pcrtc.c revision 21843
1/*-
2 * Copyright (c) 1990 The Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * William Jolitz and Don Ahn.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)clock.c	7.2 (Berkeley) 5/12/91
37 *	$FreeBSD: head/sys/pc98/cbus/pcrtc.c 21843 1997-01-18 10:25:04Z kato $
38 */
39
40/*
41 * Routines to handle clock hardware.
42 */
43
44/*
45 * inittodr, settodr and support routines written
46 * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
47 *
48 * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
49 */
50
51/*
52 * modified for PC98 by Kakefuda
53 */
54
55#include "opt_clock.h"
56#include "opt_cpu.h"
57
58#include <sys/param.h>
59#include <sys/systm.h>
60#include <sys/time.h>
61#include <sys/kernel.h>
62#include <sys/sysctl.h>
63
64#include <machine/clock.h>
65#ifdef CLK_CALIBRATION_LOOP
66#include <machine/cons.h>
67#endif
68#include <machine/cpu.h>
69#include <machine/frame.h>
70
71#include <i386/isa/icu.h>
72#ifdef PC98
73#include <pc98/pc98/pc98.h>
74#include <i386/isa/isa_device.h>
75#else
76#include <i386/isa/isa.h>
77#include <i386/isa/isa_device.h>
78#include <i386/isa/rtc.h>
79#endif
80#include <i386/isa/timerreg.h>
81
82/*
83 * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
84 * can use a simple formula for leap years.
85 */
86#define	LEAPYEAR(y) ((u_int)(y) % 4 == 0)
87#define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
88
89#define	TIMER_DIV(x) ((timer_freq + (x) / 2) / (x))
90
91/*
92 * Time in timer cycles that it takes for microtime() to disable interrupts
93 * and latch the count.  microtime() currently uses "cli; outb ..." so it
94 * normally takes less than 2 timer cycles.  Add a few for cache misses.
95 * Add a few more to allow for latency in bogus calls to microtime() with
96 * interrupts already disabled.
97 */
98#define	TIMER0_LATCH_COUNT	20
99
100/*
101 * Maximum frequency that we are willing to allow for timer0.  Must be
102 * low enough to guarantee that the timer interrupt handler returns
103 * before the next timer interrupt.  Must result in a lower TIMER_DIV
104 * value than TIMER0_LATCH_COUNT so that we don't have to worry about
105 * underflow in the calculation of timer0_overflow_threshold.
106 */
107#define	TIMER0_MAX_FREQ		20000
108
109int	adjkerntz;		/* local offset	from GMT in seconds */
110int	disable_rtc_set;	/* disable resettodr() if != 0 */
111u_int	idelayed;
112#if defined(I586_CPU) || defined(I686_CPU)
113u_int	i586_ctr_bias;
114u_int	i586_ctr_comultiplier;
115u_int	i586_ctr_freq;
116u_int	i586_ctr_multiplier;
117#endif
118int	statclock_disable;
119u_int	stat_imask = SWI_CLOCK_MASK;
120#ifdef TIMER_FREQ
121u_int	timer_freq = TIMER_FREQ;
122#else
123#ifdef PC98
124#ifndef AUTO_CLOCK
125#ifndef PC98_8M
126u_int	timer_freq = 2457600;
127#else	/* !PC98_8M */
128u_int	timer_freq = 1996800;
129#endif	/* PC98_8M */
130#else	/* AUTO_CLOCK */
131u_int	timer_freq = 2457600;
132#endif	/* AUTO_CLOCK */
133#else /* IBM-PC */
134u_int	timer_freq = 1193182;
135#endif /* PC98 */
136#endif
137int	timer0_max_count;
138u_int	timer0_overflow_threshold;
139u_int	timer0_prescaler_count;
140int	wall_cmos_clock;	/* wall	CMOS clock assumed if != 0 */
141
142static	int	beeping = 0;
143static	u_int	clk_imask = HWI_MASK | SWI_MASK;
144static	const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
145static	u_int	hardclock_max_count;
146/*
147 * XXX new_function and timer_func should not handle clockframes, but
148 * timer_func currently needs to hold hardclock to handle the
149 * timer0_state == 0 case.  We should use register_intr()/unregister_intr()
150 * to switch between clkintr() and a slightly different timerintr().
