pcrtc.c revision 18095
1/*-
2 * Copyright (c) 1990 The Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * William Jolitz and Don Ahn.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)clock.c	7.2 (Berkeley) 5/12/91
37 *	$Id: clock.c,v 1.4 1996/09/03 10:23:24 asami Exp $
38 */
39
40/*
41 * inittodr, settodr and support routines written
42 * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
43 *
44 * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
45 */
46
47/*
48 * modified for PC98
49 *	$Id: clock.c,v 1.4 1996/09/03 10:23:24 asami Exp $
50 */
51
52/*
53 * Primitive clock interrupt routines.
54 */
55#include "opt_ddb.h"
56#include "opt_clock.h"
57
58#include <sys/param.h>
59#include <sys/systm.h>
60#include <sys/time.h>
61#include <sys/kernel.h>
62#include <sys/sysctl.h>
63
64#include <machine/clock.h>
65#ifdef CLK_CALIBRATION_LOOP
66#include <machine/cons.h>
67#endif
68#include <machine/cpu.h>
69#include <machine/frame.h>
70
71#include <i386/isa/icu.h>
72#ifdef PC98
73#include <pc98/pc98/pc98.h>
74#include <i386/isa/isa_device.h>
75#include <pc98/pc98/timerreg.h>
76#else
77#include <i386/isa/isa.h>
78#include <i386/isa/isa_device.h>
79#include <i386/isa/rtc.h>
80#include <i386/isa/timerreg.h>
81#endif
82
83/*
84 * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
85 * can use a simple formula for leap years.
86 */
87#define	LEAPYEAR(y) ((u_int)(y) % 4 == 0)
88#define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
89
90#define	TIMER_DIV(x) ((timer_freq + (x) / 2) / (x))
91
92/*
93 * Time in timer cycles that it takes for microtime() to disable interrupts
94 * and latch the count.  microtime() currently uses "cli; outb ..." so it
95 * normally takes less than 2 timer cycles.  Add a few for cache misses.
96 * Add a few more to allow for latency in bogus calls to microtime() with
97 * interrupts already disabled.
98 */
99#define	TIMER0_LATCH_COUNT	20
100
101/*
102 * Maximum frequency that we are willing to allow for timer0.  Must be
103 * low enough to guarantee that the timer interrupt handler returns
104 * before the next timer interrupt.  Must result in a lower TIMER_DIV
105 * value than TIMER0_LATCH_COUNT so that we don't have to worry about
106 * underflow in the calculation of timer0_overflow_threshold.
107 */
108#define	TIMER0_MAX_FREQ		20000
109
110int	adjkerntz;		/* local offset	from GMT in seconds */
111int	disable_rtc_set;	/* disable resettodr() if != 0 */
112int	wall_cmos_clock;	/* wall	CMOS clock assumed if != 0 */
113
114u_int	idelayed;
115#if defined(I586_CPU) || defined(I686_CPU)
116u_int 	i586_ctr_bias;
117u_int	i586_ctr_comultiplier;
118u_int	i586_ctr_freq;
119u_int	i586_ctr_multiplier;
120long long	i586_last_tick;
121unsigned long	i586_avg_tick;
122#endif
123int	statclock_disable;
124u_int	stat_imask = SWI_CLOCK_MASK;
125#ifdef TIMER_FREQ
126static	u_int	timer_freq = TIMER_FREQ;
127#else
128#ifdef PC98
129#ifndef AUTO_CLOCK
130#ifndef PC98_8M
131static	u_int	timer_freq = 2457600;
132#else	/* !PC98_8M */
133static	u_int	timer_freq = 1996800;
134#endif	/* PC98_8M */
135#else	/* AUTO_CLOCK */
136static	u_int	timer_freq = 2457600;
137#endif	/* AUTO_CLOCK */
138#else /* IBM-PC */
139static	u_int	timer_freq = 1193182;
140#endif /* PC98 */
141#endif
142int 	timer0_max_count;
143u_int 	timer0_overflow_threshold;
144u_int 	timer0_prescaler_count;
145
146static	int	beeping = 0;
147static	u_int	clk_imask = HWI_MASK | SWI_MASK;
148static	const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
149static 	u_int	hardclock_max_count;
150/*
151 * XXX new_function and timer_func should not handle clockframes, but
152 * timer_func currently needs to hold hardclock to handle the
153 * timer0_state == 0 case.  We should use register_intr()/unregister_intr()
154 * to switch between clkintr() and a slightly different timerintr().
