pcrtc.c revision 26278
1/*-
2 * Copyright (c) 1990 The Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * William Jolitz and Don Ahn.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)clock.c	7.2 (Berkeley) 5/12/91
37 *	$Id: clock.c,v 1.22 1997/05/28 09:04:26 kato Exp $
38 */
39
40/*
41 * Routines to handle clock hardware.
42 */
43
44/*
45 * inittodr, settodr and support routines written
46 * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
47 *
48 * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
49 */
50
51/*
52 * modified for PC98 by Kakefuda
53 */
54
55#include "opt_clock.h"
56#include "opt_cpu.h"
57
58#include <sys/param.h>
59#include <sys/systm.h>
60#include <sys/time.h>
61#include <sys/kernel.h>
62#include <sys/sysctl.h>
63
64#include <machine/clock.h>
65#ifdef CLK_CALIBRATION_LOOP
66#include <machine/cons.h>
67#endif
68#include <machine/cpu.h>
69#include <machine/frame.h>
70
71#include <i386/isa/icu.h>
72#ifdef PC98
73#include <pc98/pc98/pc98.h>
74#include <pc98/pc98/pc98_machdep.h>
75#include <i386/isa/isa_device.h>
76#else
77#include <i386/isa/isa.h>
78#include <i386/isa/isa_device.h>
79#include <i386/isa/rtc.h>
80#endif
81#include <i386/isa/timerreg.h>
82
83/*
84 * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
85 * can use a simple formula for leap years.
86 */
87#define	LEAPYEAR(y) ((u_int)(y) % 4 == 0)
88#define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
89
90#define	TIMER_DIV(x) ((timer_freq + (x) / 2) / (x))
91
92/*
93 * Time in timer cycles that it takes for microtime() to disable interrupts
94 * and latch the count.  microtime() currently uses "cli; outb ..." so it
95 * normally takes less than 2 timer cycles.  Add a few for cache misses.
96 * Add a few more to allow for latency in bogus calls to microtime() with
97 * interrupts already disabled.
98 */
99#define	TIMER0_LATCH_COUNT	20
100
101/*
102 * Maximum frequency that we are willing to allow for timer0.  Must be
103 * low enough to guarantee that the timer interrupt handler returns
104 * before the next timer interrupt.  Must result in a lower TIMER_DIV
105 * value than TIMER0_LATCH_COUNT so that we don't have to worry about
106 * underflow in the calculation of timer0_overflow_threshold.
107 */
108#define	TIMER0_MAX_FREQ		20000
109
110int	adjkerntz;		/* local offset	from GMT in seconds */
111int	disable_rtc_set;	/* disable resettodr() if != 0 */
112u_int	idelayed;
113#if defined(I586_CPU) || defined(I686_CPU)
114#ifndef SMP
115u_int	i586_ctr_bias;
116u_int	i586_ctr_comultiplier;
117#endif
118u_int	i586_ctr_freq;
119#ifndef SMP
120u_int	i586_ctr_multiplier;
121#endif
122#endif
123int	statclock_disable;
124u_int	stat_imask = SWI_CLOCK_MASK;
125#ifdef TIMER_FREQ
126u_int	timer_freq = TIMER_FREQ;
127#else
128#ifdef PC98
129#ifndef AUTO_CLOCK
130#ifndef PC98_8M
131u_int	timer_freq = 2457600;
132#else	/* !PC98_8M */
133u_int	timer_freq = 1996800;
134#endif	/* PC98_8M */
135#else	/* AUTO_CLOCK */
136u_int	timer_freq = 2457600;
137#endif	/* AUTO_CLOCK */
138#else /* IBM-PC */
139u_int	timer_freq = 1193182;
140#endif /* PC98 */
141#endif
142int	timer0_max_count;
143u_int	timer0_overflow_threshold;
144u_int	timer0_prescaler_count;
145int	wall_cmos_clock;	/* wall	CMOS clock assumed if != 0 */
146
147static	int	beeping = 0;
148static	u_int	clk_imask = HWI_MASK | SWI_MASK;
149static	const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
150static	u_int	hardclock_max_count;
151/*
152 * XXX new_function and timer_func should not handle clockframes, but
153 * timer_func currently needs to hold hardclock to handle the
154 * timer0_state == 0 case.  We should use register_intr()/unregister_intr()
155 * to switch between clkintr() and a slightly different timerintr().
