pcrtc.c revision 34594
1/*-
2 * Copyright (c) 1990 The Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * William Jolitz and Don Ahn.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)clock.c	7.2 (Berkeley) 5/12/91
37 *	$Id: clock.c,v 1.48 1998/03/07 15:43:43 kato Exp $
38 */
39
40/*
41 * Routines to handle clock hardware.
42 */
43
44/*
45 * inittodr, settodr and support routines written
46 * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
47 *
48 * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
49 */
50
51/*
52 * modified for PC98 by Kakefuda
53 */
54
55#include "opt_clock.h"
56#include "apm.h"
57
58#include <sys/param.h>
59#include <sys/systm.h>
60#include <sys/time.h>
61#include <sys/kernel.h>
62#ifndef SMP
63#include <sys/lock.h>
64#endif
65#include <sys/sysctl.h>
66
67#include <machine/clock.h>
68#ifdef CLK_CALIBRATION_LOOP
69#include <machine/cons.h>
70#endif
71#include <machine/cputypes.h>
72#include <machine/frame.h>
73#include <machine/ipl.h>
74#include <machine/limits.h>
75#include <machine/md_var.h>
76#ifdef APIC_IO
77#include <machine/segments.h>
78#endif
79#if defined(SMP) || defined(APIC_IO)
80#include <machine/smp.h>
81#endif /* SMP || APIC_IO */
82#include <machine/specialreg.h>
83
84#include <i386/isa/icu.h>
85#ifdef PC98
86#include <pc98/pc98/pc98.h>
87#include <pc98/pc98/pc98_machdep.h>
88#include <i386/isa/isa_device.h>
89#else
90#include <i386/isa/isa.h>
91#include <i386/isa/rtc.h>
92#endif
93#include <i386/isa/timerreg.h>
94
95#include <sys/interrupt.h>
96
97#ifdef SMP
98#define disable_intr()	CLOCK_DISABLE_INTR()
99#define enable_intr()	CLOCK_ENABLE_INTR()
100
101#ifdef APIC_IO
102#include <i386/isa/intr_machdep.h>
103/* The interrupt triggered by the 8254 (timer) chip */
104int apic_8254_intr;
105static u_long read_intr_count __P((int vec));
106static void setup_8254_mixed_mode __P((void));
107#endif
108#endif /* SMP */
109
110/*
111 * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
112 * can use a simple formula for leap years.
113 */
114#define	LEAPYEAR(y) ((u_int)(y) % 4 == 0)
115#define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
116
117#define	TIMER_DIV(x) ((timer_freq + (x) / 2) / (x))
118
119/*
120 * Time in timer cycles that it takes for microtime() to disable interrupts
121 * and latch the count.  microtime() currently uses "cli; outb ..." so it
122 * normally takes less than 2 timer cycles.  Add a few for cache misses.
123 * Add a few more to allow for latency in bogus calls to microtime() with
124 * interrupts already disabled.
125 */
126#define	TIMER0_LATCH_COUNT	20
127
128/*
129 * Maximum frequency that we are willing to allow for timer0.  Must be
130 * low enough to guarantee that the timer interrupt handler returns
131 * before the next timer interrupt.
132 */
133#define	TIMER0_MAX_FREQ		20000
134
135int	adjkerntz;		/* local offset	from GMT in seconds */
136int	disable_rtc_set;	/* disable resettodr() if != 0 */
137u_int	idelayed;
138int	statclock_disable;
139u_int	stat_imask = SWI_CLOCK_MASK;
140#ifndef TIMER_FREQ
141#ifdef PC98
142#ifndef AUTO_CLOCK
143#ifndef PC98_8M
144#define	TIMER_FREQ	2457600;
145#else	/* !PC98_8M */
146#define	TIMER_FREQ	1996800;
147#endif	/* PC98_8M */
148#else	/* AUTO_CLOCK */
149#define	TIMER_FREQ	2457600;
150#endif	/* AUTO_CLOCK */
151#else /* IBM-PC */
152#define	TIMER_FREQ	1193182;
153#endif /* PC98 */
154#endif
155u_int	timer_freq = TIMER_FREQ;
156int	timer0_max_count;
157u_int	tsc_freq;
158int	wall_cmos_clock;	/* wall	CMOS clock assumed if != 0 */
159
160static	int	beeping = 0;
161static	u_int	clk_imask = HWI_MASK | SWI_MASK;
162static	const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
163static	u_int	hardclock_max_count;
164static	u_int32_t i8254_lastcount;
165static	u_int32_t i8254_offset;
166static	int	i8254_ticked;
167/*
168 * XXX new_function and timer_func should not handle clockframes, but
169 * timer_func currently needs to hold hardclock to handle the
170 * timer0_state == 0 case.  We should use register_intr()/unregister_intr()
171 * to switch between clkintr() and a slightly different timerintr().
