pcrtc.c revision 120799
1/*-
2 * Copyright (c) 1990 The Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * William Jolitz and Don Ahn.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)clock.c	7.2 (Berkeley) 5/12/91
37 * $FreeBSD: head/sys/pc98/cbus/pcrtc.c 120799 2003-10-05 08:56:49Z nyan $
38 */
39
40/*
41 * Routines to handle clock hardware.
42 */
43
44/*
45 * inittodr, settodr and support routines written
46 * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
47 *
48 * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
49 */
50
51/*
52 * modified for PC98 by Kakefuda
53 */
54
55#include "opt_clock.h"
56#include "opt_isa.h"
57#include "opt_mca.h"
58
59#include <sys/param.h>
60#include <sys/systm.h>
61#include <sys/bus.h>
62#include <sys/limits.h>
63#include <sys/lock.h>
64#include <sys/mutex.h>
65#include <sys/proc.h>
66#include <sys/time.h>
67#include <sys/timetc.h>
68#include <sys/kernel.h>
69#include <sys/sysctl.h>
70#include <sys/cons.h>
71#include <sys/power.h>
72
73#include <machine/clock.h>
74#include <machine/cputypes.h>
75#include <machine/frame.h>
76#include <machine/md_var.h>
77#include <machine/psl.h>
78#ifdef APIC_IO
79#include <machine/segments.h>
80#endif
81#if defined(SMP) || defined(APIC_IO)
82#include <machine/smp.h>
83#endif /* SMP || APIC_IO */
84#include <machine/specialreg.h>
85
86#include <i386/isa/icu.h>
87#include <pc98/pc98/pc98.h>
88#include <pc98/pc98/pc98_machdep.h>
89#include <i386/isa/isa_device.h>
90#ifdef DEV_ISA
91#include <isa/isavar.h>
92#endif
93#include <i386/isa/timerreg.h>
94
95#include <i386/isa/intr_machdep.h>
96
97#ifdef APIC_IO
98#include <i386/isa/intr_machdep.h>
99/* The interrupt triggered by the 8254 (timer) chip */
100int apic_8254_intr;
101static u_long read_intr_count(int vec);
102static void setup_8254_mixed_mode(void);
103#endif
104
105/*
106 * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
107 * can use a simple formula for leap years.
108 */
109#define	LEAPYEAR(y) (((u_int)(y) % 4 == 0) ? 1 : 0)
110#define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
111
112#define	TIMER_DIV(x) ((timer_freq + (x) / 2) / (x))
113
114#ifndef BURN_BRIDGES
115/*
116 * Time in timer cycles that it takes for microtime() to disable interrupts
117 * and latch the count.  microtime() currently uses "cli; outb ..." so it
118 * normally takes less than 2 timer cycles.  Add a few for cache misses.
119 * Add a few more to allow for latency in bogus calls to microtime() with
120 * interrupts already disabled.
121 */
122#define	TIMER0_LATCH_COUNT	20
123
124/*
125 * Maximum frequency that we are willing to allow for timer0.  Must be
126 * low enough to guarantee that the timer interrupt handler returns
127 * before the next timer interrupt.
128 */
129#define	TIMER0_MAX_FREQ		20000
130#endif
131
132int	adjkerntz;		/* local offset from GMT in seconds */
133int	clkintr_pending;
134int	disable_rtc_set;	/* disable resettodr() if != 0 */
135int	pscnt = 1;
136int	psdiv = 1;
137int	statclock_disable;
138#ifndef TIMER_FREQ
139#define TIMER_FREQ   2457600
140#endif
141u_int	timer_freq = TIMER_FREQ;
142int	timer0_max_count;
143int	wall_cmos_clock;	/* wall CMOS clock assumed if != 0 */
144struct mtx clock_lock;
145
146static	int	beeping = 0;
147static	const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
148static	u_int	hardclock_max_count;
149static	u_int32_t i8254_lastcount;
150static	u_int32_t i8254_offset;
151static	int	i8254_ticked;
152#ifndef BURN_BRIDGES
153/*
154 * XXX new_function and timer_func should not handle clockframes, but
155 * timer_func currently needs to hold hardclock to handle the
156 * timer0_state == 0 case.  We should use inthand_add()/inthand_remove()
157 * to switch between clkintr() and a slightly different timerintr().
