pcrtc.c revision 17947
1/*-
2 * Copyright (c) 1990 The Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * William Jolitz and Don Ahn.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)clock.c	7.2 (Berkeley) 5/12/91
37 *	$Id: clock.c,v 1.2 1996/07/23 07:46:07 asami Exp $
38 */
39
40/*
41 * inittodr, settodr and support routines written
42 * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
43 *
44 * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
45 */
46
47/*
48 * modified for PC98
49 *	$Id: clock.c,v 1.2 1996/07/23 07:46:07 asami Exp $
50 */
51
52/*
53 * Primitive clock interrupt routines.
54 */
55#include "opt_ddb.h"
56#include "opt_clock.h"
57
58#include <sys/param.h>
59#include <sys/systm.h>
60#include <sys/time.h>
61#include <sys/kernel.h>
62#include <sys/sysctl.h>
63
64#include <machine/clock.h>
65#ifdef CLK_CALIBRATION_LOOP
66#include <machine/cons.h>
67#endif
68#include <machine/cpu.h>
69#include <machine/frame.h>
70
71#ifdef PC98
72#include <sys/syslog.h>
73#include <pc98/pc98/icu.h>
74#include <pc98/pc98/pc98.h>
75#include <pc98/pc98/pc98_device.h>
76#include <pc98/pc98/timerreg.h>
77#else
78#include <i386/isa/icu.h>
79#include <i386/isa/isa.h>
80#include <i386/isa/isa_device.h>
81#include <i386/isa/rtc.h>
82#include <i386/isa/timerreg.h>
83#endif
84
85/*
86 * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
87 * can use a simple formula for leap years.
88 */
89#define	LEAPYEAR(y) ((u_int)(y) % 4 == 0)
90#define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
91
92#define	TIMER_DIV(x) ((timer_freq + (x) / 2) / (x))
93
94/*
95 * Time in timer cycles that it takes for microtime() to disable interrupts
96 * and latch the count.  microtime() currently uses "cli; outb ..." so it
97 * normally takes less than 2 timer cycles.  Add a few for cache misses.
98 * Add a few more to allow for latency in bogus calls to microtime() with
99 * interrupts already disabled.
100 */
101#define	TIMER0_LATCH_COUNT	20
102
103/*
104 * Maximum frequency that we are willing to allow for timer0.  Must be
105 * low enough to guarantee that the timer interrupt handler returns
106 * before the next timer interrupt.  Must result in a lower TIMER_DIV
107 * value than TIMER0_LATCH_COUNT so that we don't have to worry about
108 * underflow in the calculation of timer0_overflow_threshold.
109 */
110#define	TIMER0_MAX_FREQ		20000
111
112int	adjkerntz;		/* local offset	from GMT in seconds */
113int	disable_rtc_set;	/* disable resettodr() if != 0 */
114int	wall_cmos_clock;	/* wall	CMOS clock assumed if != 0 */
115
116u_int	idelayed;
117#if defined(I586_CPU) || defined(I686_CPU)
118u_int 	i586_ctr_bias;
119u_int	i586_ctr_comultiplier;
120u_int	i586_ctr_freq;
121u_int	i586_ctr_multiplier;
122long long	i586_last_tick;
123unsigned long	i586_avg_tick;
124#endif
125int	statclock_disable;
126u_int	stat_imask = SWI_CLOCK_MASK;
127#ifdef TIMER_FREQ
128static	u_int	timer_freq = TIMER_FREQ;
129#else
130#ifdef PC98
131#ifndef AUTO_CLOCK
132#ifndef PC98_8M
133static	u_int	timer_freq = 2457600;
134#else	/* !PC98_8M */
135static	u_int	timer_freq = 1996800;
136#endif	/* PC98_8M */
137#else	/* AUTO_CLOCK */
138static	u_int	timer_freq = 2457600;
139#endif	/* AUTO_CLOCK */
140#else /* IBM-PC */
141static	u_int	timer_freq = 1193182;
142#endif /* PC98 */
143#endif
144int 	timer0_max_count;
145u_int 	timer0_overflow_threshold;
146u_int 	timer0_prescaler_count;
147
148static	int	beeping = 0;
149static	u_int	clk_imask = HWI_MASK | SWI_MASK;
150static	const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
151static 	u_int	hardclock_max_count;
152/*
153 * XXX new_function and timer_func should not handle clockframes, but
154 * timer_func currently needs to hold hardclock to handle the
155 * timer0_state == 0 case.  We should use register_intr()/unregister_intr()
156 * to switch between clkintr() and a slightly different timerintr().
