pcrtc.c revision 27578
1/*-
2 * Copyright (c) 1990 The Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * William Jolitz and Don Ahn.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)clock.c	7.2 (Berkeley) 5/12/91
37 *	$Id: clock.c,v 1.28 1997/07/20 11:55:52 kato Exp $
38 */
39
40/*
41 * Routines to handle clock hardware.
42 */
43
44/*
45 * inittodr, settodr and support routines written
46 * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
47 *
48 * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
49 */
50
51/*
52 * modified for PC98 by Kakefuda
53 */
54
55#include "opt_clock.h"
56#include "opt_cpu.h"
57
58#include <sys/param.h>
59#include <sys/systm.h>
60#include <sys/time.h>
61#include <sys/kernel.h>
62#include <sys/sysctl.h>
63
64#include <machine/clock.h>
65#ifdef CLK_CALIBRATION_LOOP
66#include <machine/cons.h>
67#endif
68#include <machine/cpu.h>
69#include <machine/frame.h>
70#include <machine/ipl.h>
71#ifdef APIC_IO
72#include <machine/smp.h>
73#include <machine/smptests.h>		/** TEST_ALTTIMER, APIC_PIN0_TIMER */
74#endif /* APIC_IO */
75
76#include <i386/isa/icu.h>
77#ifdef PC98
78#include <pc98/pc98/pc98.h>
79#include <pc98/pc98/pc98_machdep.h>
80#include <i386/isa/isa_device.h>
81#else
82#include <i386/isa/isa.h>
83#include <i386/isa/rtc.h>
84#endif
85#include <i386/isa/timerreg.h>
86
87/*
88 * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
89 * can use a simple formula for leap years.
90 */
91#define	LEAPYEAR(y) ((u_int)(y) % 4 == 0)
92#define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
93
94#define	TIMER_DIV(x) ((timer_freq + (x) / 2) / (x))
95
96/*
97 * Time in timer cycles that it takes for microtime() to disable interrupts
98 * and latch the count.  microtime() currently uses "cli; outb ..." so it
99 * normally takes less than 2 timer cycles.  Add a few for cache misses.
100 * Add a few more to allow for latency in bogus calls to microtime() with
101 * interrupts already disabled.
102 */
103#define	TIMER0_LATCH_COUNT	20
104
105/*
106 * Maximum frequency that we are willing to allow for timer0.  Must be
107 * low enough to guarantee that the timer interrupt handler returns
108 * before the next timer interrupt.  Must result in a lower TIMER_DIV
109 * value than TIMER0_LATCH_COUNT so that we don't have to worry about
110 * underflow in the calculation of timer0_overflow_threshold.
111 */
112#define	TIMER0_MAX_FREQ		20000
113
114int	adjkerntz;		/* local offset	from GMT in seconds */
115int	disable_rtc_set;	/* disable resettodr() if != 0 */
116u_int	idelayed;
117#if defined(I586_CPU) || defined(I686_CPU)
118#ifndef SMP
119u_int	i586_ctr_bias;
120u_int	i586_ctr_comultiplier;
121#endif
122u_int	i586_ctr_freq;
123#ifndef SMP
124u_int	i586_ctr_multiplier;
125#endif
126#endif
127int	statclock_disable;
128u_int	stat_imask = SWI_CLOCK_MASK;
129#ifdef TIMER_FREQ
130u_int	timer_freq = TIMER_FREQ;
131#else
132#ifdef PC98
133#ifndef AUTO_CLOCK
134#ifndef PC98_8M
135u_int	timer_freq = 2457600;
136#else	/* !PC98_8M */
137u_int	timer_freq = 1996800;
138#endif	/* PC98_8M */
139#else	/* AUTO_CLOCK */
140u_int	timer_freq = 2457600;
141#endif	/* AUTO_CLOCK */
142#else /* IBM-PC */
143u_int	timer_freq = 1193182;
144#endif /* PC98 */
145#endif
146int	timer0_max_count;
147u_int	timer0_overflow_threshold;
148u_int	timer0_prescaler_count;
149int	wall_cmos_clock;	/* wall	CMOS clock assumed if != 0 */
150
151static	int	beeping = 0;
152static	u_int	clk_imask = HWI_MASK | SWI_MASK;
153static	const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
154static	u_int	hardclock_max_count;
155/*
156 * XXX new_function and timer_func should not handle clockframes, but
157 * timer_func currently needs to hold hardclock to handle the
158 * timer0_state == 0 case.  We should use register_intr()/unregister_intr()
159 * to switch between clkintr() and a slightly different timerintr().