156 */
157static	void	(*new_function) __P((struct clockframe *frame));
158static	u_int	new_rate;
159#ifndef PC98
160static	u_char	rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
161static	u_char	rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
162#endif
163
164/* Values for timerX_state: */
165#define	RELEASED	0
166#define	RELEASE_PENDING	1
167#define	ACQUIRED	2
168#define	ACQUIRE_PENDING	3
169
170static	u_char	timer0_state;
171#ifdef	PC98
172static 	u_char	timer1_state;
173#endif
174static	u_char	timer2_state;
175static	void	(*timer_func) __P((struct clockframe *frame)) = hardclock;
176#ifdef PC98
177static void rtc_serialcombit __P((int));
178static void rtc_serialcom __P((int));
179static int rtc_inb __P((void));
180static void rtc_outb __P((int));
181#endif
182
183#if (defined(I586_CPU) || defined(I686_CPU)) && !defined(SMP)
184static	void	set_i586_ctr_freq(u_int i586_freq, u_int i8254_freq);
185#endif
186static	void	set_timer_freq(u_int freq, int intr_freq);
187
188static void
189clkintr(struct clockframe frame)
190{
191	timer_func(&frame);
192	switch (timer0_state) {
193
194	case RELEASED:
195		setdelayed();
196		break;
197
198	case ACQUIRED:
199		if ((timer0_prescaler_count += timer0_max_count)
200		    >= hardclock_max_count) {
201			hardclock(&frame);
202			setdelayed();
203			timer0_prescaler_count -= hardclock_max_count;
204		}
205		break;
206
207	case ACQUIRE_PENDING:
208		setdelayed();
209		timer0_max_count = TIMER_DIV(new_rate);
210		timer0_overflow_threshold =
211			timer0_max_count - TIMER0_LATCH_COUNT;
212		disable_intr();
213		outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
214		outb(TIMER_CNTR0, timer0_max_count & 0xff);
215		outb(TIMER_CNTR0, timer0_max_count >> 8);
216		enable_intr();
217		timer0_prescaler_count = 0;
218		timer_func = new_function;
219		timer0_state = ACQUIRED;
220		break;
221
222	case RELEASE_PENDING:
223		if ((timer0_prescaler_count += timer0_max_count)
224		    >= hardclock_max_count) {
225			hardclock(&frame);
226			setdelayed();
227			timer0_max_count = hardclock_max_count;
228			timer0_overflow_threshold =
229				timer0_max_count - TIMER0_LATCH_COUNT;
230			disable_intr();
231			outb(TIMER_MODE,
232			     TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
233			outb(TIMER_CNTR0, timer0_max_count & 0xff);
234			outb(TIMER_CNTR0, timer0_max_count >> 8);
235			enable_intr();
236			/*
237			 * See microtime.s for this magic.
238			 */
239#ifdef PC98
240#ifndef AUTO_CLOCK
241#ifndef PC98_8M
242			time.tv_usec += (6667 *
243				(timer0_prescaler_count - hardclock_max_count))
244				>> 14;
245#else /* PC98_8M */
246			time.tv_usec += (16411 *
247				(timer0_prescaler_count - hardclock_max_count))
248				>> 15;
249#endif /* PC98_8M */
250#else /* AUTO_CLOCK */
251			if (pc98_machine_type & M_8M) {
252				/* PC98_8M */
253				time.tv_usec += (16411 *
254					(timer0_prescaler_count -
255					 hardclock_max_count)) >> 15;
256			} else {
257				time.tv_usec += (6667 *
258					(timer0_prescaler_count -
259					 hardclock_max_count)) >> 14;
260			}
261#endif /* AUTO_CLOCK */
262#else /* IBM-PC */
263			time.tv_usec += (27465 *
264				(timer0_prescaler_count - hardclock_max_count))
265				>> 15;
266#endif /* PC98 */
267			if (time.tv_usec >= 1000000)
268				time.tv_usec -= 1000000;
269			timer0_prescaler_count = 0;
270			timer_func = hardclock;
271			timer0_state = RELEASED;
272		}
273		break;
274	}
275}
276
277/*
278 * The acquire and release functions must be called at ipl >= splclock().
279 */
280int
281acquire_timer0(int rate, void (*function) __P((struct clockframe *frame)))
282{
283	static int old_rate;
284
285	if (rate <= 0 || rate > TIMER0_MAX_FREQ)
286		return (-1);
287	switch (timer0_state) {
288
289	case RELEASED:
290		timer0_state = ACQUIRE_PENDING;
291		break;
292
293	case RELEASE_PENDING:
294		if (rate != old_rate)
295			return (-1);
296		/*
297		 * The timer has been released recently, but is being
298		 * re-acquired before the release completed.  In this
299		 * case, we simply reclaim it as if it had not been
300		 * released at all.
301		 */
302		timer0_state = ACQUIRED;
303		break;
304
305	default:
306		return (-1);	/* busy */
307	}
308	new_function = function;
309	old_rate = new_rate = rate;
310	return (0);
311}
312
313#ifdef PC98
314int
315acquire_timer1(int mode)
316{
317
318	if (timer1_state != RELEASED)
319		return (-1);
320	timer1_state = ACQUIRED;
321
322	/*
323	 * This access to the timer registers is as atomic as possible
324	 * because it is a single instruction.  We could do better if we
325	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
326	 * and this is probably good enough for timer2, so we aren't as
327	 * careful with it as with timer0.
328	 */
329	outb(TIMER_MODE, TIMER_SEL1 | (mode & 0x3f));
330
331	return (0);
332}
333#endif
334
335int
336acquire_timer2(int mode)
337{
338
339	if (timer2_state != RELEASED)
340		return (-1);
341	timer2_state = ACQUIRED;
342
343	/*
344	 * This access to the timer registers is as atomic as possible
345	 * because it is a single instruction.  We could do better if we
346	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
347	 * and this is probably good enough for timer2, so we aren't as
348	 * careful with it as with timer0.
