pcrtc.c revision 49558
1/*-
2 * Copyright (c) 1990 The Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * William Jolitz and Don Ahn.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)clock.c	7.2 (Berkeley) 5/12/91
37 *	$Id: clock.c,v 1.74 1999/07/30 11:43:10 kato Exp $
38 */
39
40/*
41 * Routines to handle clock hardware.
42 */
43
44/*
45 * inittodr, settodr and support routines written
46 * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
47 *
48 * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
49 */
50
51/*
52 * modified for PC98 by Kakefuda
53 */
54
55#include "opt_clock.h"
56#include "apm.h"
57
58#include <sys/param.h>
59#include <sys/systm.h>
60#include <sys/time.h>
61#include <sys/kernel.h>
62#ifndef SMP
63#include <sys/lock.h>
64#endif
65#include <sys/sysctl.h>
66#include <sys/cons.h>
67
68#include <machine/clock.h>
69#ifdef CLK_CALIBRATION_LOOP
70#endif
71#include <machine/cputypes.h>
72#include <machine/frame.h>
73#include <machine/ipl.h>
74#include <machine/limits.h>
75#include <machine/md_var.h>
76#include <machine/psl.h>
77#ifdef APIC_IO
78#include <machine/segments.h>
79#endif
80#if defined(SMP) || defined(APIC_IO)
81#include <machine/smp.h>
82#endif /* SMP || APIC_IO */
83#include <machine/specialreg.h>
84
85#include <i386/isa/icu.h>
86#ifdef PC98
87#include <pc98/pc98/pc98.h>
88#include <pc98/pc98/pc98_machdep.h>
89#include <i386/isa/isa_device.h>
90#else
91#include <i386/isa/isa.h>
92#include <isa/rtc.h>
93#endif
94#include <i386/isa/timerreg.h>
95
96#include <i386/isa/intr_machdep.h>
97
98#ifdef SMP
99#define disable_intr()	CLOCK_DISABLE_INTR()
100#define enable_intr()	CLOCK_ENABLE_INTR()
101
102#ifdef APIC_IO
103#include <i386/isa/intr_machdep.h>
104/* The interrupt triggered by the 8254 (timer) chip */
105int apic_8254_intr;
106static u_long read_intr_count __P((int vec));
107static void setup_8254_mixed_mode __P((void));
108#endif
109#endif /* SMP */
110
111/*
112 * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
113 * can use a simple formula for leap years.
114 */
115#define	LEAPYEAR(y) ((u_int)(y) % 4 == 0)
116#define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
117
118#define	TIMER_DIV(x) ((timer_freq + (x) / 2) / (x))
119
120/*
121 * Time in timer cycles that it takes for microtime() to disable interrupts
122 * and latch the count.  microtime() currently uses "cli; outb ..." so it
123 * normally takes less than 2 timer cycles.  Add a few for cache misses.
124 * Add a few more to allow for latency in bogus calls to microtime() with
125 * interrupts already disabled.
126 */
127#define	TIMER0_LATCH_COUNT	20
128
129/*
130 * Maximum frequency that we are willing to allow for timer0.  Must be
131 * low enough to guarantee that the timer interrupt handler returns
132 * before the next timer interrupt.
133 */
134#define	TIMER0_MAX_FREQ		20000
135
136int	adjkerntz;		/* local offset from GMT in seconds */
137int	clkintr_pending;
138int	disable_rtc_set;	/* disable resettodr() if != 0 */
139volatile u_int	idelayed;
140int	statclock_disable;
141u_int	stat_imask = SWI_CLOCK_MASK;
142#ifndef TIMER_FREQ
143#ifdef PC98
144#define	TIMER_FREQ	2457600;
145#else /* IBM-PC */
146#define	TIMER_FREQ	1193182;
147#endif /* PC98 */
148#endif
149u_int	timer_freq = TIMER_FREQ;
150int	timer0_max_count;
151u_int	tsc_freq;
152int	tsc_is_broken;
153int	wall_cmos_clock;	/* wall CMOS clock assumed if != 0 */
154
155static	int	beeping = 0;
156static	u_int	clk_imask = HWI_MASK | SWI_MASK;
157static	const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
158static	u_int	hardclock_max_count;
159static	u_int32_t i8254_lastcount;
160static	u_int32_t i8254_offset;
161static	int	i8254_ticked;
162/*
163 * XXX new_function and timer_func should not handle clockframes, but
164 * timer_func currently needs to hold hardclock to handle the
165 * timer0_state == 0 case.  We should use register_intr()/unregister_intr()
166 * to switch between clkintr() and a slightly different timerintr().