160 */
161static	void	(*new_function) __P((struct clockframe *frame));
162static	u_int	new_rate;
163#ifndef PC98
164static	u_char	rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
165static	u_char	rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
166#endif
167
168/* Values for timerX_state: */
169#define	RELEASED	0
170#define	RELEASE_PENDING	1
171#define	ACQUIRED	2
172#define	ACQUIRE_PENDING	3
173
174static	u_char	timer0_state;
175#ifdef	PC98
176static 	u_char	timer1_state;
177#endif
178static	u_char	timer2_state;
179static	void	(*timer_func) __P((struct clockframe *frame)) = hardclock;
180#ifdef PC98
181static void rtc_serialcombit __P((int));
182static void rtc_serialcom __P((int));
183static int rtc_inb __P((void));
184static void rtc_outb __P((int));
185#endif
186
187#if (defined(I586_CPU) || defined(I686_CPU)) && !defined(SMP)
188static	void	set_i586_ctr_freq(u_int i586_freq, u_int i8254_freq);
189#endif
190static	void	set_timer_freq(u_int freq, int intr_freq);
191
192static void
193clkintr(struct clockframe frame)
194{
195	timer_func(&frame);
196	switch (timer0_state) {
197
198	case RELEASED:
199		setdelayed();
200		break;
201
202	case ACQUIRED:
203		if ((timer0_prescaler_count += timer0_max_count)
204		    >= hardclock_max_count) {
205			hardclock(&frame);
206			setdelayed();
207			timer0_prescaler_count -= hardclock_max_count;
208		}
209		break;
210
211	case ACQUIRE_PENDING:
212		setdelayed();
213		timer0_max_count = TIMER_DIV(new_rate);
214		timer0_overflow_threshold =
215			timer0_max_count - TIMER0_LATCH_COUNT;
216		disable_intr();
217		outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
218		outb(TIMER_CNTR0, timer0_max_count & 0xff);
219		outb(TIMER_CNTR0, timer0_max_count >> 8);
220		enable_intr();
221		timer0_prescaler_count = 0;
222		timer_func = new_function;
223		timer0_state = ACQUIRED;
224		break;
225
226	case RELEASE_PENDING:
227		if ((timer0_prescaler_count += timer0_max_count)
228		    >= hardclock_max_count) {
229			hardclock(&frame);
230			setdelayed();
231			timer0_max_count = hardclock_max_count;
232			timer0_overflow_threshold =
233				timer0_max_count - TIMER0_LATCH_COUNT;
234			disable_intr();
235			outb(TIMER_MODE,
236			     TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
237			outb(TIMER_CNTR0, timer0_max_count & 0xff);
238			outb(TIMER_CNTR0, timer0_max_count >> 8);
239			enable_intr();
240			/*
241			 * See microtime.s for this magic.
242			 */
243#ifdef PC98
244#ifndef AUTO_CLOCK
245#ifndef PC98_8M
246			time.tv_usec += (6667 *
247				(timer0_prescaler_count - hardclock_max_count))
248				>> 14;
249#else /* PC98_8M */
250			time.tv_usec += (16411 *
251				(timer0_prescaler_count - hardclock_max_count))
252				>> 15;
253#endif /* PC98_8M */
254#else /* AUTO_CLOCK */
255			if (pc98_machine_type & M_8M) {
256				/* PC98_8M */
257				time.tv_usec += (16411 *
258					(timer0_prescaler_count -
259					 hardclock_max_count)) >> 15;
260			} else {
261				time.tv_usec += (6667 *
262					(timer0_prescaler_count -
263					 hardclock_max_count)) >> 14;
264			}
265#endif /* AUTO_CLOCK */
266#else /* IBM-PC */
267			time.tv_usec += (27465 *
268				(timer0_prescaler_count - hardclock_max_count))
269				>> 15;
270#endif /* PC98 */
271			if (time.tv_usec >= 1000000)
272				time.tv_usec -= 1000000;
273			timer0_prescaler_count = 0;
274			timer_func = hardclock;
275			timer0_state = RELEASED;
276		}
277		break;
278	}
279}
280
281/*
282 * The acquire and release functions must be called at ipl >= splclock().
283 */
284int
285acquire_timer0(int rate, void (*function) __P((struct clockframe *frame)))
286{
287	static int old_rate;
288
289	if (rate <= 0 || rate > TIMER0_MAX_FREQ)
290		return (-1);
291	switch (timer0_state) {
292
293	case RELEASED:
294		timer0_state = ACQUIRE_PENDING;
295		break;
296
297	case RELEASE_PENDING:
298		if (rate != old_rate)
299			return (-1);
300		/*
301		 * The timer has been released recently, but is being
302		 * re-acquired before the release completed.  In this
303		 * case, we simply reclaim it as if it had not been
304		 * released at all.
305		 */
306		timer0_state = ACQUIRED;
307		break;
308
309	default:
310		return (-1);	/* busy */
311	}
312	new_function = function;
313	old_rate = new_rate = rate;
314	return (0);
315}
316
317#ifdef PC98
318int
319acquire_timer1(int mode)
320{
321
322	if (timer1_state != RELEASED)
323		return (-1);
324	timer1_state = ACQUIRED;
325
326	/*
327	 * This access to the timer registers is as atomic as possible
328	 * because it is a single instruction.  We could do better if we
329	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
330	 * and this is probably good enough for timer2, so we aren't as
331	 * careful with it as with timer0.
332	 */
333	outb(TIMER_MODE, TIMER_SEL1 | (mode & 0x3f));
334
335	return (0);
336}
337#endif
338
339int
340acquire_timer2(int mode)
341{
342
343	if (timer2_state != RELEASED)
344		return (-1);
345	timer2_state = ACQUIRED;
346
347	/*
348	 * This access to the timer registers is as atomic as possible
349	 * because it is a single instruction.  We could do better if we
350	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
351	 * and this is probably good enough for timer2, so we aren't as
352	 * careful with it as with timer0.
353	 */
354	outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
355
356	return (0);
357}
358
359int
360release_timer0()
361{
362	switch (timer0_state) {
363
364	case ACQUIRED:
365		timer0_state = RELEASE_PENDING;
366		break;
367
368	case ACQUIRE_PENDING:
369		/* Nothing happened yet, release quickly. */
370		timer0_state = RELEASED;
371		break;
372
373	default:
374		return (-1);
375	}
376	return (0);
377}
378
379#ifdef PC98
380int
381release_timer1()
382{
383
384	if (timer1_state != ACQUIRED)
385		return (-1);
386	timer1_state = RELEASED;
387	outb(TIMER_MODE, TIMER_SEL1 | TIMER_SQWAVE | TIMER_16BIT);
388	return (0);
389}
390#endif
391
392int
393release_timer2()
394{
395
396	if (timer2_state != ACQUIRED)
397		return (-1);
398	timer2_state = RELEASED;
399	outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
400	return (0);
401}
402
403#ifndef PC98
404/*
405 * This routine receives statistical clock interrupts from the RTC.
406 * As explained above, these occur at 128 interrupts per second.