172 */
173static	void	(*new_function) __P((struct clockframe *frame));
174static	u_int	new_rate;
175#ifndef PC98
176static	u_char	rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
177static	u_char	rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
178#endif
179static	u_int	timer0_prescaler_count;
180
181/* Values for timerX_state: */
182#define	RELEASED	0
183#define	RELEASE_PENDING	1
184#define	ACQUIRED	2
185#define	ACQUIRE_PENDING	3
186
187static	u_char	timer0_state;
188#ifdef	PC98
189static 	u_char	timer1_state;
190#endif
191static	u_char	timer2_state;
192static	void	(*timer_func) __P((struct clockframe *frame)) = hardclock;
193#ifdef PC98
194static void rtc_serialcombit __P((int));
195static void rtc_serialcom __P((int));
196static int rtc_inb __P((void));
197static void rtc_outb __P((int));
198#endif
199static	u_int	tsc_present;
200
201static	u_int64_t i8254_get_timecount __P((void));
202static	void	set_timer_freq(u_int freq, int intr_freq);
203static	u_int64_t tsc_get_timecount __P((void));
204static	u_int32_t tsc_get_timedelta __P((struct timecounter *tc));
205
206static struct timecounter tsc_timecounter[3] = {
207	tsc_get_timedelta,	/* get_timedelta */
208	tsc_get_timecount,	/* get_timecount */
209 	~0,			/* counter_mask */
210	0,			/* frequency */
211	 "TSC"			/* name */
212};
213
214SYSCTL_OPAQUE(_debug, OID_AUTO, tsc_timecounter, CTLFLAG_RD,
215	tsc_timecounter, sizeof(tsc_timecounter), "S,timecounter", "");
216
217static struct timecounter i8254_timecounter[3] = {
218	0,			/* get_timedelta */
219	i8254_get_timecount,	/* get_timecount */
220	(1ULL << 32) - 1,	/* counter_mask */
221	0,			/* frequency */
222	"i8254"			/* name */
223};
224
225SYSCTL_OPAQUE(_debug, OID_AUTO, i8254_timecounter, CTLFLAG_RD,
226	i8254_timecounter, sizeof(i8254_timecounter), "S,timecounter", "");
227
228static void
229clkintr(struct clockframe frame)
230{
231	if (!i8254_ticked)
232		i8254_offset += timer0_max_count;
233	else
234		i8254_ticked = 0;
235	i8254_lastcount = 0;
236	timer_func(&frame);
237	switch (timer0_state) {
238
239	case RELEASED:
240		setdelayed();
241		break;
242
243	case ACQUIRED:
244		if ((timer0_prescaler_count += timer0_max_count)
245		    >= hardclock_max_count) {
246			timer0_prescaler_count -= hardclock_max_count;
247			hardclock(&frame);
248			setdelayed();
249		}
250		break;
251
252	case ACQUIRE_PENDING:
253		setdelayed();
254		timer0_max_count = TIMER_DIV(new_rate);
255		disable_intr();
256		outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
257		outb(TIMER_CNTR0, timer0_max_count & 0xff);
258		outb(TIMER_CNTR0, timer0_max_count >> 8);
259		enable_intr();
260		timer0_prescaler_count = 0;
261		timer_func = new_function;
262		timer0_state = ACQUIRED;
263		break;
264
265	case RELEASE_PENDING:
266		if ((timer0_prescaler_count += timer0_max_count)
267		    >= hardclock_max_count) {
268			timer0_prescaler_count -= hardclock_max_count;
269			/*
270			 * See microtime.s for this magic.
271			 */
272#ifdef PC98
273#ifndef AUTO_CLOCK
274#ifndef PC98_8M
275			time.tv_usec += (6667 * timer0_prescaler_count) >> 14;
276#else /* PC98_8M */
277			time.tv_usec += (16411 * timer0_prescaler_count) >> 15;
278#endif /* PC98_8M */
279#else /* AUTO_CLOCK */
280			if (pc98_machine_type & M_8M) {
281				/* PC98_8M */
282				time.tv_usec += (16411 * timer0_prescaler_count) >> 15;
283			} else {
284				time.tv_usec += (6667 * timer0_prescaler_count) >> 14;
285			}
286#endif /* AUTO_CLOCK */
287#else /* IBM-PC */
288			time.tv_usec += (27465 * timer0_prescaler_count) >> 15;
289#endif
290			if (time.tv_usec >= 1000000)
291				time.tv_usec -= 1000000;
292			hardclock(&frame);
293			setdelayed();
294			timer0_max_count = hardclock_max_count;
295			disable_intr();
296			outb(TIMER_MODE,
297			     TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
298			outb(TIMER_CNTR0, timer0_max_count & 0xff);
299			outb(TIMER_CNTR0, timer0_max_count >> 8);
300			enable_intr();
301			timer0_prescaler_count = 0;
302			timer_func = hardclock;
303			timer0_state = RELEASED;
304		}
305		break;
306	}
307}
308
309/*
310 * The acquire and release functions must be called at ipl >= splclock().
311 */
312int
313acquire_timer0(int rate, void (*function) __P((struct clockframe *frame)))
314{
315	static int old_rate;
316
317	if (rate <= 0 || rate > TIMER0_MAX_FREQ)
318		return (-1);
319	if (strcmp(timecounter->name, "i8254") == 0)
320		return (-1);
321	switch (timer0_state) {
322
323	case RELEASED:
324		timer0_state = ACQUIRE_PENDING;
325		break;
326
327	case RELEASE_PENDING:
328		if (rate != old_rate)
329			return (-1);
330		/*
331		 * The timer has been released recently, but is being
332		 * re-acquired before the release completed.  In this
333		 * case, we simply reclaim it as if it had not been
334		 * released at all.
335		 */
336		timer0_state = ACQUIRED;
337		break;
338
339	default:
340		return (-1);	/* busy */
341	}
342	new_function = function;
343	old_rate = new_rate = rate;
344	return (0);
345}
346
347#ifdef PC98
348int
349acquire_timer1(int mode)
350{
351
352	if (timer1_state != RELEASED)
353		return (-1);
354	timer1_state = ACQUIRED;
355
356	/*
357	 * This access to the timer registers is as atomic as possible
358	 * because it is a single instruction.  We could do better if we
359	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
360	 * and this is probably good enough for timer2, so we aren't as
361	 * careful with it as with timer0.
362	 */
363	outb(TIMER_MODE, TIMER_SEL1 | (mode & 0x3f));
364
365	return (0);
366}
367#endif
368
369int
370acquire_timer2(int mode)
371{
372
373	if (timer2_state != RELEASED)
374		return (-1);
375	timer2_state = ACQUIRED;
376
377	/*
378	 * This access to the timer registers is as atomic as possible
379	 * because it is a single instruction.  We could do better if we
380	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
381	 * and this is probably good enough for timer2, so we aren't as
382	 * careful with it as with timer0.