167 */
168static	void	(*new_function) __P((struct clockframe *frame));
169static	u_int	new_rate;
170#ifndef PC98
171static	u_char	rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
172static	u_char	rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
173#endif
174static	u_int	timer0_prescaler_count;
175
176/* Values for timerX_state: */
177#define	RELEASED	0
178#define	RELEASE_PENDING	1
179#define	ACQUIRED	2
180#define	ACQUIRE_PENDING	3
181
182static	u_char	timer0_state;
183#ifdef	PC98
184static 	u_char	timer1_state;
185#endif
186static	u_char	timer2_state;
187static	void	(*timer_func) __P((struct clockframe *frame)) = hardclock;
188#ifdef PC98
189static void rtc_serialcombit __P((int));
190static void rtc_serialcom __P((int));
191static int rtc_inb __P((void));
192static void rtc_outb __P((int));
193#endif
194static	u_int	tsc_present;
195
196static	unsigned i8254_get_timecount __P((struct timecounter *tc));
197static	unsigned tsc_get_timecount __P((struct timecounter *tc));
198static	void	set_timer_freq(u_int freq, int intr_freq);
199
200static struct timecounter tsc_timecounter = {
201	tsc_get_timecount,	/* get_timecount */
202	0,			/* no poll_pps */
203 	~0u,			/* counter_mask */
204	0,			/* frequency */
205	 "TSC"			/* name */
206};
207
208SYSCTL_OPAQUE(_debug, OID_AUTO, tsc_timecounter, CTLFLAG_RD,
209	&tsc_timecounter, sizeof(tsc_timecounter), "S,timecounter", "");
210
211static struct timecounter i8254_timecounter = {
212	i8254_get_timecount,	/* get_timecount */
213	0,			/* no poll_pps */
214	~0u,			/* counter_mask */
215	0,			/* frequency */
216	"i8254"			/* name */
217};
218
219SYSCTL_OPAQUE(_debug, OID_AUTO, i8254_timecounter, CTLFLAG_RD,
220	&i8254_timecounter, sizeof(i8254_timecounter), "S,timecounter", "");
221
222static void
223clkintr(struct clockframe frame)
224{
225	if (timecounter->tc_get_timecount == i8254_get_timecount) {
226		disable_intr();
227		if (i8254_ticked)
228			i8254_ticked = 0;
229		else {
230			i8254_offset += timer0_max_count;
231			i8254_lastcount = 0;
232		}
233		clkintr_pending = 0;
234		enable_intr();
235	}
236	timer_func(&frame);
237	switch (timer0_state) {
238
239	case RELEASED:
240		setdelayed();
241		break;
242
243	case ACQUIRED:
244		if ((timer0_prescaler_count += timer0_max_count)
245		    >= hardclock_max_count) {
246			timer0_prescaler_count -= hardclock_max_count;
247			hardclock(&frame);
248			setdelayed();
249		}
250		break;
251
252	case ACQUIRE_PENDING:
253		disable_intr();
254		i8254_offset = i8254_get_timecount(NULL);
255		i8254_lastcount = 0;
256		timer0_max_count = TIMER_DIV(new_rate);
257		outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
258		outb(TIMER_CNTR0, timer0_max_count & 0xff);
259		outb(TIMER_CNTR0, timer0_max_count >> 8);
260		enable_intr();
261		timer_func = new_function;
262		timer0_state = ACQUIRED;
263		setdelayed();
264		break;
265
266	case RELEASE_PENDING:
267		if ((timer0_prescaler_count += timer0_max_count)
268		    >= hardclock_max_count) {
269			disable_intr();
270			i8254_offset = i8254_get_timecount(NULL);
271			i8254_lastcount = 0;
272			timer0_max_count = hardclock_max_count;
273			outb(TIMER_MODE,
274			     TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
275			outb(TIMER_CNTR0, timer0_max_count & 0xff);
276			outb(TIMER_CNTR0, timer0_max_count >> 8);
277			enable_intr();
278			timer0_prescaler_count = 0;
279			timer_func = hardclock;
280			timer0_state = RELEASED;
281			hardclock(&frame);
282			setdelayed();
283		}
284		break;
285	}
286}
287
288/*
289 * The acquire and release functions must be called at ipl >= splclock().
290 */
291int
292acquire_timer0(int rate, void (*function) __P((struct clockframe *frame)))
293{
294	static int old_rate;
295
296	if (rate <= 0 || rate > TIMER0_MAX_FREQ)
297		return (-1);
298	switch (timer0_state) {
299
300	case RELEASED:
301		timer0_state = ACQUIRE_PENDING;
302		break;
303
304	case RELEASE_PENDING:
305		if (rate != old_rate)
306			return (-1);
307		/*
308		 * The timer has been released recently, but is being
309		 * re-acquired before the release completed.  In this
310		 * case, we simply reclaim it as if it had not been
311		 * released at all.
312		 */
313		timer0_state = ACQUIRED;
314		break;
315
316	default:
317		return (-1);	/* busy */
318	}
319	new_function = function;
320	old_rate = new_rate = rate;
321	return (0);
322}
323
324#ifdef PC98
325int
326acquire_timer1(int mode)
327{
328
329	if (timer1_state != RELEASED)
330		return (-1);
331	timer1_state = ACQUIRED;
332
333	/*
334	 * This access to the timer registers is as atomic as possible
335	 * because it is a single instruction.  We could do better if we
336	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
337	 * and this is probably good enough for timer2, so we aren't as
338	 * careful with it as with timer0.
339	 */
340	outb(TIMER_MODE, TIMER_SEL1 | (mode & 0x3f));
341
342	return (0);
343}
344#endif
345
346int
347acquire_timer2(int mode)
348{
349
350	if (timer2_state != RELEASED)
351		return (-1);
352	timer2_state = ACQUIRED;
353
354	/*
355	 * This access to the timer registers is as atomic as possible
356	 * because it is a single instruction.  We could do better if we
357	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
358	 * and this is probably good enough for timer2, so we aren't as
359	 * careful with it as with timer0.
360	 */
361	outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
362
363	return (0);
364}
365
366int
367release_timer0()
368{
369	switch (timer0_state) {
370
371	case ACQUIRED:
372		timer0_state = RELEASE_PENDING;
373		break;
374
375	case ACQUIRE_PENDING:
376		/* Nothing happened yet, release quickly. */
377		timer0_state = RELEASED;
378		break;
379
380	default:
381		return (-1);
382	}
383	return (0);
384}
385
386#ifdef PC98
387int
388release_timer1()
389{
390
391	if (timer1_state != ACQUIRED)
392		return (-1);
393	timer1_state = RELEASED;
394	outb(TIMER_MODE, TIMER_SEL1 | TIMER_SQWAVE | TIMER_16BIT);
395	return (0);
396}
397#endif
398
399int
400release_timer2()
401{
402
403	if (timer2_state != ACQUIRED)
404		return (-1);
405	timer2_state = RELEASED;
406	outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
407	return (0);
408}
409
410#ifndef PC98
411/*
412 * This routine receives statistical clock interrupts from the RTC.
413 * As explained above, these occur at 128 interrupts per second.
414 * When profiling, we receive interrupts at a rate of 1024 Hz.