349	 */
350	outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
351
352	return (0);
353}
354
355int
356release_timer0()
357{
358	switch (timer0_state) {
359
360	case ACQUIRED:
361		timer0_state = RELEASE_PENDING;
362		break;
363
364	case ACQUIRE_PENDING:
365		/* Nothing happened yet, release quickly. */
366		timer0_state = RELEASED;
367		break;
368
369	default:
370		return (-1);
371	}
372	return (0);
373}
374
375#ifdef PC98
376int
377release_timer1()
378{
379
380	if (timer1_state != ACQUIRED)
381		return (-1);
382	timer1_state = RELEASED;
383	outb(TIMER_MODE, TIMER_SEL1 | TIMER_SQWAVE | TIMER_16BIT);
384	return (0);
385}
386#endif
387
388int
389release_timer2()
390{
391
392	if (timer2_state != ACQUIRED)
393		return (-1);
394	timer2_state = RELEASED;
395	outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
396	return (0);
397}
398
399#ifndef PC98
400/*
401 * This routine receives statistical clock interrupts from the RTC.
402 * As explained above, these occur at 128 interrupts per second.
403 * When profiling, we receive interrupts at a rate of 1024 Hz.
404 *
405 * This does not actually add as much overhead as it sounds, because
406 * when the statistical clock is active, the hardclock driver no longer
407 * needs to keep (inaccurate) statistics on its own.  This decouples
408 * statistics gathering from scheduling interrupts.
409 *
410 * The RTC chip requires that we read status register C (RTC_INTR)
411 * to acknowledge an interrupt, before it will generate the next one.
412 * Under high interrupt load, rtcintr() can be indefinitely delayed and
413 * the clock can tick immediately after the read from RTC_INTR.  In this
414 * case, the mc146818A interrupt signal will not drop for long enough
415 * to register with the 8259 PIC.  If an interrupt is missed, the stat
416 * clock will halt, considerably degrading system performance.  This is
417 * why we use 'while' rather than a more straightforward 'if' below.
418 * Stat clock ticks can still be lost, causing minor loss of accuracy
419 * in the statistics, but the stat clock will no longer stop.
420 */
421static void
422rtcintr(struct clockframe frame)
423{
424	while (rtcin(RTC_INTR) & RTCIR_PERIOD)
425		statclock(&frame);
426}
427
428#include "opt_ddb.h"
429#ifdef DDB
430#include <ddb/ddb.h>
431
432DB_SHOW_COMMAND(rtc, rtc)
433{
434	printf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
435	       rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
436	       rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
437	       rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
438}
439#endif /* DDB */
440#endif /* for PC98 */
441
442static int
443getit(void)
444{
445	u_long ef;
446	int high, low;
447
448	ef = read_eflags();
449	disable_intr();
450
451	/* Select timer0 and latch counter value. */
452	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
453
454	low = inb(TIMER_CNTR0);
455	high = inb(TIMER_CNTR0);
456
457	write_eflags(ef);
458	return ((high << 8) | low);
459}
460
461/*
462 * Wait "n" microseconds.
463 * Relies on timer 1 counting down from (timer_freq / hz)
464 * Note: timer had better have been programmed before this is first used!
465 */
466void
467DELAY(int n)
468{
469	int delta, prev_tick, tick, ticks_left;
470
471#ifdef DELAYDEBUG
472	int getit_calls = 1;
473	int n1;
474	static int state = 0;
475
476	if (state == 0) {
477		state = 1;
478		for (n1 = 1; n1 <= 10000000; n1 *= 10)
479			DELAY(n1);
480		state = 2;
481	}
482	if (state == 1)
483		printf("DELAY(%d)...", n);
484#endif
485	/*
486	 * Guard against the timer being uninitialized if we are called
487	 * early for console i/o.
488	 */
489	if (timer0_max_count == 0)
490		set_timer_freq(timer_freq, hz);
491
492	/*
493	 * Read the counter first, so that the rest of the setup overhead is
494	 * counted.  Guess the initial overhead is 20 usec (on most systems it
495	 * takes about 1.5 usec for each of the i/o's in getit().  The loop
496	 * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
497	 * multiplications and divisions to scale the count take a while).
498	 */
499	prev_tick = getit();
500	n -= 0;			/* XXX actually guess no initial overhead */
501	/*
502	 * Calculate (n * (timer_freq / 1e6)) without using floating point
503	 * and without any avoidable overflows.
504	 */
505	if (n <= 0)
506		ticks_left = 0;
507	else if (n < 256)
508		/*
509		 * Use fixed point to avoid a slow division by 1000000.
510		 * 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
511		 * 2^15 is the first power of 2 that gives exact results
512		 * for n between 0 and 256.
513		 */
514		ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
515	else
516		/*
517		 * Don't bother using fixed point, although gcc-2.7.2
518		 * generates particularly poor code for the long long
519		 * division, since even the slow way will complete long
520		 * before the delay is up (unless we're interrupted).
521		 */
522		ticks_left = ((u_int)n * (long long)timer_freq + 999999)
523			     / 1000000;
524
525	while (ticks_left > 0) {
526		tick = getit();
527#ifdef DELAYDEBUG
528		++getit_calls;
529#endif
530		delta = prev_tick - tick;
531		prev_tick = tick;
532		if (delta < 0) {
533			delta += timer0_max_count;
534			/*
535			 * Guard against timer0_max_count being wrong.
536			 * This shouldn't happen in normal operation,
537			 * but it may happen if set_timer_freq() is
538			 * traced.
