pcrtc.c revision 26384
1/*-
2 * Copyright (c) 1990 The Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * William Jolitz and Don Ahn.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)clock.c	7.2 (Berkeley) 5/12/91
37 *	$Id: clock.c,v 1.24 1997/05/31 12:43:17 kato Exp $
38 */
39
40/*
41 * Routines to handle clock hardware.
42 */
43
44/*
45 * inittodr, settodr and support routines written
46 * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
47 *
48 * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
49 */
50
51/*
52 * modified for PC98 by Kakefuda
53 */
54
55#include "opt_clock.h"
56#include "opt_cpu.h"
57
58#include <sys/param.h>
59#include <sys/systm.h>
60#include <sys/time.h>
61#include <sys/kernel.h>
62#include <sys/sysctl.h>
63
64#include <machine/clock.h>
65#ifdef CLK_CALIBRATION_LOOP
66#include <machine/cons.h>
67#endif
68#include <machine/cpu.h>
69#include <machine/frame.h>
70#include <machine/ipl.h>
71
72#include <i386/isa/icu.h>
73#ifdef PC98
74#include <pc98/pc98/pc98.h>
75#include <pc98/pc98/pc98_machdep.h>
76#include <i386/isa/isa_device.h>
77#else
78#include <i386/isa/isa.h>
79#include <i386/isa/intr_machdep.h>
80#include <i386/isa/rtc.h>
81#endif
82#include <i386/isa/timerreg.h>
83
84/*
85 * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
86 * can use a simple formula for leap years.
87 */
88#define	LEAPYEAR(y) ((u_int)(y) % 4 == 0)
89#define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
90
91#define	TIMER_DIV(x) ((timer_freq + (x) / 2) / (x))
92
93/*
94 * Time in timer cycles that it takes for microtime() to disable interrupts
95 * and latch the count.  microtime() currently uses "cli; outb ..." so it
96 * normally takes less than 2 timer cycles.  Add a few for cache misses.
97 * Add a few more to allow for latency in bogus calls to microtime() with
98 * interrupts already disabled.
99 */
100#define	TIMER0_LATCH_COUNT	20
101
102/*
103 * Maximum frequency that we are willing to allow for timer0.  Must be
104 * low enough to guarantee that the timer interrupt handler returns
105 * before the next timer interrupt.  Must result in a lower TIMER_DIV
106 * value than TIMER0_LATCH_COUNT so that we don't have to worry about
107 * underflow in the calculation of timer0_overflow_threshold.
108 */
109#define	TIMER0_MAX_FREQ		20000
110
111int	adjkerntz;		/* local offset	from GMT in seconds */
112int	disable_rtc_set;	/* disable resettodr() if != 0 */
113u_int	idelayed;
114#if defined(I586_CPU) || defined(I686_CPU)
115#ifndef SMP
116u_int	i586_ctr_bias;
117u_int	i586_ctr_comultiplier;
118#endif
119u_int	i586_ctr_freq;
120#ifndef SMP
121u_int	i586_ctr_multiplier;
122#endif
123#endif
124int	statclock_disable;
125u_int	stat_imask = SWI_CLOCK_MASK;
126#ifdef TIMER_FREQ
127u_int	timer_freq = TIMER_FREQ;
128#else
129#ifdef PC98
130#ifndef AUTO_CLOCK
131#ifndef PC98_8M
132u_int	timer_freq = 2457600;
133#else	/* !PC98_8M */
134u_int	timer_freq = 1996800;
135#endif	/* PC98_8M */
136#else	/* AUTO_CLOCK */
137u_int	timer_freq = 2457600;
138#endif	/* AUTO_CLOCK */
139#else /* IBM-PC */
140u_int	timer_freq = 1193182;
141#endif /* PC98 */
142#endif
143int	timer0_max_count;
144u_int	timer0_overflow_threshold;
145u_int	timer0_prescaler_count;
146int	wall_cmos_clock;	/* wall	CMOS clock assumed if != 0 */
147
148static	int	beeping = 0;
149static	u_int	clk_imask = HWI_MASK | SWI_MASK;
150static	const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
151static	u_int	hardclock_max_count;
152/*
153 * XXX new_function and timer_func should not handle clockframes, but
154 * timer_func currently needs to hold hardclock to handle the
155 * timer0_state == 0 case.  We should use register_intr()/unregister_intr()
156 * to switch between clkintr() and a slightly different timerintr().