155 */
156static 	void	(*new_function) __P((struct clockframe *frame));
157static 	u_int	new_rate;
158#ifndef PC98
159static	u_char	rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
160static	u_char	rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
161#endif
162
163/* Values for timerX_state: */
164#define	RELEASED	0
165#define	RELEASE_PENDING	1
166#define	ACQUIRED	2
167#define	ACQUIRE_PENDING	3
168
169static 	u_char	timer0_state;
170#ifdef	PC98
171static 	u_char	timer1_state;
172#endif
173static	u_char	timer2_state;
174static 	void	(*timer_func) __P((struct clockframe *frame)) = hardclock;
175int		rtc_inb __P((void));
176
177#if defined(I586_CPU) || defined(I686_CPU)
178static	void	set_i586_ctr_freq(u_int i586_freq, u_int i8254_freq);
179#endif
180
181static void
182clkintr(struct clockframe frame)
183{
184	timer_func(&frame);
185	switch (timer0_state) {
186
187	case RELEASED:
188		setdelayed();
189		break;
190
191	case ACQUIRED:
192		if ((timer0_prescaler_count += timer0_max_count)
193		    >= hardclock_max_count) {
194			hardclock(&frame);
195			setdelayed();
196			timer0_prescaler_count -= hardclock_max_count;
197		}
198		break;
199
200	case ACQUIRE_PENDING:
201		setdelayed();
202		timer0_max_count = TIMER_DIV(new_rate);
203		timer0_overflow_threshold =
204			timer0_max_count - TIMER0_LATCH_COUNT;
205		disable_intr();
206		outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
207		outb(TIMER_CNTR0, timer0_max_count & 0xff);
208		outb(TIMER_CNTR0, timer0_max_count >> 8);
209		enable_intr();
210		timer0_prescaler_count = 0;
211		timer_func = new_function;
212		timer0_state = ACQUIRED;
213		break;
214
215	case RELEASE_PENDING:
216		if ((timer0_prescaler_count += timer0_max_count)
217		    >= hardclock_max_count) {
218			hardclock(&frame);
219			setdelayed();
220			timer0_max_count = hardclock_max_count;
221			timer0_overflow_threshold =
222				timer0_max_count - TIMER0_LATCH_COUNT;
223			disable_intr();
224			outb(TIMER_MODE,
225			     TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
226			outb(TIMER_CNTR0, timer0_max_count & 0xff);
227			outb(TIMER_CNTR0, timer0_max_count >> 8);
228			enable_intr();
229			/*
230			 * See microtime.s for this magic.
231			 */
232#ifdef PC98
233#ifndef AUTO_CLOCK
234#ifndef PC98_8M
235			time.tv_usec += (6667 *
236				(timer0_prescaler_count - hardclock_max_count))
237				>> 14;
238#else /* PC98_8M */
239			time.tv_usec += (16411 *
240				(timer0_prescaler_count - hardclock_max_count))
241				>> 15;
242#endif /* PC98_8M */
243#else /* AUTO_CLOCK */
244			if (pc98_machine_type & M_8M) {
245				/* PC98_8M */
246				time.tv_usec += (16411 *
247					(timer0_prescaler_count -
248					 hardclock_max_count)) >> 15;
249			} else {
250				time.tv_usec += (6667 *
251					(timer0_prescaler_count -
252					 hardclock_max_count)) >> 14;
253			}
254#endif /* AUTO_CLOCK */
255#else /* IBM-PC */
256			time.tv_usec += (27465 *
257				(timer0_prescaler_count - hardclock_max_count))
258				>> 15;
259#endif /* PC98 */
260			if (time.tv_usec >= 1000000)
261				time.tv_usec -= 1000000;
262			timer0_prescaler_count = 0;
263			timer_func = hardclock;
264			timer0_state = RELEASED;
265		}
266		break;
267	}
268}
269
270/*
271 * The acquire and release functions must be called at ipl >= splclock().
272 */
273int
274acquire_timer0(int rate, void (*function) __P((struct clockframe *frame)))
275{
276	static int old_rate;
277
278	if (rate <= 0 || rate > TIMER0_MAX_FREQ)
279		return (-1);
280	switch (timer0_state) {
281
282	case RELEASED:
283		timer0_state = ACQUIRE_PENDING;
284		break;
285
286	case RELEASE_PENDING:
287		if (rate != old_rate)
288			return (-1);
289		/*
290		 * The timer has been released recently, but is being
291		 * re-acquired before the release completed.  In this
292		 * case, we simply reclaim it as if it had not been
293		 * released at all.
294		 */
295		timer0_state = ACQUIRED;
296		break;
297
298	default:
299		return (-1);	/* busy */
300	}
301	new_function = function;
302	old_rate = new_rate = rate;
303	return (0);
304}
305
306#ifdef PC98
307int
308acquire_timer1(int mode)
309{
310
311	if (timer1_state != RELEASED)
312		return (-1);
313	timer1_state = ACQUIRED;
314
315	/*
316	 * This access to the timer registers is as atomic as possible
317	 * because it is a single instruction.  We could do better if we
318	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
319	 * and this is probably good enough for timer2, so we aren't as
320	 * careful with it as with timer0.