415 *
416 * This does not actually add as much overhead as it sounds, because
417 * when the statistical clock is active, the hardclock driver no longer
418 * needs to keep (inaccurate) statistics on its own.  This decouples
419 * statistics gathering from scheduling interrupts.
420 *
421 * The RTC chip requires that we read status register C (RTC_INTR)
422 * to acknowledge an interrupt, before it will generate the next one.
423 * Under high interrupt load, rtcintr() can be indefinitely delayed and
424 * the clock can tick immediately after the read from RTC_INTR.  In this
425 * case, the mc146818A interrupt signal will not drop for long enough
426 * to register with the 8259 PIC.  If an interrupt is missed, the stat
427 * clock will halt, considerably degrading system performance.  This is
428 * why we use 'while' rather than a more straightforward 'if' below.
429 * Stat clock ticks can still be lost, causing minor loss of accuracy
430 * in the statistics, but the stat clock will no longer stop.
431 */
432static void
433rtcintr(struct clockframe frame)
434{
435	while (rtcin(RTC_INTR) & RTCIR_PERIOD)
436		statclock(&frame);
437}
438
439#include "opt_ddb.h"
440#ifdef DDB
441#include <ddb/ddb.h>
442
443DB_SHOW_COMMAND(rtc, rtc)
444{
445	printf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
446	       rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
447	       rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
448	       rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
449}
450#endif /* DDB */
451#endif /* for PC98 */
452
453static int
454getit(void)
455{
456	u_long ef;
457	int high, low;
458
459	ef = read_eflags();
460	disable_intr();
461
462	/* Select timer0 and latch counter value. */
463	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
464
465	low = inb(TIMER_CNTR0);
466	high = inb(TIMER_CNTR0);
467
468	CLOCK_UNLOCK();
469	write_eflags(ef);
470	return ((high << 8) | low);
471}
472
473/*
474 * Wait "n" microseconds.
475 * Relies on timer 1 counting down from (timer_freq / hz)
476 * Note: timer had better have been programmed before this is first used!
477 */
478void
479DELAY(int n)
480{
481	int delta, prev_tick, tick, ticks_left;
482
483#ifdef DELAYDEBUG
484	int getit_calls = 1;
485	int n1;
486	static int state = 0;
487
488	if (state == 0) {
489		state = 1;
490		for (n1 = 1; n1 <= 10000000; n1 *= 10)
491			DELAY(n1);
492		state = 2;
493	}
494	if (state == 1)
495		printf("DELAY(%d)...", n);
496#endif
497	/*
498	 * Guard against the timer being uninitialized if we are called
499	 * early for console i/o.
500	 */
501	if (timer0_max_count == 0)
502		set_timer_freq(timer_freq, hz);
503
504	/*
505	 * Read the counter first, so that the rest of the setup overhead is
506	 * counted.  Guess the initial overhead is 20 usec (on most systems it
507	 * takes about 1.5 usec for each of the i/o's in getit().  The loop
508	 * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
509	 * multiplications and divisions to scale the count take a while).
510	 */
511	prev_tick = getit();
512	n -= 0;			/* XXX actually guess no initial overhead */
513	/*
514	 * Calculate (n * (timer_freq / 1e6)) without using floating point
515	 * and without any avoidable overflows.
516	 */
517	if (n <= 0)
518		ticks_left = 0;
519	else if (n < 256)
520		/*
521		 * Use fixed point to avoid a slow division by 1000000.
522		 * 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
523		 * 2^15 is the first power of 2 that gives exact results
524		 * for n between 0 and 256.
525		 */
526		ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
527	else
528		/*
529		 * Don't bother using fixed point, although gcc-2.7.2
530		 * generates particularly poor code for the long long
531		 * division, since even the slow way will complete long
532		 * before the delay is up (unless we're interrupted).
533		 */
534		ticks_left = ((u_int)n * (long long)timer_freq + 999999)
535			     / 1000000;
536
537	while (ticks_left > 0) {
538		tick = getit();
539#ifdef DELAYDEBUG
540		++getit_calls;
541#endif
542		delta = prev_tick - tick;
543		prev_tick = tick;
544		if (delta < 0) {
545			delta += timer0_max_count;
546			/*
547			 * Guard against timer0_max_count being wrong.
548			 * This shouldn't happen in normal operation,
549			 * but it may happen if set_timer_freq() is
550			 * traced.
