delivery\n");
1353		while (read_intr_count(8) < 6)
1354			;	/* nothing */
1355		if (read_intr_count(apic_8254_intr) < 3) {
1356			/*
1357			 * The MP table is broken.
1358			 * The 8254 was not connected to the specified pin
1359			 * on the IO APIC.
1360			 * Workaround: Limited variant of mixed mode.
1361			 */
1362			INTRDIS(1 << apic_8254_intr);
1363			inthand_remove(clkdesc);
1364			printf("APIC_IO: Broken MP table detected: "
1365			       "8254 is not connected to IO APIC int pin %d\n",
1366			       apic_8254_intr);
1367
1368			apic_8254_intr = 0;
1369			setup_8254_mixed_mode();
1370			inthand_add("clk", apic_8254_intr,(inthand2_t *)clkintr,
1371				    NULL, &clk_imask, INTR_EXCL);
1372			INTREN(1 << apic_8254_intr);
1373		}
1374
1375	}
1376	if (apic_8254_intr)
1377		printf("APIC_IO: routing 8254 via pin %d\n",apic_8254_intr);
1378	else
1379		printf("APIC_IO: routing 8254 via 8259 on pin 0\n");
1380#endif
1381
1382}
1383
1384#ifdef APIC_IO
1385static u_long
1386read_intr_count(int vec)
1387{
1388	u_long *up;
1389	up = intr_countp[vec];
1390	if (up)
1391		return *up;
1392	return 0UL;
1393}
1394
1395static void
1396setup_8254_mixed_mode()
1397{
1398	/*
1399	 * Allow 8254 timer to INTerrupt 8259:
1400	 *  re-initialize master 8259:
1401	 *   reset; prog 4 bytes, single ICU, edge triggered
1402	 */
1403	outb(IO_ICU1, 0x13);
1404#ifdef PC98
1405	outb(IO_ICU1 + 2, NRSVIDT);	/* start vector (unused) */
1406	outb(IO_ICU1 + 2, 0x00);	/* ignore slave */
1407	outb(IO_ICU1 + 2, 0x03);	/* auto EOI, 8086 */
1408	outb(IO_ICU1 + 2, 0xfe);	/* unmask INT0 */
1409#else
1410	outb(IO_ICU1 + 1, NRSVIDT);	/* start vector (unused) */
1411	outb(IO_ICU1 + 1, 0x00);	/* ignore slave */
1412	outb(IO_ICU1 + 1, 0x03);	/* auto EOI, 8086 */
1413	outb(IO_ICU1 + 1, 0xfe);	/* unmask INT0 */
1414#endif
1415	/* program IO APIC for type 3 INT on INT0 */
1416	if (ext_int_setup(0, 0) < 0)
1417		panic("8254 redirect via APIC pin0 impossible!");
1418}
1419#endif
1420
1421void
1422setstatclockrate(int newhz)
1423{
1424#ifndef PC98
1425	if (newhz == RTC_PROFRATE)
1426		rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
1427	else
1428		rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
1429	writertc(RTC_STATUSA, rtc_statusa);
1430#endif
1431}
1432
1433static int
1434sysctl_machdep_i8254_freq SYSCTL_HANDLER_ARGS
1435{
1436	int error;
1437	u_int freq;
1438
1439	/*
1440	 * Use `i8254' instead of `timer' in external names because `timer'
1441	 * is is too generic.  Should use it everywhere.
1442	 */
1443	freq = timer_freq;
1444	error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
1445	if (error == 0 && req->newptr != NULL) {
1446		if (timer0_state != RELEASED)
1447			return (EBUSY);	/* too much trouble to handle */
1448		set_timer_freq(freq, hz);
1449		i8254_timecounter.tc_frequency = freq;
1450		update_timecounter(&i8254_timecounter);
1451	}
1452	return (error);
1453}
1454
1455SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
1456    0, sizeof(u_int), sysctl_machdep_i8254_freq, "I", "");
1457
1458static int
1459sysctl_machdep_tsc_freq SYSCTL_HANDLER_ARGS
1460{
1461	int error;
1462	u_int freq;
1463
1464	if (tsc_timecounter.tc_frequency == 0)
1465		return (EOPNOTSUPP);
1466	freq = tsc_freq;
1467	error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
1468	if (error == 0 && req->newptr != NULL) {
1469		tsc_freq = freq;
1470		tsc_timecounter.tc_frequency = tsc_freq;
1471		update_timecounter(&tsc_timecounter);
1472	}
1473	return (error);
1474}
1475
1476SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq, CTLTYPE_INT | CTLFLAG_RW,
1477    0, sizeof(u_int), sysctl_machdep_tsc_freq, "I", "");
1478
1479static unsigned
1480i8254_get_timecount(struct timecounter *tc)
1481{
1482	u_int count;
1483	u_long ef;
1484	u_int high, low;
1485
1486	ef = read_eflags();
1487	disable_intr();
1488
1489	/* Select timer0 and latch counter value. */
1490	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
1491
1492	low = inb(TIMER_CNTR0);
1493	high = inb(TIMER_CNTR0);
1494	count = timer0_max_count - ((high << 8) | low);
1495	if (count < i8254_lastcount ||
1496	    (!i8254_ticked && (clkintr_pending ||
1497	    ((count < 20 || (!(ef & PSL_I) && count < timer0_max_count / 2u)) &&
1498#ifdef APIC_IO
1499#define	lapic_irr1	((volatile u_int *)&lapic)[0x210 / 4]	/* XXX XXX */
1500	    /* XXX this assumes that apic_8254_intr is < 24. */
1501	    (lapic_irr1 & (1 << apic_8254_intr))))
1502#else
1503	    (inb(IO_ICU1) & 1)))
1504#endif
1505	    )) {
1506		i8254_ticked = 1;
1507		i8254_offset += timer0_max_count;
1508	}
1509	i8254_lastcount = count;
1510	count += i8254_offset;
1511	CLOCK_UNLOCK();
1512	write_eflags(ef);
1513	return (count);
1514}
1515
1516static unsigned
1517tsc_get_timecount(struct timecounter *tc)
1518{
1519	return (rdtsc());
1520}
1521