157 */
158static	void	(*new_function) __P((struct clockframe *frame));
159static	u_int	new_rate;
160#ifndef PC98
161static	u_char	rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
162static	u_char	rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
163#endif
164
165/* Values for timerX_state: */
166#define	RELEASED	0
167#define	RELEASE_PENDING	1
168#define	ACQUIRED	2
169#define	ACQUIRE_PENDING	3
170
171static	u_char	timer0_state;
172#ifdef	PC98
173static 	u_char	timer1_state;
174#endif
175static	u_char	timer2_state;
176static	void	(*timer_func) __P((struct clockframe *frame)) = hardclock;
177#ifdef PC98
178static void rtc_serialcombit __P((int));
179static void rtc_serialcom __P((int));
180static int rtc_inb __P((void));
181static void rtc_outb __P((int));
182#endif
183
184#if (defined(I586_CPU) || defined(I686_CPU)) && !defined(SMP)
185static	void	set_i586_ctr_freq(u_int i586_freq, u_int i8254_freq);
186#endif
187static	void	set_timer_freq(u_int freq, int intr_freq);
188
189static void
190clkintr(struct clockframe frame)
191{
192	timer_func(&frame);
193	switch (timer0_state) {
194
195	case RELEASED:
196		setdelayed();
197		break;
198
199	case ACQUIRED:
200		if ((timer0_prescaler_count += timer0_max_count)
201		    >= hardclock_max_count) {
202			hardclock(&frame);
203			setdelayed();
204			timer0_prescaler_count -= hardclock_max_count;
205		}
206		break;
207
208	case ACQUIRE_PENDING:
209		setdelayed();
210		timer0_max_count = TIMER_DIV(new_rate);
211		timer0_overflow_threshold =
212			timer0_max_count - TIMER0_LATCH_COUNT;
213		disable_intr();
214		outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
215		outb(TIMER_CNTR0, timer0_max_count & 0xff);
216		outb(TIMER_CNTR0, timer0_max_count >> 8);
217		enable_intr();
218		timer0_prescaler_count = 0;
219		timer_func = new_function;
220		timer0_state = ACQUIRED;
221		break;
222
223	case RELEASE_PENDING:
224		if ((timer0_prescaler_count += timer0_max_count)
225		    >= hardclock_max_count) {
226			hardclock(&frame);
227			setdelayed();
228			timer0_max_count = hardclock_max_count;
229			timer0_overflow_threshold =
230				timer0_max_count - TIMER0_LATCH_COUNT;
231			disable_intr();
232			outb(TIMER_MODE,
233			     TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
234			outb(TIMER_CNTR0, timer0_max_count & 0xff);
235			outb(TIMER_CNTR0, timer0_max_count >> 8);
236			enable_intr();
237			/*
238			 * See microtime.s for this magic.
239			 */
240#ifdef PC98
241#ifndef AUTO_CLOCK
242#ifndef PC98_8M
243			time.tv_usec += (6667 *
244				(timer0_prescaler_count - hardclock_max_count))
245				>> 14;
246#else /* PC98_8M */
247			time.tv_usec += (16411 *
248				(timer0_prescaler_count - hardclock_max_count))
249				>> 15;
250#endif /* PC98_8M */
251#else /* AUTO_CLOCK */
252			if (pc98_machine_type & M_8M) {
253				/* PC98_8M */
254				time.tv_usec += (16411 *
255					(timer0_prescaler_count -
256					 hardclock_max_count)) >> 15;
257			} else {
258				time.tv_usec += (6667 *
259					(timer0_prescaler_count -
260					 hardclock_max_count)) >> 14;
261			}
262#endif /* AUTO_CLOCK */
263#else /* IBM-PC */
264			time.tv_usec += (27465 *
265				(timer0_prescaler_count - hardclock_max_count))
266				>> 15;
267#endif /* PC98 */
268			if (time.tv_usec >= 1000000)
269				time.tv_usec -= 1000000;
270			timer0_prescaler_count = 0;
271			timer_func = hardclock;
272			timer0_state = RELEASED;
273		}
274		break;
275	}
276}
277
278/*
279 * The acquire and release functions must be called at ipl >= splclock().
280 */
281int
282acquire_timer0(int rate, void (*function) __P((struct clockframe *frame)))
283{
284	static int old_rate;
285
286	if (rate <= 0 || rate > TIMER0_MAX_FREQ)
287		return (-1);
288	switch (timer0_state) {
289
290	case RELEASED:
291		timer0_state = ACQUIRE_PENDING;
292		break;
293
294	case RELEASE_PENDING:
295		if (rate != old_rate)
296			return (-1);
297		/*
298		 * The timer has been released recently, but is being
299		 * re-acquired before the release completed.  In this
300		 * case, we simply reclaim it as if it had not been
301		 * released at all.
302		 */
303		timer0_state = ACQUIRED;
304		break;
305
306	default:
307		return (-1);	/* busy */
308	}
309	new_function = function;
310	old_rate = new_rate = rate;
311	return (0);
312}
313
314#ifdef PC98
315int
316acquire_timer1(int mode)
317{
318
319	if (timer1_state != RELEASED)
320		return (-1);
321	timer1_state = ACQUIRED;
322
323	/*
324	 * This access to the timer registers is as atomic as possible
325	 * because it is a single instruction.  We could do better if we
326	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
327	 * and this is probably good enough for timer2, so we aren't as
328	 * careful with it as with timer0.
329	 */
330	outb(TIMER_MODE, TIMER_SEL1 | (mode & 0x3f));
331
332	return (0);
333}
334#endif
335
336int
337acquire_timer2(int mode)
338{
339
340	if (timer2_state != RELEASED)
341		return (-1);
342	timer2_state = ACQUIRED;
343
344	/*
345	 * This access to the timer registers is as atomic as possible
346	 * because it is a single instruction.  We could do better if we
347	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
348	 * and this is probably good enough for timer2, so we aren't as
349	 * careful with it as with timer0.