158 */
159static	void	(*new_function)(struct clockframe *frame);
160static	u_int	new_rate;
161static	u_int	timer0_prescaler_count;
162static	u_char	timer0_state;
163#endif
164
165/* Values for timerX_state: */
166#define	RELEASED	0
167#define	RELEASE_PENDING	1
168#define	ACQUIRED	2
169#define	ACQUIRE_PENDING	3
170
171static 	u_char	timer1_state;
172static	u_char	timer2_state;
173static	void	(*timer_func)(struct clockframe *frame) = hardclock;
174static void rtc_serialcombit(int);
175static void rtc_serialcom(int);
176static int rtc_inb(void);
177static void rtc_outb(int);
178
179static	unsigned i8254_get_timecount(struct timecounter *tc);
180static	void	set_timer_freq(u_int freq, int intr_freq);
181
182static struct timecounter i8254_timecounter = {
183	i8254_get_timecount,	/* get_timecount */
184	0,			/* no poll_pps */
185	~0u,			/* counter_mask */
186	0,			/* frequency */
187	"i8254",		/* name */
188	0			/* quality */
189};
190
191static void
192clkintr(struct clockframe frame)
193{
194
195	if (timecounter->tc_get_timecount == i8254_get_timecount) {
196		mtx_lock_spin(&clock_lock);
197		if (i8254_ticked)
198			i8254_ticked = 0;
199		else {
200			i8254_offset += timer0_max_count;
201			i8254_lastcount = 0;
202		}
203		clkintr_pending = 0;
204		mtx_unlock_spin(&clock_lock);
205	}
206	timer_func(&frame);
207#ifdef SMP
208	if (timer_func == hardclock)
209		forward_hardclock();
210#endif
211#ifndef BURN_BRIDGES
212	switch (timer0_state) {
213
214	case RELEASED:
215		break;
216
217	case ACQUIRED:
218		if ((timer0_prescaler_count += timer0_max_count)
219		    >= hardclock_max_count) {
220			timer0_prescaler_count -= hardclock_max_count;
221			hardclock(&frame);
222#ifdef SMP
223			forward_hardclock();
224#endif
225		}
226		break;
227
228	case ACQUIRE_PENDING:
229		mtx_lock_spin(&clock_lock);
230		i8254_offset = i8254_get_timecount(NULL);
231		i8254_lastcount = 0;
232		timer0_max_count = TIMER_DIV(new_rate);
233		outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
234		outb(TIMER_CNTR0, timer0_max_count & 0xff);
235		outb(TIMER_CNTR0, timer0_max_count >> 8);
236		mtx_unlock_spin(&clock_lock);
237		timer_func = new_function;
238		timer0_state = ACQUIRED;
239		break;
240
241	case RELEASE_PENDING:
242		if ((timer0_prescaler_count += timer0_max_count)
243		    >= hardclock_max_count) {
244			mtx_lock_spin(&clock_lock);
245			i8254_offset = i8254_get_timecount(NULL);
246			i8254_lastcount = 0;
247			timer0_max_count = hardclock_max_count;
248			outb(TIMER_MODE,
249			     TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
250			outb(TIMER_CNTR0, timer0_max_count & 0xff);
251			outb(TIMER_CNTR0, timer0_max_count >> 8);
252			mtx_unlock_spin(&clock_lock);
253			timer0_prescaler_count = 0;
254			timer_func = hardclock;
255			timer0_state = RELEASED;
256			hardclock(&frame);
257#ifdef SMP
258			forward_hardclock();
259#endif
260		}
261		break;
262	}
263#endif
264}
265
266#ifndef BURN_BRIDGES
267/*
268 * The acquire and release functions must be called at ipl >= splclock().
269 */
270int
271acquire_timer0(int rate, void (*function)(struct clockframe *frame))
272{
273	static int old_rate;
274
275	if (rate <= 0 || rate > TIMER0_MAX_FREQ)
276		return (-1);
277	switch (timer0_state) {
278
279	case RELEASED:
280		timer0_state = ACQUIRE_PENDING;
281		break;
282
283	case RELEASE_PENDING:
284		if (rate != old_rate)
285			return (-1);
286		/*
287		 * The timer has been released recently, but is being
288		 * re-acquired before the release completed.  In this
289		 * case, we simply reclaim it as if it had not been
290		 * released at all.