551			 */
552			if (delta < 0)
553				delta = 0;
554		}
555		ticks_left -= delta;
556	}
557#ifdef DELAYDEBUG
558	if (state == 1)
559		printf(" %d calls to getit() at %d usec each\n",
560		       getit_calls, (n + 5) / getit_calls);
561#endif
562}
563
564static void
565sysbeepstop(void *chan)
566{
567#ifdef PC98	/* PC98 */
568	outb(IO_PPI, inb(IO_PPI)|0x08);	/* disable counter1 output to speaker */
569	release_timer1();
570#else
571	outb(IO_PPI, inb(IO_PPI)&0xFC);	/* disable counter2 output to speaker */
572	release_timer2();
573#endif
574	beeping = 0;
575}
576
577int
578sysbeep(int pitch, int period)
579{
580	int x = splclock();
581
582#ifdef PC98
583	if (acquire_timer1(TIMER_SQWAVE|TIMER_16BIT))
584		if (!beeping) {
585			/* Something else owns it. */
586			splx(x);
587			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
588		}
589	disable_intr();
590	outb(0x3fdb, pitch);
591	outb(0x3fdb, (pitch>>8));
592	enable_intr();
593	if (!beeping) {
594		/* enable counter1 output to speaker */
595		outb(IO_PPI, (inb(IO_PPI) & 0xf7));
596		beeping = period;
597		timeout(sysbeepstop, (void *)NULL, period);
598	}
599#else
600	if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
601		if (!beeping) {
602			/* Something else owns it. */
603			splx(x);
604			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
605		}
606	disable_intr();
607	outb(TIMER_CNTR2, pitch);
608	outb(TIMER_CNTR2, (pitch>>8));
609	enable_intr();
610	if (!beeping) {
611		/* enable counter2 output to speaker */
612		outb(IO_PPI, inb(IO_PPI) | 3);
613		beeping = period;
614		timeout(sysbeepstop, (void *)NULL, period);
615	}
616#endif
617	splx(x);
618	return (0);
619}
620
621#ifndef PC98
622/*
623 * RTC support routines
624 */
625
626int
627rtcin(reg)
628	int reg;
629{
630	u_char val;
631
632	outb(IO_RTC, reg);
633	inb(0x84);
634	val = inb(IO_RTC + 1);
635	inb(0x84);
636	return (val);
637}
638
639static __inline void
640writertc(u_char reg, u_char val)
641{
642	inb(0x84);
643	outb(IO_RTC, reg);
644	inb(0x84);
645	outb(IO_RTC + 1, val);
646	inb(0x84);		/* XXX work around wrong order in rtcin() */
647}
648
649static __inline int
650readrtc(int port)
651{
652	return(bcd2bin(rtcin(port)));
653}
654#endif
655
656#ifdef PC98
657unsigned int delaycount;
658#define FIRST_GUESS	0x2000
659static void findcpuspeed(void)
660{
661	int i;
662	int remainder;
663
664	/* Put counter in count down mode */
665	outb(TIMER_MODE, TIMER_SEL0 | TIMER_16BIT | TIMER_RATEGEN);
666	outb(TIMER_CNTR0, 0xff);
667	outb(TIMER_CNTR0, 0xff);
668	for (i = FIRST_GUESS; i; i--)
669		;
670	remainder = getit();
671	delaycount = (FIRST_GUESS * TIMER_DIV(1000)) / (0xffff - remainder);
672}
673#endif
674
675#ifdef PC98
676static u_int
677calibrate_clocks(void)
678{
679	int	timeout;
680	u_int	count, prev_count, tot_count;
681	u_short	sec, start_sec;
682
683	if (bootverbose)
684	        printf("Calibrating clock(s) ... ");
685	/* Check ARTIC. */
686	if (!(PC98_SYSTEM_PARAMETER(0x458) & 0x80) &&
687	    !(PC98_SYSTEM_PARAMETER(0x45b) & 0x04))
688		goto fail;
689	timeout = 100000000;
690
691	/* Read the ARTIC. */
692	sec = inw(0x5e);
693
694	/* Wait for the ARTIC to changes. */
695	start_sec = sec;
696	for (;;) {
697		sec = inw(0x5e);
698		if (sec != start_sec)
699			break;
700		if (--timeout == 0)
701			goto fail;
702	}
703	prev_count = getit();
704	if (prev_count == 0 || prev_count > timer0_max_count)
705		goto fail;
706	tot_count = 0;
707
708	if (tsc_present)
709		wrmsr(0x10, 0LL);	/* XXX 0x10 is the MSR for the TSC */
710	start_sec = sec;
711	for (;;) {
712		sec = inw(0x5e);
713		count = getit();
714		if (count == 0 || count > timer0_max_count)
715			goto fail;
716		if (count > prev_count)
717			tot_count += prev_count - (count - timer0_max_count);
718		else
719			tot_count += prev_count - count;
720		prev_count = count;
721		if ((sec == start_sec + 1200) ||
722		    (sec < start_sec &&
723		        (u_int)sec + 0x10000 == (u_int)start_sec + 1200))
724			break;
725		if (--timeout == 0)
726			goto fail;
727	}
728	/*
729	 * Read the cpu cycle counter.  The timing considerations are
730	 * similar to those for the i8254 clock.
731	 */
732	if (tsc_present)
733		tsc_freq = rdtsc();
734
735	if (bootverbose) {
736		if (tsc_present)
737		        printf("TSC clock: %u Hz, ", tsc_freq);
738	        printf("i8254 clock: %u Hz\n", tot_count);
739	}
740	return (tot_count);
741
742fail:
743	if (bootverbose)
744	        printf("failed, using default i8254 clock of %u Hz\n",
745		       timer_freq);
746	return (timer_freq);
747}
748#else
749static u_int
750calibrate_clocks(void)
751{
752	u_int64_t old_tsc;
753	u_int count, prev_count, tot_count;
754	int sec, start_sec, timeout;
755
756	if (bootverbose)
757	        printf("Calibrating clock(s) ... ");
758	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
759		goto fail;
760	timeout = 100000000;
761
762	/* Read the mc146818A seconds counter. */
763	for (;;) {
764		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
765			sec = rtcin(RTC_SEC);
766			break;
767		}
768		if (--timeout == 0)
769			goto fail;
770	}
771
772	/* Wait for the mC146818A seconds counter to change. */
773	start_sec = sec;
774	for (;;) {
775		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
776			sec = rtcin(RTC_SEC);
777			if (sec != start_sec)
778				break;
779		}
780		if (--timeout == 0)
781			goto fail;
782	}
783
784	/* Start keeping track of the i8254 counter. */
785	prev_count = getit();
786	if (prev_count == 0 || prev_count > timer0_max_count)
787		goto fail;
788	tot_count = 0;
789
790	if (tsc_present)
791		old_tsc = rdtsc();
792	else
793		old_tsc = 0;		/* shut up gcc */
794
795	/*
796	 * Wait for the mc146818A seconds counter to change.  Read the i8254
797	 * counter for each iteration since this is convenient and only
798	 * costs a few usec of inaccuracy. The timing of the final reads
799	 * of the counters almost matches the timing of the initial reads,
800	 * so the main cause of inaccuracy is the varying latency from
801	 * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
802	 * rtcin(RTC_SEC) that returns a changed seconds count.  The
803	 * maximum inaccuracy from this cause is < 10 usec on 486's.