383	 */
384	outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
385
386	return (0);
387}
388
389int
390release_timer0()
391{
392	switch (timer0_state) {
393
394	case ACQUIRED:
395		timer0_state = RELEASE_PENDING;
396		break;
397
398	case ACQUIRE_PENDING:
399		/* Nothing happened yet, release quickly. */
400		timer0_state = RELEASED;
401		break;
402
403	default:
404		return (-1);
405	}
406	return (0);
407}
408
409#ifdef PC98
410int
411release_timer1()
412{
413
414	if (timer1_state != ACQUIRED)
415		return (-1);
416	timer1_state = RELEASED;
417	outb(TIMER_MODE, TIMER_SEL1 | TIMER_SQWAVE | TIMER_16BIT);
418	return (0);
419}
420#endif
421
422int
423release_timer2()
424{
425
426	if (timer2_state != ACQUIRED)
427		return (-1);
428	timer2_state = RELEASED;
429	outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
430	return (0);
431}
432
433#ifndef PC98
434/*
435 * This routine receives statistical clock interrupts from the RTC.
436 * As explained above, these occur at 128 interrupts per second.
437 * When profiling, we receive interrupts at a rate of 1024 Hz.
438 *
439 * This does not actually add as much overhead as it sounds, because
440 * when the statistical clock is active, the hardclock driver no longer
441 * needs to keep (inaccurate) statistics on its own.  This decouples
442 * statistics gathering from scheduling interrupts.
443 *
444 * The RTC chip requires that we read status register C (RTC_INTR)
445 * to acknowledge an interrupt, before it will generate the next one.
446 * Under high interrupt load, rtcintr() can be indefinitely delayed and
447 * the clock can tick immediately after the read from RTC_INTR.  In this
448 * case, the mc146818A interrupt signal will not drop for long enough
449 * to register with the 8259 PIC.  If an interrupt is missed, the stat
450 * clock will halt, considerably degrading system performance.  This is
451 * why we use 'while' rather than a more straightforward 'if' below.
452 * Stat clock ticks can still be lost, causing minor loss of accuracy
453 * in the statistics, but the stat clock will no longer stop.
454 */
455static void
456rtcintr(struct clockframe frame)
457{
458	while (rtcin(RTC_INTR) & RTCIR_PERIOD)
459		statclock(&frame);
460}
461
462#include "opt_ddb.h"
463#ifdef DDB
464#include <ddb/ddb.h>
465
466DB_SHOW_COMMAND(rtc, rtc)
467{
468	printf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
469	       rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
470	       rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
471	       rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
472}
473#endif /* DDB */
474#endif /* for PC98 */
475
476static int
477getit(void)
478{
479	u_long ef;
480	int high, low;
481
482	ef = read_eflags();
483	disable_intr();
484
485	/* Select timer0 and latch counter value. */
486	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
487
488	low = inb(TIMER_CNTR0);
489	high = inb(TIMER_CNTR0);
490
491	CLOCK_UNLOCK();
492	write_eflags(ef);
493	return ((high << 8) | low);
494}
495
496/*
497 * Wait "n" microseconds.
498 * Relies on timer 1 counting down from (timer_freq / hz)
499 * Note: timer had better have been programmed before this is first used!
500 */
501void
502DELAY(int n)
503{
504	int delta, prev_tick, tick, ticks_left;
505
506#ifdef DELAYDEBUG
507	int getit_calls = 1;
508	int n1;
509	static int state = 0;
510
511	if (state == 0) {
512		state = 1;
513		for (n1 = 1; n1 <= 10000000; n1 *= 10)
514			DELAY(n1);
515		state = 2;
516	}
517	if (state == 1)
518		printf("DELAY(%d)...", n);
519#endif
520	/*
521	 * Guard against the timer being uninitialized if we are called
522	 * early for console i/o.
523	 */
524	if (timer0_max_count == 0)
525		set_timer_freq(timer_freq, hz);
526
527	/*
528	 * Read the counter first, so that the rest of the setup overhead is
529	 * counted.  Guess the initial overhead is 20 usec (on most systems it
530	 * takes about 1.5 usec for each of the i/o's in getit().  The loop
531	 * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
532	 * multiplications and divisions to scale the count take a while).
533	 */
534	prev_tick = getit();
535	n -= 0;			/* XXX actually guess no initial overhead */
536	/*
537	 * Calculate (n * (timer_freq / 1e6)) without using floating point
538	 * and without any avoidable overflows.
539	 */
540	if (n <= 0)
541		ticks_left = 0;
542	else if (n < 256)
543		/*
544		 * Use fixed point to avoid a slow division by 1000000.
545		 * 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
546		 * 2^15 is the first power of 2 that gives exact results
547		 * for n between 0 and 256.
548		 */
549		ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
550	else
551		/*
552		 * Don't bother using fixed point, although gcc-2.7.2
553		 * generates particularly poor code for the long long
554		 * division, since even the slow way will complete long
555		 * before the delay is up (unless we're interrupted).
556		 */
557		ticks_left = ((u_int)n * (long long)timer_freq + 999999)
558			     / 1000000;
559
560	while (ticks_left > 0) {
561		tick = getit();
562#ifdef DELAYDEBUG
563		++getit_calls;
564#endif
565		delta = prev_tick - tick;
566		prev_tick = tick;
567		if (delta < 0) {
568			delta += timer0_max_count;
569			/*
570			 * Guard against timer0_max_count being wrong.
571			 * This shouldn't happen in normal operation,
572			 * but it may happen if set_timer_freq() is
573			 * traced.