321	 */
322	outb(TIMER_MODE, TIMER_SEL1 | (mode & 0x3f));
323
324	return (0);
325}
326#endif
327
328int
329acquire_timer2(int mode)
330{
331
332	if (timer2_state != RELEASED)
333		return (-1);
334	timer2_state = ACQUIRED;
335
336	/*
337	 * This access to the timer registers is as atomic as possible
338	 * because it is a single instruction.  We could do better if we
339	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
340	 * and this is probably good enough for timer2, so we aren't as
341	 * careful with it as with timer0.
342	 */
343	outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
344
345	return (0);
346}
347
348int
349release_timer0()
350{
351	switch (timer0_state) {
352
353	case ACQUIRED:
354		timer0_state = RELEASE_PENDING;
355		break;
356
357	case ACQUIRE_PENDING:
358		/* Nothing happened yet, release quickly. */
359		timer0_state = RELEASED;
360		break;
361
362	default:
363		return (-1);
364	}
365	return (0);
366}
367
368#ifdef PC98
369int
370release_timer1()
371{
372
373	if (timer1_state != ACQUIRED)
374		return (-1);
375	timer1_state = RELEASED;
376	outb(TIMER_MODE, TIMER_SEL1 | TIMER_SQWAVE | TIMER_16BIT);
377	return (0);
378}
379#endif
380
381int
382release_timer2()
383{
384
385	if (timer2_state != ACQUIRED)
386		return (-1);
387	timer2_state = RELEASED;
388	outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
389	return (0);
390}
391
392#ifndef PC98
393/*
394 * This routine receives statistical clock interrupts from the RTC.
395 * As explained above, these occur at 128 interrupts per second.
396 * When profiling, we receive interrupts at a rate of 1024 Hz.
397 *
398 * This does not actually add as much overhead as it sounds, because
399 * when the statistical clock is active, the hardclock driver no longer
400 * needs to keep (inaccurate) statistics on its own.  This decouples
401 * statistics gathering from scheduling interrupts.
402 *
403 * The RTC chip requires that we read status register C (RTC_INTR)
404 * to acknowledge an interrupt, before it will generate the next one.
405 */
406static void
407rtcintr(struct clockframe frame)
408{
409	u_char stat;
410	stat = rtcin(RTC_INTR);
411	if(stat & RTCIR_PERIOD) {
412		statclock(&frame);
413	}
414}
415
416#ifdef DDB
417static void
418DDB_printrtc(void)
419{
420	printf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
421	       rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
422	       rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
423	       rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
424}
425#endif
426#endif /* for PC98 */
427
428static int
429getit(void)
430{
431	u_long ef;
432	int high, low;
433
434	ef = read_eflags();
435	disable_intr();
436
437	/* Select timer0 and latch counter value. */
438	outb(TIMER_MODE, TIMER_SEL0);
439
440	low = inb(TIMER_CNTR0);
441	high = inb(TIMER_CNTR0);
442
443	write_eflags(ef);
444	return ((high << 8) | low);
445}
446
447/*
448 * Wait "n" microseconds.
449 * Relies on timer 1 counting down from (timer_freq / hz)
450 * Note: timer had better have been programmed before this is first used!
451 */
452void
453DELAY(int n)
454{
455	int prev_tick, tick, ticks_left, sec, usec;
456
457#ifdef DELAYDEBUG
458	int getit_calls = 1;
459	int n1;
460	static int state = 0;
461
462	if (state == 0) {
463		state = 1;
464		for (n1 = 1; n1 <= 10000000; n1 *= 10)
465			DELAY(n1);
466		state = 2;
467	}
468	if (state == 1)
469		printf("DELAY(%d)...", n);
470#endif
471	/*
472	 * Read the counter first, so that the rest of the setup overhead is
473	 * counted.  Guess the initial overhead is 20 usec (on most systems it
474	 * takes about 1.5 usec for each of the i/o's in getit().  The loop
475	 * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
476	 * multiplications and divisions to scale the count take a while).
477	 */
478	prev_tick = getit();
479	n -= 20;
480	/*
481	 * Calculate (n * (timer_freq / 1e6)) without using floating point
482	 * Calculate (n * (TIMER_FREQ / 1e6)) without using floating point
483	 * and without any avoidable overflows.