539			 */
540			if (delta < 0)
541				delta = 0;
542		}
543		ticks_left -= delta;
544	}
545#ifdef DELAYDEBUG
546	if (state == 1)
547		printf(" %d calls to getit() at %d usec each\n",
548		       getit_calls, (n + 5) / getit_calls);
549#endif
550}
551
552static void
553sysbeepstop(void *chan)
554{
555#ifdef PC98	/* PC98 */
556	outb(IO_PPI, inb(IO_PPI)|0x08);	/* disable counter1 output to speaker */
557	release_timer1();
558#else
559	outb(IO_PPI, inb(IO_PPI)&0xFC);	/* disable counter2 output to speaker */
560	release_timer2();
561#endif
562	beeping = 0;
563}
564
565int
566sysbeep(int pitch, int period)
567{
568	int x = splclock();
569
570#ifdef PC98
571	if (acquire_timer1(TIMER_SQWAVE|TIMER_16BIT))
572		if (!beeping) {
573			/* Something else owns it. */
574			splx(x);
575			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
576		}
577	disable_intr();
578	outb(0x3fdb, pitch);
579	outb(0x3fdb, (pitch>>8));
580	enable_intr();
581	if (!beeping) {
582		/* enable counter1 output to speaker */
583		outb(IO_PPI, (inb(IO_PPI) & 0xf7));
584		beeping = period;
585		timeout(sysbeepstop, (void *)NULL, period);
586	}
587#else
588	if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
589		if (!beeping) {
590			/* Something else owns it. */
591			splx(x);
592			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
593		}
594	disable_intr();
595	outb(TIMER_CNTR2, pitch);
596	outb(TIMER_CNTR2, (pitch>>8));
597	enable_intr();
598	if (!beeping) {
599		/* enable counter2 output to speaker */
600		outb(IO_PPI, inb(IO_PPI) | 3);
601		beeping = period;
602		timeout(sysbeepstop, (void *)NULL, period);
603	}
604#endif
605	splx(x);
606	return (0);
607}
608
609#ifndef PC98
610/*
611 * RTC support routines
612 */
613
614int
615rtcin(reg)
616	int reg;
617{
618	u_char val;
619
620	outb(IO_RTC, reg);
621	inb(0x84);
622	val = inb(IO_RTC + 1);
623	inb(0x84);
624	return (val);
625}
626
627static __inline void
628writertc(u_char reg, u_char val)
629{
630	outb(IO_RTC, reg);
631	outb(IO_RTC + 1, val);
632}
633
634static __inline int
635readrtc(int port)
636{
637	return(bcd2bin(rtcin(port)));
638}
639#endif
640
641#ifdef PC98
642unsigned int delaycount;
643#define FIRST_GUESS	0x2000
644static void findcpuspeed(void)
645{
646	int i;
647	int remainder;
648
649	/* Put counter in count down mode */
650	outb(TIMER_MODE, TIMER_SEL0 | TIMER_16BIT | TIMER_RATEGEN);
651	outb(TIMER_CNTR0, 0xff);
652	outb(TIMER_CNTR0, 0xff);
653	for (i = FIRST_GUESS; i; i--)
654		;
655	remainder = getit();
656	delaycount = (FIRST_GUESS * TIMER_DIV(1000)) / (0xffff - remainder);
657}
658#endif
659
660#ifndef PC98
661static u_int
662calibrate_clocks(void)
663{
664	u_int count, prev_count, tot_count;
665	int sec, start_sec, timeout;
666
667	if (bootverbose)
668	        printf("Calibrating clock(s) ... ");
669	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
670		goto fail;
671	timeout = 100000000;
672
673	/* Read the mc146818A seconds counter. */
674	for (;;) {
675		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
676			sec = rtcin(RTC_SEC);
677			break;
678		}
679		if (--timeout == 0)
680			goto fail;
681	}
682
683	/* Wait for the mC146818A seconds counter to change. */
684	start_sec = sec;
685	for (;;) {
686		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
687			sec = rtcin(RTC_SEC);
688			if (sec != start_sec)
689				break;
690		}
691		if (--timeout == 0)
692			goto fail;
693	}
694
695	/* Start keeping track of the i8254 counter. */
696	prev_count = getit();
697	if (prev_count == 0 || prev_count > timer0_max_count)
698		goto fail;
699	tot_count = 0;
700
701#if (defined(I586_CPU) || defined(I686_CPU)) && !defined(SMP)
702	if (cpu_class == CPUCLASS_586 || cpu_class == CPUCLASS_686)
703		wrmsr(0x10, 0LL);	/* XXX 0x10 is the MSR for the TSC */
704#endif
705
706	/*
707	 * Wait for the mc146818A seconds counter to change.  Read the i8254
708	 * counter for each iteration since this is convenient and only
709	 * costs a few usec of inaccuracy. The timing of the final reads
710	 * of the counters almost matches the timing of the initial reads,
711	 * so the main cause of inaccuracy is the varying latency from
712	 * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
713	 * rtcin(RTC_SEC) that returns a changed seconds count.  The
714	 * maximum inaccuracy from this cause is < 10 usec on 486's.
715	 */
716	start_sec = sec;
717	for (;;) {
718		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
719			sec = rtcin(RTC_SEC);
720		count = getit();
721		if (count == 0 || count > timer0_max_count)
722			goto fail;
723		if (count > prev_count)
724			tot_count += prev_count - (count - timer0_max_count);
725		else
726			tot_count += prev_count - count;
727		prev_count = count;
728		if (sec != start_sec)
729			break;
730		if (--timeout == 0)
731			goto fail;
732	}
733
734#if (defined(I586_CPU) || defined(I686_CPU)) && !defined(SMP)
735	/*
736	 * Read the cpu cycle counter.  The timing considerations are
737	 * similar to those for the i8254 clock.