574			 */
575			if (delta < 0)
576				delta = 0;
577		}
578		ticks_left -= delta;
579	}
580#ifdef DELAYDEBUG
581	if (state == 1)
582		printf(" %d calls to getit() at %d usec each\n",
583		       getit_calls, (n + 5) / getit_calls);
584#endif
585}
586
587static void
588sysbeepstop(void *chan)
589{
590#ifdef PC98	/* PC98 */
591	outb(IO_PPI, inb(IO_PPI)|0x08);	/* disable counter1 output to speaker */
592	release_timer1();
593#else
594	outb(IO_PPI, inb(IO_PPI)&0xFC);	/* disable counter2 output to speaker */
595	release_timer2();
596#endif
597	beeping = 0;
598}
599
600int
601sysbeep(int pitch, int period)
602{
603	int x = splclock();
604
605#ifdef PC98
606	if (acquire_timer1(TIMER_SQWAVE|TIMER_16BIT))
607		if (!beeping) {
608			/* Something else owns it. */
609			splx(x);
610			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
611		}
612	disable_intr();
613	outb(0x3fdb, pitch);
614	outb(0x3fdb, (pitch>>8));
615	enable_intr();
616	if (!beeping) {
617		/* enable counter1 output to speaker */
618		outb(IO_PPI, (inb(IO_PPI) & 0xf7));
619		beeping = period;
620		timeout(sysbeepstop, (void *)NULL, period);
621	}
622#else
623	if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
624		if (!beeping) {
625			/* Something else owns it. */
626			splx(x);
627			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
628		}
629	disable_intr();
630	outb(TIMER_CNTR2, pitch);
631	outb(TIMER_CNTR2, (pitch>>8));
632	enable_intr();
633	if (!beeping) {
634		/* enable counter2 output to speaker */
635		outb(IO_PPI, inb(IO_PPI) | 3);
636		beeping = period;
637		timeout(sysbeepstop, (void *)NULL, period);
638	}
639#endif
640	splx(x);
641	return (0);
642}
643
644#ifndef PC98
645/*
646 * RTC support routines
647 */
648
649int
650rtcin(reg)
651	int reg;
652{
653	u_char val;
654
655	outb(IO_RTC, reg);
656	inb(0x84);
657	val = inb(IO_RTC + 1);
658	inb(0x84);
659	return (val);
660}
661
662static __inline void
663writertc(u_char reg, u_char val)
664{
665	inb(0x84);
666	outb(IO_RTC, reg);
667	inb(0x84);
668	outb(IO_RTC + 1, val);
669	inb(0x84);		/* XXX work around wrong order in rtcin() */
670}
671
672static __inline int
673readrtc(int port)
674{
675	return(bcd2bin(rtcin(port)));
676}
677#endif
678
679#ifdef PC98
680unsigned int delaycount;
681#define FIRST_GUESS	0x2000
682static void findcpuspeed(void)
683{
684	int i;
685	int remainder;
686
687	/* Put counter in count down mode */
688	outb(TIMER_MODE, TIMER_SEL0 | TIMER_16BIT | TIMER_RATEGEN);
689	outb(TIMER_CNTR0, 0xff);
690	outb(TIMER_CNTR0, 0xff);
691	for (i = FIRST_GUESS; i; i--)
692		;
693	remainder = getit();
694	delaycount = (FIRST_GUESS * TIMER_DIV(1000)) / (0xffff - remainder);
695}
696#endif
697
698#ifndef PC98
699static u_int
700calibrate_clocks(void)
701{
702	u_int count, prev_count, tot_count;
703	int sec, start_sec, timeout;
704
705	if (bootverbose)
706	        printf("Calibrating clock(s) ... ");
707	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
708		goto fail;
709	timeout = 100000000;
710
711	/* Read the mc146818A seconds counter. */
712	for (;;) {
713		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
714			sec = rtcin(RTC_SEC);
715			break;
716		}
717		if (--timeout == 0)
718			goto fail;
719	}
720
721	/* Wait for the mC146818A seconds counter to change. */
722	start_sec = sec;
723	for (;;) {
724		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
725			sec = rtcin(RTC_SEC);
726			if (sec != start_sec)
727				break;
728		}
729		if (--timeout == 0)
730			goto fail;
731	}
732
733	/* Start keeping track of the i8254 counter. */
734	prev_count = getit();
735	if (prev_count == 0 || prev_count > timer0_max_count)
736		goto fail;
737	tot_count = 0;
738
739	if (tsc_present)
740		wrmsr(0x10, 0LL);	/* XXX 0x10 is the MSR for the TSC */
741
742	/*
743	 * Wait for the mc146818A seconds counter to change.  Read the i8254
744	 * counter for each iteration since this is convenient and only
745	 * costs a few usec of inaccuracy. The timing of the final reads
746	 * of the counters almost matches the timing of the initial reads,
747	 * so the main cause of inaccuracy is the varying latency from
748	 * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
749	 * rtcin(RTC_SEC) that returns a changed seconds count.  The
750	 * maximum inaccuracy from this cause is < 10 usec on 486's.
751	 */
752	start_sec = sec;
753	for (;;) {
754		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
755			sec = rtcin(RTC_SEC);
756		count = getit();
757		if (count == 0 || count > timer0_max_count)
758			goto fail;
759		if (count > prev_count)
760			tot_count += prev_count - (count - timer0_max_count);
761		else
762			tot_count += prev_count - count;
763		prev_count = count;
764		if (sec != start_sec)
765			break;
766		if (--timeout == 0)
767			goto fail;
768	}
769
770	/*
771	 * Read the cpu cycle counter.  The timing considerations are
772	 * similar to those for the i8254 clock.