157 */
158static 	void	(*new_function) __P((struct clockframe *frame));
159static 	u_int	new_rate;
160#ifndef PC98
161static	u_char	rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
162static	u_char	rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
163#endif
164
165/* Values for timerX_state: */
166#define	RELEASED	0
167#define	RELEASE_PENDING	1
168#define	ACQUIRED	2
169#define	ACQUIRE_PENDING	3
170
171static 	u_char	timer0_state;
172#ifdef	PC98
173static 	u_char	timer1_state;
174#endif
175static	u_char	timer2_state;
176static 	void	(*timer_func) __P((struct clockframe *frame)) = hardclock;
177int		rtc_inb __P((void));
178
179#if defined(I586_CPU) || defined(I686_CPU)
180static	void	set_i586_ctr_freq(u_int i586_freq, u_int i8254_freq);
181#endif
182
183static void
184clkintr(struct clockframe frame)
185{
186	timer_func(&frame);
187	switch (timer0_state) {
188
189	case RELEASED:
190		setdelayed();
191		break;
192
193	case ACQUIRED:
194		if ((timer0_prescaler_count += timer0_max_count)
195		    >= hardclock_max_count) {
196			hardclock(&frame);
197			setdelayed();
198			timer0_prescaler_count -= hardclock_max_count;
199		}
200		break;
201
202	case ACQUIRE_PENDING:
203		setdelayed();
204		timer0_max_count = TIMER_DIV(new_rate);
205		timer0_overflow_threshold =
206			timer0_max_count - TIMER0_LATCH_COUNT;
207		disable_intr();
208		outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
209		outb(TIMER_CNTR0, timer0_max_count & 0xff);
210		outb(TIMER_CNTR0, timer0_max_count >> 8);
211		enable_intr();
212		timer0_prescaler_count = 0;
213		timer_func = new_function;
214		timer0_state = ACQUIRED;
215		break;
216
217	case RELEASE_PENDING:
218		if ((timer0_prescaler_count += timer0_max_count)
219		    >= hardclock_max_count) {
220			hardclock(&frame);
221			setdelayed();
222			timer0_max_count = hardclock_max_count;
223			timer0_overflow_threshold =
224				timer0_max_count - TIMER0_LATCH_COUNT;
225			disable_intr();
226			outb(TIMER_MODE,
227			     TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
228			outb(TIMER_CNTR0, timer0_max_count & 0xff);
229			outb(TIMER_CNTR0, timer0_max_count >> 8);
230			enable_intr();
231			/*
232			 * See microtime.s for this magic.
233			 */
234#ifdef PC98
235#ifndef AUTO_CLOCK
236#ifndef PC98_8M
237			time.tv_usec += (6667 *
238				(timer0_prescaler_count - hardclock_max_count))
239				>> 14;
240#else /* PC98_8M */
241			time.tv_usec += (16411 *
242				(timer0_prescaler_count - hardclock_max_count))
243				>> 15;
244#endif /* PC98_8M */
245#else /* AUTO_CLOCK */
246			if (pc98_machine_type & M_8M) {
247				/* PC98_8M */
248				time.tv_usec += (16411 *
249					(timer0_prescaler_count -
250					 hardclock_max_count)) >> 15;
251			} else {
252				time.tv_usec += (6667 *
253					(timer0_prescaler_count -
254					 hardclock_max_count)) >> 14;
255			}
256#endif /* AUTO_CLOCK */
257#else /* IBM-PC */
258			time.tv_usec += (27465 *
259				(timer0_prescaler_count - hardclock_max_count))
260				>> 15;
261#endif /* PC98 */
262			if (time.tv_usec >= 1000000)
263				time.tv_usec -= 1000000;
264			timer0_prescaler_count = 0;
265			timer_func = hardclock;
266			timer0_state = RELEASED;
267		}
268		break;
269	}
270}
271
272/*
273 * The acquire and release functions must be called at ipl >= splclock().
274 */
275int
276acquire_timer0(int rate, void (*function) __P((struct clockframe *frame)))
277{
278	static int old_rate;
279
280	if (rate <= 0 || rate > TIMER0_MAX_FREQ)
281		return (-1);
282	switch (timer0_state) {
283
284	case RELEASED:
285		timer0_state = ACQUIRE_PENDING;
286		break;
287
288	case RELEASE_PENDING:
289		if (rate != old_rate)
290			return (-1);
291		/*
292		 * The timer has been released recently, but is being
293		 * re-acquired before the release completed.  In this
294		 * case, we simply reclaim it as if it had not been
295		 * released at all.
296		 */
297		timer0_state = ACQUIRED;
298		break;
299
300	default:
301		return (-1);	/* busy */
302	}
303	new_function = function;
304	old_rate = new_rate = rate;
305	return (0);
306}
307
308#ifdef PC98
309int
310acquire_timer1(int mode)
311{
312
313	if (timer1_state != RELEASED)
314		return (-1);
315	timer1_state = ACQUIRED;
316
317	/*
318	 * This access to the timer registers is as atomic as possible
319	 * because it is a single instruction.  We could do better if we
320	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
321	 * and this is probably good enough for timer2, so we aren't as
322	 * careful with it as with timer0.