738	 */
739	if (cpu_class == CPUCLASS_586 || cpu_class == CPUCLASS_686) {
740		set_i586_ctr_freq((u_int)rdtsc(), tot_count);
741		if (bootverbose)
742		        printf("i586 clock: %u Hz, ", i586_ctr_freq);
743	}
744#endif
745
746	if (bootverbose)
747	        printf("i8254 clock: %u Hz\n", tot_count);
748	return (tot_count);
749
750fail:
751	if (bootverbose)
752	        printf("failed, using default i8254 clock of %u Hz\n",
753		       timer_freq);
754	return (timer_freq);
755}
756#endif	/* !PC98 */
757
758static void
759set_timer_freq(u_int freq, int intr_freq)
760{
761	u_long ef;
762
763	ef = read_eflags();
764	disable_intr();
765	timer_freq = freq;
766	timer0_max_count = hardclock_max_count = TIMER_DIV(intr_freq);
767	timer0_overflow_threshold = timer0_max_count - TIMER0_LATCH_COUNT;
768	outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
769	outb(TIMER_CNTR0, timer0_max_count & 0xff);
770	outb(TIMER_CNTR0, timer0_max_count >> 8);
771	write_eflags(ef);
772}
773
774/*
775 * Initialize 8253 timer 0 early so that it can be used in DELAY().
776 * XXX initialization of other timers is unintentionally left blank.
777 */
778void
779startrtclock()
780{
781	u_int delta, freq;
782
783#ifdef PC98
784	findcpuspeed();
785#ifndef AUTO_CLOCK
786	if (pc98_machine_type & M_8M) {
787#ifndef	PC98_8M
788		printf("you must reconfig a kernel with \"PC98_8M\" option.\n");
789#endif
790	} else {
791#ifdef	PC98_8M
792		printf("You must reconfig a kernel without \"PC98_8M\" option.\n");
793#endif
794	}
795#else /* AUTO_CLOCK */
796	if (pc98_machine_type & M_8M)
797		timer_freq = 1996800L; /* 1.9968 MHz */
798	else
799		timer_freq = 2457600L; /* 2.4576 MHz */
800#endif /* AUTO_CLOCK */
801#endif /* PC98 */
802
803#ifndef PC98
804	writertc(RTC_STATUSA, rtc_statusa);
805	writertc(RTC_STATUSB, RTCSB_24HR);
806#endif
807
808#ifndef PC98
809	set_timer_freq(timer_freq, hz);
810	freq = calibrate_clocks();
811#ifdef CLK_CALIBRATION_LOOP
812	if (bootverbose) {
813		printf(
814		"Press a key on the console to abort clock calibration\n");
815		while (cncheckc() == -1)
816			calibrate_clocks();
817	}
818#endif
819
820	/*
821	 * Use the calibrated i8254 frequency if it seems reasonable.
822	 * Otherwise use the default, and don't use the calibrated i586
823	 * frequency.
824	 */
825	delta = freq > timer_freq ? freq - timer_freq : timer_freq - freq;
826	if (delta < timer_freq / 100) {
827#ifndef CLK_USE_I8254_CALIBRATION
828		if (bootverbose)
829			printf(
830"CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
831		freq = timer_freq;
832#endif
833		timer_freq = freq;
834	} else {
835		if (bootverbose)
836			printf(
837		    "%d Hz differs from default of %d Hz by more than 1%%\n",
838			       freq, timer_freq);
839#if (defined(I586_CPU) || defined(I686_CPU)) && !defined(SMP)
840		i586_ctr_freq = 0;
841#endif
842	}
843#endif
844
845	set_timer_freq(timer_freq, hz);
846
847#if (defined(I586_CPU) || defined(I686_CPU)) && !defined(SMP)
848#ifndef CLK_USE_I586_CALIBRATION
849	if (i586_ctr_freq != 0) {
850		if (bootverbose)
851			printf(
852"CLK_USE_I586_CALIBRATION not specified - using old calibration method\n");
853		i586_ctr_freq = 0;
854	}
855#endif
856	if (i586_ctr_freq == 0 &&
857	    (cpu_class == CPUCLASS_586 || cpu_class == CPUCLASS_686)) {
858		/*
859		 * Calibration of the i586 clock relative to the mc146818A
860		 * clock failed.  Do a less accurate calibration relative
861		 * to the i8254 clock.