291		 */
292		timer0_state = ACQUIRED;
293		break;
294
295	default:
296		return (-1);	/* busy */
297	}
298	new_function = function;
299	old_rate = new_rate = rate;
300	return (0);
301}
302#endif
303
304int
305acquire_timer1(int mode)
306{
307
308	if (timer1_state != RELEASED)
309		return (-1);
310	timer1_state = ACQUIRED;
311
312	/*
313	 * This access to the timer registers is as atomic as possible
314	 * because it is a single instruction.  We could do better if we
315	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
316	 * and this is probably good enough for timer2, so we aren't as
317	 * careful with it as with timer0.
318	 */
319	outb(TIMER_MODE, TIMER_SEL1 | (mode & 0x3f));
320
321	return (0);
322}
323
324int
325acquire_timer2(int mode)
326{
327
328	if (timer2_state != RELEASED)
329		return (-1);
330	timer2_state = ACQUIRED;
331
332	/*
333	 * This access to the timer registers is as atomic as possible
334	 * because it is a single instruction.  We could do better if we
335	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
336	 * and this is probably good enough for timer2, so we aren't as
337	 * careful with it as with timer0.
338	 */
339	outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
340
341	return (0);
342}
343
344#ifndef BURN_BRIDGES
345int
346release_timer0()
347{
348	switch (timer0_state) {
349
350	case ACQUIRED:
351		timer0_state = RELEASE_PENDING;
352		break;
353
354	case ACQUIRE_PENDING:
355		/* Nothing happened yet, release quickly. */
356		timer0_state = RELEASED;
357		break;
358
359	default:
360		return (-1);
361	}
362	return (0);
363}
364#endif
365
366int
367release_timer1()
368{
369
370	if (timer1_state != ACQUIRED)
371		return (-1);
372	timer1_state = RELEASED;
373	outb(TIMER_MODE, TIMER_SEL1 | TIMER_SQWAVE | TIMER_16BIT);
374	return (0);
375}
376
377int
378release_timer2()
379{
380
381	if (timer2_state != ACQUIRED)
382		return (-1);
383	timer2_state = RELEASED;
384	outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
385	return (0);
386}
387
388
389static int
390getit(void)
391{
392	int high, low;
393
394	mtx_lock_spin(&clock_lock);
395
396	/* Select timer0 and latch counter value. */
397	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
398
399	low = inb(TIMER_CNTR0);
400	high = inb(TIMER_CNTR0);
401
402	mtx_unlock_spin(&clock_lock);
403	return ((high << 8) | low);
404}
405
406/*
407 * Wait "n" microseconds.
408 * Relies on timer 1 counting down from (timer_freq / hz)
409 * Note: timer had better have been programmed before this is first used!
410 */
411void
412DELAY(int n)
413{
414	int delta, prev_tick, tick, ticks_left;
415
416#ifdef DELAYDEBUG
417	int getit_calls = 1;
418	int n1;
419	static int state = 0;
420
421	if (state == 0) {
422		state = 1;
423		for (n1 = 1; n1 <= 10000000; n1 *= 10)
424			DELAY(n1);
425		state = 2;
426	}
427	if (state == 1)
428		printf("DELAY(%d)...", n);
429#endif
430	/*
431	 * Guard against the timer being uninitialized if we are called
432	 * early for console i/o.
433	 */
434	if (timer0_max_count == 0)
435		set_timer_freq(timer_freq, hz);
436
437	/*
438	 * Read the counter first, so that the rest of the setup overhead is
439	 * counted.  Guess the initial overhead is 20 usec (on most systems it
440	 * takes about 1.5 usec for each of the i/o's in getit().  The loop
441	 * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
442	 * multiplications and divisions to scale the count take a while).
443	 *
444	 * However, if ddb is active then use a fake counter since reading
445	 * the i8254 counter involves acquiring a lock.  ddb must not go
446	 * locking for many reasons, but it calls here for at least atkbd
447	 * input.