151 */
152static	void	(*new_function) __P((struct clockframe *frame));
153static	u_int	new_rate;
154#ifndef PC98
155static	u_char	rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
156static	u_char	rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
157#endif
158
159/* Values for timerX_state: */
160#define	RELEASED	0
161#define	RELEASE_PENDING	1
162#define	ACQUIRED	2
163#define	ACQUIRE_PENDING	3
164
165static	u_char	timer0_state;
166#ifdef	PC98
167static 	u_char	timer1_state;
168#endif
169static	u_char	timer2_state;
170static	void	(*timer_func) __P((struct clockframe *frame)) = hardclock;
171#ifdef PC98
172static void rtc_serialcombit __P((int));
173static void rtc_serialcom __P((int));
174static int rtc_inb __P((void));
175static void rtc_outb __P((int));
176#endif
177
178#if defined(I586_CPU) || defined(I686_CPU)
179static	void	set_i586_ctr_freq(u_int i586_freq, u_int i8254_freq);
180#endif
181static	void	set_timer_freq(u_int freq, int intr_freq);
182
183static void
184clkintr(struct clockframe frame)
185{
186	timer_func(&frame);
187	switch (timer0_state) {
188
189	case RELEASED:
190		setdelayed();
191		break;
192
193	case ACQUIRED:
194		if ((timer0_prescaler_count += timer0_max_count)
195		    >= hardclock_max_count) {
196			hardclock(&frame);
197			setdelayed();
198			timer0_prescaler_count -= hardclock_max_count;
199		}
200		break;
201
202	case ACQUIRE_PENDING:
203		setdelayed();
204		timer0_max_count = TIMER_DIV(new_rate);
205		timer0_overflow_threshold =
206			timer0_max_count - TIMER0_LATCH_COUNT;
207		disable_intr();
208		outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
209		outb(TIMER_CNTR0, timer0_max_count & 0xff);
210		outb(TIMER_CNTR0, timer0_max_count >> 8);
211		enable_intr();
212		timer0_prescaler_count = 0;
213		timer_func = new_function;
214		timer0_state = ACQUIRED;
215		break;
216
217	case RELEASE_PENDING:
218		if ((timer0_prescaler_count += timer0_max_count)
219		    >= hardclock_max_count) {
220			hardclock(&frame);
221			setdelayed();
222			timer0_max_count = hardclock_max_count;
223			timer0_overflow_threshold =
224				timer0_max_count - TIMER0_LATCH_COUNT;
225			disable_intr();
226			outb(TIMER_MODE,
227			     TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
228			outb(TIMER_CNTR0, timer0_max_count & 0xff);
229			outb(TIMER_CNTR0, timer0_max_count >> 8);
230			enable_intr();
231			/*
232			 * See microtime.s for this magic.
233			 */
234#ifdef PC98
235#ifndef AUTO_CLOCK
236#ifndef PC98_8M
237			time.tv_usec += (6667 *
238				(timer0_prescaler_count - hardclock_max_count))
239				>> 14;
240#else /* PC98_8M */
241			time.tv_usec += (16411 *
242				(timer0_prescaler_count - hardclock_max_count))
243				>> 15;
244#endif /* PC98_8M */
245#else /* AUTO_CLOCK */
246			if (pc98_machine_type & M_8M) {
247				/* PC98_8M */
248				time.tv_usec += (16411 *
249					(timer0_prescaler_count -
250					 hardclock_max_count)) >> 15;
251			} else {
252				time.tv_usec += (6667 *
253					(timer0_prescaler_count -
254					 hardclock_max_count)) >> 14;
255			}
256#endif /* AUTO_CLOCK */
257#else /* IBM-PC */
258			time.tv_usec += (27465 *
259				(timer0_prescaler_count - hardclock_max_count))
260				>> 15;
261#endif /* PC98 */
262			if (time.tv_usec >= 1000000)
263				time.tv_usec -= 1000000;
264			timer0_prescaler_count = 0;
265			timer_func = hardclock;
266			timer0_state = RELEASED;
267		}
268		break;
269	}
270}
271
272/*
273 * The acquire and release functions must be called at ipl >= splclock().
274 */
275int
276acquire_timer0(int rate, void (*function) __P((struct clockframe *frame)))
277{
278	static int old_rate;
279
280	if (rate <= 0 || rate > TIMER0_MAX_FREQ)
281		return (-1);
282	switch (timer0_state) {
283
284	case RELEASED:
285		timer0_state = ACQUIRE_PENDING;
286		break;
287
288	case RELEASE_PENDING:
289		if (rate != old_rate)
290			return (-1);
291		/*
292		 * The timer has been released recently, but is being
293		 * re-acquired before the release completed.  In this
294		 * case, we simply reclaim it as if it had not been
295		 * released at all.
296		 */
297		timer0_state = ACQUIRED;
298		break;
299
300	default:
301		return (-1);	/* busy */
302	}
303	new_function = function;
304	old_rate = new_rate = rate;
305	return (0);
306}
307
308#ifdef PC98
309int
310acquire_timer1(int mode)
311{
312
313	if (timer1_state != RELEASED)
314		return (-1);
315	timer1_state = ACQUIRED;
316
317	/*
318	 * This access to the timer registers is as atomic as possible
319	 * because it is a single instruction.  We could do better if we
320	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
321	 * and this is probably good enough for timer2, so we aren't as
322	 * careful with it as with timer0.