484	 */
485	sec = n / 1000000;
486	usec = n - sec * 1000000;
487	ticks_left = sec * timer_freq
488		     + usec * (timer_freq / 1000000)
489		     + usec * ((timer_freq % 1000000) / 1000) / 1000
490		     + usec * (timer_freq % 1000) / 1000000;
491	if (n < 0)
492		ticks_left = 0;	/* XXX timer_freq is unsigned */
493
494	while (ticks_left > 0) {
495		tick = getit();
496#ifdef DELAYDEBUG
497		++getit_calls;
498#endif
499		if (tick > prev_tick)
500			ticks_left -= prev_tick - (tick - timer0_max_count);
501		else
502			ticks_left -= prev_tick - tick;
503		prev_tick = tick;
504	}
505#ifdef DELAYDEBUG
506	if (state == 1)
507		printf(" %d calls to getit() at %d usec each\n",
508		       getit_calls, (n + 5) / getit_calls);
509#endif
510}
511
512static void
513sysbeepstop(void *chan)
514{
515#ifdef PC98	/* PC98 */
516	outb(IO_PPI, inb(IO_PPI)|0x08);	/* disable counter1 output to speaker */
517	release_timer1();
518#else
519	outb(IO_PPI, inb(IO_PPI)&0xFC);	/* disable counter2 output to speaker */
520	release_timer2();
521#endif
522	beeping = 0;
523}
524
525int
526sysbeep(int pitch, int period)
527{
528	int x = splclock();
529
530#ifdef PC98
531	if (acquire_timer1(TIMER_SQWAVE|TIMER_16BIT))
532		if (!beeping) {
533			/* Something else owns it. */
534			splx(x);
535			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
536		}
537	disable_intr();
538	outb(0x3fdb, pitch);
539	outb(0x3fdb, (pitch>>8));
540	enable_intr();
541	if (!beeping) {
542		/* enable counter1 output to speaker */
543		outb(IO_PPI, (inb(IO_PPI) & 0xf7));
544		beeping = period;
545		timeout(sysbeepstop, (void *)NULL, period);
546	}
547#else
548	if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
549		if (!beeping) {
550			/* Something else owns it. */
551			splx(x);
552			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
553		}
554	disable_intr();
555	outb(TIMER_CNTR2, pitch);
556	outb(TIMER_CNTR2, (pitch>>8));
557	enable_intr();
558	if (!beeping) {
559		/* enable counter2 output to speaker */
560		outb(IO_PPI, inb(IO_PPI) | 3);
561		beeping = period;
562		timeout(sysbeepstop, (void *)NULL, period);
563	}
564#endif
565	splx(x);
566	return (0);
567}
568
569#ifndef PC98
570/*
571 * RTC support routines
572 */
573
574int
575rtcin(reg)
576	int reg;
577{
578	u_char val;
579
580	outb(IO_RTC, reg);
581	inb(0x84);
582	val = inb(IO_RTC + 1);
583	inb(0x84);
584	return (val);
585}
586
587static __inline void
588writertc(u_char reg, u_char val)
589{
590	outb(IO_RTC, reg);
591	outb(IO_RTC + 1, val);
592}
593
594static __inline int
595readrtc(int port)
596{
597	return(bcd2bin(rtcin(port)));
598}
599#endif
600
601#ifdef PC98
602unsigned int delaycount;
603#define FIRST_GUESS	0x2000
604static void findcpuspeed(void)
605{
606	int i;
607	int remainder;
608
609	/* Put counter in count down mode */
610	outb(TIMER_MODE, TIMER_SEL0 | TIMER_16BIT | TIMER_RATEGEN);
611	outb(TIMER_CNTR0, 0xff);
612	outb(TIMER_CNTR0, 0xff);
613	for (i = FIRST_GUESS; i; i--)
614		;
615	remainder = getit();
616	delaycount = (FIRST_GUESS * TIMER_DIV(1000)) / (0xffff - remainder);
617}
618#endif
619
620#ifndef PC98
621static u_int
622calibrate_clocks(void)
623{
624	u_int count, prev_count, tot_count;
625	int sec, start_sec, timeout;
626
627	printf("Calibrating clock(s) relative to mc146818A clock...\n");
628	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
629		goto fail;
630	timeout = 100000000;
631
632	/* Read the mc146818A seconds counter. */
633	for (;;) {
634		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
635			sec = rtcin(RTC_SEC);
636			break;
637		}
638		if (--timeout == 0)
639			goto fail;
640	}
641
642	/* Wait for the mC146818A seconds counter to change. */
643	start_sec = sec;
644	for (;;) {
645		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
646			sec = rtcin(RTC_SEC);
647			if (sec != start_sec)
648				break;
649		}
650		if (--timeout == 0)
651			goto fail;
652	}
653
654	/* Start keeping track of the i8254 counter. */
655	prev_count = getit();
656	if (prev_count == 0 || prev_count > timer0_max_count)
657		goto fail;
658	tot_count = 0;
659
660#if defined(I586_CPU) || defined(I686_CPU)
661	if (cpu_class == CPUCLASS_586 || cpu_class == CPUCLASS_686)
662		wrmsr(0x10, 0LL);	/* XXX 0x10 is the MSR for the TSC */
663#endif
664
665	/*
666	 * Wait for the mc146818A seconds counter to change.  Read the i8254
667	 * counter for each iteration since this is convenient and only
668	 * costs a few usec of inaccuracy. The timing of the final reads
669	 * of the counters almost matches the timing of the initial reads,
670	 * so the main cause of inaccuracy is the varying latency from
671	 * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
672	 * rtcin(RTC_SEC) that returns a changed seconds count.  The
673	 * maximum inaccuracy from this cause is < 10 usec on 486's.