407 * When profiling, we receive interrupts at a rate of 1024 Hz.
408 *
409 * This does not actually add as much overhead as it sounds, because
410 * when the statistical clock is active, the hardclock driver no longer
411 * needs to keep (inaccurate) statistics on its own.  This decouples
412 * statistics gathering from scheduling interrupts.
413 *
414 * The RTC chip requires that we read status register C (RTC_INTR)
415 * to acknowledge an interrupt, before it will generate the next one.
416 * Under high interrupt load, rtcintr() can be indefinitely delayed and
417 * the clock can tick immediately after the read from RTC_INTR.  In this
418 * case, the mc146818A interrupt signal will not drop for long enough
419 * to register with the 8259 PIC.  If an interrupt is missed, the stat
420 * clock will halt, considerably degrading system performance.  This is
421 * why we use 'while' rather than a more straightforward 'if' below.
422 * Stat clock ticks can still be lost, causing minor loss of accuracy
423 * in the statistics, but the stat clock will no longer stop.
424 */
425static void
426rtcintr(struct clockframe frame)
427{
428	while (rtcin(RTC_INTR) & RTCIR_PERIOD)
429		statclock(&frame);
430}
431
432#include "opt_ddb.h"
433#ifdef DDB
434#include <ddb/ddb.h>
435
436DB_SHOW_COMMAND(rtc, rtc)
437{
438	printf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
439	       rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
440	       rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
441	       rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
442}
443#endif /* DDB */
444#endif /* for PC98 */
445
446static int
447getit(void)
448{
449	u_long ef;
450	int high, low;
451
452	ef = read_eflags();
453	disable_intr();
454
455	/* Select timer0 and latch counter value. */
456	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
457
458	low = inb(TIMER_CNTR0);
459	high = inb(TIMER_CNTR0);
460
461	write_eflags(ef);
462	return ((high << 8) | low);
463}
464
465/*
466 * Wait "n" microseconds.
467 * Relies on timer 1 counting down from (timer_freq / hz)
468 * Note: timer had better have been programmed before this is first used!
469 */
470void
471DELAY(int n)
472{
473	int delta, prev_tick, tick, ticks_left;
474
475#ifdef DELAYDEBUG
476	int getit_calls = 1;
477	int n1;
478	static int state = 0;
479
480	if (state == 0) {
481		state = 1;
482		for (n1 = 1; n1 <= 10000000; n1 *= 10)
483			DELAY(n1);
484		state = 2;
485	}
486	if (state == 1)
487		printf("DELAY(%d)...", n);
488#endif
489	/*
490	 * Guard against the timer being uninitialized if we are called
491	 * early for console i/o.
492	 */
493	if (timer0_max_count == 0)
494		set_timer_freq(timer_freq, hz);
495
496	/*
497	 * Read the counter first, so that the rest of the setup overhead is
498	 * counted.  Guess the initial overhead is 20 usec (on most systems it
499	 * takes about 1.5 usec for each of the i/o's in getit().  The loop
500	 * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
501	 * multiplications and divisions to scale the count take a while).
502	 */
503	prev_tick = getit();
504	n -= 0;			/* XXX actually guess no initial overhead */
505	/*
506	 * Calculate (n * (timer_freq / 1e6)) without using floating point
507	 * and without any avoidable overflows.
508	 */
509	if (n <= 0)
510		ticks_left = 0;
511	else if (n < 256)
512		/*
513		 * Use fixed point to avoid a slow division by 1000000.
514		 * 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
515		 * 2^15 is the first power of 2 that gives exact results
516		 * for n between 0 and 256.
517		 */
518		ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
519	else
520		/*
521		 * Don't bother using fixed point, although gcc-2.7.2
522		 * generates particularly poor code for the long long
523		 * division, since even the slow way will complete long
524		 * before the delay is up (unless we're interrupted).
525		 */
526		ticks_left = ((u_int)n * (long long)timer_freq + 999999)
527			     / 1000000;
528
529	while (ticks_left > 0) {
530		tick = getit();
531#ifdef DELAYDEBUG
532		++getit_calls;
533#endif
534		delta = prev_tick - tick;
535		prev_tick = tick;
536		if (delta < 0) {
537			delta += timer0_max_count;
538			/*
539			 * Guard against timer0_max_count being wrong.
540			 * This shouldn't happen in normal operation,
541			 * but it may happen if set_timer_freq() is
542			 * traced.