448	 */
449#ifdef DDB
450	if (db_active)
451		prev_tick = 0;
452	else
453#endif
454		prev_tick = getit();
455	n -= 0;			/* XXX actually guess no initial overhead */
456	/*
457	 * Calculate (n * (timer_freq / 1e6)) without using floating point
458	 * and without any avoidable overflows.
459	 */
460	if (n <= 0)
461		ticks_left = 0;
462	else if (n < 256)
463		/*
464		 * Use fixed point to avoid a slow division by 1000000.
465		 * 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
466		 * 2^15 is the first power of 2 that gives exact results
467		 * for n between 0 and 256.
468		 */
469		ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
470	else
471		/*
472		 * Don't bother using fixed point, although gcc-2.7.2
473		 * generates particularly poor code for the long long
474		 * division, since even the slow way will complete long
475		 * before the delay is up (unless we're interrupted).
476		 */
477		ticks_left = ((u_int)n * (long long)timer_freq + 999999)
478			     / 1000000;
479
480	while (ticks_left > 0) {
481#ifdef DDB
482		if (db_active) {
483			outb(0x5f, 0);
484			tick = prev_tick + 1;
485		} else
486#endif
487			tick = getit();
488#ifdef DELAYDEBUG
489		++getit_calls;
490#endif
491		delta = prev_tick - tick;
492		prev_tick = tick;
493		if (delta < 0) {
494			delta += timer0_max_count;
495			/*
496			 * Guard against timer0_max_count being wrong.
497			 * This shouldn't happen in normal operation,
498			 * but it may happen if set_timer_freq() is
499			 * traced.
500			 */
501			if (delta < 0)
502				delta = 0;
503		}
504		ticks_left -= delta;
505	}
506#ifdef DELAYDEBUG
507	if (state == 1)
508		printf(" %d calls to getit() at %d usec each\n",
509		       getit_calls, (n + 5) / getit_calls);
510#endif
511}
512
513static void
514sysbeepstop(void *chan)
515{
516	outb(IO_PPI, inb(IO_PPI)|0x08);	/* disable counter1 output to speaker */
517	release_timer1();
518	beeping = 0;
519}
520
521int
522sysbeep(int pitch, int period)
523{
524	int x = splclock();
525
526	if (acquire_timer1(TIMER_SQWAVE|TIMER_16BIT))
527		if (!beeping) {
528			/* Something else owns it. */
529			splx(x);
530			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
531		}
532	disable_intr();
533	outb(0x3fdb, pitch);
534	outb(0x3fdb, (pitch>>8));
535	enable_intr();
536	if (!beeping) {
537		/* enable counter1 output to speaker */
538		outb(IO_PPI, (inb(IO_PPI) & 0xf7));
539		beeping = period;
540		timeout(sysbeepstop, (void *)NULL, period);
541	}
542	splx(x);
543	return (0);
544}
545
546
547unsigned int delaycount;
548#define FIRST_GUESS	0x2000
549static void findcpuspeed(void)
550{
551	int i;
552	int remainder;
553
554	/* Put counter in count down mode */
555	outb(TIMER_MODE, TIMER_SEL0 | TIMER_16BIT | TIMER_RATEGEN);
556	outb(TIMER_CNTR0, 0xff);
557	outb(TIMER_CNTR0, 0xff);
558	for (i = FIRST_GUESS; i; i--)
559		;
560	remainder = getit();
561	delaycount = (FIRST_GUESS * TIMER_DIV(1000)) / (0xffff - remainder);
562}
563
564static u_int
565calibrate_clocks(void)
566{
567	int	timeout;
568	u_int	count, prev_count, tot_count;
569	u_short	sec, start_sec;
570
571	if (bootverbose)
572	        printf("Calibrating clock(s) ... ");
573	/* Check ARTIC. */
574	if (!(PC98_SYSTEM_PARAMETER(0x458) & 0x80) &&