773	 */
774	if (tsc_present)
775		tsc_freq = rdtsc();
776
777	if (bootverbose) {
778		if (tsc_present)
779		        printf("TSC clock: %u Hz, ", tsc_freq);
780	        printf("i8254 clock: %u Hz\n", tot_count);
781	}
782	return (tot_count);
783
784fail:
785	if (bootverbose)
786	        printf("failed, using default i8254 clock of %u Hz\n",
787		       timer_freq);
788	return (timer_freq);
789}
790#endif	/* !PC98 */
791
792static void
793set_timer_freq(u_int freq, int intr_freq)
794{
795	u_long ef;
796	int new_timer0_max_count;
797
798	ef = read_eflags();
799	disable_intr();
800	timer_freq = freq;
801	new_timer0_max_count = hardclock_max_count = TIMER_DIV(intr_freq);
802	if (new_timer0_max_count != timer0_max_count) {
803		timer0_max_count = new_timer0_max_count;
804		outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
805		outb(TIMER_CNTR0, timer0_max_count & 0xff);
806		outb(TIMER_CNTR0, timer0_max_count >> 8);
807	}
808	CLOCK_UNLOCK();
809	write_eflags(ef);
810}
811
812/*
813 * Initialize 8254 timer 0 early so that it can be used in DELAY().
814 * XXX initialization of other timers is unintentionally left blank.
815 */
816void
817startrtclock()
818{
819	u_int delta, freq;
820
821#ifdef PC98
822	findcpuspeed();
823#ifndef AUTO_CLOCK
824	if (pc98_machine_type & M_8M) {
825#ifndef	PC98_8M
826		printf("you must reconfig a kernel with \"PC98_8M\" option.\n");
827#endif
828	} else {
829#ifdef	PC98_8M
830		printf("You must reconfig a kernel without \"PC98_8M\" option.\n");
831#endif
832	}
833#else /* AUTO_CLOCK */
834	if (pc98_machine_type & M_8M)
835		timer_freq = 1996800L; /* 1.9968 MHz */
836	else
837		timer_freq = 2457600L; /* 2.4576 MHz */
838#endif /* AUTO_CLOCK */
839#endif /* PC98 */
840
841	if (cpu_feature & CPUID_TSC)
842		tsc_present = 1;
843	else
844		tsc_present = 0;
845
846#ifdef SMP
847	tsc_present = 0;
848#endif
849#if NAPM > 0
850	tsc_present = 0;
851#endif
852
853#ifndef PC98
854	writertc(RTC_STATUSA, rtc_statusa);
855	writertc(RTC_STATUSB, RTCSB_24HR);
856#endif
857
858#ifndef PC98
859	set_timer_freq(timer_freq, hz);
860	freq = calibrate_clocks();
861#ifdef CLK_CALIBRATION_LOOP
862	if (bootverbose) {
863		printf(
864		"Press a key on the console to abort clock calibration\n");
865		while (cncheckc() == -1)
866			calibrate_clocks();
867	}
868#endif
869
870	/*
871	 * Use the calibrated i8254 frequency if it seems reasonable.
872	 * Otherwise use the default, and don't use the calibrated i586
873	 * frequency.
874	 */
875	delta = freq > timer_freq ? freq - timer_freq : timer_freq - freq;
876	if (delta < timer_freq / 100) {
877#ifndef CLK_USE_I8254_CALIBRATION
878		if (bootverbose)
879			printf(
880"CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
881		freq = timer_freq;
882#endif
883		timer_freq = freq;
884	} else {
885		if (bootverbose)
886			printf(
887		    "%d Hz differs from default of %d Hz by more than 1%%\n",
888			       freq, timer_freq);
889		tsc_freq = 0;
890	}
891#endif
892
893	set_timer_freq(timer_freq, hz);
894	i8254_timecounter[0].frequency = timer_freq;
895	init_timecounter(i8254_timecounter);
896
897#ifndef CLK_USE_TSC_CALIBRATION
898	if (tsc_freq != 0) {
899		if (bootverbose)
900			printf(
901"CLK_USE_TSC_CALIBRATION not specified - using old calibration method\n");
902		tsc_freq = 0;
903	}
904#endif
905	if (tsc_present && tsc_freq == 0) {
906		/*
907		 * Calibration of the i586 clock relative to the mc146818A
908		 * clock failed.  Do a less accurate calibration relative
909		 * to the i8254 clock.
910		 */
911		wrmsr(0x10, 0LL);	/* XXX */
912		DELAY(1000000);
913		tsc_freq = rdtsc();
914#ifdef CLK_USE_TSC_CALIBRATION
915		if (bootverbose)
916			printf("TSC clock: %u Hz (Method B)\n", tsc_freq);
917#endif
918	}
919	if (tsc_present && tsc_freq != 0) {
920		tsc_timecounter[0].frequency = tsc_freq;
921		init_timecounter(tsc_timecounter);
922	}
923}
924
925#ifdef PC98
926static void
927rtc_serialcombit(int i)
928{
929	outb(IO_RTC, ((i&0x01)<<5)|0x07);
930	DELAY(1);
931	outb(IO_RTC, ((i&0x01)<<5)|0x17);
932	DELAY(1);
933	outb(IO_RTC, ((i&0x01)<<5)|0x07);
934	DELAY(1);
935}
936
937static void
938rtc_serialcom(int i)
939{
940	rtc_serialcombit(i&0x01);
941	rtc_serialcombit((i&0x02)>>1);
942	rtc_serialcombit((i&0x04)>>2);
943	rtc_serialcombit((i&0x08)>>3);
944	outb(IO_RTC, 0x07);
945	DELAY(1);
946	outb(IO_RTC, 0x0f);
947	DELAY(1);
948	outb(IO_RTC, 0x07);
949 	DELAY(1);
950}
951
952static void
953rtc_outb(int val)
954{
955	int s;
956	int sa = 0;
957
958	for (s=0;s<8;s++) {
959	    sa = ((val >> s) & 0x01) ? 0x27 : 0x07;
960	    outb(IO_RTC, sa);		/* set DI & CLK 0 */
961	    DELAY(1);
962	    outb(IO_RTC, sa | 0x10);	/* CLK 1 */
963	    DELAY(1);
964	}
965	outb(IO_RTC, sa & 0xef);	/* CLK 0 */
966}
967
968static int
969rtc_inb(void)
970{
971	int s;
972	int sa = 0;
973
974	for (s=0;s<8;s++) {
975	    sa |= ((inb(0x33) & 0x01) << s);
976	    outb(IO_RTC, 0x17);	/* CLK 1 */
977	    DELAY(1);
978	    outb(IO_RTC, 0x07);	/* CLK 0 */
979	    DELAY(2);
980	}
981	return sa;
982}
983#endif /* PC-98 */
984
985/*
986 * Initialize the time of day register,	based on the time base which is, e.g.