674	 */
675	start_sec = sec;
676	for (;;) {
677		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
678			sec = rtcin(RTC_SEC);
679		count = getit();
680		if (count == 0 || count > timer0_max_count)
681			goto fail;
682		if (count > prev_count)
683			tot_count += prev_count - (count - timer0_max_count);
684		else
685			tot_count += prev_count - count;
686		prev_count = count;
687		if (sec != start_sec)
688			break;
689		if (--timeout == 0)
690			goto fail;
691	}
692
693#if defined(I586_CPU) || defined(I686_CPU)
694	/*
695	 * Read the cpu cycle counter.  The timing considerations are
696	 * similar to those for the i8254 clock.
697	 */
698	if (cpu_class == CPUCLASS_586 || cpu_class == CPUCLASS_686) {
699		set_i586_ctr_freq((u_int)rdtsc(), tot_count);
700		printf("i586 clock: %u Hz, ", i586_ctr_freq);
701	}
702#endif
703
704	printf("i8254 clock: %u Hz\n", tot_count);
705	return (tot_count);
706
707fail:
708	printf("failed, using default i8254 clock of %u Hz\n", timer_freq);
709	return (timer_freq);
710}
711#endif	/* !PC98 */
712
713static void
714set_timer_freq(u_int freq, int intr_freq)
715{
716	u_long ef;
717
718	ef = read_eflags();
719	disable_intr();
720	timer_freq = freq;
721	timer0_max_count = hardclock_max_count = TIMER_DIV(intr_freq);
722	timer0_overflow_threshold = timer0_max_count - TIMER0_LATCH_COUNT;
723	outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
724	outb(TIMER_CNTR0, timer0_max_count & 0xff);
725	outb(TIMER_CNTR0, timer0_max_count >> 8);
726	write_eflags(ef);
727}
728
729/*
730 * Initialize 8253 timer 0 early so that it can be used in DELAY().
731 * XXX initialization of other timers is unintentionally left blank.
732 */
733void
734startrtclock()
735{
736	u_int delta, freq;
737
738#ifdef PC98
739	findcpuspeed();
740#ifndef AUTO_CLOCK
741	if (pc98_machine_type & M_8M) {
742#ifndef	PC98_8M
743		printf("you must reconfig a kernel with \"PC98_8M\" option.\n");
744#endif
745	} else {
746#ifdef	PC98_8M
747		printf("You must reconfig a kernel without \"PC98_8M\" option.\n");
748#endif
749	}
750#else /* AUTO_CLOCK */
751	if (pc98_machine_type & M_8M)
752		timer_freq = 1996800L; /* 1.9968 MHz */
753	else
754		timer_freq = 2457600L; /* 2.4576 MHz */
755#endif /* AUTO_CLOCK */
756#endif /* PC98 */
757
758#ifndef PC98
759	writertc(RTC_STATUSA, rtc_statusa);
760	writertc(RTC_STATUSB, RTCSB_24HR);
761#endif
762
763#ifndef PC98
764	set_timer_freq(timer_freq, hz);
765	freq = calibrate_clocks();
766#ifdef CLK_CALIBRATION_LOOP
767	if (bootverbose) {
768		printf(
769		"Press a key on the console to abort clock calibration\n");
770		while (!cncheckc())
771			calibrate_clocks();
772	}
773#endif
774
775	/*
776	 * Use the calibrated i8254 frequency if it seems reasonable.
777	 * Otherwise use the default, and don't use the calibrated i586
778	 * frequency.
779	 */
780	delta = freq > timer_freq ? freq - timer_freq : timer_freq - freq;
781	if (delta < timer_freq / 100) {
782#ifndef CLK_USE_I8254_CALIBRATION
783		if (bootverbose)
784		    printf(
785"CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
786		freq = timer_freq;
787#endif
788		timer_freq = freq;
789	} else {
790		printf("%d Hz differs from default of %d Hz by more than 1%%\n",
791		       freq, timer_freq);
792#if defined(I586_CPU) || defined(I686_CPU)
793		i586_ctr_freq = 0;
794#endif
795	}
796#endif
797
798	set_timer_freq(timer_freq, hz);
799
800#if defined(I586_CPU) || defined(I686_CPU)
801#ifndef CLK_USE_I586_CALIBRATION
802	if (i586_ctr_freq != 0) {
803		if (bootverbose)
804		    printf(
805"CLK_USE_I586_CALIBRATION not specified - using old calibration method\n");
806		i586_ctr_freq = 0;
807	}
808#endif
809	if (i586_ctr_freq == 0 &&
810	    (cpu_class == CPUCLASS_586 || cpu_class == CPUCLASS_686)) {
811		/*
812		 * Calibration of the i586 clock relative to the mc146818A
813		 * clock failed.  Do a less accurate calibration relative
814		 * to the i8254 clock.