350	 */
351	outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
352
353	return (0);
354}
355
356int
357release_timer0()
358{
359	switch (timer0_state) {
360
361	case ACQUIRED:
362		timer0_state = RELEASE_PENDING;
363		break;
364
365	case ACQUIRE_PENDING:
366		/* Nothing happened yet, release quickly. */
367		timer0_state = RELEASED;
368		break;
369
370	default:
371		return (-1);
372	}
373	return (0);
374}
375
376#ifdef PC98
377int
378release_timer1()
379{
380
381	if (timer1_state != ACQUIRED)
382		return (-1);
383	timer1_state = RELEASED;
384	outb(TIMER_MODE, TIMER_SEL1 | TIMER_SQWAVE | TIMER_16BIT);
385	return (0);
386}
387#endif
388
389int
390release_timer2()
391{
392
393	if (timer2_state != ACQUIRED)
394		return (-1);
395	timer2_state = RELEASED;
396	outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
397	return (0);
398}
399
400#ifndef PC98
401/*
402 * This routine receives statistical clock interrupts from the RTC.
403 * As explained above, these occur at 128 interrupts per second.
404 * When profiling, we receive interrupts at a rate of 1024 Hz.
405 *
406 * This does not actually add as much overhead as it sounds, because
407 * when the statistical clock is active, the hardclock driver no longer
408 * needs to keep (inaccurate) statistics on its own.  This decouples
409 * statistics gathering from scheduling interrupts.
410 *
411 * The RTC chip requires that we read status register C (RTC_INTR)
412 * to acknowledge an interrupt, before it will generate the next one.
413 * Under high interrupt load, rtcintr() can be indefinitely delayed and
414 * the clock can tick immediately after the read from RTC_INTR.  In this
415 * case, the mc146818A interrupt signal will not drop for long enough
416 * to register with the 8259 PIC.  If an interrupt is missed, the stat
417 * clock will halt, considerably degrading system performance.  This is
418 * why we use 'while' rather than a more straightforward 'if' below.
419 * Stat clock ticks can still be lost, causing minor loss of accuracy
420 * in the statistics, but the stat clock will no longer stop.
421 */
422static void
423rtcintr(struct clockframe frame)
424{
425	while (rtcin(RTC_INTR) & RTCIR_PERIOD)
426		statclock(&frame);
427}
428
429#include "opt_ddb.h"
430#ifdef DDB
431#include <ddb/ddb.h>
432
433DB_SHOW_COMMAND(rtc, rtc)
434{
435	printf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
436	       rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
437	       rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
438	       rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
439}
440#endif /* DDB */
441#endif /* for PC98 */
442
443static int
444getit(void)
445{
446	u_long ef;
447	int high, low;
448
449	ef = read_eflags();
450	disable_intr();
451
452	/* Select timer0 and latch counter value. */
453	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
454
455	low = inb(TIMER_CNTR0);
456	high = inb(TIMER_CNTR0);
457
458	write_eflags(ef);
459	return ((high << 8) | low);
460}
461
462/*
463 * Wait "n" microseconds.
464 * Relies on timer 1 counting down from (timer_freq / hz)
465 * Note: timer had better have been programmed before this is first used!
466 */
467void
468DELAY(int n)
469{
470	int delta, prev_tick, tick, ticks_left;
471
472#ifdef DELAYDEBUG
473	int getit_calls = 1;
474	int n1;
475	static int state = 0;
476
477	if (state == 0) {
478		state = 1;
479		for (n1 = 1; n1 <= 10000000; n1 *= 10)
480			DELAY(n1);
481		state = 2;
482	}
483	if (state == 1)
484		printf("DELAY(%d)...", n);
485#endif
486	/*
487	 * Guard against the timer being uninitialized if we are called
488	 * early for console i/o.
489	 */
490	if (timer0_max_count == 0)
491		set_timer_freq(timer_freq, hz);
492
493	/*
494	 * Read the counter first, so that the rest of the setup overhead is
495	 * counted.  Guess the initial overhead is 20 usec (on most systems it
496	 * takes about 1.5 usec for each of the i/o's in getit().  The loop
497	 * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
498	 * multiplications and divisions to scale the count take a while).
499	 */
500	prev_tick = getit();
501	n -= 0;			/* XXX actually guess no initial overhead */
502	/*
503	 * Calculate (n * (timer_freq / 1e6)) without using floating point
504	 * and without any avoidable overflows.
505	 */
506	if (n <= 0)
507		ticks_left = 0;
508	else if (n < 256)
509		/*
510		 * Use fixed point to avoid a slow division by 1000000.
511		 * 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
512		 * 2^15 is the first power of 2 that gives exact results
513		 * for n between 0 and 256.
514		 */
515		ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
516	else
517		/*
518		 * Don't bother using fixed point, although gcc-2.7.2
519		 * generates particularly poor code for the long long
520		 * division, since even the slow way will complete long
521		 * before the delay is up (unless we're interrupted).
522		 */
523		ticks_left = ((u_int)n * (long long)timer_freq + 999999)
524			     / 1000000;
525
526	while (ticks_left > 0) {
527		tick = getit();
528#ifdef DELAYDEBUG
529		++getit_calls;
530#endif
531		delta = prev_tick - tick;
532		prev_tick = tick;
533		if (delta < 0) {
534			delta += timer0_max_count;
535			/*
536			 * Guard against timer0_max_count being wrong.
537			 * This shouldn't happen in normal operation,
538			 * but it may happen if set_timer_freq() is
539			 * traced.