543			 */
544			if (delta < 0)
545				delta = 0;
546		}
547		ticks_left -= delta;
548	}
549#ifdef DELAYDEBUG
550	if (state == 1)
551		printf(" %d calls to getit() at %d usec each\n",
552		       getit_calls, (n + 5) / getit_calls);
553#endif
554}
555
556static void
557sysbeepstop(void *chan)
558{
559#ifdef PC98	/* PC98 */
560	outb(IO_PPI, inb(IO_PPI)|0x08);	/* disable counter1 output to speaker */
561	release_timer1();
562#else
563	outb(IO_PPI, inb(IO_PPI)&0xFC);	/* disable counter2 output to speaker */
564	release_timer2();
565#endif
566	beeping = 0;
567}
568
569int
570sysbeep(int pitch, int period)
571{
572	int x = splclock();
573
574#ifdef PC98
575	if (acquire_timer1(TIMER_SQWAVE|TIMER_16BIT))
576		if (!beeping) {
577			/* Something else owns it. */
578			splx(x);
579			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
580		}
581	disable_intr();
582	outb(0x3fdb, pitch);
583	outb(0x3fdb, (pitch>>8));
584	enable_intr();
585	if (!beeping) {
586		/* enable counter1 output to speaker */
587		outb(IO_PPI, (inb(IO_PPI) & 0xf7));
588		beeping = period;
589		timeout(sysbeepstop, (void *)NULL, period);
590	}
591#else
592	if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
593		if (!beeping) {
594			/* Something else owns it. */
595			splx(x);
596			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
597		}
598	disable_intr();
599	outb(TIMER_CNTR2, pitch);
600	outb(TIMER_CNTR2, (pitch>>8));
601	enable_intr();
602	if (!beeping) {
603		/* enable counter2 output to speaker */
604		outb(IO_PPI, inb(IO_PPI) | 3);
605		beeping = period;
606		timeout(sysbeepstop, (void *)NULL, period);
607	}
608#endif
609	splx(x);
610	return (0);
611}
612
613#ifndef PC98
614/*
615 * RTC support routines
616 */
617
618int
619rtcin(reg)
620	int reg;
621{
622	u_char val;
623
624	outb(IO_RTC, reg);
625	inb(0x84);
626	val = inb(IO_RTC + 1);
627	inb(0x84);
628	return (val);
629}
630
631static __inline void
632writertc(u_char reg, u_char val)
633{
634	outb(IO_RTC, reg);
635	outb(IO_RTC + 1, val);
636}
637
638static __inline int
639readrtc(int port)
640{
641	return(bcd2bin(rtcin(port)));
642}
643#endif
644
645#ifdef PC98
646unsigned int delaycount;
647#define FIRST_GUESS	0x2000
648static void findcpuspeed(void)
649{
650	int i;
651	int remainder;
652
653	/* Put counter in count down mode */
654	outb(TIMER_MODE, TIMER_SEL0 | TIMER_16BIT | TIMER_RATEGEN);
655	outb(TIMER_CNTR0, 0xff);
656	outb(TIMER_CNTR0, 0xff);
657	for (i = FIRST_GUESS; i; i--)
658		;
659	remainder = getit();
660	delaycount = (FIRST_GUESS * TIMER_DIV(1000)) / (0xffff - remainder);
661}
662#endif
663
664#ifndef PC98
665static u_int
666calibrate_clocks(void)
667{
668	u_int count, prev_count, tot_count;
669	int sec, start_sec, timeout;
670
671	if (bootverbose)
672	        printf("Calibrating clock(s) ... ");
673	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
674		goto fail;
675	timeout = 100000000;
676
677	/* Read the mc146818A seconds counter. */
678	for (;;) {
679		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
680			sec = rtcin(RTC_SEC);
681			break;
682		}
683		if (--timeout == 0)
684			goto fail;
685	}
686
687	/* Wait for the mC146818A seconds counter to change. */
688	start_sec = sec;
689	for (;;) {
690		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
691			sec = rtcin(RTC_SEC);
692			if (sec != start_sec)
693				break;
694		}
695		if (--timeout == 0)
696			goto fail;
697	}
698
699	/* Start keeping track of the i8254 counter. */
700	prev_count = getit();
701	if (prev_count == 0 || prev_count > timer0_max_count)
702		goto fail;
703	tot_count = 0;
704
705#if (defined(I586_CPU) || defined(I686_CPU)) && !defined(SMP)
706	if (cpu_class == CPUCLASS_586 || cpu_class == CPUCLASS_686)
707		wrmsr(0x10, 0LL);	/* XXX 0x10 is the MSR for the TSC */
708#endif
709
710	/*
711	 * Wait for the mc146818A seconds counter to change.  Read the i8254
712	 * counter for each iteration since this is convenient and only
713	 * costs a few usec of inaccuracy. The timing of the final reads
714	 * of the counters almost matches the timing of the initial reads,
715	 * so the main cause of inaccuracy is the varying latency from
716	 * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
717	 * rtcin(RTC_SEC) that returns a changed seconds count.  The
718	 * maximum inaccuracy from this cause is < 10 usec on 486's.
719	 */
720	start_sec = sec;
721	for (;;) {
722		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
723			sec = rtcin(RTC_SEC);
724		count = getit();
725		if (count == 0 || count > timer0_max_count)
726			goto fail;
727		if (count > prev_count)
728			tot_count += prev_count - (count - timer0_max_count);
729		else
730			tot_count += prev_count - count;
731		prev_count = count;
732		if (sec != start_sec)
733			break;
734		if (--timeout == 0)
735			goto fail;
736	}
737
738#if (defined(I586_CPU) || defined(I686_CPU)) && !defined(SMP)
739	/*
740	 * Read the cpu cycle counter.  The timing considerations are
741	 * similar to those for the i8254 clock.
742	 */
743	if (cpu_class == CPUCLASS_586 || cpu_class == CPUCLASS_686) {
744		set_i586_ctr_freq((u_int)rdtsc(), tot_count);
745		if (bootverbose)
746		        printf("i586 clock: %u Hz, ", i586_ctr_freq);
747	}
748#endif
749
750	if (bootverbose)
751	        printf("i8254 clock: %u Hz\n", tot_count);
752	return (tot_count);
753
754fail:
755	if (bootverbose)
756	        printf("failed, using default i8254 clock of %u Hz\n",
757		       timer_freq);
758	return (timer_freq);
759}
760#endif	/* !PC98 */
761
762static void
763set_timer_freq(u_int freq, int intr_freq)
764{
765	u_long ef;
766
767	ef = read_eflags();
768	disable_intr();
769	timer_freq = freq;
770	timer0_max_count = hardclock_max_count = TIMER_DIV(intr_freq);
771	timer0_overflow_threshold = timer0_max_count - TIMER0_LATCH_COUNT;
772	outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
773	outb(TIMER_CNTR0, timer0_max_count & 0xff);
774	outb(TIMER_CNTR0, timer0_max_count >> 8);
775	write_eflags(ef);
776}
777
778/*
779 * Initialize 8253 timer 0 early so that it can be used in DELAY().
780 * XXX initialization of other timers is unintentionally left blank.