987 * from	a filesystem.
988 */
989void
990inittodr(time_t base)
991{
992	unsigned long	sec, days;
993	int		yd;
994	int		year, month;
995	int		y, m, s;
996	struct timespec ts;
997#ifdef PC98
998	int		second, min, hour;
999#endif
1000
1001	if (base) {
1002		s = splclock();
1003		ts.tv_sec = base;
1004		ts.tv_nsec = 0;
1005		set_timecounter(&ts);
1006		splx(s);
1007	}
1008
1009#ifdef PC98
1010	rtc_serialcom(0x03);	/* Time Read */
1011	rtc_serialcom(0x01);	/* Register shift command. */
1012	DELAY(20);
1013
1014	second = bcd2bin(rtc_inb() & 0xff);	/* sec */
1015	min = bcd2bin(rtc_inb() & 0xff);	/* min */
1016	hour = bcd2bin(rtc_inb() & 0xff);	/* hour */
1017	days = bcd2bin(rtc_inb() & 0xff) - 1;	/* date */
1018
1019	month = (rtc_inb() >> 4) & 0x0f;	/* month */
1020	for (m = 1; m <	month; m++)
1021		days +=	daysinmonth[m-1];
1022	year = bcd2bin(rtc_inb() & 0xff) + 1900;	/* year */
1023	/* 2000 year problem */
1024	if (year < 1995)
1025		year += 100;
1026	if (year < 1970)
1027		goto wrong_time;
1028	for (y = 1970; y < year; y++)
1029		days +=	DAYSPERYEAR + LEAPYEAR(y);
1030	if ((month > 2)	&& LEAPYEAR(year))
1031		days ++;
1032	sec = ((( days * 24 +
1033		  hour) * 60 +
1034		  min) * 60 +
1035		  second);
1036	/* sec now contains the	number of seconds, since Jan 1 1970,
1037	   in the local	time zone */
1038#else	/* IBM-PC */
1039	/* Look	if we have a RTC present and the time is valid */
1040	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
1041		goto wrong_time;
1042
1043	/* wait	for time update	to complete */
1044	/* If RTCSA_TUP	is zero, we have at least 244us	before next update */
1045	while (rtcin(RTC_STATUSA) & RTCSA_TUP);
1046
1047	days = 0;
1048#ifdef USE_RTC_CENTURY
1049	year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY)	* 100;
1050#else
1051	year = readrtc(RTC_YEAR) + 1900;
1052	if (year < 1970)
1053		year += 100;
1054#endif
1055	if (year < 1970)
1056		goto wrong_time;
1057	month =	readrtc(RTC_MONTH);
1058	for (m = 1; m <	month; m++)
1059		days +=	daysinmonth[m-1];
1060	if ((month > 2)	&& LEAPYEAR(year))
1061		days ++;
1062	days +=	readrtc(RTC_DAY) - 1;
1063	yd = days;
1064	for (y = 1970; y < year; y++)
1065		days +=	DAYSPERYEAR + LEAPYEAR(y);
1066	sec = ((( days * 24 +
1067		  readrtc(RTC_HRS)) * 60 +
1068		  readrtc(RTC_MIN)) * 60 +
1069		  readrtc(RTC_SEC));
1070	/* sec now contains the	number of seconds, since Jan 1 1970,
1071	   in the local	time zone */
1072#endif
1073
1074	sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1075
1076	y = time.tv_sec - sec;
1077	if (y <= -2 || y >= 2) {
1078		/* badly off, adjust it */
1079		s = splclock();
1080		ts.tv_sec = sec;
1081		ts.tv_nsec = 0;
1082		set_timecounter(&ts);
1083		splx(s);
1084	}
1085	return;
1086
1087wrong_time:
1088	printf("Invalid	time in	real time clock.\n");
1089	printf("Check and reset	the date immediately!\n");
1090}
1091
1092/*
1093 * Write system	time back to RTC
1094 */
1095void
1096resettodr()
1097{
1098	unsigned long	tm;
1099	int		y, m, s;
1100#ifdef PC98
1101	int		wd;
1102#endif
1103
1104	if (disable_rtc_set)
1105		return;
1106
1107	s = splclock();
1108	tm = time.tv_sec;
1109	splx(s);
1110
1111#ifdef PC98
1112	rtc_serialcom(0x01);	/* Register shift command. */
1113
1114	/* Calculate local time	to put in RTC */
1115
1116	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1117
1118	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
1119	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
1120	rtc_outb(bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
1121
1122	/* We have now the days	since 01-01-1970 in tm */
1123	wd = (tm+4)%7;
1124	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1125	     tm >= m;
1126	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1127	     tm -= m;
1128
1129	/* Now we have the years in y and the day-of-the-year in tm */
1130	for (m = 0; ; m++) {
1131		int ml;
1132
1133		ml = daysinmonth[m];
1134		if (m == 1 && LEAPYEAR(y))
1135			ml++;
1136		if (tm < ml)
1137			break;
1138		tm -= ml;
1139	}
1140
1141	m++;
1142	rtc_outb(bin2bcd(tm+1));		/* Write back Day     */
1143	rtc_outb((m << 4) | wd);		/* Write back Month & Weekday  */
1144	rtc_outb(bin2bcd(y%100));		/* Write back Year    */
1145