323	 */
324	outb(TIMER_MODE, TIMER_SEL1 | (mode & 0x3f));
325
326	return (0);
327}
328#endif
329
330int
331acquire_timer2(int mode)
332{
333
334	if (timer2_state != RELEASED)
335		return (-1);
336	timer2_state = ACQUIRED;
337
338	/*
339	 * This access to the timer registers is as atomic as possible
340	 * because it is a single instruction.  We could do better if we
341	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
342	 * and this is probably good enough for timer2, so we aren't as
343	 * careful with it as with timer0.
344	 */
345	outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
346
347	return (0);
348}
349
350int
351release_timer0()
352{
353	switch (timer0_state) {
354
355	case ACQUIRED:
356		timer0_state = RELEASE_PENDING;
357		break;
358
359	case ACQUIRE_PENDING:
360		/* Nothing happened yet, release quickly. */
361		timer0_state = RELEASED;
362		break;
363
364	default:
365		return (-1);
366	}
367	return (0);
368}
369
370#ifdef PC98
371int
372release_timer1()
373{
374
375	if (timer1_state != ACQUIRED)
376		return (-1);
377	timer1_state = RELEASED;
378	outb(TIMER_MODE, TIMER_SEL1 | TIMER_SQWAVE | TIMER_16BIT);
379	return (0);
380}
381#endif
382
383int
384release_timer2()
385{
386
387	if (timer2_state != ACQUIRED)
388		return (-1);
389	timer2_state = RELEASED;
390	outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
391	return (0);
392}
393
394#ifndef PC98
395/*
396 * This routine receives statistical clock interrupts from the RTC.
397 * As explained above, these occur at 128 interrupts per second.
398 * When profiling, we receive interrupts at a rate of 1024 Hz.
399 *
400 * This does not actually add as much overhead as it sounds, because
401 * when the statistical clock is active, the hardclock driver no longer
402 * needs to keep (inaccurate) statistics on its own.  This decouples
403 * statistics gathering from scheduling interrupts.
404 *
405 * The RTC chip requires that we read status register C (RTC_INTR)
406 * to acknowledge an interrupt, before it will generate the next one.
407 */
408static void
409rtcintr(struct clockframe frame)
410{
411	u_char stat;
412	stat = rtcin(RTC_INTR);
413	if(stat & RTCIR_PERIOD) {
414		statclock(&frame);
415	}
416}
417
418#ifdef DDB
419static void
420DDB_printrtc(void)
421{
422	printf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
423	       rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
424	       rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
425	       rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
426}
427#endif
428#endif /* for PC98 */
429
430static int
431getit(void)
432{
433	u_long ef;
434	int high, low;
435
436	ef = read_eflags();
437	disable_intr();
438
439	/* Select timer0 and latch counter value. */
440	outb(TIMER_MODE, TIMER_SEL0);
441
442	low = inb(TIMER_CNTR0);
443	high = inb(TIMER_CNTR0);
444
445	write_eflags(ef);
446	return ((high << 8) | low);
447}
448
449/*
450 * Wait "n" microseconds.
451 * Relies on timer 1 counting down from (timer_freq / hz)
452 * Note: timer had better have been programmed before this is first used!
453 */
454void
455DELAY(int n)
456{
457	int prev_tick, tick, ticks_left, sec, usec;
458
459#ifdef DELAYDEBUG
460	int getit_calls = 1;
461	int n1;
462	static int state = 0;
463
464	if (state == 0) {
465		state = 1;
466		for (n1 = 1; n1 <= 10000000; n1 *= 10)
467			DELAY(n1);
468		state = 2;
469	}
470	if (state == 1)
471		printf("DELAY(%d)...", n);
472#endif
473	/*
474	 * Read the counter first, so that the rest of the setup overhead is
475	 * counted.  Guess the initial overhead is 20 usec (on most systems it
476	 * takes about 1.5 usec for each of the i/o's in getit().  The loop
477	 * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
478	 * multiplications and divisions to scale the count take a while).
479	 */
480	prev_tick = getit();
481	n -= 20;
482	/*
483	 * Calculate (n * (timer_freq / 1e6)) without using floating point
484	 * Calculate (n * (TIMER_FREQ / 1e6)) without using floating point
485	 * and without any avoidable overflows.