540			 */
541			if (delta < 0)
542				delta = 0;
543		}
544		ticks_left -= delta;
545	}
546#ifdef DELAYDEBUG
547	if (state == 1)
548		printf(" %d calls to getit() at %d usec each\n",
549		       getit_calls, (n + 5) / getit_calls);
550#endif
551}
552
553static void
554sysbeepstop(void *chan)
555{
556#ifdef PC98	/* PC98 */
557	outb(IO_PPI, inb(IO_PPI)|0x08);	/* disable counter1 output to speaker */
558	release_timer1();
559#else
560	outb(IO_PPI, inb(IO_PPI)&0xFC);	/* disable counter2 output to speaker */
561	release_timer2();
562#endif
563	beeping = 0;
564}
565
566int
567sysbeep(int pitch, int period)
568{
569	int x = splclock();
570
571#ifdef PC98
572	if (acquire_timer1(TIMER_SQWAVE|TIMER_16BIT))
573		if (!beeping) {
574			/* Something else owns it. */
575			splx(x);
576			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
577		}
578	disable_intr();
579	outb(0x3fdb, pitch);
580	outb(0x3fdb, (pitch>>8));
581	enable_intr();
582	if (!beeping) {
583		/* enable counter1 output to speaker */
584		outb(IO_PPI, (inb(IO_PPI) & 0xf7));
585		beeping = period;
586		timeout(sysbeepstop, (void *)NULL, period);
587	}
588#else
589	if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
590		if (!beeping) {
591			/* Something else owns it. */
592			splx(x);
593			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
594		}
595	disable_intr();
596	outb(TIMER_CNTR2, pitch);
597	outb(TIMER_CNTR2, (pitch>>8));
598	enable_intr();
599	if (!beeping) {
600		/* enable counter2 output to speaker */
601		outb(IO_PPI, inb(IO_PPI) | 3);
602		beeping = period;
603		timeout(sysbeepstop, (void *)NULL, period);
604	}
605#endif
606	splx(x);
607	return (0);
608}
609
610#ifndef PC98
611/*
612 * RTC support routines
613 */
614
615int
616rtcin(reg)
617	int reg;
618{
619	u_char val;
620
621	outb(IO_RTC, reg);
622	inb(0x84);
623	val = inb(IO_RTC + 1);
624	inb(0x84);
625	return (val);
626}
627
628static __inline void
629writertc(u_char reg, u_char val)
630{
631	outb(IO_RTC, reg);
632	outb(IO_RTC + 1, val);
633}
634
635static __inline int
636readrtc(int port)
637{
638	return(bcd2bin(rtcin(port)));
639}
640#endif
641
642#ifdef PC98
643unsigned int delaycount;
644#define FIRST_GUESS	0x2000
645static void findcpuspeed(void)
646{
647	int i;
648	int remainder;
649
650	/* Put counter in count down mode */
651	outb(TIMER_MODE, TIMER_SEL0 | TIMER_16BIT | TIMER_RATEGEN);
652	outb(TIMER_CNTR0, 0xff);
653	outb(TIMER_CNTR0, 0xff);
654	for (i = FIRST_GUESS; i; i--)
655		;
656	remainder = getit();
657	delaycount = (FIRST_GUESS * TIMER_DIV(1000)) / (0xffff - remainder);
658}
659#endif
660
661#ifndef PC98
662static u_int
663calibrate_clocks(void)
664{
665	u_int count, prev_count, tot_count;
666	int sec, start_sec, timeout;
667
668	if (bootverbose)
669	        printf("Calibrating clock(s) ... ");
670	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
671		goto fail;
672	timeout = 100000000;
673
674	/* Read the mc146818A seconds counter. */
675	for (;;) {
676		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
677			sec = rtcin(RTC_SEC);
678			break;
679		}
680		if (--timeout == 0)
681			goto fail;
682	}
683
684	/* Wait for the mC146818A seconds counter to change. */
685	start_sec = sec;
686	for (;;) {
687		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
688			sec = rtcin(RTC_SEC);
689			if (sec != start_sec)
690				break;
691		}
692		if (--timeout == 0)
693			goto fail;
694	}
695
696	/* Start keeping track of the i8254 counter. */
697	prev_count = getit();
698	if (prev_count == 0 || prev_count > timer0_max_count)
699		goto fail;
700	tot_count = 0;
701
702#if (defined(I586_CPU) || defined(I686_CPU)) && !defined(SMP)
703	if (cpu_class == CPUCLASS_586 || cpu_class == CPUCLASS_686)
704		wrmsr(0x10, 0LL);	/* XXX 0x10 is the MSR for the TSC */
705#endif
706
707	/*
708	 * Wait for the mc146818A seconds counter to change.  Read the i8254
709	 * counter for each iteration since this is convenient and only
710	 * costs a few usec of inaccuracy. The timing of the final reads
711	 * of the counters almost matches the timing of the initial reads,
712	 * so the main cause of inaccuracy is the varying latency from
713	 * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
714	 * rtcin(RTC_SEC) that returns a changed seconds count.  The
715	 * maximum inaccuracy from this cause is < 10 usec on 486's.
716	 */
717	start_sec = sec;
718	for (;;) {
719		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
720			sec = rtcin(RTC_SEC);
721		count = getit();
722		if (count == 0 || count > timer0_max_count)
723			goto fail;
724		if (count > prev_count)
725			tot_count += prev_count - (count - timer0_max_count);
726		else
727			tot_count += prev_count - count;
728		prev_count = count;
729		if (sec != start_sec)
730			break;
731		if (--timeout == 0)
732			goto fail;
733	}
734
735#if (defined(I586_CPU) || defined(I686_CPU)) && !defined(SMP)
736	/*
737	 * Read the cpu cycle counter.  The timing considerations are
738	 * similar to those for the i8254 clock.