815		 */
816		wrmsr(0x10, 0LL);	/* XXX */
817		DELAY(1000000);
818		set_i586_ctr_freq((u_int)rdtsc(), timer_freq);
819#ifdef CLK_USE_I586_CALIBRATION
820		printf("i586 clock: %u Hz\n", i586_ctr_freq);
821#endif
822	}
823#endif
824}
825
826#ifdef PC98
827void
828rtc_serialcombit(int i)
829{
830	outb(IO_RTC, ((i&0x01)<<5)|0x07);
831	DELAY(1);
832	outb(IO_RTC, ((i&0x01)<<5)|0x17);
833	DELAY(1);
834	outb(IO_RTC, ((i&0x01)<<5)|0x07);
835	DELAY(1);
836}
837
838void
839rtc_serialcom(int i)
840{
841	rtc_serialcombit(i&0x01);
842	rtc_serialcombit((i&0x02)>>1);
843	rtc_serialcombit((i&0x04)>>2);
844	rtc_serialcombit((i&0x08)>>3);
845	outb(IO_RTC, 0x07);
846	DELAY(1);
847	outb(IO_RTC, 0x0f);
848	DELAY(1);
849	outb(IO_RTC, 0x07);
850 	DELAY(1);
851}
852
853void
854rtc_outb(int val)
855{
856	int s;
857	int sa = 0;
858
859	for (s=0;s<8;s++) {
860	    sa = ((val >> s) & 0x01) ? 0x27 : 0x07;
861	    outb(IO_RTC, sa);		/* set DI & CLK 0 */
862	    DELAY(1);
863	    outb(IO_RTC, sa | 0x10);	/* CLK 1 */
864	    DELAY(1);
865	}
866	outb(IO_RTC, sa & 0xef);	/* CLK 0 */
867}
868
869int
870rtc_inb(void)
871{
872	int s;
873	int sa = 0;
874
875	for (s=0;s<8;s++) {
876	    sa |= ((inb(0x33) & 0x01) << s);
877	    outb(IO_RTC, 0x17);	/* CLK 1 */
878	    DELAY(1);
879	    outb(IO_RTC, 0x07);	/* CLK 0 */
880	    DELAY(2);
881	}
882	return sa;
883}
884#endif /* PC-98 */
885
886/*
887 * Initialize the time of day register,	based on the time base which is, e.g.
888 * from	a filesystem.
889 */
890void
891inittodr(time_t base)
892{
893	unsigned long	sec, days;
894	int		yd;
895	int		year, month;
896	int		y, m, s;
897#ifdef PC98
898	int		second, min, hour;
899#endif
900
901	s = splclock();
902	time.tv_sec  = base;
903	time.tv_usec = 0;
904	splx(s);
905
906#ifdef PC98
907	rtc_serialcom(0x03);	/* Time Read */
908	rtc_serialcom(0x01);	/* Register shift command. */
909	DELAY(20);
910
911	second = bcd2bin(rtc_inb() & 0xff);	/* sec */
912	min = bcd2bin(rtc_inb() & 0xff);	/* min */
913	hour = bcd2bin(rtc_inb() & 0xff);	/* hour */
914	days = bcd2bin(rtc_inb() & 0xff) - 1;	/* date */
915
916	month = (rtc_inb() >> 4) & 0x0f;	/* month */
917	for (m = 1; m <	month; m++)
918		days +=	daysinmonth[m-1];
919	year = bcd2bin(rtc_inb() & 0xff) + 1900;	/* year */
920	/* 2000 year problem */
921	if (year < 1995)
922		year += 100;
923	if (year < 1970)
924		goto wrong_time;
925	for (y = 1970; y < year; y++)
926		days +=	DAYSPERYEAR + LEAPYEAR(y);
927	if ((month > 2)	&& LEAPYEAR(year))
928		days ++;
929	sec = ((( days * 24 +
930		  hour) * 60 +
931		  min) * 60 +
932		  second);
933	/* sec now contains the	number of seconds, since Jan 1 1970,
934	   in the local	time zone */
935#else	/* IBM-PC */
936	/* Look	if we have a RTC present and the time is valid */
937	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
938		goto wrong_time;
939
940	/* wait	for time update	to complete */
941	/* If RTCSA_TUP	is zero, we have at least 244us	before next update */
942	while (rtcin(RTC_STATUSA) & RTCSA_TUP);
943
944	days = 0;
945#ifdef USE_RTC_CENTURY
946	year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY)	* 100;
947#else
948	year = readrtc(RTC_YEAR) + 1900;
949	if (year < 1970)
950		year += 100;
951#endif
952	if (year < 1970)
953		goto wrong_time;
954	month =	readrtc(RTC_MONTH);
955	for (m = 1; m <	month; m++)
956		days +=	daysinmonth[m-1];
957	if ((month > 2)	&& LEAPYEAR(year))
958		days ++;
959	days +=	readrtc(RTC_DAY) - 1;
960	yd = days;
961	for (y = 1970; y < year; y++)
962		days +=	DAYSPERYEAR + LEAPYEAR(y);
963	sec = ((( days * 24 +
964		  readrtc(RTC_HRS)) * 60 +