486	 */
487	sec = n / 1000000;
488	usec = n - sec * 1000000;
489	ticks_left = sec * timer_freq
490		     + usec * (timer_freq / 1000000)
491		     + usec * ((timer_freq % 1000000) / 1000) / 1000
492		     + usec * (timer_freq % 1000) / 1000000;
493	if (n < 0)
494		ticks_left = 0;	/* XXX timer_freq is unsigned */
495
496	while (ticks_left > 0) {
497		tick = getit();
498#ifdef DELAYDEBUG
499		++getit_calls;
500#endif
501		if (tick > prev_tick)
502			ticks_left -= prev_tick - (tick - timer0_max_count);
503		else
504			ticks_left -= prev_tick - tick;
505		prev_tick = tick;
506	}
507#ifdef DELAYDEBUG
508	if (state == 1)
509		printf(" %d calls to getit() at %d usec each\n",
510		       getit_calls, (n + 5) / getit_calls);
511#endif
512}
513
514static void
515sysbeepstop(void *chan)
516{
517#ifdef PC98	/* PC98 */
518	outb(IO_PPI, inb(IO_PPI)|0x08);	/* disable counter1 output to speaker */
519	release_timer1();
520#else
521	outb(IO_PPI, inb(IO_PPI)&0xFC);	/* disable counter2 output to speaker */
522	release_timer2();
523#endif
524	beeping = 0;
525}
526
527int
528sysbeep(int pitch, int period)
529{
530	int x = splclock();
531
532#ifdef PC98
533	if (acquire_timer1(TIMER_SQWAVE|TIMER_16BIT))
534		if (!beeping) {
535			/* Something else owns it. */
536			splx(x);
537			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
538		}
539	disable_intr();
540	outb(0x3fdb, pitch);
541	outb(0x3fdb, (pitch>>8));
542	enable_intr();
543	if (!beeping) {
544		/* enable counter1 output to speaker */
545		outb(IO_PPI, (inb(IO_PPI) & 0xf7));
546		beeping = period;
547		timeout(sysbeepstop, (void *)NULL, period);
548	}
549#else
550	if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
551		if (!beeping) {
552			/* Something else owns it. */
553			splx(x);
554			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
555		}
556	disable_intr();
557	outb(TIMER_CNTR2, pitch);
558	outb(TIMER_CNTR2, (pitch>>8));
559	enable_intr();
560	if (!beeping) {
561		/* enable counter2 output to speaker */
562		outb(IO_PPI, inb(IO_PPI) | 3);
563		beeping = period;
564		timeout(sysbeepstop, (void *)NULL, period);
565	}
566#endif
567	splx(x);
568	return (0);
569}
570
571#ifndef PC98
572/*
573 * RTC support routines
574 */
575
576int
577rtcin(reg)
578	int reg;
579{
580	u_char val;
581
582	outb(IO_RTC, reg);
583	inb(0x84);
584	val = inb(IO_RTC + 1);
585	inb(0x84);
586	return (val);
587}
588
589static __inline void
590writertc(u_char reg, u_char val)
591{
592	outb(IO_RTC, reg);
593	outb(IO_RTC + 1, val);
594}
595
596static __inline int
597readrtc(int port)
598{
599	return(bcd2bin(rtcin(port)));
600}
601#endif
602
603#ifdef PC98
604unsigned int delaycount;
605#define FIRST_GUESS	0x2000
606static void findcpuspeed(void)
607{
608	int i;
609	int remainder;
610
611	/* Put counter in count down mode */
612	outb(TIMER_MODE, TIMER_SEL0 | TIMER_16BIT | TIMER_RATEGEN);
613	outb(TIMER_CNTR0, 0xff);
614	outb(TIMER_CNTR0, 0xff);
615	for (i = FIRST_GUESS; i; i--)
616		;
617	remainder = getit();
618	delaycount = (FIRST_GUESS * TIMER_DIV(1000)) / (0xffff - remainder);
619}
620#endif
621
622#ifndef PC98
623static u_int
624calibrate_clocks(void)
625{
626	u_int count, prev_count, tot_count;
627	int sec, start_sec, timeout;
628
629	printf("Calibrating clock(s) relative to mc146818A clock...\n");
630	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
631		goto fail;
632	timeout = 100000000;
633
634	/* Read the mc146818A seconds counter. */
635	for (;;) {
636		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
637			sec = rtcin(RTC_SEC);
638			break;
639		}
640		if (--timeout == 0)
641			goto fail;
642	}
643
644	/* Wait for the mC146818A seconds counter to change. */
645	start_sec = sec;
646	for (;;) {
647		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
648			sec = rtcin(RTC_SEC);
649			if (sec != start_sec)
650				break;
651		}
652		if (--timeout == 0)
653			goto fail;
654	}
655
656	/* Start keeping track of the i8254 counter. */
657	prev_count = getit();
658	if (prev_count == 0 || prev_count > timer0_max_count)
659		goto fail;
660	tot_count = 0;
661
662#if defined(I586_CPU) || defined(I686_CPU)
663	if (cpu_class == CPUCLASS_586 || cpu_class == CPUCLASS_686)
664		wrmsr(0x10, 0LL);	/* XXX 0x10 is the MSR for the TSC */
665#endif
666
667	/*
668	 * Wait for the mc146818A seconds counter to change.  Read the i8254
669	 * counter for each iteration since this is convenient and only
670	 * costs a few usec of inaccuracy. The timing of the final reads
671	 * of the counters almost matches the timing of the initial reads,
672	 * so the main cause of inaccuracy is the varying latency from
673	 * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
674	 * rtcin(RTC_SEC) that returns a changed seconds count.  The
675	 * maximum inaccuracy from this cause is < 10 usec on 486's.