862		 */
863		wrmsr(0x10, 0LL);	/* XXX */
864		DELAY(1000000);
865		set_i586_ctr_freq((u_int)rdtsc(), timer_freq);
866#ifdef CLK_USE_I586_CALIBRATION
867		if (bootverbose)
868			printf("i586 clock: %u Hz\n", i586_ctr_freq);
869#endif
870	}
871#endif
872}
873
874#ifdef PC98
875static void
876rtc_serialcombit(int i)
877{
878	outb(IO_RTC, ((i&0x01)<<5)|0x07);
879	DELAY(1);
880	outb(IO_RTC, ((i&0x01)<<5)|0x17);
881	DELAY(1);
882	outb(IO_RTC, ((i&0x01)<<5)|0x07);
883	DELAY(1);
884}
885
886static void
887rtc_serialcom(int i)
888{
889	rtc_serialcombit(i&0x01);
890	rtc_serialcombit((i&0x02)>>1);
891	rtc_serialcombit((i&0x04)>>2);
892	rtc_serialcombit((i&0x08)>>3);
893	outb(IO_RTC, 0x07);
894	DELAY(1);
895	outb(IO_RTC, 0x0f);
896	DELAY(1);
897	outb(IO_RTC, 0x07);
898 	DELAY(1);
899}
900
901static void
902rtc_outb(int val)
903{
904	int s;
905	int sa = 0;
906
907	for (s=0;s<8;s++) {
908	    sa = ((val >> s) & 0x01) ? 0x27 : 0x07;
909	    outb(IO_RTC, sa);		/* set DI & CLK 0 */
910	    DELAY(1);
911	    outb(IO_RTC, sa | 0x10);	/* CLK 1 */
912	    DELAY(1);
913	}
914	outb(IO_RTC, sa & 0xef);	/* CLK 0 */
915}
916
917static int
918rtc_inb(void)
919{
920	int s;
921	int sa = 0;
922
923	for (s=0;s<8;s++) {
924	    sa |= ((inb(0x33) & 0x01) << s);
925	    outb(IO_RTC, 0x17);	/* CLK 1 */
926	    DELAY(1);
927	    outb(IO_RTC, 0x07);	/* CLK 0 */
928	    DELAY(2);
929	}
930	return sa;
931}
932#endif /* PC-98 */
933
934/*
935 * Initialize the time of day register,	based on the time base which is, e.g.
936 * from	a filesystem.
937 */
938void
939inittodr(time_t base)
940{
941	unsigned long	sec, days;
942	int		yd;
943	int		year, month;
944	int		y, m, s;
945#ifdef PC98
946	int		second, min, hour;
947#endif
948
949	s = splclock();
950	time.tv_sec  = base;
951	time.tv_usec = 0;
952	splx(s);
953
954#ifdef PC98
955	rtc_serialcom(0x03);	/* Time Read */
956	rtc_serialcom(0x01);	/* Register shift command. */
957	DELAY(20);
958
959	second = bcd2bin(rtc_inb() & 0xff);	/* sec */
960	min = bcd2bin(rtc_inb() & 0xff);	/* min */
961	hour = bcd2bin(rtc_inb() & 0xff);	/* hour */
962	days = bcd2bin(rtc_inb() & 0xff) - 1;	/* date */
963
964	month = (rtc_inb() >> 4) & 0x0f;	/* month */
965	for (m = 1; m <	month; m++)
966		days +=	daysinmonth[m-1];
967	year = bcd2bin(rtc_inb() & 0xff) + 1900;	/* year */
968	/* 2000 year problem */
969	if (year < 1995)
970		year += 100;
971	if (year < 1970)
972		goto wrong_time;
973	for (y = 1970; y < year; y++)
974		days +=	DAYSPERYEAR + LEAPYEAR(y);
975	if ((month > 2)	&& LEAPYEAR(year))
976		days ++;
977	sec = ((( days * 24 +
978		  hour) * 60 +
979		  min) * 60 +
980		  second);
981	/* sec now contains the	number of seconds, since Jan 1 1970,
982	   in the local	time zone */
983#else	/* IBM-PC */
984	/* Look	if we have a RTC present and the time is valid */
985	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
986		goto wrong_time;
987
988	/* wait	for time update	to complete */
989	/* If RTCSA_TUP	is zero, we have at least 244us	before next update */
990	while (rtcin(RTC_STATUSA) & RTCSA_TUP);
991
992	days = 0;
993#ifdef USE_RTC_CENTURY
994	year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY)	* 100;
995#else
996	year = readrtc(RTC_YEAR) + 1900;
997	if (year < 1970)
998		year += 100;
999#endif
1000	if (year < 1970)
1001		goto wrong_time;
1002	month =	readrtc(RTC_MONTH);
1003	for (m = 1; m <	month; m++)
1004		days +=	daysinmonth[m-1];
1005	if ((month > 2)	&& LEAPYEAR(year))
1006		days ++;
1007	days +=	readrtc(RTC_DAY) - 1;
1008	yd = days;
1009	for (y = 1970; y < year; y++)
1010		days +=	DAYSPERYEAR + LEAPYEAR(y);
1011	sec = ((( days * 24 +
1012		  readrtc(RTC_HRS)) * 60 +
1013		  readrtc(RTC_MIN)) * 60 +
1014		  readrtc(RTC_SEC));
1015	/* sec now contains the	number of seconds, since Jan 1 1970,
1016	   in the local	time zone */
1017#endif
1018
1019	sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1020
1021	s = splclock();
1022	time.tv_sec = sec;
1023	splx(s);
1024	return;
1025
1026wrong_time:
1027	printf("Invalid	time in	real time clock.\n");
1028	printf("Check and reset	the date immediately!\n");
1029}
1030
1031/*
1032 * Write system	time back to RTC
1033 */
1034void
1035resettodr()
1036{
1037	unsigned long	tm;
1038	int		y, m, s;
1039#ifdef PC98
1040	int		wd;
1041#endif
1042
1043	if (disable_rtc_set)
1044		return;
1045
1046	s = splclock();
1047	tm = time.tv_sec;
1048	splx(s);
1049
1050#ifdef PC98
1051	rtc_serialcom(0x01);	/* Register shift command. */
1052
1053	/* Calculate local time	to put in RTC */
1054
1055	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1056
1057	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
1058	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
1059	rtc_outb(bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
1060