804	 */
805	start_sec = sec;
806	for (;;) {
807		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
808			sec = rtcin(RTC_SEC);
809		count = getit();
810		if (count == 0 || count > timer0_max_count)
811			goto fail;
812		if (count > prev_count)
813			tot_count += prev_count - (count - timer0_max_count);
814		else
815			tot_count += prev_count - count;
816		prev_count = count;
817		if (sec != start_sec)
818			break;
819		if (--timeout == 0)
820			goto fail;
821	}
822
823	/*
824	 * Read the cpu cycle counter.  The timing considerations are
825	 * similar to those for the i8254 clock.
826	 */
827	if (tsc_present)
828		tsc_freq = rdtsc() - old_tsc;
829
830	if (bootverbose) {
831		if (tsc_present)
832		        printf("TSC clock: %u Hz, ", tsc_freq);
833	        printf("i8254 clock: %u Hz\n", tot_count);
834	}
835	return (tot_count);
836
837fail:
838	if (bootverbose)
839	        printf("failed, using default i8254 clock of %u Hz\n",
840		       timer_freq);
841	return (timer_freq);
842}
843#endif	/* !PC98 */
844
845static void
846set_timer_freq(u_int freq, int intr_freq)
847{
848	u_long ef;
849	int new_timer0_max_count;
850
851	ef = read_eflags();
852	disable_intr();
853	timer_freq = freq;
854	new_timer0_max_count = hardclock_max_count = TIMER_DIV(intr_freq);
855	if (new_timer0_max_count != timer0_max_count) {
856		timer0_max_count = new_timer0_max_count;
857		outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
858		outb(TIMER_CNTR0, timer0_max_count & 0xff);
859		outb(TIMER_CNTR0, timer0_max_count >> 8);
860	}
861	CLOCK_UNLOCK();
862	write_eflags(ef);
863}
864
865/*
866 * Initialize 8254 timer 0 early so that it can be used in DELAY().
867 * XXX initialization of other timers is unintentionally left blank.
868 */
869void
870startrtclock()
871{
872	u_int delta, freq;
873
874#ifdef PC98
875	findcpuspeed();
876	if (pc98_machine_type & M_8M)
877		timer_freq = 1996800L; /* 1.9968 MHz */
878	else
879		timer_freq = 2457600L; /* 2.4576 MHz */
880#endif /* PC98 */
881
882	if (cpu_feature & CPUID_TSC)
883		tsc_present = 1;
884	else
885		tsc_present = 0;
886
887#ifndef PC98
888	writertc(RTC_STATUSA, rtc_statusa);
889	writertc(RTC_STATUSB, RTCSB_24HR);
890#endif
891
892	set_timer_freq(timer_freq, hz);
893	freq = calibrate_clocks();
894#ifdef CLK_CALIBRATION_LOOP
895	if (bootverbose) {
896		printf(
897		"Press a key on the console to abort clock calibration\n");
898		while (cncheckc() == -1)
899			calibrate_clocks();
900	}
901#endif
902
903	/*
904	 * Use the calibrated i8254 frequency if it seems reasonable.
905	 * Otherwise use the default, and don't use the calibrated i586
906	 * frequency.
907	 */
908	delta = freq > timer_freq ? freq - timer_freq : timer_freq - freq;
909	if (delta < timer_freq / 100) {
910#ifndef CLK_USE_I8254_CALIBRATION
911		if (bootverbose)
912			printf(
913"CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
914		freq = timer_freq;
915#endif
916		timer_freq = freq;
917	} else {
918		if (bootverbose)
919			printf(
920		    "%d Hz differs from default of %d Hz by more than 1%%\n",
921			       freq, timer_freq);
922		tsc_freq = 0;
923	}
924
925	set_timer_freq(timer_freq, hz);
926	i8254_timecounter.tc_frequency = timer_freq;
927	init_timecounter(&i8254_timecounter);
928
929#ifndef CLK_USE_TSC_CALIBRATION
930	if (tsc_freq != 0) {
931		if (bootverbose)
932			printf(
933"CLK_USE_TSC_CALIBRATION not specified - using old calibration method\n");
934		tsc_freq = 0;
935	}
936#endif
937	if (tsc_present && tsc_freq == 0) {
938		/*
939		 * Calibration of the i586 clock relative to the mc146818A
940		 * clock failed.  Do a less accurate calibration relative
941		 * to the i8254 clock.
942		 */
943		u_int64_t old_tsc = rdtsc();
944
945		DELAY(1000000);
946		tsc_freq = rdtsc() - old_tsc;
947#ifdef CLK_USE_TSC_CALIBRATION
948		if (bootverbose)
949			printf("TSC clock: %u Hz (Method B)\n", tsc_freq);
950#endif
951	}
952
953#if !defined(SMP)
954	/*
955	 * We can not use the TSC in SMP mode, until we figure out a
956	 * cheap (impossible), reliable and precise (yeah right!)  way
957	 * to synchronize the TSCs of all the CPUs.
958	 * Curse Intel for leaving the counter out of the I/O APIC.
959	 */
960
961#if NAPM > 0
962	/*
963	 * We can not use the TSC if we support APM. Precise timekeeping
964	 * on an APM'ed machine is at best a fools pursuit, since
965	 * any and all of the time spent in various SMM code can't
966	 * be reliably accounted for.  Reading the RTC is your only
967	 * source of reliable time info.  The i8254 looses too of course
968	 * but we need to have some kind of time...
969	 * We don't know at this point whether APM is going to be used
970	 * or not, nor when it might be activated.  Play it safe.