323	 */
324	outb(TIMER_MODE, TIMER_SEL1 | (mode & 0x3f));
325
326	return (0);
327}
328#endif
329
330int
331acquire_timer2(int mode)
332{
333
334	if (timer2_state != RELEASED)
335		return (-1);
336	timer2_state = ACQUIRED;
337
338	/*
339	 * This access to the timer registers is as atomic as possible
340	 * because it is a single instruction.  We could do better if we
341	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
342	 * and this is probably good enough for timer2, so we aren't as
343	 * careful with it as with timer0.
344	 */
345	outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
346
347	return (0);
348}
349
350int
351release_timer0()
352{
353	switch (timer0_state) {
354
355	case ACQUIRED:
356		timer0_state = RELEASE_PENDING;
357		break;
358
359	case ACQUIRE_PENDING:
360		/* Nothing happened yet, release quickly. */
361		timer0_state = RELEASED;
362		break;
363
364	default:
365		return (-1);
366	}
367	return (0);
368}
369
370#ifdef PC98
371int
372release_timer1()
373{
374
375	if (timer1_state != ACQUIRED)
376		return (-1);
377	timer1_state = RELEASED;
378	outb(TIMER_MODE, TIMER_SEL1 | TIMER_SQWAVE | TIMER_16BIT);
379	return (0);
380}
381#endif
382
383int
384release_timer2()
385{
386
387	if (timer2_state != ACQUIRED)
388		return (-1);
389	timer2_state = RELEASED;
390	outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
391	return (0);
392}
393
394#ifndef PC98
395/*
396 * This routine receives statistical clock interrupts from the RTC.
397 * As explained above, these occur at 128 interrupts per second.
398 * When profiling, we receive interrupts at a rate of 1024 Hz.
399 *
400 * This does not actually add as much overhead as it sounds, because
401 * when the statistical clock is active, the hardclock driver no longer
402 * needs to keep (inaccurate) statistics on its own.  This decouples
403 * statistics gathering from scheduling interrupts.
404 *
405 * The RTC chip requires that we read status register C (RTC_INTR)
406 * to acknowledge an interrupt, before it will generate the next one.
407 */
408static void
409rtcintr(struct clockframe frame)
410{
411	u_char stat;
412	stat = rtcin(RTC_INTR);
413	if(stat & RTCIR_PERIOD) {
414		statclock(&frame);
415	}
416}
417
418#include "opt_ddb.h"
419#ifdef DDB
420#include <ddb/ddb.h>
421
422DB_SHOW_COMMAND(rtc, rtc)
423{
424	printf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
425	       rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
426	       rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
427	       rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
428}
429#endif /* DDB */
430#endif /* for PC98 */
431
432static int
433getit(void)
434{
435	u_long ef;
436	int high, low;
437
438	ef = read_eflags();
439	disable_intr();
440
441	/* Select timer0 and latch counter value. */
442	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
443
444	low = inb(TIMER_CNTR0);
445	high = inb(TIMER_CNTR0);
446
447	write_eflags(ef);
448	return ((high << 8) | low);
449}
450
451/*
452 * Wait "n" microseconds.
453 * Relies on timer 1 counting down from (timer_freq / hz)
454 * Note: timer had better have been programmed before this is first used!
455 */
456void
457DELAY(int n)
458{
459	int delta, prev_tick, tick, ticks_left, sec, usec;
460
461#ifdef DELAYDEBUG
462	int getit_calls = 1;
463	int n1;
464	static int state = 0;
465
466	if (state == 0) {
467		state = 1;
468		for (n1 = 1; n1 <= 10000000; n1 *= 10)
469			DELAY(n1);
470		state = 2;
471	}
472	if (state == 1)
473		printf("DELAY(%d)...", n);
474#endif
475	/*
476	 * Guard against the timer being uninitialized if we are called
477	 * early for console i/o.
478	 */
479	if (timer0_max_count == 0)
480		set_timer_freq(timer_freq, hz);
481
482	/*
483	 * Read the counter first, so that the rest of the setup overhead is
484	 * counted.  Guess the initial overhead is 20 usec (on most systems it
485	 * takes about 1.5 usec for each of the i/o's in getit().  The loop
486	 * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
487	 * multiplications and divisions to scale the count take a while).
488	 */
489	prev_tick = getit();
490	n -= 20;
491	/*
492	 * Calculate (n * (timer_freq / 1e6)) without using floating point
493	 * and without any avoidable overflows.