676	 */
677	start_sec = sec;
678	for (;;) {
679		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
680			sec = rtcin(RTC_SEC);
681		count = getit();
682		if (count == 0 || count > timer0_max_count)
683			goto fail;
684		if (count > prev_count)
685			tot_count += prev_count - (count - timer0_max_count);
686		else
687			tot_count += prev_count - count;
688		prev_count = count;
689		if (sec != start_sec)
690			break;
691		if (--timeout == 0)
692			goto fail;
693	}
694
695#if defined(I586_CPU) || defined(I686_CPU)
696	/*
697	 * Read the cpu cycle counter.  The timing considerations are
698	 * similar to those for the i8254 clock.
699	 */
700	if (cpu_class == CPUCLASS_586 || cpu_class == CPUCLASS_686) {
701		set_i586_ctr_freq((u_int)rdtsc(), tot_count);
702		printf("i586 clock: %u Hz, ", i586_ctr_freq);
703	}
704#endif
705
706	printf("i8254 clock: %u Hz\n", tot_count);
707	return (tot_count);
708
709fail:
710	printf("failed, using default i8254 clock of %u Hz\n", timer_freq);
711	return (timer_freq);
712}
713#endif	/* !PC98 */
714
715static void
716set_timer_freq(u_int freq, int intr_freq)
717{
718	u_long ef;
719
720	ef = read_eflags();
721	disable_intr();
722	timer_freq = freq;
723	timer0_max_count = hardclock_max_count = TIMER_DIV(intr_freq);
724	timer0_overflow_threshold = timer0_max_count - TIMER0_LATCH_COUNT;
725	outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
726	outb(TIMER_CNTR0, timer0_max_count & 0xff);
727	outb(TIMER_CNTR0, timer0_max_count >> 8);
728	write_eflags(ef);
729}
730
731/*
732 * Initialize 8253 timer 0 early so that it can be used in DELAY().
733 * XXX initialization of other timers is unintentionally left blank.
734 */
735void
736startrtclock()
737{
738	u_int delta, freq;
739
740#ifdef PC98
741	findcpuspeed();
742#ifndef AUTO_CLOCK
743	if (pc98_machine_type & M_8M) {
744#ifndef	PC98_8M
745		log(LOG_EMERG,
746		    "you must reconfig a kernel with \"PC98_8M\" option.\n");
747#endif
748	} else {
749#ifdef	PC98_8M
750		log(LOG_EMERG,
751		    "You must reconfig a kernel without \"PC98_8M\" option.\n");
752#endif
753	}
754#else /* AUTO_CLOCK */
755	if (pc98_machine_type & M_8M)
756		timer_freq = 1996800L; /* 1.9968 MHz */
757	else
758		timer_freq = 2457600L; /* 2.4576 MHz */
759#endif /* AUTO_CLOCK */
760#endif /* PC98 */
761
762#ifndef PC98
763	writertc(RTC_STATUSA, rtc_statusa);
764	writertc(RTC_STATUSB, RTCSB_24HR);
765#endif
766
767#ifndef PC98
768	set_timer_freq(timer_freq, hz);
769	freq = calibrate_clocks();
770#ifdef CLK_CALIBRATION_LOOP
771	if (bootverbose) {
772		printf(
773		"Press a key on the console to abort clock calibration\n");
774		while (!cncheckc())
775			calibrate_clocks();
776	}
777#endif
778
779	/*
780	 * Use the calibrated i8254 frequency if it seems reasonable.
781	 * Otherwise use the default, and don't use the calibrated i586
782	 * frequency.