1061	/* We have now the days	since 01-01-1970 in tm */
1062	wd = (tm+4)%7;
1063	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1064	     tm >= m;
1065	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1066	     tm -= m;
1067
1068	/* Now we have the years in y and the day-of-the-year in tm */
1069	for (m = 0; ; m++) {
1070		int ml;
1071
1072		ml = daysinmonth[m];
1073		if (m == 1 && LEAPYEAR(y))
1074			ml++;
1075		if (tm < ml)
1076			break;
1077		tm -= ml;
1078	}
1079
1080	m++;
1081	rtc_outb(bin2bcd(tm+1));		/* Write back Day     */
1082	rtc_outb((m << 4) | wd);		/* Write back Month & Weekday  */
1083	rtc_outb(bin2bcd(y%100));		/* Write back Year    */
1084
1085	rtc_serialcom(0x02);	/* Time set & Counter hold command. */
1086	rtc_serialcom(0x00);	/* Register hold command. */
1087#else
1088	/* Disable RTC updates and interrupts. */
1089	writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
1090
1091	/* Calculate local time	to put in RTC */
1092
1093	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1094
1095	writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
1096	writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
1097	writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
1098
1099	/* We have now the days	since 01-01-1970 in tm */
1100	writertc(RTC_WDAY, (tm+4)%7);			/* Write back Weekday */
1101	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1102	     tm >= m;
1103	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1104	     tm -= m;
1105
1106	/* Now we have the years in y and the day-of-the-year in tm */
1107	writertc(RTC_YEAR, bin2bcd(y%100));		/* Write back Year    */
1108#ifdef USE_RTC_CENTURY
1109	writertc(RTC_CENTURY, bin2bcd(y/100));		/* ... and Century    */
1110#endif
1111	for (m = 0; ; m++) {
1112		int ml;
1113
1114		ml = daysinmonth[m];
1115		if (m == 1 && LEAPYEAR(y))
1116			ml++;
1117		if (tm < ml)
1118			break;
1119		tm -= ml;
1120	}
1121
1122	writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
1123	writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
1124
1125	/* Reenable RTC updates and interrupts. */
1126	writertc(RTC_STATUSB, rtc_statusb);
1127#endif
1128}
1129
1130#if defined(APIC_IO)
1131
1132/* from icu.s: */
1133extern u_int	vec[];
1134extern void	vec8254	__P((void));
1135extern void	vecRTC	__P((void));
1136extern u_int	ivectors[];
1137extern u_int	Xintr8254;
1138extern u_int	XintrRTC;
1139extern u_int	mask8254;
1140extern u_int	maskRTC;
1141
1142#endif /* APIC_IO */
1143
1144/*
1145 * Start both clocks running.
1146 */
1147void
1148cpu_initclocks()
1149{
1150#if defined(APIC_IO)
1151	int x;
1152#endif /* APIC_IO */
1153#ifndef PC98
1154	int diag;
1155
1156	if (statclock_disable) {
1157		/*
1158		 * The stat interrupt mask is different without the
1159		 * statistics clock.  Also, don't set the interrupt
1160		 * flag which would normally cause the RTC to generate
1161		 * interrupts.
1162		 */
1163		stat_imask = HWI_MASK | SWI_MASK;
1164		rtc_statusb = RTCSB_24HR;
1165	} else {
1166	        /* Setting stathz to nonzero early helps avoid races. */
1167		stathz = RTC_NOPROFRATE;
1168		profhz = RTC_PROFRATE;
1169        }
1170#endif
1171
1172	/* Finish initializing 8253 timer 0. */
1173#if defined(APIC_IO)
1174	/* 8254 is traditionally on ISA IRQ0 */
1175	if ((x = get_isa_apic_irq(0)) < 0) {
1176		/*
1177		 * bummer, this mb doesn't have the 8254 on ISA irq0,
1178		 *  perhaps it's on the EISA bus...
1179		 */
1180		if ((x = get_eisa_apic_irq(0)) < 0) {
1181			/* double bummer, attempt to redirect thru the 8259 */
1182			if (bootverbose)
1183				printf("APIC missing 8254 connection\n");
1184
1185			/* allow 8254 timer to INTerrupt 8259 */
1186#if !defined(IO_ICU1)
1187#ifdef PC98
1188#define IO_ICU1 0x00
1189#else
1190#define IO_ICU1 0x20
1191#endif
1192#endif
1193			x = inb(IO_ICU1 + 1);	/* current mask in 8259 */
1194			x &= ~1;		/* clear 8254 timer mask */
1195			outb(IO_ICU1 + 1, x);	/* write new mask */
1196
1197			/* program IO APIC for type 3 INT on INT0 */
1198			if (ext_int_setup(0, 0) < 0)
1199				panic("8254 redirect impossible!");
1200			x = 0;			/* 8259 is on 0 */
1201		}
1202	}
1203
1204	vec[x] = (u_int)vec8254;
1205	Xintr8254 = (u_int)ivectors[x];	/* XXX might need Xfastintr# */
1206	mask8254 = (1 << x);
1207	register_intr(/* irq */ x, /* XXX id */ 0, /* flags */ 0,
1208		      /* XXX */ (inthand2_t *)clkintr, &clk_imask,
1209		      /* unit */ 0);
1210	INTREN(mask8254);
1211#else
1212	register_intr(/* irq */ 0, /* XXX id */ 0, /* flags */ 0,
1213		      /* XXX */ (inthand2_t *)clkintr, &clk_imask,
1214		      /* unit */ 0);
1215	INTREN(IRQ0);
1216#endif /* APIC_IO */
1217#if (defined(I586_CPU) || defined(I686_CPU)) && !defined(SMP)
1218	/*
1219	 * Finish setting up anti-jitter measures.