494	 */
495	sec = n / 1000000;
496	usec = n - sec * 1000000;
497	ticks_left = sec * timer_freq
498		     + usec * (timer_freq / 1000000)
499		     + usec * ((timer_freq % 1000000) / 1000) / 1000
500		     + usec * (timer_freq % 1000) / 1000000;
501	if (n < 0)
502		ticks_left = 0;	/* XXX timer_freq is unsigned */
503
504	while (ticks_left > 0) {
505		tick = getit();
506#ifdef DELAYDEBUG
507		++getit_calls;
508#endif
509		delta = prev_tick - tick;
510		prev_tick = tick;
511		if (delta < 0) {
512			delta += timer0_max_count;
513			/*
514			 * Guard against timer0_max_count being wrong.
515			 * This shouldn't happen in normal operation,
516			 * but it may happen if set_timer_freq() is
517			 * traced.
518			 */
519			if (delta < 0)
520				delta = 0;
521		}
522		ticks_left -= delta;
523	}
524#ifdef DELAYDEBUG
525	if (state == 1)
526		printf(" %d calls to getit() at %d usec each\n",
527		       getit_calls, (n + 5) / getit_calls);
528#endif
529}
530
531static void
532sysbeepstop(void *chan)
533{
534#ifdef PC98	/* PC98 */
535	outb(IO_PPI, inb(IO_PPI)|0x08);	/* disable counter1 output to speaker */
536	release_timer1();
537#else
538	outb(IO_PPI, inb(IO_PPI)&0xFC);	/* disable counter2 output to speaker */
539	release_timer2();
540#endif
541	beeping = 0;
542}
543
544int
545sysbeep(int pitch, int period)
546{
547	int x = splclock();
548
549#ifdef PC98
550	if (acquire_timer1(TIMER_SQWAVE|TIMER_16BIT))
551		if (!beeping) {
552			/* Something else owns it. */
553			splx(x);
554			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
555		}
556	disable_intr();
557	outb(0x3fdb, pitch);
558	outb(0x3fdb, (pitch>>8));
559	enable_intr();
560	if (!beeping) {
561		/* enable counter1 output to speaker */
562		outb(IO_PPI, (inb(IO_PPI) & 0xf7));
563		beeping = period;
564		timeout(sysbeepstop, (void *)NULL, period);
565	}
566#else
567	if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
568		if (!beeping) {
569			/* Something else owns it. */
570			splx(x);
571			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
572		}
573	disable_intr();
574	outb(TIMER_CNTR2, pitch);
575	outb(TIMER_CNTR2, (pitch>>8));
576	enable_intr();
577	if (!beeping) {
578		/* enable counter2 output to speaker */
579		outb(IO_PPI, inb(IO_PPI) | 3);
580		beeping = period;
581		timeout(sysbeepstop, (void *)NULL, period);
582	}
583#endif
584	splx(x);
585	return (0);
586}
587
588#ifndef PC98
589/*
590 * RTC support routines
591 */
592
593int
594rtcin(reg)
595	int reg;
596{
597	u_char val;
598
599	outb(IO_RTC, reg);
600	inb(0x84);
601	val = inb(IO_RTC + 1);
602	inb(0x84);
603	return (val);
604}
605
606static __inline void
607writertc(u_char reg, u_char val)
608{
609	outb(IO_RTC, reg);
610	outb(IO_RTC + 1, val);
611}
612
613static __inline int
614readrtc(int port)
615{
616	return(bcd2bin(rtcin(port)));
617}
618#endif
619
620#ifdef PC98
621unsigned int delaycount;
622#define FIRST_GUESS	0x2000
623static void findcpuspeed(void)
624{
625	int i;
626	int remainder;
627
628	/* Put counter in count down mode */
629	outb(TIMER_MODE, TIMER_SEL0 | TIMER_16BIT | TIMER_RATEGEN);
630	outb(TIMER_CNTR0, 0xff);
631	outb(TIMER_CNTR0, 0xff);
632	for (i = FIRST_GUESS; i; i--)
633		;
634	remainder = getit();
635	delaycount = (FIRST_GUESS * TIMER_DIV(1000)) / (0xffff - remainder);
636}
637#endif
638
639#ifndef PC98
640static u_int
641calibrate_clocks(void)
642{
643	u_int count, prev_count, tot_count;
644	int sec, start_sec, timeout;
645
646	printf("Calibrating clock(s) relative to mc146818A clock ... ");
647	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
648		goto fail;
649	timeout = 100000000;
650
651	/* Read the mc146818A seconds counter. */
652	for (;;) {
653		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
654			sec = rtcin(RTC_SEC);
655			break;
656		}
657		if (--timeout == 0)
658			goto fail;
659	}
660
661	/* Wait for the mC146818A seconds counter to change. */
662	start_sec = sec;
663	for (;;) {
664		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
665			sec = rtcin(RTC_SEC);
666			if (sec != start_sec)
667				break;
668		}
669		if (--timeout == 0)
670			goto fail;
671	}
672
673	/* Start keeping track of the i8254 counter. */
674	prev_count = getit();
675	if (prev_count == 0 || prev_count > timer0_max_count)
676		goto fail;
677	tot_count = 0;
678
679#if defined(I586_CPU) || defined(I686_CPU)
680	if (cpu_class == CPUCLASS_586 || cpu_class == CPUCLASS_686)
681		wrmsr(0x10, 0LL);	/* XXX 0x10 is the MSR for the TSC */
682#endif
683
684	/*
685	 * Wait for the mc146818A seconds counter to change.  Read the i8254
686	 * counter for each iteration since this is convenient and only
687	 * costs a few usec of inaccuracy. The timing of the final reads
688	 * of the counters almost matches the timing of the initial reads,
689	 * so the main cause of inaccuracy is the varying latency from
690	 * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
691	 * rtcin(RTC_SEC) that returns a changed seconds count.  The
692	 * maximum inaccuracy from this cause is < 10 usec on 486's.