783	 */
784	delta = freq > timer_freq ? freq - timer_freq : timer_freq - freq;
785	if (delta < timer_freq / 100) {
786#ifndef CLK_USE_I8254_CALIBRATION
787		if (bootverbose)
788		    printf(
789"CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
790		freq = timer_freq;
791#endif
792		timer_freq = freq;
793	} else {
794		printf("%d Hz differs from default of %d Hz by more than 1%%\n",
795		       freq, timer_freq);
796#if defined(I586_CPU) || defined(I686_CPU)
797		i586_ctr_freq = 0;
798#endif
799	}
800#endif
801
802	set_timer_freq(timer_freq, hz);
803
804#if defined(I586_CPU) || defined(I686_CPU)
805#ifndef CLK_USE_I586_CALIBRATION
806	if (i586_ctr_freq != 0) {
807		if (bootverbose)
808		    printf(
809"CLK_USE_I586_CALIBRATION not specified - using old calibration method\n");
810		i586_ctr_freq = 0;
811	}
812#endif
813	if (i586_ctr_freq == 0 &&
814	    (cpu_class == CPUCLASS_586 || cpu_class == CPUCLASS_686)) {
815		/*
816		 * Calibration of the i586 clock relative to the mc146818A
817		 * clock failed.  Do a less accurate calibration relative
818		 * to the i8254 clock.
819		 */
820		wrmsr(0x10, 0LL);	/* XXX */
821		DELAY(1000000);
822		set_i586_ctr_freq((u_int)rdtsc(), timer_freq);
823#ifdef CLK_USE_I586_CALIBRATION
824		printf("i586 clock: %u Hz\n", i586_ctr_freq);
825#endif
826	}
827#endif
828}
829
830#ifdef PC98
831void
832rtc_serialcombit(int i)
833{
834	outb(IO_RTC, ((i&0x01)<<5)|0x07);
835	DELAY(1);
836	outb(IO_RTC, ((i&0x01)<<5)|0x17);
837	DELAY(1);
838	outb(IO_RTC, ((i&0x01)<<5)|0x07);
839	DELAY(1);
840}
841
842void
843rtc_serialcom(int i)
844{
845	rtc_serialcombit(i&0x01);
846	rtc_serialcombit((i&0x02)>>1);
847	rtc_serialcombit((i&0x04)>>2);
848	rtc_serialcombit((i&0x08)>>3);
849	outb(IO_RTC, 0x07);
850	DELAY(1);
851	outb(IO_RTC, 0x0f);
852	DELAY(1);
853	outb(IO_RTC, 0x07);
854 	DELAY(1);
855}
856
857void
858rtc_outb(int val)
859{
860	int s;
861	int sa = 0;
862
863	for (s=0;s<8;s++) {
864	    sa = ((val >> s) & 0x01) ? 0x27 : 0x07;
865	    outb(IO_RTC, sa);		/* set DI & CLK 0 */
866	    DELAY(1);
867	    outb(IO_RTC, sa | 0x10);	/* CLK 1 */
868	    DELAY(1);
869	}
870	outb(IO_RTC, sa & 0xef);	/* CLK 0 */
871}
872
873int
874rtc_inb(void)
875{
876	int s;
877	int sa = 0;
878
879	for (s=0;s<8;s++) {
880	    sa |= ((inb(0x33) & 0x01) << s);
881	    outb(IO_RTC, 0x17);	/* CLK 1 */
882	    DELAY(1);
883	    outb(IO_RTC, 0x07);	/* CLK 0 */
884	    DELAY(2);
885	}
886	return sa;
887}
888#endif /* PC-98 */
889
890/*
891 * Initialize the time of day register,	based on the time base which is, e.g.
892 * from	a filesystem.
893 */
894void
895inittodr(time_t base)
896{
897	unsigned long	sec, days;
898	int		yd;
899	int		year, month;
900	int		y, m, s;
901#ifdef PC98
902	int		second, min, hour;
903#endif
904
905	s = splclock();
906	time.tv_sec  = base;
907	time.tv_usec = 0;
908	splx(s);
909
910#ifdef PC98
911	rtc_serialcom(0x03);	/* Time Read */
912	rtc_serialcom(0x01);	/* Register shift command. */
913	DELAY(20);
914
915	second = bcd2bin(rtc_inb() & 0xff);	/* sec */
916	min = bcd2bin(rtc_inb() & 0xff);	/* min */
917	hour = bcd2bin(rtc_inb() & 0xff);	/* hour */
918	days = bcd2bin(rtc_inb() & 0xff) - 1;	/* date */
919
920	month = (rtc_inb() >> 4) & 0x0f;	/* month */
921	for (m = 1; m <	month; m++)
922		days +=	daysinmonth[m-1];
923	year = bcd2bin(rtc_inb() & 0xff) + 1900;	/* year */
924	/* 2000 year problem */
925	if (year < 1995)
926		year += 100;
927	if (year < 1970)
928		goto wrong_time;
929	for (y = 1970; y < year; y++)
930		days +=	DAYSPERYEAR + LEAPYEAR(y);
931	if ((month > 2)	&& LEAPYEAR(year))
932		days ++;
933	sec = ((( days * 24 +
934		  hour) * 60 +
935		  min) * 60 +
936		  second);
937	/* sec now contains the	number of seconds, since Jan 1 1970,
938	   in the local	time zone */
939#else	/* IBM-PC */
940	/* Look	if we have a RTC present and the time is valid */
941	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
942		goto wrong_time;
943
944	/* wait	for time update	to complete */
945	/* If RTCSA_TUP	is zero, we have at least 244us	before next update */
946	while (rtcin(RTC_STATUSA) & RTCSA_TUP);
947
948	days = 0;
949#ifdef USE_RTC_CENTURY