575	    !(PC98_SYSTEM_PARAMETER(0x45b) & 0x04))
576		goto fail;
577	timeout = 100000000;
578
579	/* Read the ARTIC. */
580	sec = inw(0x5e);
581
582	/* Wait for the ARTIC to changes. */
583	start_sec = sec;
584	for (;;) {
585		sec = inw(0x5e);
586		if (sec != start_sec)
587			break;
588		if (--timeout == 0)
589			goto fail;
590	}
591	prev_count = getit();
592	if (prev_count == 0 || prev_count > timer0_max_count)
593		goto fail;
594	tot_count = 0;
595
596	start_sec = sec;
597	for (;;) {
598		sec = inw(0x5e);
599		count = getit();
600		if (count == 0 || count > timer0_max_count)
601			goto fail;
602		if (count > prev_count)
603			tot_count += prev_count - (count - timer0_max_count);
604		else
605			tot_count += prev_count - count;
606		prev_count = count;
607		if ((sec == start_sec + 1200) ||
608		    (sec < start_sec &&
609		        (u_int)sec + 0x10000 == (u_int)start_sec + 1200))
610			break;
611		if (--timeout == 0)
612			goto fail;
613	}
614
615	if (bootverbose) {
616	        printf("i8254 clock: %u Hz\n", tot_count);
617	}
618	return (tot_count);
619
620fail:
621	if (bootverbose)
622	        printf("failed, using default i8254 clock of %u Hz\n",
623		       timer_freq);
624	return (timer_freq);
625}
626
627static void
628set_timer_freq(u_int freq, int intr_freq)
629{
630	int new_timer0_max_count;
631
632	mtx_lock_spin(&clock_lock);
633	timer_freq = freq;
634	new_timer0_max_count = hardclock_max_count = TIMER_DIV(intr_freq);
635	if (new_timer0_max_count != timer0_max_count) {
636		timer0_max_count = new_timer0_max_count;
637		outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
638		outb(TIMER_CNTR0, timer0_max_count & 0xff);
639		outb(TIMER_CNTR0, timer0_max_count >> 8);
640	}
641	mtx_unlock_spin(&clock_lock);
642}
643
644static void
645i8254_restore(void)
646{
647
648	mtx_lock_spin(&clock_lock);
649	outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
650	outb(TIMER_CNTR0, timer0_max_count & 0xff);
651	outb(TIMER_CNTR0, timer0_max_count >> 8);
652	mtx_unlock_spin(&clock_lock);
653}
654
655
656/*
657 * Restore all the timers non-atomically (XXX: should be atomically).
658 *
659 * This function is called from pmtimer_resume() to restore all the timers.
660 * This should not be necessary, but there are broken laptops that do not
661 * restore all the timers on resume.
662 */
663void
664timer_restore(void)
665{
666
667	i8254_restore();		/* restore timer_freq and hz */
668}
669
670/*
671 * Initialize 8254 timer 0 early so that it can be used in DELAY().
672 * XXX initialization of other timers is unintentionally left blank.
673 */
674void
675startrtclock()
676{
677	u_int delta, freq;
678
679	findcpuspeed();
680	if (pc98_machine_type & M_8M)
681		timer_freq = 1996800L; /* 1.9968 MHz */
682	else
683		timer_freq = 2457600L; /* 2.4576 MHz */
684
685	set_timer_freq(timer_freq, hz);
686	freq = calibrate_clocks();
687#ifdef CLK_CALIBRATION_LOOP
688	if (bootverbose) {
689		printf(
690		"Press a key on the console to abort clock calibration\n");
691		while (cncheckc() == -1)
692			calibrate_clocks();
693	}
694#endif
695
696	/*
697	 * Use the calibrated i8254 frequency if it seems reasonable.
698	 * Otherwise use the default, and don't use the calibrated i586
699	 * frequency.