693	 */
694	start_sec = sec;
695	for (;;) {
696		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
697			sec = rtcin(RTC_SEC);
698		count = getit();
699		if (count == 0 || count > timer0_max_count)
700			goto fail;
701		if (count > prev_count)
702			tot_count += prev_count - (count - timer0_max_count);
703		else
704			tot_count += prev_count - count;
705		prev_count = count;
706		if (sec != start_sec)
707			break;
708		if (--timeout == 0)
709			goto fail;
710	}
711
712#if defined(I586_CPU) || defined(I686_CPU)
713	/*
714	 * Read the cpu cycle counter.  The timing considerations are
715	 * similar to those for the i8254 clock.
716	 */
717	if (cpu_class == CPUCLASS_586 || cpu_class == CPUCLASS_686) {
718		set_i586_ctr_freq((u_int)rdtsc(), tot_count);
719		printf("i586 clock: %u Hz, ", i586_ctr_freq);
720	}
721#endif
722
723	printf("i8254 clock: %u Hz\n", tot_count);
724	return (tot_count);
725
726fail:
727	printf("failed, using default i8254 clock of %u Hz\n", timer_freq);
728	return (timer_freq);
729}
730#endif	/* !PC98 */
731
732static void
733set_timer_freq(u_int freq, int intr_freq)
734{
735	u_long ef;
736
737	ef = read_eflags();
738	disable_intr();
739	timer_freq = freq;
740	timer0_max_count = hardclock_max_count = TIMER_DIV(intr_freq);
741	timer0_overflow_threshold = timer0_max_count - TIMER0_LATCH_COUNT;
742	outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
743	outb(TIMER_CNTR0, timer0_max_count & 0xff);
744	outb(TIMER_CNTR0, timer0_max_count >> 8);
745	write_eflags(ef);
746}
747
748/*
749 * Initialize 8253 timer 0 early so that it can be used in DELAY().
750 * XXX initialization of other timers is unintentionally left blank.
751 */
752void
753startrtclock()
754{
755	u_int delta, freq;
756
757#ifdef PC98
758	findcpuspeed();
759#ifndef AUTO_CLOCK
760	if (pc98_machine_type & M_8M) {
761#ifndef	PC98_8M
762		printf("you must reconfig a kernel with \"PC98_8M\" option.\n");
763#endif
764	} else {
765#ifdef	PC98_8M
766		printf("You must reconfig a kernel without \"PC98_8M\" option.\n");
767#endif
768	}
769#else /* AUTO_CLOCK */
770	if (pc98_machine_type & M_8M)
771		timer_freq = 1996800L; /* 1.9968 MHz */
772	else
773		timer_freq = 2457600L; /* 2.4576 MHz */
774#endif /* AUTO_CLOCK */
775#endif /* PC98 */
776
777#ifndef PC98
778	writertc(RTC_STATUSA, rtc_statusa);
779	writertc(RTC_STATUSB, RTCSB_24HR);
780#endif
781
782#ifndef PC98
783	set_timer_freq(timer_freq, hz);
784	freq = calibrate_clocks();
785#ifdef CLK_CALIBRATION_LOOP
786	if (bootverbose) {
787		printf(
788		"Press a key on the console to abort clock calibration\n");
789		while (cncheckc() == -1)
790			calibrate_clocks();
791	}
792#endif
793
794	/*
795	 * Use the calibrated i8254 frequency if it seems reasonable.
796	 * Otherwise use the default, and don't use the calibrated i586
797	 * frequency.