739	 */
740	if (cpu_class == CPUCLASS_586 || cpu_class == CPUCLASS_686) {
741		set_i586_ctr_freq((u_int)rdtsc(), tot_count);
742		if (bootverbose)
743		        printf("i586 clock: %u Hz, ", i586_ctr_freq);
744	}
745#endif
746
747	if (bootverbose)
748	        printf("i8254 clock: %u Hz\n", tot_count);
749	return (tot_count);
750
751fail:
752	if (bootverbose)
753	        printf("failed, using default i8254 clock of %u Hz\n",
754		       timer_freq);
755	return (timer_freq);
756}
757#endif	/* !PC98 */
758
759static void
760set_timer_freq(u_int freq, int intr_freq)
761{
762	u_long ef;
763
764	ef = read_eflags();
765	disable_intr();
766	timer_freq = freq;
767	timer0_max_count = hardclock_max_count = TIMER_DIV(intr_freq);
768	timer0_overflow_threshold = timer0_max_count - TIMER0_LATCH_COUNT;
769	outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
770	outb(TIMER_CNTR0, timer0_max_count & 0xff);
771	outb(TIMER_CNTR0, timer0_max_count >> 8);
772	write_eflags(ef);
773}
774
775/*
776 * Initialize 8253 timer 0 early so that it can be used in DELAY().
777 * XXX initialization of other timers is unintentionally left blank.
778 */
779void
780startrtclock()
781{
782	u_int delta, freq;
783
784#ifdef PC98
785	findcpuspeed();
786#ifndef AUTO_CLOCK
787	if (pc98_machine_type & M_8M) {
788#ifndef	PC98_8M
789		printf("you must reconfig a kernel with \"PC98_8M\" option.\n");
790#endif
791	} else {
792#ifdef	PC98_8M
793		printf("You must reconfig a kernel without \"PC98_8M\" option.\n");
794#endif
795	}
796#else /* AUTO_CLOCK */
797	if (pc98_machine_type & M_8M)
798		timer_freq = 1996800L; /* 1.9968 MHz */
799	else
800		timer_freq = 2457600L; /* 2.4576 MHz */
801#endif /* AUTO_CLOCK */
802#endif /* PC98 */
803
804#ifndef PC98
805	writertc(RTC_STATUSA, rtc_statusa);
806	writertc(RTC_STATUSB, RTCSB_24HR);
807#endif
808
809#ifndef PC98
810	set_timer_freq(timer_freq, hz);
811	freq = calibrate_clocks();
812#ifdef CLK_CALIBRATION_LOOP
813	if (bootverbose) {
814		printf(
815		"Press a key on the console to abort clock calibration\n");
816		while (cncheckc() == -1)
817			calibrate_clocks();
818	}
819#endif
820
821	/*
822	 * Use the calibrated i8254 frequency if it seems reasonable.
823	 * Otherwise use the default, and don't use the calibrated i586
824	 * frequency.
825	 */
826	delta = freq > timer_freq ? freq - timer_freq : timer_freq - freq;
827	if (delta < timer_freq / 100) {
828#ifndef CLK_USE_I8254_CALIBRATION
829		if (bootverbose)
830			printf(
831"CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
832		freq = timer_freq;
833#endif
834		timer_freq = freq;
835	} else {
836		if (bootverbose)
837			printf(
838		    "%d Hz differs from default of %d Hz by more than 1%%\n",
839			       freq, timer_freq);
840#if (defined(I586_CPU) || defined(I686_CPU)) && !defined(SMP)
841		i586_ctr_freq = 0;
842#endif
843	}
844#endif
845
846	set_timer_freq(timer_freq, hz);
847
848#if (defined(I586_CPU) || defined(I686_CPU)) && !defined(SMP)
849#ifndef CLK_USE_I586_CALIBRATION
850	if (i586_ctr_freq != 0) {
851		if (bootverbose)
852			printf(
853"CLK_USE_I586_CALIBRATION not specified - using old calibration method\n");
854		i586_ctr_freq = 0;
855	}
856#endif
857	if (i586_ctr_freq == 0 &&
858	    (cpu_class == CPUCLASS_586 || cpu_class == CPUCLASS_686)) {
859		/*
860		 * Calibration of the i586 clock relative to the mc146818A
861		 * clock failed.  Do a less accurate calibration relative
862		 * to the i8254 clock.