781 */
782void
783startrtclock()
784{
785	u_int delta, freq;
786
787#ifdef PC98
788	findcpuspeed();
789#ifndef AUTO_CLOCK
790	if (pc98_machine_type & M_8M) {
791#ifndef	PC98_8M
792		printf("you must reconfig a kernel with \"PC98_8M\" option.\n");
793#endif
794	} else {
795#ifdef	PC98_8M
796		printf("You must reconfig a kernel without \"PC98_8M\" option.\n");
797#endif
798	}
799#else /* AUTO_CLOCK */
800	if (pc98_machine_type & M_8M)
801		timer_freq = 1996800L; /* 1.9968 MHz */
802	else
803		timer_freq = 2457600L; /* 2.4576 MHz */
804#endif /* AUTO_CLOCK */
805#endif /* PC98 */
806
807#ifndef PC98
808	writertc(RTC_STATUSA, rtc_statusa);
809	writertc(RTC_STATUSB, RTCSB_24HR);
810#endif
811
812#ifndef PC98
813	set_timer_freq(timer_freq, hz);
814	freq = calibrate_clocks();
815#ifdef CLK_CALIBRATION_LOOP
816	if (bootverbose) {
817		printf(
818		"Press a key on the console to abort clock calibration\n");
819		while (cncheckc() == -1)
820			calibrate_clocks();
821	}
822#endif
823
824	/*
825	 * Use the calibrated i8254 frequency if it seems reasonable.
826	 * Otherwise use the default, and don't use the calibrated i586
827	 * frequency.
828	 */
829	delta = freq > timer_freq ? freq - timer_freq : timer_freq - freq;
830	if (delta < timer_freq / 100) {
831#ifndef CLK_USE_I8254_CALIBRATION
832		if (bootverbose)
833			printf(
834"CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
835		freq = timer_freq;
836#endif
837		timer_freq = freq;
838	} else {
839		if (bootverbose)
840			printf(
841		    "%d Hz differs from default of %d Hz by more than 1%%\n",
842			       freq, timer_freq);
843#if (defined(I586_CPU) || defined(I686_CPU)) && !defined(SMP)
844		i586_ctr_freq = 0;
845#endif
846	}
847#endif
848
849	set_timer_freq(timer_freq, hz);
850
851#if (defined(I586_CPU) || defined(I686_CPU)) && !defined(SMP)
852#ifndef CLK_USE_I586_CALIBRATION
853	if (i586_ctr_freq != 0) {
854		if (bootverbose)
855			printf(
856"CLK_USE_I586_CALIBRATION not specified - using old calibration method\n");
857		i586_ctr_freq = 0;
858	}
859#endif
860	if (i586_ctr_freq == 0 &&
861	    (cpu_class == CPUCLASS_586 || cpu_class == CPUCLASS_686)) {
862		/*
863		 * Calibration of the i586 clock relative to the mc146818A
864		 * clock failed.  Do a less accurate calibration relative
865		 * to the i8254 clock.
866		 */
867		wrmsr(0x10, 0LL);	/* XXX */
868		DELAY(1000000);
869		set_i586_ctr_freq((u_int)rdtsc(), timer_freq);
870#ifdef CLK_USE_I586_CALIBRATION
871		if (bootverbose)
872			printf("i586 clock: %u Hz\n", i586_ctr_freq);
873#endif
874	}
875#endif
876}
877
878#ifdef PC98
879static void
880rtc_serialcombit(int i)
881{
882	outb(IO_RTC, ((i&0x01)<<5)|0x07);
883	DELAY(1);
884	outb(IO_RTC, ((i&0x01)<<5)|0x17);
885	DELAY(1);
886	outb(IO_RTC, ((i&0x01)<<5)|0x07);
887	DELAY(1);
888}
889
890static void
891rtc_serialcom(int i)
892{
893	rtc_serialcombit(i&0x01);
894	rtc_serialcombit((i&0x02)>>1);
895	rtc_serialcombit((i&0x04)>>2);
896	rtc_serialcombit((i&0x08)>>3);
897	outb(IO_RTC, 0x07);
898	DELAY(1);
899	outb(IO_RTC, 0x0f);
900	DELAY(1);
901	outb(IO_RTC, 0x07);
902 	DELAY(1);
903}
904
905static void
906rtc_outb(int val)
907{
908	int s;
909	int sa = 0;
910
911	for (s=0;s<8;s++) {
912	    sa = ((val >> s) & 0x01) ? 0x27 : 0x07;
913	    outb(IO_RTC, sa);		/* set DI & CLK 0 */
914	    DELAY(1);
915	    outb(IO_RTC, sa | 0x10);	/* CLK 1 */
916	    DELAY(1);
917	}
918	outb(IO_RTC, sa & 0xef);	/* CLK 0 */
919}
920
921static int
922rtc_inb(void)
923{
924	int s;
925	int sa = 0;
926
927	for (s=0;s<8;s++) {
928	    sa |= ((inb(0x33) & 0x01) << s);
929	    outb(IO_RTC, 0x17);	/* CLK 1 */
930	    DELAY(1);
931	    outb(IO_RTC, 0x07);	/* CLK 0 */
932	    DELAY(2);
933	}
934	return sa;
935}
936#endif /* PC-98 */
937
938/*
939 * Initialize the time of day register,	based on the time base which is, e.g.
940 * from	a filesystem.