965		  readrtc(RTC_MIN)) * 60 +
966		  readrtc(RTC_SEC));
967	/* sec now contains the	number of seconds, since Jan 1 1970,
968	   in the local	time zone */
969#endif
970
971	sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
972
973	s = splclock();
974	time.tv_sec = sec;
975	splx(s);
976	return;
977
978wrong_time:
979	printf("Invalid	time in	real time clock.\n");
980	printf("Check and reset	the date immediately!\n");
981}
982
983/*
984 * Write system	time back to RTC
985 */
986void
987resettodr()
988{
989	unsigned long	tm;
990	int		y, m, s;
991#ifdef PC98
992	int		wd;
993#endif
994
995	if (disable_rtc_set)
996		return;
997
998	s = splclock();
999	tm = time.tv_sec;
1000	splx(s);
1001
1002#ifdef PC98
1003	rtc_serialcom(0x01);	/* Register shift command. */
1004
1005	/* Calculate local time	to put in RTC */
1006
1007	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1008
1009	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
1010	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
1011	rtc_outb(bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
1012
1013	/* We have now the days	since 01-01-1970 in tm */
1014	wd = (tm+4)%7;
1015	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1016	     tm >= m;
1017	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1018	     tm -= m;
1019
1020	/* Now we have the years in y and the day-of-the-year in tm */
1021	for (m = 0; ; m++) {
1022		int ml;
1023
1024		ml = daysinmonth[m];
1025		if (m == 1 && LEAPYEAR(y))
1026			ml++;
1027		if (tm < ml)
1028			break;
1029		tm -= ml;
1030	}
1031
1032	m++;
1033	rtc_outb(bin2bcd(tm+1));		/* Write back Day     */
1034	rtc_outb((m << 4) | wd);		/* Write back Month & Weekday  */
1035	rtc_outb(bin2bcd(y%100));		/* Write back Year    */
1036
1037	rtc_serialcom(0x02);	/* Time set & Counter hold command. */
1038	rtc_serialcom(0x00);	/* Register hold command. */
1039#else
1040	/* Disable RTC updates and interrupts. */
1041	writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
1042
1043	/* Calculate local time	to put in RTC */
1044
1045	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1046
1047	writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
1048	writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
1049	writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
1050
1051	/* We have now the days	since 01-01-1970 in tm */
1052	writertc(RTC_WDAY, (tm+4)%7);			/* Write back Weekday */
1053	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1054	     tm >= m;
1055	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1056	     tm -= m;
1057
1058	/* Now we have the years in y and the day-of-the-year in tm */
1059	writertc(RTC_YEAR, bin2bcd(y%100));		/* Write back Year    */
1060#ifdef USE_RTC_CENTURY
1061	writertc(RTC_CENTURY, bin2bcd(y/100));		/* ... and Century    */
1062#endif
1063	for (m = 0; ; m++) {
1064		int ml;
1065
1066		ml = daysinmonth[m];
1067		if (m == 1 && LEAPYEAR(y))
1068			ml++;
1069		if (tm < ml)
1070			break;
1071		tm -= ml;
1072	}
1073
1074	writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
1075	writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
1076
1077	/* Reenable RTC updates and interrupts. */
1078	writertc(RTC_STATUSB, rtc_statusb);
1079#endif
1080}
1081
1082/*
1083 * Start both clocks running.
1084 */
1085void
1086cpu_initclocks()
1087{
1088#ifndef PC98
1089	int diag;
1090
1091	if (statclock_disable) {
1092		/*
1093		 * The stat interrupt mask is different without the
1094		 * statistics clock.  Also, don't set the interrupt
1095		 * flag which would normally cause the RTC to generate
1096		 * interrupts.