1146	rtc_serialcom(0x02);	/* Time set & Counter hold command. */
1147	rtc_serialcom(0x00);	/* Register hold command. */
1148#else
1149	/* Disable RTC updates and interrupts. */
1150	writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
1151
1152	/* Calculate local time	to put in RTC */
1153
1154	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1155
1156	writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
1157	writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
1158	writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
1159
1160	/* We have now the days	since 01-01-1970 in tm */
1161	writertc(RTC_WDAY, (tm+4)%7);			/* Write back Weekday */
1162	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1163	     tm >= m;
1164	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1165	     tm -= m;
1166
1167	/* Now we have the years in y and the day-of-the-year in tm */
1168	writertc(RTC_YEAR, bin2bcd(y%100));		/* Write back Year    */
1169#ifdef USE_RTC_CENTURY
1170	writertc(RTC_CENTURY, bin2bcd(y/100));		/* ... and Century    */
1171#endif
1172	for (m = 0; ; m++) {
1173		int ml;
1174
1175		ml = daysinmonth[m];
1176		if (m == 1 && LEAPYEAR(y))
1177			ml++;
1178		if (tm < ml)
1179			break;
1180		tm -= ml;
1181	}
1182
1183	writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
1184	writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
1185
1186	/* Reenable RTC updates and interrupts. */
1187	writertc(RTC_STATUSB, rtc_statusb);
1188#endif
1189}
1190
1191
1192/*
1193 * Start both clocks running.
1194 */
1195void
1196cpu_initclocks()
1197{
1198#ifdef APIC_IO
1199	int apic_8254_trial;
1200#endif /* APIC_IO */
1201#ifndef PC98
1202	int diag;
1203
1204	if (statclock_disable) {
1205		/*
1206		 * The stat interrupt mask is different without the
1207		 * statistics clock.  Also, don't set the interrupt
1208		 * flag which would normally cause the RTC to generate
1209		 * interrupts.
1210		 */
1211		stat_imask = HWI_MASK | SWI_MASK;
1212		rtc_statusb = RTCSB_24HR;
1213	} else {
1214	        /* Setting stathz to nonzero early helps avoid races. */
1215		stathz = RTC_NOPROFRATE;
1216		profhz = RTC_PROFRATE;
1217        }
1218#endif
1219
1220	/* Finish initializing 8253 timer 0. */
1221#ifdef APIC_IO
1222
1223	apic_8254_intr = isa_apic_pin(0);
1224	apic_8254_trial = 0;
1225	if (apic_8254_intr >= 0 ) {
1226		if (apic_int_type(0, 0) == 3)
1227			apic_8254_trial = 1;
1228	} else {
1229		/* look for ExtInt on pin 0 */
1230		if (apic_int_type(0, 0) == 3) {
1231			apic_8254_intr = 0;
1232			setup_8254_mixed_mode();
1233		} else
1234			panic("APIC_IO: Cannot route 8254 interrupt to CPU");
1235	}
1236
1237	register_intr(/* irq */ apic_8254_intr, /* XXX id */ 0, /* flags */ 0,
1238		      /* XXX */ (inthand2_t *)clkintr, &clk_imask,
1239		      /* unit */ 0);
1240	INTREN(1 << apic_8254_intr);
1241
1242#else /* APIC_IO */
1243
1244	register_intr(/* irq */ 0, /* XXX id */ 0, /* flags */ 0,
1245		      /* XXX */ (inthand2_t *)clkintr, &clk_imask,
1246		      /* unit */ 0);
1247	INTREN(IRQ0);
1248
1249#endif /* APIC_IO */
1250
1251#ifndef PC98
1252	/* Initialize RTC. */
1253	writertc(RTC_STATUSA, rtc_statusa);
1254	writertc(RTC_STATUSB, RTCSB_24HR);
1255
1256	/* Don't bother enabling the statistics clock. */
1257	if (statclock_disable)
1258		return;
1259	diag = rtcin(RTC_DIAG);
1260	if (diag != 0)
1261		printf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
1262
1263#ifdef APIC_IO
1264	if (isa_apic_pin(8) != 8)
1265		panic("APIC RTC != 8");
1266#endif /* APIC_IO */
1267
1268	register_intr(/* irq */ 8, /* XXX id */ 1, /* flags */ 0,
1269		      /* XXX */ (inthand2_t *)rtcintr, &stat_imask,
1270		      /* unit */ 0);
1271
1272#ifdef APIC_IO
1273	INTREN(APIC_IRQ8);
1274#else
1275	INTREN(IRQ8);
1276#endif /* APIC_IO */
1277
1278	writertc(RTC_STATUSB, rtc_statusb);
1279#endif /* !PC98 */
1280
1281#ifdef APIC_IO
1282	if (apic_8254_trial) {
1283
1284		printf("APIC_IO: Testing 8254 interrupt delivery\n");
1285		__asm __volatile("sti" : : : "memory");
1286		while (read_intr_count(8) < 6)
1287			__asm __volatile("sti" : : : "memory");
1288		if (read_intr_count(apic_8254_intr) < 3) {
1289			/*
1290			 * The MP table is broken.