941 */
942void
943inittodr(time_t base)
944{
945	unsigned long	sec, days;
946	int		yd;
947	int		year, month;
948	int		y, m, s;
949#ifdef PC98
950	int		second, min, hour;
951#endif
952
953	s = splclock();
954	time.tv_sec  = base;
955	time.tv_usec = 0;
956	splx(s);
957
958#ifdef PC98
959	rtc_serialcom(0x03);	/* Time Read */
960	rtc_serialcom(0x01);	/* Register shift command. */
961	DELAY(20);
962
963	second = bcd2bin(rtc_inb() & 0xff);	/* sec */
964	min = bcd2bin(rtc_inb() & 0xff);	/* min */
965	hour = bcd2bin(rtc_inb() & 0xff);	/* hour */
966	days = bcd2bin(rtc_inb() & 0xff) - 1;	/* date */
967
968	month = (rtc_inb() >> 4) & 0x0f;	/* month */
969	for (m = 1; m <	month; m++)
970		days +=	daysinmonth[m-1];
971	year = bcd2bin(rtc_inb() & 0xff) + 1900;	/* year */
972	/* 2000 year problem */
973	if (year < 1995)
974		year += 100;
975	if (year < 1970)
976		goto wrong_time;
977	for (y = 1970; y < year; y++)
978		days +=	DAYSPERYEAR + LEAPYEAR(y);
979	if ((month > 2)	&& LEAPYEAR(year))
980		days ++;
981	sec = ((( days * 24 +
982		  hour) * 60 +
983		  min) * 60 +
984		  second);
985	/* sec now contains the	number of seconds, since Jan 1 1970,
986	   in the local	time zone */
987#else	/* IBM-PC */
988	/* Look	if we have a RTC present and the time is valid */
989	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
990		goto wrong_time;
991
992	/* wait	for time update	to complete */
993	/* If RTCSA_TUP	is zero, we have at least 244us	before next update */
994	while (rtcin(RTC_STATUSA) & RTCSA_TUP);
995
996	days = 0;
997#ifdef USE_RTC_CENTURY
998	year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY)	* 100;
999#else
1000	year = readrtc(RTC_YEAR) + 1900;
1001	if (year < 1970)
1002		year += 100;
1003#endif
1004	if (year < 1970)
1005		goto wrong_time;
1006	month =	readrtc(RTC_MONTH);
1007	for (m = 1; m <	month; m++)
1008		days +=	daysinmonth[m-1];
1009	if ((month > 2)	&& LEAPYEAR(year))
1010		days ++;
1011	days +=	readrtc(RTC_DAY) - 1;
1012	yd = days;
1013	for (y = 1970; y < year; y++)
1014		days +=	DAYSPERYEAR + LEAPYEAR(y);
1015	sec = ((( days * 24 +
1016		  readrtc(RTC_HRS)) * 60 +
1017		  readrtc(RTC_MIN)) * 60 +
1018		  readrtc(RTC_SEC));
1019	/* sec now contains the	number of seconds, since Jan 1 1970,
1020	   in the local	time zone */
1021#endif
1022
1023	sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1024
1025	s = splclock();
1026	time.tv_sec = sec;
1027	splx(s);
1028	return;
1029
1030wrong_time:
1031	printf("Invalid	time in	real time clock.\n");
1032	printf("Check and reset	the date immediately!\n");
1033}
1034
1035/*
1036 * Write system	time back to RTC
1037 */
1038void
1039resettodr()
1040{
1041	unsigned long	tm;
1042	int		y, m, s;
1043#ifdef PC98
1044	int		wd;
1045#endif
1046
1047	if (disable_rtc_set)
1048		return;
1049
1050	s = splclock();
1051	tm = time.tv_sec;
1052	splx(s);
1053
1054#ifdef PC98
1055	rtc_serialcom(0x01);	/* Register shift command. */
1056
1057	/* Calculate local time	to put in RTC */
1058
1059	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1060
1061	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
1062	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
1063	rtc_outb(bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
1064
1065	/* We have now the days	since 01-01-1970 in tm */
1066	wd = (tm+4)%7;
1067	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1068	     tm >= m;
1069	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1070	     tm -= m;
1071
1072	/* Now we have the years in y and the day-of-the-year in tm */
1073	for (m = 0; ; m++) {
1074		int ml;
1075
1076		ml = daysinmonth[m];
1077		if (m == 1 && LEAPYEAR(y))
1078			ml++;
1079		if (tm < ml)
1080			break;
1081		tm -= ml;
1082	}
1083
1084	m++;
1085	rtc_outb(bin2bcd(tm+1));		/* Write back Day     */
1086	rtc_outb((m << 4) | wd);		/* Write back Month & Weekday  */
1087	rtc_outb(bin2bcd(y%100));		/* Write back Year    */
1088
1089	rtc_serialcom(0x02);	/* Time set & Counter hold command. */
1090	rtc_serialcom(0x00);	/* Register hold command. */
1091#else
1092	/* Disable RTC updates and interrupts. */
1093	writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
1094
1095	/* Calculate local time	to put in RTC */
1096
1097	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1098
1099	writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
1100	writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
1101	writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
1102
1103	/* We have now the days	since 01-01-1970 in tm */
1104	writertc(RTC_WDAY, (tm+4)%7);			/* Write back Weekday */
1105	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1106	     tm >= m;
1107	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1108	     tm -= m;
1109
1110	/* Now we have the years in y and the day-of-the-year in tm */
1111	writertc(RTC_YEAR, bin2bcd(y%100));		/* Write back Year    */
1112#ifdef USE_RTC_CENTURY
1113	writertc(RTC_CENTURY, bin2bcd(y/100));		/* ... and Century    */
1114#endif
1115	for (m = 0; ; m++) {
1116		int ml;
1117
1118		ml = daysinmonth[m];
1119		if (m == 1 && LEAPYEAR(y))
1120			ml++;
1121		if (tm < ml)
1122			break;
1123		tm -= ml;
1124	}
1125
1126	writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
1127	writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
1128
1129	/* Reenable RTC updates and interrupts. */
1130	writertc(RTC_STATUSB, rtc_statusb);
1131#endif
1132}
1133
1134#ifdef APIC_IO
1135
1136/* XXX FIXME: from icu.s: */
1137#ifdef NEW_STRATEGY
1138
1139extern u_int	ivectors[];
1140extern u_int	vec[];
1141extern void	vec8254	__P((void));
1142extern u_int	Xintr8254;
1143extern u_int	mask8254;
1144
1145#else /** NEW_STRATEGY */
1146
1147#if !defined(APIC_PIN0_TIMER)
1148extern u_int	ivectors[];
1149extern u_int	vec[];
1150#endif
1151
1152#ifndef APIC_PIN0_TIMER
1153extern void	vec8254	__P((void));
1154extern u_int	Xintr8254;
1155extern u_int	mask8254;
1156#endif /* APIC_PIN0_TIMER */
1157
1158#endif /** NEW_STRATEGY */
1159
1160#endif /* APIC_IO */
1161
1162/*
1163 * Start both clocks running.