700	 */
701	delta = freq > timer_freq ? freq - timer_freq : timer_freq - freq;
702	if (delta < timer_freq / 100) {
703#ifndef CLK_USE_I8254_CALIBRATION
704		if (bootverbose)
705			printf(
706"CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
707		freq = timer_freq;
708#endif
709		timer_freq = freq;
710	} else {
711		if (bootverbose)
712			printf(
713		    "%d Hz differs from default of %d Hz by more than 1%%\n",
714			       freq, timer_freq);
715	}
716
717	set_timer_freq(timer_freq, hz);
718	i8254_timecounter.tc_frequency = timer_freq;
719	tc_init(&i8254_timecounter);
720
721	init_TSC();
722}
723
724static void
725rtc_serialcombit(int i)
726{
727	outb(IO_RTC, ((i&0x01)<<5)|0x07);
728	DELAY(1);
729	outb(IO_RTC, ((i&0x01)<<5)|0x17);
730	DELAY(1);
731	outb(IO_RTC, ((i&0x01)<<5)|0x07);
732	DELAY(1);
733}
734
735static void
736rtc_serialcom(int i)
737{
738	rtc_serialcombit(i&0x01);
739	rtc_serialcombit((i&0x02)>>1);
740	rtc_serialcombit((i&0x04)>>2);
741	rtc_serialcombit((i&0x08)>>3);
742	outb(IO_RTC, 0x07);
743	DELAY(1);
744	outb(IO_RTC, 0x0f);
745	DELAY(1);
746	outb(IO_RTC, 0x07);
747 	DELAY(1);
748}
749
750static void
751rtc_outb(int val)
752{
753	int s;
754	int sa = 0;
755
756	for (s=0;s<8;s++) {
757	    sa = ((val >> s) & 0x01) ? 0x27 : 0x07;
758	    outb(IO_RTC, sa);		/* set DI & CLK 0 */
759	    DELAY(1);
760	    outb(IO_RTC, sa | 0x10);	/* CLK 1 */
761	    DELAY(1);
762	}
763	outb(IO_RTC, sa & 0xef);	/* CLK 0 */
764}
765
766static int
767rtc_inb(void)
768{
769	int s;
770	int sa = 0;
771
772	for (s=0;s<8;s++) {
773	    sa |= ((inb(0x33) & 0x01) << s);
774	    outb(IO_RTC, 0x17);	/* CLK 1 */
775	    DELAY(1);
776	    outb(IO_RTC, 0x07);	/* CLK 0 */
777	    DELAY(2);
778	}
779	return sa;
780}
781
782/*
783 * Initialize the time of day register, based on the time base which is, e.g.
784 * from a filesystem.
785 */
786void
787inittodr(time_t base)
788{
789	unsigned long	sec, days;
790	int		year, month;
791	int		y, m, s;
792	struct timespec ts;
793	int		second, min, hour;
794
795	if (base) {
796		s = splclock();
797		ts.tv_sec = base;
798		ts.tv_nsec = 0;
799		tc_setclock(&ts);
800		splx(s);
801	}
802
803	rtc_serialcom(0x03);	/* Time Read */
804	rtc_serialcom(0x01);	/* Register shift command. */
805	DELAY(20);
806
807	second = bcd2bin(rtc_inb() & 0xff);	/* sec */
808	min = bcd2bin(rtc_inb() & 0xff);	/* min */
809	hour = bcd2bin(rtc_inb() & 0xff);	/* hour */
810	days = bcd2bin(rtc_inb() & 0xff) - 1;	/* date */
811
812	month = (rtc_inb() >> 4) & 0x0f;	/* month */
813	for (m = 1; m <	month; m++)
814		days +=	daysinmonth[m-1];
815	year = bcd2bin(rtc_inb() & 0xff) + 1900;	/* year */
816	/* 2000 year problem */
817	if (year < 1995)
818		year += 100;
819	if (year < 1970)
820		goto wrong_time;
821	for (y = 1970; y < year; y++)
822		days +=	DAYSPERYEAR + LEAPYEAR(y);
823	if ((month > 2)	&& LEAPYEAR(year))
824		days ++;
825	sec = ((( days * 24 +
826		  hour) * 60 +
827		  min) * 60 +
828		  second);
829	/* sec now contains the	number of seconds, since Jan 1 1970,
830	   in the local	time zone */
831
832	s = splhigh();
833
834	sec += tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
835
836	y = time_second - sec;
837	if (y <= -2 || y >= 2) {
838		/* badly off, adjust it */
839		ts.tv_sec = sec;
840		ts.tv_nsec = 0;
841		tc_setclock(&ts);
842	}
843	splx(s);
844	return;
845
846wrong_time:
847	printf("Invalid time in real time clock.\n");
848	printf("Check and reset the date immediately!\n");
849}
850
851/*
852 * Write system time back to RTC