863		 */
864		wrmsr(0x10, 0LL);	/* XXX */
865		DELAY(1000000);
866		set_i586_ctr_freq((u_int)rdtsc(), timer_freq);
867#ifdef CLK_USE_I586_CALIBRATION
868		if (bootverbose)
869			printf("i586 clock: %u Hz\n", i586_ctr_freq);
870#endif
871	}
872#endif
873}
874
875#ifdef PC98
876static void
877rtc_serialcombit(int i)
878{
879	outb(IO_RTC, ((i&0x01)<<5)|0x07);
880	DELAY(1);
881	outb(IO_RTC, ((i&0x01)<<5)|0x17);
882	DELAY(1);
883	outb(IO_RTC, ((i&0x01)<<5)|0x07);
884	DELAY(1);
885}
886
887static void
888rtc_serialcom(int i)
889{
890	rtc_serialcombit(i&0x01);
891	rtc_serialcombit((i&0x02)>>1);
892	rtc_serialcombit((i&0x04)>>2);
893	rtc_serialcombit((i&0x08)>>3);
894	outb(IO_RTC, 0x07);
895	DELAY(1);
896	outb(IO_RTC, 0x0f);
897	DELAY(1);
898	outb(IO_RTC, 0x07);
899 	DELAY(1);
900}
901
902static void
903rtc_outb(int val)
904{
905	int s;
906	int sa = 0;
907
908	for (s=0;s<8;s++) {
909	    sa = ((val >> s) & 0x01) ? 0x27 : 0x07;
910	    outb(IO_RTC, sa);		/* set DI & CLK 0 */
911	    DELAY(1);
912	    outb(IO_RTC, sa | 0x10);	/* CLK 1 */
913	    DELAY(1);
914	}
915	outb(IO_RTC, sa & 0xef);	/* CLK 0 */
916}
917
918static int
919rtc_inb(void)
920{
921	int s;
922	int sa = 0;
923
924	for (s=0;s<8;s++) {
925	    sa |= ((inb(0x33) & 0x01) << s);
926	    outb(IO_RTC, 0x17);	/* CLK 1 */
927	    DELAY(1);
928	    outb(IO_RTC, 0x07);	/* CLK 0 */
929	    DELAY(2);
930	}
931	return sa;
932}
933#endif /* PC-98 */
934
935/*
936 * Initialize the time of day register,	based on the time base which is, e.g.
937 * from	a filesystem.
938 */
939void
940inittodr(time_t base)
941{
942	unsigned long	sec, days;
943	int		yd;
944	int		year, month;
945	int		y, m, s;
946#ifdef PC98
947	int		second, min, hour;
948#endif
949
950	s = splclock();
951	time.tv_sec  = base;
952	time.tv_usec = 0;
953	splx(s);
954
955#ifdef PC98
956	rtc_serialcom(0x03);	/* Time Read */
957	rtc_serialcom(0x01);	/* Register shift command. */
958	DELAY(20);
959
960	second = bcd2bin(rtc_inb() & 0xff);	/* sec */
961	min = bcd2bin(rtc_inb() & 0xff);	/* min */
962	hour = bcd2bin(rtc_inb() & 0xff);	/* hour */
963	days = bcd2bin(rtc_inb() & 0xff) - 1;	/* date */
964
965	month = (rtc_inb() >> 4) & 0x0f;	/* month */
966	for (m = 1; m <	month; m++)
967		days +=	daysinmonth[m-1];
968	year = bcd2bin(rtc_inb() & 0xff) + 1900;	/* year */
969	/* 2000 year problem */
970	if (year < 1995)
971		year += 100;
972	if (year < 1970)
973		goto wrong_time;
974	for (y = 1970; y < year; y++)
975		days +=	DAYSPERYEAR + LEAPYEAR(y);
976	if ((month > 2)	&& LEAPYEAR(year))
977		days ++;
978	sec = ((( days * 24 +
979		  hour) * 60 +
980		  min) * 60 +
981		  second);
982	/* sec now contains the	number of seconds, since Jan 1 1970,
983	   in the local	time zone */
984#else	/* IBM-PC */
985	/* Look	if we have a RTC present and the time is valid */
986	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
987		goto wrong_time;
988
989	/* wait	for time update	to complete */
990	/* If RTCSA_TUP	is zero, we have at least 244us	before next update */
991	while (rtcin(RTC_STATUSA) & RTCSA_TUP);
992
993	days = 0;
994#ifdef USE_RTC_CENTURY
995	year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY)	* 100;
996#else
997	year = readrtc(RTC_YEAR) + 1900;
998	if (year < 1970)
999		year += 100;
1000#endif
1001	if (year < 1970)
1002		goto wrong_time;
1003	month =	readrtc(RTC_MONTH);
1004	for (m = 1; m <	month; m++)
1005		days +=	daysinmonth[m-1];
1006	if ((month > 2)	&& LEAPYEAR(year))
1007		days ++;
1008	days +=	readrtc(RTC_DAY) - 1;
1009	yd = days;
1010	for (y = 1970; y < year; y++)
1011		days +=	DAYSPERYEAR + LEAPYEAR(y);
1012	sec = ((( days * 24 +
1013		  readrtc(RTC_HRS)) * 60 +
1014		  readrtc(RTC_MIN)) * 60 +
1015		  readrtc(RTC_SEC));
1016	/* sec now contains the	number of seconds, since Jan 1 1970,
1017	   in the local	time zone */
1018#endif
1019
1020	sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1021
1022	s = splclock();
1023	time.tv_sec = sec;
1024	splx(s);
1025	return;
1026
1027wrong_time:
1028	printf("Invalid	time in	real time clock.\n");
1029	printf("Check and reset	the date immediately!\n");
1030}
1031
1032/*
1033 * Write system	time back to RTC
1034 */
1035void
1036resettodr()
1037{
1038	unsigned long	tm;
1039	int		y, m, s;
1040#ifdef PC98
1041	int		wd;
1042#endif
1043
1044	if (disable_rtc_set)
1045		return;
1046
1047	s = splclock();
1048	tm = time.tv_sec;
1049	splx(s);
1050
1051#ifdef PC98
1052	rtc_serialcom(0x01);	/* Register shift command. */
1053
1054	/* Calculate local time	to put in RTC */
1055
1056	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1057
1058	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
1059	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
1060	rtc_outb(bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
1061