798	 */
799	delta = freq > timer_freq ? freq - timer_freq : timer_freq - freq;
800	if (delta < timer_freq / 100) {
801#ifndef CLK_USE_I8254_CALIBRATION
802		if (bootverbose)
803			printf(
804"CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
805		freq = timer_freq;
806#endif
807		timer_freq = freq;
808	} else {
809		printf("%d Hz differs from default of %d Hz by more than 1%%\n",
810		       freq, timer_freq);
811#if defined(I586_CPU) || defined(I686_CPU)
812		i586_ctr_freq = 0;
813#endif
814	}
815#endif
816
817	set_timer_freq(timer_freq, hz);
818
819#if defined(I586_CPU) || defined(I686_CPU)
820#ifndef CLK_USE_I586_CALIBRATION
821	if (i586_ctr_freq != 0) {
822		if (bootverbose)
823			printf(
824"CLK_USE_I586_CALIBRATION not specified - using old calibration method\n");
825		i586_ctr_freq = 0;
826	}
827#endif
828	if (i586_ctr_freq == 0 &&
829	    (cpu_class == CPUCLASS_586 || cpu_class == CPUCLASS_686)) {
830		/*
831		 * Calibration of the i586 clock relative to the mc146818A
832		 * clock failed.  Do a less accurate calibration relative
833		 * to the i8254 clock.
834		 */
835		wrmsr(0x10, 0LL);	/* XXX */
836		DELAY(1000000);
837		set_i586_ctr_freq((u_int)rdtsc(), timer_freq);
838#ifdef CLK_USE_I586_CALIBRATION
839		printf("i586 clock: %u Hz\n", i586_ctr_freq);
840#endif
841	}
842#endif
843}
844
845#ifdef PC98
846static void
847rtc_serialcombit(int i)
848{
849	outb(IO_RTC, ((i&0x01)<<5)|0x07);
850	DELAY(1);
851	outb(IO_RTC, ((i&0x01)<<5)|0x17);
852	DELAY(1);
853	outb(IO_RTC, ((i&0x01)<<5)|0x07);
854	DELAY(1);
855}
856
857static void
858rtc_serialcom(int i)
859{
860	rtc_serialcombit(i&0x01);
861	rtc_serialcombit((i&0x02)>>1);
862	rtc_serialcombit((i&0x04)>>2);
863	rtc_serialcombit((i&0x08)>>3);
864	outb(IO_RTC, 0x07);
865	DELAY(1);
866	outb(IO_RTC, 0x0f);
867	DELAY(1);
868	outb(IO_RTC, 0x07);
869 	DELAY(1);
870}
871
872static void
873rtc_outb(int val)
874{
875	int s;
876	int sa = 0;
877
878	for (s=0;s<8;s++) {
879	    sa = ((val >> s) & 0x01) ? 0x27 : 0x07;
880	    outb(IO_RTC, sa);		/* set DI & CLK 0 */
881	    DELAY(1);
882	    outb(IO_RTC, sa | 0x10);	/* CLK 1 */
883	    DELAY(1);
884	}
885	outb(IO_RTC, sa & 0xef);	/* CLK 0 */
886}
887
888static int
889rtc_inb(void)
890{
891	int s;
892	int sa = 0;
893
894	for (s=0;s<8;s++) {
895	    sa |= ((inb(0x33) & 0x01) << s);
896	    outb(IO_RTC, 0x17);	/* CLK 1 */
897	    DELAY(1);
898	    outb(IO_RTC, 0x07);	/* CLK 0 */
899	    DELAY(2);
900	}
901	return sa;
902}
903#endif /* PC-98 */
904
905/*
906 * Initialize the time of day register,	based on the time base which is, e.g.
907 * from	a filesystem.
908 */
909void
910inittodr(time_t base)
911{
912	unsigned long	sec, days;
913	int		yd;
914	int		year, month;
915	int		y, m, s;
916#ifdef PC98
917	int		second, min, hour;
918#endif
919
920	s = splclock();
921	time.tv_sec  = base;
922	time.tv_usec = 0;
923	splx(s);
924
925#ifdef PC98
926	rtc_serialcom(0x03);	/* Time Read */
927	rtc_serialcom(0x01);	/* Register shift command. */
928	DELAY(20);
929
930	second = bcd2bin(rtc_inb() & 0xff);	/* sec */
931	min = bcd2bin(rtc_inb() & 0xff);	/* min */
932	hour = bcd2bin(rtc_inb() & 0xff);	/* hour */
933	days = bcd2bin(rtc_inb() & 0xff) - 1;	/* date */
934
935	month = (rtc_inb() >> 4) & 0x0f;	/* month */
936	for (m = 1; m <	month; m++)
937		days +=	daysinmonth[m-1];
938	year = bcd2bin(rtc_inb() & 0xff) + 1900;	/* year */
939	/* 2000 year problem */
940	if (year < 1995)
941		year += 100;
942	if (year < 1970)
943		goto wrong_time;
944	for (y = 1970; y < year; y++)
945		days +=	DAYSPERYEAR + LEAPYEAR(y);
946	if ((month > 2)	&& LEAPYEAR(year))
947		days ++;
948	sec = ((( days * 24 +
949		  hour) * 60 +
950		  min) * 60 +
951		  second);
952	/* sec now contains the	number of seconds, since Jan 1 1970,
953	   in the local	time zone */
954#else	/* IBM-PC */
955	/* Look	if we have a RTC present and the time is valid */
956	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
957		goto wrong_time;
958
959	/* wait	for time update	to complete */
960	/* If RTCSA_TUP	is zero, we have at least 244us	before next update */
961	while (rtcin(RTC_STATUSA) & RTCSA_TUP);
962
963	days = 0;
964#ifdef USE_RTC_CENTURY