1220	 */
1221	if (i586_ctr_freq != 0)
1222		i586_ctr_bias = rdtsc();
1223#endif
1224
1225#ifndef PC98
1226	/* Initialize RTC. */
1227	writertc(RTC_STATUSA, rtc_statusa);
1228	writertc(RTC_STATUSB, RTCSB_24HR);
1229
1230	/* Don't bother enabling the statistics clock. */
1231	if (statclock_disable)
1232		return;
1233	diag = rtcin(RTC_DIAG);
1234	if (diag != 0)
1235		printf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
1236#if defined(APIC_IO)
1237	/* RTC is traditionally on ISA IRQ8 */
1238	if ((x = get_isa_apic_irq(8)) < 0) {
1239		if ((x = get_eisa_apic_irq(8)) < 0) {
1240			panic("APIC missing RTC connection");
1241	    }
1242	}
1243
1244	vec[x] = (u_int)vecRTC;
1245	XintrRTC = (u_int)ivectors[x];	/* XXX might need Xfastintr# */
1246	maskRTC = (1 << x);
1247	register_intr(/* irq */ x, /* XXX id */ 1, /* flags */ 0,
1248		      /* XXX */ (inthand2_t *)rtcintr, &stat_imask,
1249		      /* unit */ 0);
1250	INTREN(maskRTC);
1251#else
1252	register_intr(/* irq */ 8, /* XXX id */ 1, /* flags */ 0,
1253		      /* XXX */ (inthand2_t *)rtcintr, &stat_imask,
1254		      /* unit */ 0);
1255	INTREN(IRQ8);
1256#endif /* APIC_IO */
1257	writertc(RTC_STATUSB, rtc_statusb);
1258#endif
1259
1260#if defined(APIC_IO)
1261	printf("Enabled INTs: ");
1262	for (x = 0; x < 24; ++x)
1263		if ((imen & (1 << x)) == 0)
1264	        	printf("%d, ", x);
1265	printf("imen: 0x%08x\n", imen);
1266#endif /* APIC_IO */
1267}
1268
1269void
1270setstatclockrate(int newhz)
1271{
1272#ifndef PC98
1273	if (newhz == RTC_PROFRATE)
1274		rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
1275	else
1276		rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
1277	writertc(RTC_STATUSA, rtc_statusa);
1278#endif
1279}
1280
1281static int
1282sysctl_machdep_i8254_freq SYSCTL_HANDLER_ARGS
1283{
1284	int error;
1285	u_int freq;
1286
1287	/*
1288	 * Use `i8254' instead of `timer' in external names because `timer'
1289	 * is is too generic.  Should use it everywhere.
1290	 */
1291	freq = timer_freq;
1292	error = sysctl_handle_opaque(oidp, &freq, sizeof freq, req);
1293	if (error == 0 && req->newptr != NULL) {
1294		if (timer0_state != 0)
1295			return (EBUSY);	/* too much trouble to handle */
1296		set_timer_freq(freq, hz);
1297#if (defined(I586_CPU) || defined(I686_CPU)) && !defined(SMP)
1298		set_i586_ctr_freq(i586_ctr_freq, timer_freq);
1299#endif
1300	}
1301	return (error);
1302}
1303
1304SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
1305	    0, sizeof(u_int), sysctl_machdep_i8254_freq, "I", "");
1306
1307#if (defined(I586_CPU) || defined(I686_CPU)) && !defined(SMP)
1308static void
1309set_i586_ctr_freq(u_int i586_freq, u_int i8254_freq)
1310{
1311	u_int comultiplier, multiplier;
1312	u_long ef;
1313
1314	if (i586_freq == 0) {
1315		i586_ctr_freq = i586_freq;
1316		return;
1317	}
1318	comultiplier = ((unsigned long long)i586_freq
1319			<< I586_CTR_COMULTIPLIER_SHIFT) / i8254_freq;
1320	multiplier = (1000000LL << I586_CTR_MULTIPLIER_SHIFT) / i586_freq;
1321	ef = read_eflags();
1322	disable_intr();
1323	i586_ctr_freq = i586_freq;
1324	i586_ctr_comultiplier = comultiplier;
1325	i586_ctr_multiplier = multiplier;
1326	write_eflags(ef);
1327}
1328
1329static int
1330sysctl_machdep_i586_freq SYSCTL_HANDLER_ARGS
1331{
1332	int error;
1333	u_int freq;
1334
1335	if (cpu_class != CPUCLASS_586 && cpu_class != CPUCLASS_686)
1336		return (EOPNOTSUPP);
1337	freq = i586_ctr_freq;
1338	error = sysctl_handle_opaque(oidp, &freq, sizeof freq, req);
1339	if (error == 0 && req->newptr != NULL)
1340		set_i586_ctr_freq(freq, timer_freq);
1341	return (error);
1342}
1343
1344SYSCTL_PROC(_machdep, OID_AUTO, i586_freq, CTLTYPE_INT | CTLFLAG_RW,
1345	    0, sizeof(u_int), sysctl_machdep_i586_freq, "I", "");
1346#endif /* (defined(I586_CPU) || defined(I686_CPU)) && !defined(SMP) */
1347