1062	/* We have now the days	since 01-01-1970 in tm */
1063	wd = (tm+4)%7;
1064	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1065	     tm >= m;
1066	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1067	     tm -= m;
1068
1069	/* Now we have the years in y and the day-of-the-year in tm */
1070	for (m = 0; ; m++) {
1071		int ml;
1072
1073		ml = daysinmonth[m];
1074		if (m == 1 && LEAPYEAR(y))
1075			ml++;
1076		if (tm < ml)
1077			break;
1078		tm -= ml;
1079	}
1080
1081	m++;
1082	rtc_outb(bin2bcd(tm+1));		/* Write back Day     */
1083	rtc_outb((m << 4) | wd);		/* Write back Month & Weekday  */
1084	rtc_outb(bin2bcd(y%100));		/* Write back Year    */
1085
1086	rtc_serialcom(0x02);	/* Time set & Counter hold command. */
1087	rtc_serialcom(0x00);	/* Register hold command. */
1088#else
1089	/* Disable RTC updates and interrupts. */
1090	writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
1091
1092	/* Calculate local time	to put in RTC */
1093
1094	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1095
1096	writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
1097	writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
1098	writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
1099
1100	/* We have now the days	since 01-01-1970 in tm */
1101	writertc(RTC_WDAY, (tm+4)%7);			/* Write back Weekday */
1102	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1103	     tm >= m;
1104	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1105	     tm -= m;
1106
1107	/* Now we have the years in y and the day-of-the-year in tm */
1108	writertc(RTC_YEAR, bin2bcd(y%100));		/* Write back Year    */
1109#ifdef USE_RTC_CENTURY
1110	writertc(RTC_CENTURY, bin2bcd(y/100));		/* ... and Century    */
1111#endif
1112	for (m = 0; ; m++) {
1113		int ml;
1114
1115		ml = daysinmonth[m];
1116		if (m == 1 && LEAPYEAR(y))
1117			ml++;
1118		if (tm < ml)
1119			break;
1120		tm -= ml;
1121	}
1122
1123	writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
1124	writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
1125
1126	/* Reenable RTC updates and interrupts. */
1127	writertc(RTC_STATUSB, rtc_statusb);
1128#endif
1129}
1130
1131#if defined(APIC_IO)
1132
1133/* from icu.s: */
1134extern u_int	vec[];
1135extern void	vec8254	__P((void));
1136extern void	vecRTC	__P((void));
1137extern u_int	ivectors[];
1138extern u_int	Xintr8254;
1139extern u_int	XintrRTC;
1140extern u_int	mask8254;
1141extern u_int	maskRTC;
1142
1143#endif /* APIC_IO */
1144
1145/*
1146 * Start both clocks running.
1147 */
1148void
1149cpu_initclocks()
1150{
1151#if defined(APIC_IO)
1152	int x;
1153#endif /* APIC_IO */
1154#ifndef PC98
1155	int diag;
1156
1157	if (statclock_disable) {
1158		/*
1159		 * The stat interrupt mask is different without the
1160		 * statistics clock.  Also, don't set the interrupt
1161		 * flag which would normally cause the RTC to generate
1162		 * interrupts.
1163		 */
1164		stat_imask = HWI_MASK | SWI_MASK;
1165		rtc_statusb = RTCSB_24HR;
1166	} else {
1167	        /* Setting stathz to nonzero early helps avoid races. */
1168		stathz = RTC_NOPROFRATE;
1169		profhz = RTC_PROFRATE;
1170        }
1171#endif
1172
1173	/* Finish initializing 8253 timer 0. */
1174#if defined(APIC_IO)
1175	/* 8254 is traditionally on ISA IRQ0 */
1176	if ((x = get_isa_apic_irq(0)) < 0) {
1177		/*
1178		 * bummer, this mb doesn't have the 8254 on ISA irq0,
1179		 *  perhaps it's on the EISA bus...
1180		 */
1181		if ((x = get_eisa_apic_irq(0)) < 0) {
1182			/* double bummer, attempt to redirect thru the 8259 */
1183			if (bootverbose)
1184				printf("APIC missing 8254 connection\n");
1185
1186			/* allow 8254 timer to INTerrupt 8259 */
1187#if !defined(IO_ICU1)
1188#ifdef PC98
1189#define IO_ICU1 0x00
1190#else
1191#define IO_ICU1 0x20
1192#endif
1193#endif
1194			x = inb(IO_ICU1 + 1);	/* current mask in 8259 */
1195			x &= ~1;		/* clear 8254 timer mask */
1196			outb(IO_ICU1 + 1, x);	/* write new mask */
1197
1198			/* program IO APIC for type 3 INT on INT0 */
1199			if (ext_int_setup(0, 0) < 0)
1200				panic("8254 redirect impossible!");
1201			x = 0;			/* 8259 is on 0 */
1202		}
1203	}
1204
1205	vec[x] = (u_int)vec8254;
1206	Xintr8254 = (u_int)ivectors[x];	/* XXX might need Xfastintr# */
1207	mask8254 = (1 << x);
1208	register_intr(/* irq */ x, /* XXX id */ 0, /* flags */ 0,
1209		      /* XXX */ (inthand2_t *)clkintr, &clk_imask,
1210		      /* unit */ 0);
1211	INTREN(mask8254);
1212#else
1213	register_intr(/* irq */ 0, /* XXX id */ 0, /* flags */ 0,
1214		      /* XXX */ (inthand2_t *)clkintr, &clk_imask,
1215		      /* unit */ 0);
1216	INTREN(IRQ0);
1217#endif /* APIC_IO */
1218#if (defined(I586_CPU) || defined(I686_CPU)) && !defined(SMP)
1219	/*
1220	 * Finish setting up anti-jitter measures.