1164 */
1165void
1166cpu_initclocks()
1167{
1168#ifdef APIC_IO
1169	int x;
1170#endif /* APIC_IO */
1171#ifndef PC98
1172	int diag;
1173
1174	if (statclock_disable) {
1175		/*
1176		 * The stat interrupt mask is different without the
1177		 * statistics clock.  Also, don't set the interrupt
1178		 * flag which would normally cause the RTC to generate
1179		 * interrupts.
1180		 */
1181		stat_imask = HWI_MASK | SWI_MASK;
1182		rtc_statusb = RTCSB_24HR;
1183	} else {
1184	        /* Setting stathz to nonzero early helps avoid races. */
1185		stathz = RTC_NOPROFRATE;
1186		profhz = RTC_PROFRATE;
1187        }
1188#endif
1189
1190	/* Finish initializing 8253 timer 0. */
1191#ifdef APIC_IO
1192
1193#ifdef NEW_STRATEGY
1194	/* 1st look for ExtInt on pin 0 */
1195	if (apic_int_type(0, 0) == 3) {
1196		/*
1197		 * Allow 8254 timer to INTerrupt 8259:
1198		 *  re-initialize master 8259:
1199		 *   reset; prog 4 bytes, single ICU, edge triggered
1200		 */
1201		outb(IO_ICU1, 0x13);
1202		outb(IO_ICU1 + 1, NRSVIDT);	/* start vector */
1203		outb(IO_ICU1 + 1, 0x00);	/* ignore slave */
1204		outb(IO_ICU1 + 1, 0x03);	/* auto EOI, 8086 */
1205		outb(IO_ICU1 + 1, 0xfe);	/* unmask INT0 */
1206
1207		/* program IO APIC for type 3 INT on INT0 */
1208		if (ext_int_setup(0, 0) < 0)
1209			panic("8254 redirect via APIC pin0 impossible!");
1210
1211		x = 0;
1212		/** if (bootverbose */
1213			printf("APIC_IO: routing 8254 via 8259 on pin 0\n");
1214	}
1215
1216	/* failing that, look for 8254 on pin 2 */
1217	else if (isa_apic_pin(0) == 2) {
1218		x = 2;
1219		/** if (bootverbose */
1220			printf("APIC_IO: routing 8254 via pin 2\n");
1221	}
1222
1223	/* better write that 8254 INT discover code... */
1224	else
1225		panic("neither pin 0 or pin 2 works for 8254");
1226
1227	/* setup the vectors for the chosen method */
1228	vec[x] = (u_int)vec8254;
1229	Xintr8254 = (u_int)ivectors[x];
1230	mask8254 = (1 << x);
1231
1232	register_intr(/* irq */ x, /* XXX id */ 0, /* flags */ 0,
1233		      /* XXX */ (inthand2_t *)clkintr, &clk_imask,
1234		      /* unit */ 0);
1235	INTREN(mask8254);
1236
1237#else /** NEW_STRATEGY */
1238
1239#ifdef APIC_PIN0_TIMER
1240	/*
1241	 * Allow 8254 timer to INTerrupt 8259:
1242	 *  re-initialize master 8259:
1243	 *   reset; prog 4 bytes, single ICU, edge triggered
1244	 */
1245	outb(IO_ICU1, 0x13);
1246	outb(IO_ICU1 + 1, NRSVIDT);	/* start vector */
1247	outb(IO_ICU1 + 1, 0x00);	/* ignore slave */
1248	outb(IO_ICU1 + 1, 0x03);	/* auto EOI, 8086 */
1249	outb(IO_ICU1 + 1, 0xfe);	/* unmask INT0 */
1250
1251	/* program IO APIC for type 3 INT on INT0 */
1252	if (ext_int_setup(0, 0) < 0)
1253		panic("8254 redirect via APIC pin0 impossible!");
1254
1255	register_intr(/* irq */ 0, /* XXX id */ 0, /* flags */ 0,
1256		      /* XXX */ (inthand2_t *)clkintr, &clk_imask,
1257		      /* unit */ 0);
1258	INTREN(IRQ0);
1259#else /* APIC_PIN0_TIMER */
1260	/* 8254 is traditionally on ISA IRQ0 */
1261	if ((x = isa_apic_pin(0)) < 0) {
1262		/* bummer, attempt to redirect thru the 8259 */
1263		if (bootverbose)
1264			printf("APIC missing 8254 connection\n");
1265
1266		/* allow 8254 timer to INTerrupt 8259 */
1267#ifdef TEST_ALTTIMER
1268		/*
1269		 * re-initialize master 8259:
1270		 * reset; prog 4 bytes, single ICU, edge triggered
1271		 */
1272		outb(IO_ICU1, 0x13);
1273		outb(IO_ICU1 + 1, NRSVIDT);	/* start vector */
1274		outb(IO_ICU1 + 1, 0x00);	/* ignore slave */
1275		outb(IO_ICU1 + 1, 0x03);	/* auto EOI, 8086 */
1276
1277		outb(IO_ICU1 + 1, 0xfe);	/* unmask INT0 */
1278#else
1279		x = inb(IO_ICU1 + 1);		/* current mask in 8259 */
1280		x &= ~1;			/* clear 8254 timer mask */
1281		outb(IO_ICU1 + 1, x);		/* write new mask */
1282#endif /* TEST_ALTTIMER */
1283
1284		/* program IO APIC for type 3 INT on INT0 */
1285		if (ext_int_setup(0, 0) < 0)
1286			panic("8254 redirect impossible!");
1287		x = 0;				/* 8259 is on 0 */
1288	}
1289
1290	vec[x] = (u_int)vec8254;
1291	Xintr8254 = (u_int)ivectors[x];	/* XXX might need Xfastintr# */
1292	mask8254 = (1 << x);
1293	register_intr(/* irq */ x, /* XXX id */ 0, /* flags */ 0,
1294		      /* XXX */ (inthand2_t *)clkintr, &clk_imask,
1295		      /* unit */ 0);
1296	INTREN(mask8254);
1297#endif /* APIC_PIN0_TIMER */
1298
1299#endif /** NEW_STRATEGY */
1300
1301#else /* APIC_IO */
1302	register_intr(/* irq */ 0, /* XXX id */ 0, /* flags */ 0,
1303		      /* XXX */ (inthand2_t *)clkintr, &clk_imask,
1304		      /* unit */ 0);
1305	INTREN(IRQ0);
1306#endif /* APIC_IO */
1307
1308#if (defined(I586_CPU) || defined(I686_CPU)) && !defined(SMP)
1309	/*
1310	 * Finish setting up anti-jitter measures.