965	year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY)	* 100;
966#else
967	year = readrtc(RTC_YEAR) + 1900;
968	if (year < 1970)
969		year += 100;
970#endif
971	if (year < 1970)
972		goto wrong_time;
973	month =	readrtc(RTC_MONTH);
974	for (m = 1; m <	month; m++)
975		days +=	daysinmonth[m-1];
976	if ((month > 2)	&& LEAPYEAR(year))
977		days ++;
978	days +=	readrtc(RTC_DAY) - 1;
979	yd = days;
980	for (y = 1970; y < year; y++)
981		days +=	DAYSPERYEAR + LEAPYEAR(y);
982	sec = ((( days * 24 +
983		  readrtc(RTC_HRS)) * 60 +
984		  readrtc(RTC_MIN)) * 60 +
985		  readrtc(RTC_SEC));
986	/* sec now contains the	number of seconds, since Jan 1 1970,
987	   in the local	time zone */
988#endif
989
990	sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
991
992	s = splclock();
993	time.tv_sec = sec;
994	splx(s);
995	return;
996
997wrong_time:
998	printf("Invalid	time in	real time clock.\n");
999	printf("Check and reset	the date immediately!\n");
1000}
1001
1002/*
1003 * Write system	time back to RTC
1004 */
1005void
1006resettodr()
1007{
1008	unsigned long	tm;
1009	int		y, m, s;
1010#ifdef PC98
1011	int		wd;
1012#endif
1013
1014	if (disable_rtc_set)
1015		return;
1016
1017	s = splclock();
1018	tm = time.tv_sec;
1019	splx(s);
1020
1021#ifdef PC98
1022	rtc_serialcom(0x01);	/* Register shift command. */
1023
1024	/* Calculate local time	to put in RTC */
1025
1026	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1027
1028	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
1029	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
1030	rtc_outb(bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
1031
1032	/* We have now the days	since 01-01-1970 in tm */
1033	wd = (tm+4)%7;
1034	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1035	     tm >= m;
1036	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1037	     tm -= m;
1038
1039	/* Now we have the years in y and the day-of-the-year in tm */
1040	for (m = 0; ; m++) {
1041		int ml;
1042
1043		ml = daysinmonth[m];
1044		if (m == 1 && LEAPYEAR(y))
1045			ml++;
1046		if (tm < ml)
1047			break;
1048		tm -= ml;
1049	}
1050
1051	m++;
1052	rtc_outb(bin2bcd(tm+1));		/* Write back Day     */
1053	rtc_outb((m << 4) | wd);		/* Write back Month & Weekday  */
1054	rtc_outb(bin2bcd(y%100));		/* Write back Year    */
1055
1056	rtc_serialcom(0x02);	/* Time set & Counter hold command. */
1057	rtc_serialcom(0x00);	/* Register hold command. */
1058#else
1059	/* Disable RTC updates and interrupts. */
1060	writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
1061
1062	/* Calculate local time	to put in RTC */
1063
1064	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1065
1066	writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
1067	writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
1068	writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
1069
1070	/* We have now the days	since 01-01-1970 in tm */
1071	writertc(RTC_WDAY, (tm+4)%7);			/* Write back Weekday */
1072	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1073	     tm >= m;
1074	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1075	     tm -= m;
1076
1077	/* Now we have the years in y and the day-of-the-year in tm */
1078	writertc(RTC_YEAR, bin2bcd(y%100));		/* Write back Year    */
1079#ifdef USE_RTC_CENTURY
1080	writertc(RTC_CENTURY, bin2bcd(y/100));		/* ... and Century    */
1081#endif
1082	for (m = 0; ; m++) {
1083		int ml;
1084
1085		ml = daysinmonth[m];
1086		if (m == 1 && LEAPYEAR(y))
1087			ml++;
1088		if (tm < ml)
1089			break;
1090		tm -= ml;
1091	}
1092
1093	writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
1094	writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
1095
1096	/* Reenable RTC updates and interrupts. */
1097	writertc(RTC_STATUSB, rtc_statusb);
1098#endif
1099}
1100
1101/*
1102 * Start both clocks running.
1103 */
1104void
1105cpu_initclocks()
1106{
1107#ifndef PC98
1108	int diag;
1109
1110	if (statclock_disable) {
1111		/*
1112		 * The stat interrupt mask is different without the
1113		 * statistics clock.  Also, don't set the interrupt
1114		 * flag which would normally cause the RTC to generate
1115		 * interrupts.