971	 */
972	return;
973#endif /* NAPM > 0 */
974
975	if (tsc_present && tsc_freq != 0 && !tsc_is_broken) {
976		tsc_timecounter.tc_frequency = tsc_freq;
977		init_timecounter(&tsc_timecounter);
978	}
979
980#endif /* !defined(SMP) */
981}
982
983#ifdef PC98
984static void
985rtc_serialcombit(int i)
986{
987	outb(IO_RTC, ((i&0x01)<<5)|0x07);
988	DELAY(1);
989	outb(IO_RTC, ((i&0x01)<<5)|0x17);
990	DELAY(1);
991	outb(IO_RTC, ((i&0x01)<<5)|0x07);
992	DELAY(1);
993}
994
995static void
996rtc_serialcom(int i)
997{
998	rtc_serialcombit(i&0x01);
999	rtc_serialcombit((i&0x02)>>1);
1000	rtc_serialcombit((i&0x04)>>2);
1001	rtc_serialcombit((i&0x08)>>3);
1002	outb(IO_RTC, 0x07);
1003	DELAY(1);
1004	outb(IO_RTC, 0x0f);
1005	DELAY(1);
1006	outb(IO_RTC, 0x07);
1007 	DELAY(1);
1008}
1009
1010static void
1011rtc_outb(int val)
1012{
1013	int s;
1014	int sa = 0;
1015
1016	for (s=0;s<8;s++) {
1017	    sa = ((val >> s) & 0x01) ? 0x27 : 0x07;
1018	    outb(IO_RTC, sa);		/* set DI & CLK 0 */
1019	    DELAY(1);
1020	    outb(IO_RTC, sa | 0x10);	/* CLK 1 */
1021	    DELAY(1);
1022	}
1023	outb(IO_RTC, sa & 0xef);	/* CLK 0 */
1024}
1025
1026static int
1027rtc_inb(void)
1028{
1029	int s;
1030	int sa = 0;
1031
1032	for (s=0;s<8;s++) {
1033	    sa |= ((inb(0x33) & 0x01) << s);
1034	    outb(IO_RTC, 0x17);	/* CLK 1 */
1035	    DELAY(1);
1036	    outb(IO_RTC, 0x07);	/* CLK 0 */
1037	    DELAY(2);
1038	}
1039	return sa;
1040}
1041#endif /* PC-98 */
1042
1043/*
1044 * Initialize the time of day register, based on the time base which is, e.g.
1045 * from a filesystem.
1046 */
1047void
1048inittodr(time_t base)
1049{
1050	unsigned long	sec, days;
1051#ifndef PC98
1052	int		yd;
1053#endif
1054	int		year, month;
1055	int		y, m, s;
1056	struct timespec ts;
1057#ifdef PC98
1058	int		second, min, hour;
1059#endif
1060
1061	if (base) {
1062		s = splclock();
1063		ts.tv_sec = base;
1064		ts.tv_nsec = 0;
1065		set_timecounter(&ts);
1066		splx(s);
1067	}
1068
1069#ifdef PC98
1070	rtc_serialcom(0x03);	/* Time Read */
1071	rtc_serialcom(0x01);	/* Register shift command. */
1072	DELAY(20);
1073
1074	second = bcd2bin(rtc_inb() & 0xff);	/* sec */
1075	min = bcd2bin(rtc_inb() & 0xff);	/* min */
1076	hour = bcd2bin(rtc_inb() & 0xff);	/* hour */
1077	days = bcd2bin(rtc_inb() & 0xff) - 1;	/* date */
1078
1079	month = (rtc_inb() >> 4) & 0x0f;	/* month */
1080	for (m = 1; m <	month; m++)
1081		days +=	daysinmonth[m-1];
1082	year = bcd2bin(rtc_inb() & 0xff) + 1900;	/* year */
1083	/* 2000 year problem */
1084	if (year < 1995)
1085		year += 100;
1086	if (year < 1970)
1087		goto wrong_time;
1088	for (y = 1970; y < year; y++)
1089		days +=	DAYSPERYEAR + LEAPYEAR(y);
1090	if ((month > 2)	&& LEAPYEAR(year))
1091		days ++;
1092	sec = ((( days * 24 +
1093		  hour) * 60 +
1094		  min) * 60 +
1095		  second);
1096	/* sec now contains the	number of seconds, since Jan 1 1970,
1097	   in the local	time zone */
1098#else	/* IBM-PC */
1099	/* Look if we have a RTC present and the time is valid */
1100	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
1101		goto wrong_time;
1102
1103	/* wait for time update to complete */
1104	/* If RTCSA_TUP is zero, we have at least 244us before next update */
1105	while (rtcin(RTC_STATUSA) & RTCSA_TUP);
1106
1107	days = 0;
1108#ifdef USE_RTC_CENTURY
1109	year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
1110#else
1111	year = readrtc(RTC_YEAR) + 1900;
1112	if (year < 1970)
1113		year += 100;
1114#endif
1115	if (year < 1970)
1116		goto wrong_time;
1117	month = readrtc(RTC_MONTH);
1118	for (m = 1; m < month; m++)
1119		days += daysinmonth[m-1];
1120	if ((month > 2) && LEAPYEAR(year))
1121		days ++;
1122	days += readrtc(RTC_DAY) - 1;
1123	yd = days;
1124	for (y = 1970; y < year; y++)
1125		days += DAYSPERYEAR + LEAPYEAR(y);
1126	sec = ((( days * 24 +
1127		  readrtc(RTC_HRS)) * 60 +
1128		  readrtc(RTC_MIN)) * 60 +
1129		  readrtc(RTC_SEC));
1130	/* sec now contains the number of seconds, since Jan 1 1970,
1131	   in the local time zone */
1132#endif
1133
1134	sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1135
1136	y = time_second - sec;
1137	if (y <= -2 || y >= 2) {
1138		/* badly off, adjust it */
1139		s = splclock();
1140		ts.tv_sec = sec;
1141		ts.tv_nsec = 0;
1142		set_timecounter(&ts);
1143		splx(s);
1144	}
1145	return;
1146
1147wrong_time:
1148	printf("Invalid time in real time clock.\n");
1149	printf("Check and reset the date immediately!\n");
1150}
1151
1152/*
1153 * Write system time back to RTC
1154 */
1155void
1156resettodr()
1157{
1158	unsigned long	tm;
1159	int		y, m, s;
1160#ifdef PC98
1161	int		wd;
1162#endif
1163
1164	if (disable_rtc_set)
1165		return;
1166
1167	s = splclock();
1168	tm = time_second;
1169	splx(s);
1170
1171#ifdef PC98
1172	rtc_serialcom(0x01);	/* Register shift command. */
1173
1174	/* Calculate local time	to put in RTC */
1175
1176	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1177