1311	 */
1312	if (i586_ctr_freq != 0)
1313		i586_ctr_bias = rdtsc();
1314#endif
1315
1316#ifndef PC98
1317	/* Initialize RTC. */
1318	writertc(RTC_STATUSA, rtc_statusa);
1319	writertc(RTC_STATUSB, RTCSB_24HR);
1320
1321	/* Don't bother enabling the statistics clock. */
1322	if (statclock_disable)
1323		return;
1324	diag = rtcin(RTC_DIAG);
1325	if (diag != 0)
1326		printf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
1327
1328#ifdef APIC_IO
1329	if (isa_apic_pin(8) != 8)
1330		panic("APIC RTC != 8");
1331#endif /* APIC_IO */
1332	register_intr(/* irq */ 8, /* XXX id */ 1, /* flags */ 0,
1333		      /* XXX */ (inthand2_t *)rtcintr, &stat_imask,
1334		      /* unit */ 0);
1335	INTREN(IRQ8);
1336
1337	writertc(RTC_STATUSB, rtc_statusb);
1338#endif /* !PC98 */
1339}
1340
1341void
1342setstatclockrate(int newhz)
1343{
1344#ifndef PC98
1345	if (newhz == RTC_PROFRATE)
1346		rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
1347	else
1348		rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
1349	writertc(RTC_STATUSA, rtc_statusa);
1350#endif
1351}
1352
1353static int
1354sysctl_machdep_i8254_freq SYSCTL_HANDLER_ARGS
1355{
1356	int error;
1357	u_int freq;
1358
1359	/*
1360	 * Use `i8254' instead of `timer' in external names because `timer'
1361	 * is is too generic.  Should use it everywhere.
1362	 */
1363	freq = timer_freq;
1364	error = sysctl_handle_opaque(oidp, &freq, sizeof freq, req);
1365	if (error == 0 && req->newptr != NULL) {
1366		if (timer0_state != 0)
1367			return (EBUSY);	/* too much trouble to handle */
1368		set_timer_freq(freq, hz);
1369#if (defined(I586_CPU) || defined(I686_CPU)) && !defined(SMP)
1370		set_i586_ctr_freq(i586_ctr_freq, timer_freq);
1371#endif
1372	}
1373	return (error);
1374}
1375
1376SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
1377	    0, sizeof(u_int), sysctl_machdep_i8254_freq, "I", "");
1378
1379#if (defined(I586_CPU) || defined(I686_CPU)) && !defined(SMP)
1380static void
1381set_i586_ctr_freq(u_int i586_freq, u_int i8254_freq)
1382{
1383	u_int comultiplier, multiplier;
1384	u_long ef;
1385
1386	if (i586_freq == 0) {
1387		i586_ctr_freq = i586_freq;
1388		return;
1389	}
1390	comultiplier = ((unsigned long long)i586_freq
1391			<< I586_CTR_COMULTIPLIER_SHIFT) / i8254_freq;
1392	multiplier = (1000000LL << I586_CTR_MULTIPLIER_SHIFT) / i586_freq;
1393	ef = read_eflags();
1394	disable_intr();
1395	i586_ctr_freq = i586_freq;
1396	i586_ctr_comultiplier = comultiplier;
1397	i586_ctr_multiplier = multiplier;
1398	write_eflags(ef);
1399}
1400
1401static int
1402sysctl_machdep_i586_freq SYSCTL_HANDLER_ARGS
1403{
1404	int error;
1405	u_int freq;
1406
1407	if (cpu_class != CPUCLASS_586 && cpu_class != CPUCLASS_686)
1408		return (EOPNOTSUPP);
1409	freq = i586_ctr_freq;
1410	error = sysctl_handle_opaque(oidp, &freq, sizeof freq, req);
1411	if (error == 0 && req->newptr != NULL)
1412		set_i586_ctr_freq(freq, timer_freq);
1413	return (error);
1414}
1415
1416SYSCTL_PROC(_machdep, OID_AUTO, i586_freq, CTLTYPE_INT | CTLFLAG_RW,
1417	    0, sizeof(u_int), sysctl_machdep_i586_freq, "I", "");
1418#endif /* (defined(I586_CPU) || defined(I686_CPU)) && !defined(SMP) */
1419