950	year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY)	* 100;
951#else
952	year = readrtc(RTC_YEAR) + 1900;
953	if (year < 1970)
954		year += 100;
955#endif
956	if (year < 1970)
957		goto wrong_time;
958	month =	readrtc(RTC_MONTH);
959	for (m = 1; m <	month; m++)
960		days +=	daysinmonth[m-1];
961	if ((month > 2)	&& LEAPYEAR(year))
962		days ++;
963	days +=	readrtc(RTC_DAY) - 1;
964	yd = days;
965	for (y = 1970; y < year; y++)
966		days +=	DAYSPERYEAR + LEAPYEAR(y);
967	sec = ((( days * 24 +
968		  readrtc(RTC_HRS)) * 60 +
969		  readrtc(RTC_MIN)) * 60 +
970		  readrtc(RTC_SEC));
971	/* sec now contains the	number of seconds, since Jan 1 1970,
972	   in the local	time zone */
973#endif
974
975	sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
976
977	s = splclock();
978	time.tv_sec = sec;
979	splx(s);
980	return;
981
982wrong_time:
983	printf("Invalid	time in	real time clock.\n");
984	printf("Check and reset	the date immediately!\n");
985}
986
987/*
988 * Write system	time back to RTC
989 */
990void
991resettodr()
992{
993	unsigned long	tm;
994	int		y, m, s;
995#ifdef PC98
996	int		wd;
997#endif
998
999	if (disable_rtc_set)
1000		return;
1001
1002	s = splclock();
1003	tm = time.tv_sec;
1004	splx(s);
1005
1006#ifdef PC98
1007	rtc_serialcom(0x01);	/* Register shift command. */
1008
1009	/* Calculate local time	to put in RTC */
1010
1011	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1012
1013	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
1014	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
1015	rtc_outb(bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
1016
1017	/* We have now the days	since 01-01-1970 in tm */
1018	wd = (tm+4)%7;
1019	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1020	     tm >= m;
1021	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1022	     tm -= m;
1023
1024	/* Now we have the years in y and the day-of-the-year in tm */
1025	for (m = 0; ; m++) {
1026		int ml;
1027
1028		ml = daysinmonth[m];
1029		if (m == 1 && LEAPYEAR(y))
1030			ml++;
1031		if (tm < ml)
1032			break;
1033		tm -= ml;
1034	}
1035
1036	m++;
1037	rtc_outb(bin2bcd(tm+1));		/* Write back Day     */
1038	rtc_outb((m << 4) | wd);		/* Write back Month & Weekday  */
1039	rtc_outb(bin2bcd(y%100));		/* Write back Year    */
1040
1041	rtc_serialcom(0x02);	/* Time set & Counter hold command. */
1042	rtc_serialcom(0x00);	/* Register hold command. */
1043#else
1044	/* Disable RTC updates and interrupts. */
1045	writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
1046
1047	/* Calculate local time	to put in RTC */
1048
1049	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1050
1051	writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
1052	writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
1053	writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
1054
1055	/* We have now the days	since 01-01-1970 in tm */
1056	writertc(RTC_WDAY, (tm+4)%7);			/* Write back Weekday */
1057	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1058	     tm >= m;
1059	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1060	     tm -= m;
1061
1062	/* Now we have the years in y and the day-of-the-year in tm */
1063	writertc(RTC_YEAR, bin2bcd(y%100));		/* Write back Year    */
1064#ifdef USE_RTC_CENTURY
1065	writertc(RTC_CENTURY, bin2bcd(y/100));		/* ... and Century    */
1066#endif
1067	for (m = 0; ; m++) {
1068		int ml;
1069
1070		ml = daysinmonth[m];
1071		if (m == 1 && LEAPYEAR(y))
1072			ml++;
1073		if (tm < ml)
1074			break;
1075		tm -= ml;
1076	}
1077
1078	writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
1079	writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
1080
1081	/* Reenable RTC updates and interrupts. */
1082	writertc(RTC_STATUSB, rtc_statusb);
1083#endif
1084}
1085
1086/*
1087 * Start both clocks running.
1088 */
1089void
1090cpu_initclocks()
1091{
1092#ifndef PC98
1093	int diag;
1094
1095	if (statclock_disable) {
1096		/*
1097		 * The stat interrupt mask is different without the
1098		 * statistics clock.  Also, don't set the interrupt
1099		 * flag which would normally cause the RTC to generate
1100		 * interrupts.