1221	 */
1222	if (i586_ctr_freq != 0)
1223		i586_ctr_bias = rdtsc();
1224#endif
1225
1226#ifndef PC98
1227	/* Initialize RTC. */
1228	writertc(RTC_STATUSA, rtc_statusa);
1229	writertc(RTC_STATUSB, RTCSB_24HR);
1230
1231	/* Don't bother enabling the statistics clock. */
1232	if (statclock_disable)
1233		return;
1234	diag = rtcin(RTC_DIAG);
1235	if (diag != 0)
1236		printf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
1237#if defined(APIC_IO)
1238	/* RTC is traditionally on ISA IRQ8 */
1239	if ((x = get_isa_apic_irq(8)) < 0) {
1240		if ((x = get_eisa_apic_irq(8)) < 0) {
1241			panic("APIC missing RTC connection");
1242	    }
1243	}
1244
1245	vec[x] = (u_int)vecRTC;
1246	XintrRTC = (u_int)ivectors[x];	/* XXX might need Xfastintr# */
1247	maskRTC = (1 << x);
1248	register_intr(/* irq */ x, /* XXX id */ 1, /* flags */ 0,
1249		      /* XXX */ (inthand2_t *)rtcintr, &stat_imask,
1250		      /* unit */ 0);
1251	INTREN(maskRTC);
1252#else
1253	register_intr(/* irq */ 8, /* XXX id */ 1, /* flags */ 0,
1254		      /* XXX */ (inthand2_t *)rtcintr, &stat_imask,
1255		      /* unit */ 0);
1256	INTREN(IRQ8);
1257#endif /* APIC_IO */
1258	writertc(RTC_STATUSB, rtc_statusb);
1259#endif
1260
1261#if defined(APIC_IO)
1262	printf("Enabled INTs: ");
1263	for (x = 0; x < 24; ++x)
1264		if ((imen & (1 << x)) == 0)
1265	        	printf("%d, ", x);
1266	printf("imen: 0x%08x\n", imen);
1267#endif /* APIC_IO */
1268}
1269
1270void
1271setstatclockrate(int newhz)
1272{
1273#ifndef PC98
1274	if (newhz == RTC_PROFRATE)
1275		rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
1276	else
1277		rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
1278	writertc(RTC_STATUSA, rtc_statusa);
1279#endif
1280}
1281
1282static int
1283sysctl_machdep_i8254_freq SYSCTL_HANDLER_ARGS
1284{
1285	int error;
1286	u_int freq;
1287
1288	/*
1289	 * Use `i8254' instead of `timer' in external names because `timer'
1290	 * is is too generic.  Should use it everywhere.
1291	 */
1292	freq = timer_freq;
1293	error = sysctl_handle_opaque(oidp, &freq, sizeof freq, req);
1294	if (error == 0 && req->newptr != NULL) {
1295		if (timer0_state != 0)
1296			return (EBUSY);	/* too much trouble to handle */
1297		set_timer_freq(freq, hz);
1298#if (defined(I586_CPU) || defined(I686_CPU)) && !defined(SMP)
1299		set_i586_ctr_freq(i586_ctr_freq, timer_freq);
1300#endif
1301	}
1302	return (error);
1303}
1304
1305SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
1306	    0, sizeof(u_int), sysctl_machdep_i8254_freq, "I", "");
1307
1308#if (defined(I586_CPU) || defined(I686_CPU)) && !defined(SMP)
1309static void
1310set_i586_ctr_freq(u_int i586_freq, u_int i8254_freq)
1311{
1312	u_int comultiplier, multiplier;
1313	u_long ef;
1314
1315	if (i586_freq == 0) {
1316		i586_ctr_freq = i586_freq;
1317		return;
1318	}
1319	comultiplier = ((unsigned long long)i586_freq
1320			<< I586_CTR_COMULTIPLIER_SHIFT) / i8254_freq;
1321	multiplier = (1000000LL << I586_CTR_MULTIPLIER_SHIFT) / i586_freq;
1322	ef = read_eflags();
1323	disable_intr();
1324	i586_ctr_freq = i586_freq;
1325	i586_ctr_comultiplier = comultiplier;
1326	i586_ctr_multiplier = multiplier;
1327	write_eflags(ef);
1328}
1329
1330static int
1331sysctl_machdep_i586_freq SYSCTL_HANDLER_ARGS
1332{
1333	int error;
1334	u_int freq;
1335
1336	if (cpu_class != CPUCLASS_586 && cpu_class != CPUCLASS_686)
1337		return (EOPNOTSUPP);
1338	freq = i586_ctr_freq;
1339	error = sysctl_handle_opaque(oidp, &freq, sizeof freq, req);
1340	if (error == 0 && req->newptr != NULL)
1341		set_i586_ctr_freq(freq, timer_freq);
1342	return (error);
1343}
1344
1345SYSCTL_PROC(_machdep, OID_AUTO, i586_freq, CTLTYPE_INT | CTLFLAG_RW,
1346	    0, sizeof(u_int), sysctl_machdep_i586_freq, "I", "");
1347#endif /* (defined(I586_CPU) || defined(I686_CPU)) && !defined(SMP) */
1348