1178	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
1179	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
1180	rtc_outb(bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
1181
1182	/* We have now the days	since 01-01-1970 in tm */
1183	wd = (tm+4)%7;
1184	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1185	     tm >= m;
1186	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1187	     tm -= m;
1188
1189	/* Now we have the years in y and the day-of-the-year in tm */
1190	for (m = 0; ; m++) {
1191		int ml;
1192
1193		ml = daysinmonth[m];
1194		if (m == 1 && LEAPYEAR(y))
1195			ml++;
1196		if (tm < ml)
1197			break;
1198		tm -= ml;
1199	}
1200
1201	m++;
1202	rtc_outb(bin2bcd(tm+1));		/* Write back Day     */
1203	rtc_outb((m << 4) | wd);		/* Write back Month & Weekday  */
1204	rtc_outb(bin2bcd(y%100));		/* Write back Year    */
1205
1206	rtc_serialcom(0x02);	/* Time set & Counter hold command. */
1207	rtc_serialcom(0x00);	/* Register hold command. */
1208#else
1209	/* Disable RTC updates and interrupts. */
1210	writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
1211
1212	/* Calculate local time to put in RTC */
1213
1214	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1215
1216	writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
1217	writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
1218	writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
1219
1220	/* We have now the days since 01-01-1970 in tm */
1221	writertc(RTC_WDAY, (tm+4)%7);			/* Write back Weekday */
1222	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1223	     tm >= m;
1224	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1225	     tm -= m;
1226
1227	/* Now we have the years in y and the day-of-the-year in tm */
1228	writertc(RTC_YEAR, bin2bcd(y%100));		/* Write back Year    */
1229#ifdef USE_RTC_CENTURY
1230	writertc(RTC_CENTURY, bin2bcd(y/100));		/* ... and Century    */
1231#endif
1232	for (m = 0; ; m++) {
1233		int ml;
1234
1235		ml = daysinmonth[m];
1236		if (m == 1 && LEAPYEAR(y))
1237			ml++;
1238		if (tm < ml)
1239			break;
1240		tm -= ml;
1241	}
1242
1243	writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
1244	writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
1245
1246	/* Reenable RTC updates and interrupts. */
1247	writertc(RTC_STATUSB, rtc_statusb);
1248#endif
1249}
1250
1251
1252/*
1253 * Start both clocks running.
1254 */
1255void
1256cpu_initclocks()
1257{
1258#ifdef APIC_IO
1259	int apic_8254_trial;
1260	struct intrec *clkdesc;
1261#endif /* APIC_IO */
1262#ifndef PC98
1263	int diag;
1264
1265	if (statclock_disable) {
1266		/*
1267		 * The stat interrupt mask is different without the
1268		 * statistics clock.  Also, don't set the interrupt
1269		 * flag which would normally cause the RTC to generate
1270		 * interrupts.
1271		 */
1272		stat_imask = HWI_MASK | SWI_MASK;
1273		rtc_statusb = RTCSB_24HR;
1274	} else {
1275	        /* Setting stathz to nonzero early helps avoid races. */
1276		stathz = RTC_NOPROFRATE;
1277		profhz = RTC_PROFRATE;
1278        }
1279#endif
1280
1281	/* Finish initializing 8253 timer 0. */
1282#ifdef APIC_IO
1283
1284	apic_8254_intr = isa_apic_irq(0);
1285	apic_8254_trial = 0;
1286	if (apic_8254_intr >= 0 ) {
1287		if (apic_int_type(0, 0) == 3)
1288			apic_8254_trial = 1;
1289	} else {
1290		/* look for ExtInt on pin 0 */
1291		if (apic_int_type(0, 0) == 3) {
1292			apic_8254_intr = 0;
1293			setup_8254_mixed_mode();
1294		} else
1295			panic("APIC_IO: Cannot route 8254 interrupt to CPU");
1296	}
1297
1298	clkdesc = inthand_add("clk", apic_8254_intr, (inthand2_t *)clkintr,
1299			      NULL, &clk_imask, INTR_EXCL);
1300	INTREN(1 << apic_8254_intr);
1301
1302#else /* APIC_IO */
1303
1304	inthand_add("clk", 0, (inthand2_t *)clkintr, NULL, &clk_imask,
1305		    INTR_EXCL);
1306	INTREN(IRQ0);
1307
1308#endif /* APIC_IO */
1309
1310#ifndef PC98
1311	/* Initialize RTC. */
1312	writertc(RTC_STATUSA, rtc_statusa);
1313	writertc(RTC_STATUSB, RTCSB_24HR);
1314
1315	/* Don't bother enabling the statistics clock. */
1316	if (statclock_disable)
1317		return;
1318	diag = rtcin(RTC_DIAG);
1319	if (diag != 0)
1320		printf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
1321
1322#ifdef APIC_IO
1323	if (isa_apic_irq(8) != 8)
1324		panic("APIC RTC != 8");
1325#endif /* APIC_IO */
1326
1327	inthand_add("rtc", 8, (inthand2_t *)rtcintr, NULL, &stat_imask,
1328		    INTR_EXCL);
1329
1330#ifdef APIC_IO
1331	INTREN(APIC_IRQ8);
1332#else
1333	INTREN(IRQ8);
1334#endif /* APIC_IO */
1335
1336	writertc(RTC_STATUSB, rtc_statusb);
1337#endif /* !PC98 */
1338
1339#ifdef APIC_IO
1340	if (apic_8254_trial) {
1341
1342		printf("APIC_IO: Testing 8254 interrupt delivery\n");
1343		while (read_intr_count(8) < 6)
1344			;	/* nothing */
1345		if (read_intr_count(apic_8254_intr) < 3) {
1346			/*
1347			 * The MP table is broken.