1101		 */
1102		stat_imask = HWI_MASK | SWI_MASK;
1103		rtc_statusb = RTCSB_24HR;
1104	} else {
1105	        /* Setting stathz to nonzero early helps avoid races. */
1106		stathz = RTC_NOPROFRATE;
1107		profhz = RTC_PROFRATE;
1108        }
1109#endif
1110
1111	/* Finish initializing 8253 timer 0. */
1112	register_intr(/* irq */ 0, /* XXX id */ 0, /* flags */ 0,
1113		      /* XXX */ (inthand2_t *)clkintr, &clk_imask,
1114		      /* unit */ 0);
1115	INTREN(IRQ0);
1116#if defined(I586_CPU) || defined(I686_CPU)
1117	/*
1118	 * Finish setting up anti-jitter measures.
1119	 */
1120	if (i586_ctr_freq != 0) {
1121		i586_last_tick = rdtsc();
1122		i586_ctr_bias = i586_last_tick;
1123	}
1124#endif
1125
1126#ifndef PC98
1127	/* Initialize RTC. */
1128	writertc(RTC_STATUSA, rtc_statusa);
1129	writertc(RTC_STATUSB, RTCSB_24HR);
1130
1131static int
1132sysctl_machdep_i8254_freq SYSCTL_HANDLER_ARGS
1133{
1134	int error;
1135	u_int freq;
1136
1137	/*
1138	 * Use `i8254' instead of `timer' in external names because `timer'
1139	 * is is too generic.  Should use it everywhere.
1140	 */
1141	freq = timer_freq;
1142	error = sysctl_handle_opaque(oidp, &freq, sizeof freq, req);
1143	if (error == 0 && req->newptr != NULL) {
1144		if (timer0_state != 0)
1145			return (EBUSY);	/* too much trouble to handle */
1146		set_timer_freq(freq, hz);
1147#if defined(I586_CPU) || defined(I686_CPU)
1148		set_i586_ctr_freq(i586_ctr_freq, timer_freq);
1149#endif
1150	}
1151	return (error);
1152}
1153
1154SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
1155	    0, sizeof(u_int), sysctl_machdep_i8254_freq, "I", "");
1156
1157#if defined(I586_CPU) || defined(I686_CPU)
1158static void
1159set_i586_ctr_freq(u_int i586_freq, u_int i8254_freq)
1160{
1161	u_int comultiplier, multiplier;
1162	u_long ef;
1163
1164	if (i586_freq == 0) {
1165		i586_ctr_freq = i586_freq;
1166		return;
1167	}
1168	comultiplier = ((unsigned long long)i586_freq
1169			<< I586_CTR_COMULTIPLIER_SHIFT) / i8254_freq;
1170	multiplier = (1000000LL << I586_CTR_MULTIPLIER_SHIFT) / i586_freq;
1171	ef = read_eflags();
1172	disable_intr();
1173	i586_ctr_freq = i586_freq;
1174	i586_ctr_comultiplier = comultiplier;
1175	i586_ctr_multiplier = multiplier;
1176	write_eflags(ef);
1177}
1178
1179static int
1180sysctl_machdep_i586_freq SYSCTL_HANDLER_ARGS
1181{
1182	int error;
1183	u_int freq;
1184
1185	if (cpu_class != CPUCLASS_586 && cpu_class != CPUCLASS_686)
1186		return (EOPNOTSUPP);
1187	freq = i586_ctr_freq;
1188	error = sysctl_handle_opaque(oidp, &freq, sizeof freq, req);
1189	if (error == 0 && req->newptr != NULL)
1190		set_i586_ctr_freq(freq, timer_freq);
1191	return (error);
1192}
1193
1194SYSCTL_PROC(_machdep, OID_AUTO, i586_freq, CTLTYPE_INT | CTLFLAG_RW,
1195	    0, sizeof(u_int), sysctl_machdep_i586_freq, "I", "");
1196#endif /* defined(I586_CPU) || defined(I686_CPU) */
1197
1198	/* Don't bother enabling the statistics clock. */
1199	if (statclock_disable)
1200		return;
1201	diag = rtcin(RTC_DIAG);
1202	if (diag != 0)
1203		printf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
1204	register_intr(/* irq */ 8, /* XXX id */ 1, /* flags */ 0,
1205		      /* XXX */ (inthand2_t *)rtcintr, &stat_imask,
1206		      /* unit */ 0);
1207	INTREN(IRQ8);
1208	writertc(RTC_STATUSB, rtc_statusb);
1209#endif
1210}
1211
1212void
1213setstatclockrate(int newhz)
1214{
1215#ifndef PC98
1216	if (newhz == RTC_PROFRATE)
1217		rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
1218	else
1219		rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
1220	writertc(RTC_STATUSA, rtc_statusa);
1221#endif
1222}
1223