1116		 */
1117		stat_imask = HWI_MASK | SWI_MASK;
1118		rtc_statusb = RTCSB_24HR;
1119	} else {
1120	        /* Setting stathz to nonzero early helps avoid races. */
1121		stathz = RTC_NOPROFRATE;
1122		profhz = RTC_PROFRATE;
1123        }
1124#endif
1125
1126	/* Finish initializing 8253 timer 0. */
1127	register_intr(/* irq */ 0, /* XXX id */ 0, /* flags */ 0,
1128		      /* XXX */ (inthand2_t *)clkintr, &clk_imask,
1129		      /* unit */ 0);
1130	INTREN(IRQ0);
1131#if defined(I586_CPU) || defined(I686_CPU)
1132	/*
1133	 * Finish setting up anti-jitter measures.
1134	 */
1135	if (i586_ctr_freq != 0)
1136		i586_ctr_bias = rdtsc();
1137#endif
1138
1139#ifndef PC98
1140	/* Initialize RTC. */
1141	writertc(RTC_STATUSA, rtc_statusa);
1142	writertc(RTC_STATUSB, RTCSB_24HR);
1143
1144	/* Don't bother enabling the statistics clock. */
1145	if (statclock_disable)
1146		return;
1147	diag = rtcin(RTC_DIAG);
1148	if (diag != 0)
1149		printf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
1150	register_intr(/* irq */ 8, /* XXX id */ 1, /* flags */ 0,
1151		      /* XXX */ (inthand2_t *)rtcintr, &stat_imask,
1152		      /* unit */ 0);
1153	INTREN(IRQ8);
1154	writertc(RTC_STATUSB, rtc_statusb);
1155#endif
1156}
1157
1158void
1159setstatclockrate(int newhz)
1160{
1161#ifndef PC98
1162	if (newhz == RTC_PROFRATE)
1163		rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
1164	else
1165		rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
1166	writertc(RTC_STATUSA, rtc_statusa);
1167#endif
1168}
1169
1170static int
1171sysctl_machdep_i8254_freq SYSCTL_HANDLER_ARGS
1172{
1173	int error;
1174	u_int freq;
1175
1176	/*
1177	 * Use `i8254' instead of `timer' in external names because `timer'
1178	 * is is too generic.  Should use it everywhere.
1179	 */
1180	freq = timer_freq;
1181	error = sysctl_handle_opaque(oidp, &freq, sizeof freq, req);
1182	if (error == 0 && req->newptr != NULL) {
1183		if (timer0_state != 0)
1184			return (EBUSY);	/* too much trouble to handle */
1185		set_timer_freq(freq, hz);
1186#if defined(I586_CPU) || defined(I686_CPU)
1187		set_i586_ctr_freq(i586_ctr_freq, timer_freq);
1188#endif
1189	}
1190	return (error);
1191}
1192
1193SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
1194	    0, sizeof(u_int), sysctl_machdep_i8254_freq, "I", "");
1195
1196#if defined(I586_CPU) || defined(I686_CPU)
1197static void
1198set_i586_ctr_freq(u_int i586_freq, u_int i8254_freq)
1199{
1200	u_int comultiplier, multiplier;
1201	u_long ef;
1202
1203	if (i586_freq == 0) {
1204		i586_ctr_freq = i586_freq;
1205		return;
1206	}
1207	comultiplier = ((unsigned long long)i586_freq
1208			<< I586_CTR_COMULTIPLIER_SHIFT) / i8254_freq;
1209	multiplier = (1000000LL << I586_CTR_MULTIPLIER_SHIFT) / i586_freq;
1210	ef = read_eflags();
1211	disable_intr();
1212	i586_ctr_freq = i586_freq;
1213	i586_ctr_comultiplier = comultiplier;
1214	i586_ctr_multiplier = multiplier;
1215	write_eflags(ef);
1216}
1217
1218static int
1219sysctl_machdep_i586_freq SYSCTL_HANDLER_ARGS
1220{
1221	int error;
1222	u_int freq;
1223
1224	if (cpu_class != CPUCLASS_586 && cpu_class != CPUCLASS_686)
1225		return (EOPNOTSUPP);
1226	freq = i586_ctr_freq;
1227	error = sysctl_handle_opaque(oidp, &freq, sizeof freq, req);
1228	if (error == 0 && req->newptr != NULL)
1229		set_i586_ctr_freq(freq, timer_freq);
1230	return (error);
1231}
1232
1233SYSCTL_PROC(_machdep, OID_AUTO, i586_freq, CTLTYPE_INT | CTLFLAG_RW,
1234	    0, sizeof(u_int), sysctl_machdep_i586_freq, "I", "");
1235#endif /* defined(I586_CPU) || defined(I686_CPU) */
1236