1291			 * The 8254 was not connected to the specified pin
1292			 * on the IO APIC.
1293			 * Workaround: Limited variant of mixed mode.
1294			 */
1295			INTRDIS(1 << apic_8254_intr);
1296			unregister_intr(apic_8254_intr,
1297					/* XXX */ (inthand2_t *) clkintr);
1298			printf("APIC_IO: Broken MP table detected: "
1299			       "8254 is not connected to IO APIC int pin %d\n",
1300			       apic_8254_intr);
1301
1302			apic_8254_intr = 0;
1303			setup_8254_mixed_mode();
1304			register_intr(/* irq */ apic_8254_intr, /* XXX id */ 0, /* flags */ 0,
1305				      /* XXX */ (inthand2_t *)clkintr, &clk_imask,
1306				      /* unit */ 0);
1307			INTREN(1 << apic_8254_intr);
1308		}
1309
1310	}
1311	if (apic_8254_intr)
1312		printf("APIC_IO: routing 8254 via pin %d\n",apic_8254_intr);
1313	else
1314		printf("APIC_IO: routing 8254 via 8259 on pin 0\n");
1315#endif
1316
1317}
1318
1319#ifdef APIC_IO
1320static u_long
1321read_intr_count(int vec)
1322{
1323	u_long *up;
1324	up = intr_countp[vec];
1325	if (up)
1326		return *up;
1327	return 0UL;
1328}
1329
1330static void
1331setup_8254_mixed_mode()
1332{
1333	/*
1334	 * Allow 8254 timer to INTerrupt 8259:
1335	 *  re-initialize master 8259:
1336	 *   reset; prog 4 bytes, single ICU, edge triggered
1337	 */
1338	outb(IO_ICU1, 0x13);
1339#ifdef PC98
1340	outb(IO_ICU1 + 2, NRSVIDT);	/* start vector (unused) */
1341	outb(IO_ICU1 + 2, 0x00);	/* ignore slave */
1342	outb(IO_ICU1 + 2, 0x03);	/* auto EOI, 8086 */
1343	outb(IO_ICU1 + 2, 0xfe);	/* unmask INT0 */
1344#else
1345	outb(IO_ICU1 + 1, NRSVIDT);	/* start vector (unused) */
1346	outb(IO_ICU1 + 1, 0x00);	/* ignore slave */
1347	outb(IO_ICU1 + 1, 0x03);	/* auto EOI, 8086 */
1348	outb(IO_ICU1 + 1, 0xfe);	/* unmask INT0 */
1349#endif
1350	/* program IO APIC for type 3 INT on INT0 */
1351	if (ext_int_setup(0, 0) < 0)
1352		panic("8254 redirect via APIC pin0 impossible!");
1353}
1354#endif
1355
1356void
1357setstatclockrate(int newhz)
1358{
1359#ifndef PC98
1360	if (newhz == RTC_PROFRATE)
1361		rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
1362	else
1363		rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
1364	writertc(RTC_STATUSA, rtc_statusa);
1365#endif
1366}
1367
1368static int
1369sysctl_machdep_i8254_freq SYSCTL_HANDLER_ARGS
1370{
1371	int error;
1372	u_int freq;
1373
1374	/*
1375	 * Use `i8254' instead of `timer' in external names because `timer'
1376	 * is is too generic.  Should use it everywhere.
1377	 */
1378	freq = timer_freq;
1379	error = sysctl_handle_opaque(oidp, &freq, sizeof freq, req);
1380	if (error == 0 && req->newptr != NULL) {
1381		if (timer0_state != RELEASED)
1382			return (EBUSY);	/* too much trouble to handle */
1383		set_timer_freq(freq, hz);
1384		i8254_timecounter[0].frequency = freq;
1385	}
1386	return (error);
1387}
1388
1389SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
1390	    0, sizeof(u_int), sysctl_machdep_i8254_freq, "I", "");
1391
1392static int
1393sysctl_machdep_tsc_freq SYSCTL_HANDLER_ARGS
1394{
1395	int error;
1396	u_int freq;
1397
1398	if (!tsc_present)
1399		return (EOPNOTSUPP);
1400	freq = tsc_freq;
1401	error = sysctl_handle_opaque(oidp, &freq, sizeof freq, req);
1402	if (error == 0 && req->newptr != NULL) {
1403		tsc_freq = freq;
1404		tsc_timecounter[0].frequency = tsc_freq;
1405	}
1406	return (error);
1407}
1408
1409SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq, CTLTYPE_INT | CTLFLAG_RW,
1410	    0, sizeof(u_int), sysctl_machdep_tsc_freq, "I", "");
1411
1412static u_int64_t
1413i8254_get_timecount(void)
1414{
1415	u_int32_t count;
1416	u_long ef;
1417	u_int high, low;
1418
1419	ef = read_eflags();
1420	disable_intr();
1421
1422	/* Select timer0 and latch counter value. */
1423	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
1424
1425	low = inb(TIMER_CNTR0);
1426	high = inb(TIMER_CNTR0);
1427
1428	count = hardclock_max_count - ((high << 8) | low);
1429	if (count < i8254_lastcount) {
1430		i8254_ticked = 1;
1431		i8254_offset += hardclock_max_count;
1432	}
1433
1434	i8254_lastcount = count;
1435	count += i8254_offset;
1436	CLOCK_UNLOCK();
1437	write_eflags(ef);
1438	return (count);
1439}
1440
1441static u_int64_t
1442tsc_get_timecount(void)
1443{
1444	return ((u_int64_t)rdtsc());
1445}
1446
1447static u_int32_t
1448tsc_get_timedelta(struct timecounter *tc)
1449{
1450	return ((u_int64_t)rdtsc() - tc->offset_count);
1451}
1452