1097		 */
1098		stat_imask = HWI_MASK | SWI_MASK;
1099		rtc_statusb = RTCSB_24HR;
1100	} else {
1101	        /* Setting stathz to nonzero early helps avoid races. */
1102		stathz = RTC_NOPROFRATE;
1103		profhz = RTC_PROFRATE;
1104        }
1105#endif
1106
1107	/* Finish initializing 8253 timer 0. */
1108	register_intr(/* irq */ 0, /* XXX id */ 0, /* flags */ 0,
1109		      /* XXX */ (inthand2_t *)clkintr, &clk_imask,
1110		      /* unit */ 0);
1111	INTREN(IRQ0);
1112#if defined(I586_CPU) || defined(I686_CPU)
1113	/*
1114	 * Finish setting up anti-jitter measures.
1115	 */
1116	if (i586_ctr_freq != 0) {
1117		i586_last_tick = rdtsc();
1118		i586_ctr_bias = i586_last_tick;
1119	}
1120#endif
1121
1122#ifndef PC98
1123	/* Initialize RTC. */
1124	writertc(RTC_STATUSA, rtc_statusa);
1125	writertc(RTC_STATUSB, RTCSB_24HR);
1126
1127static int
1128sysctl_machdep_i8254_freq SYSCTL_HANDLER_ARGS
1129{
1130	int error;
1131	u_int freq;
1132
1133	/*
1134	 * Use `i8254' instead of `timer' in external names because `timer'
1135	 * is is too generic.  Should use it everywhere.
1136	 */
1137	freq = timer_freq;
1138	error = sysctl_handle_opaque(oidp, &freq, sizeof freq, req);
1139	if (error == 0 && req->newptr != NULL) {
1140		if (timer0_state != 0)
1141			return (EBUSY);	/* too much trouble to handle */
1142		set_timer_freq(freq, hz);
1143#if defined(I586_CPU) || defined(I686_CPU)
1144		set_i586_ctr_freq(i586_ctr_freq, timer_freq);
1145#endif
1146	}
1147	return (error);
1148}
1149
1150SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
1151	    0, sizeof(u_int), sysctl_machdep_i8254_freq, "I", "");
1152
1153#if defined(I586_CPU) || defined(I686_CPU)
1154static void
1155set_i586_ctr_freq(u_int i586_freq, u_int i8254_freq)
1156{
1157	u_int comultiplier, multiplier;
1158	u_long ef;
1159
1160	if (i586_freq == 0) {
1161		i586_ctr_freq = i586_freq;
1162		return;
1163	}
1164	comultiplier = ((unsigned long long)i586_freq
1165			<< I586_CTR_COMULTIPLIER_SHIFT) / i8254_freq;
1166	multiplier = (1000000LL << I586_CTR_MULTIPLIER_SHIFT) / i586_freq;
1167	ef = read_eflags();
1168	disable_intr();
1169	i586_ctr_freq = i586_freq;
1170	i586_ctr_comultiplier = comultiplier;
1171	i586_ctr_multiplier = multiplier;
1172	write_eflags(ef);
1173}
1174
1175static int
1176sysctl_machdep_i586_freq SYSCTL_HANDLER_ARGS
1177{
1178	int error;
1179	u_int freq;
1180
1181	if (cpu_class != CPUCLASS_586 && cpu_class != CPUCLASS_686)
1182		return (EOPNOTSUPP);
1183	freq = i586_ctr_freq;
1184	error = sysctl_handle_opaque(oidp, &freq, sizeof freq, req);
1185	if (error == 0 && req->newptr != NULL)
1186		set_i586_ctr_freq(freq, timer_freq);
1187	return (error);
1188}
1189
1190SYSCTL_PROC(_machdep, OID_AUTO, i586_freq, CTLTYPE_INT | CTLFLAG_RW,
1191	    0, sizeof(u_int), sysctl_machdep_i586_freq, "I", "");
1192#endif /* defined(I586_CPU) || defined(I686_CPU) */
1193
1194	/* Don't bother enabling the statistics clock. */
1195	if (statclock_disable)
1196		return;
1197	diag = rtcin(RTC_DIAG);
1198	if (diag != 0)
1199		printf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
1200	register_intr(/* irq */ 8, /* XXX id */ 1, /* flags */ 0,
1201		      /* XXX */ (inthand2_t *)rtcintr, &stat_imask,
1202		      /* unit */ 0);
1203	INTREN(IRQ8);
1204	writertc(RTC_STATUSB, rtc_statusb);
1205#endif
1206}
1207
1208void
1209setstatclockrate(int newhz)
1210{
1211#ifndef PC98
1212	if (newhz == RTC_PROFRATE)
1213		rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
1214	else
1215		rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
1216	writertc(RTC_STATUSA, rtc_statusa);
1217#endif
1218}
1219