1348			 * The 8254 was not connected to the specified pin
1349			 * on the IO APIC.
1350			 * Workaround: Limited variant of mixed mode.
1351			 */
1352			INTRDIS(1 << apic_8254_intr);
1353			inthand_remove(clkdesc);
1354			printf("APIC_IO: Broken MP table detected: "
1355			       "8254 is not connected to IO APIC int pin %d\n",
1356			       apic_8254_intr);
1357
1358			apic_8254_intr = 0;
1359			setup_8254_mixed_mode();
1360			inthand_add("clk", apic_8254_intr,(inthand2_t *)clkintr,
1361				    NULL, &clk_imask, INTR_EXCL);
1362			INTREN(1 << apic_8254_intr);
1363		}
1364
1365	}
1366	if (apic_8254_intr)
1367		printf("APIC_IO: routing 8254 via pin %d\n",apic_8254_intr);
1368	else
1369		printf("APIC_IO: routing 8254 via 8259 on pin 0\n");
1370#endif
1371
1372}
1373
1374#ifdef APIC_IO
1375static u_long
1376read_intr_count(int vec)
1377{
1378	u_long *up;
1379	up = intr_countp[vec];
1380	if (up)
1381		return *up;
1382	return 0UL;
1383}
1384
1385static void
1386setup_8254_mixed_mode()
1387{
1388	/*
1389	 * Allow 8254 timer to INTerrupt 8259:
1390	 *  re-initialize master 8259:
1391	 *   reset; prog 4 bytes, single ICU, edge triggered
1392	 */
1393	outb(IO_ICU1, 0x13);
1394#ifdef PC98
1395	outb(IO_ICU1 + 2, NRSVIDT);	/* start vector (unused) */
1396	outb(IO_ICU1 + 2, 0x00);	/* ignore slave */
1397	outb(IO_ICU1 + 2, 0x03);	/* auto EOI, 8086 */
1398	outb(IO_ICU1 + 2, 0xfe);	/* unmask INT0 */
1399#else
1400	outb(IO_ICU1 + 1, NRSVIDT);	/* start vector (unused) */
1401	outb(IO_ICU1 + 1, 0x00);	/* ignore slave */
1402	outb(IO_ICU1 + 1, 0x03);	/* auto EOI, 8086 */
1403	outb(IO_ICU1 + 1, 0xfe);	/* unmask INT0 */
1404#endif
1405	/* program IO APIC for type 3 INT on INT0 */
1406	if (ext_int_setup(0, 0) < 0)
1407		panic("8254 redirect via APIC pin0 impossible!");
1408}
1409#endif
1410
1411void
1412setstatclockrate(int newhz)
1413{
1414#ifndef PC98
1415	if (newhz == RTC_PROFRATE)
1416		rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
1417	else
1418		rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
1419	writertc(RTC_STATUSA, rtc_statusa);
1420#endif
1421}
1422
1423static int
1424sysctl_machdep_i8254_freq SYSCTL_HANDLER_ARGS
1425{
1426	int error;
1427	u_int freq;
1428
1429	/*
1430	 * Use `i8254' instead of `timer' in external names because `timer'
1431	 * is is too generic.  Should use it everywhere.
1432	 */
1433	freq = timer_freq;
1434	error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
1435	if (error == 0 && req->newptr != NULL) {
1436		if (timer0_state != RELEASED)
1437			return (EBUSY);	/* too much trouble to handle */
1438		set_timer_freq(freq, hz);
1439		i8254_timecounter.tc_frequency = freq;
1440		update_timecounter(&i8254_timecounter);
1441	}
1442	return (error);
1443}
1444
1445SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
1446    0, sizeof(u_int), sysctl_machdep_i8254_freq, "I", "");
1447
1448static int
1449sysctl_machdep_tsc_freq SYSCTL_HANDLER_ARGS
1450{
1451	int error;
1452	u_int freq;
1453
1454	if (tsc_timecounter.tc_frequency == 0)
1455		return (EOPNOTSUPP);
1456	freq = tsc_freq;
1457	error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
1458	if (error == 0 && req->newptr != NULL) {
1459		tsc_freq = freq;
1460		tsc_timecounter.tc_frequency = tsc_freq;
1461		update_timecounter(&tsc_timecounter);
1462	}
1463	return (error);
1464}
1465
1466SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq, CTLTYPE_INT | CTLFLAG_RW,
1467    0, sizeof(u_int), sysctl_machdep_tsc_freq, "I", "");
1468
1469static unsigned
1470i8254_get_timecount(struct timecounter *tc)
1471{
1472	u_int count;
1473	u_long ef;
1474	u_int high, low;
1475
1476	ef = read_eflags();
1477	disable_intr();
1478
1479	/* Select timer0 and latch counter value. */
1480	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
1481
1482	low = inb(TIMER_CNTR0);
1483	high = inb(TIMER_CNTR0);
1484	count = timer0_max_count - ((high << 8) | low);
1485	if (count < i8254_lastcount ||
1486	    (!i8254_ticked && (clkintr_pending ||
1487	    ((count < 20 || (!(ef & PSL_I) && count < timer0_max_count / 2u)) &&
1488#ifdef APIC_IO
1489#define	lapic_irr1	((volatile u_int *)&lapic)[0x210 / 4]	/* XXX XXX */
1490	    /* XXX this assumes that apic_8254_intr is < 24. */
1491	    (lapic_irr1 & (1 << apic_8254_intr))))
1492#else
1493	    (inb(IO_ICU1) & 1)))
1494#endif
1495	    )) {
1496		i8254_ticked = 1;
1497		i8254_offset += timer0_max_count;
1498	}
1499	i8254_lastcount = count;
1500	count += i8254_offset;
1501	CLOCK_UNLOCK();
1502	write_eflags(ef);
1503	return (count);
1504}
1505
1506static unsigned
1507tsc_get_timecount(struct timecounter *tc)
1508{
1509	return (rdtsc());
1510}
1511