853 */
854void
855resettodr()
856{
857	unsigned long	tm;
858	int		y, m, s;
859	int		wd;
860
861	if (disable_rtc_set)
862		return;
863
864	s = splclock();
865	tm = time_second;
866	splx(s);
867
868	rtc_serialcom(0x01);	/* Register shift command. */
869
870	/* Calculate local time	to put in RTC */
871
872	tm -= tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
873
874	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
875	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
876	rtc_outb(bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
877
878	/* We have now the days	since 01-01-1970 in tm */
879	wd = (tm + 4) % 7 + 1;			/* Write back Weekday */
880	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
881	     tm >= m;
882	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
883	     tm -= m;
884
885	/* Now we have the years in y and the day-of-the-year in tm */
886	for (m = 0; ; m++) {
887		int ml;
888
889		ml = daysinmonth[m];
890		if (m == 1 && LEAPYEAR(y))
891			ml++;
892		if (tm < ml)
893			break;
894		tm -= ml;
895	}
896
897	m++;
898	rtc_outb(bin2bcd(tm+1));		/* Write back Day     */
899	rtc_outb((m << 4) | wd);		/* Write back Month & Weekday  */
900	rtc_outb(bin2bcd(y%100));		/* Write back Year    */
901
902	rtc_serialcom(0x02);	/* Time set & Counter hold command. */
903	rtc_serialcom(0x00);	/* Register hold command. */
904}
905
906
907/*
908 * Start both clocks running.
909 */
910void
911cpu_initclocks()
912{
913#ifdef APIC_IO
914	int apic_8254_trial;
915	void *clkdesc;
916#endif /* APIC_IO */
917	register_t crit;
918
919
920	/* Finish initializing 8253 timer 0. */
921#ifdef APIC_IO
922
923	apic_8254_intr = isa_apic_irq(0);
924	apic_8254_trial = 0;
925	if (apic_8254_intr >= 0 ) {
926		if (apic_int_type(0, 0) == 3)
927			apic_8254_trial = 1;
928	} else {
929		/* look for ExtInt on pin 0 */
930		if (apic_int_type(0, 0) == 3) {
931			apic_8254_intr = apic_irq(0, 0);
932			setup_8254_mixed_mode();
933		} else
934			panic("APIC_IO: Cannot route 8254 interrupt to CPU");
935	}
936
937	inthand_add("clk", apic_8254_intr, (driver_intr_t *)clkintr, NULL,
938	    INTR_TYPE_CLK | INTR_FAST, &clkdesc);
939	crit = intr_disable();
940	mtx_lock_spin(&icu_lock);
941	INTREN(1 << apic_8254_intr);
942	mtx_unlock_spin(&icu_lock);
943	intr_restore(crit);
944
945#else /* APIC_IO */
946
947	/*
948	 * XXX Check the priority of this interrupt handler.  I
949	 * couldn't find anything suitable in the BSD/OS code (grog,
950	 * 19 July 2000).
951	 */
952	inthand_add("clk", 0, (driver_intr_t *)clkintr, NULL,
953	    INTR_TYPE_CLK | INTR_FAST, NULL);
954	crit = intr_disable();
955	mtx_lock_spin(&icu_lock);
956	INTREN(IRQ0);
957	mtx_unlock_spin(&icu_lock);
958	intr_restore(crit);
959
960#endif /* APIC_IO */
961
962
963
964#ifdef APIC_IO
965	if (apic_8254_trial) {
966
967		printf("APIC_IO: Testing 8254 interrupt delivery\n");
968		while (read_intr_count(8) < 6)
969			;	/* nothing */
970		if (read_intr_count(apic_8254_intr) < 3) {
971			/*
972			 * The MP table is broken.
973			 * The 8254 was not connected to the specified pin
974			 * on the IO APIC.
975			 * Workaround: Limited variant of mixed mode.
976			 */
977
978			crit = intr_disable();
979			mtx_lock_spin(&icu_lock);
980			INTRDIS(1 << apic_8254_intr);
981			mtx_unlock_spin(&icu_lock);
982			intr_restore(crit);
983			inthand_remove(clkdesc);
984			printf("APIC_IO: Broken MP table detected: "
985			       "8254 is not connected to "
986			       "IOAPIC #%d intpin %d\n",
987			       int_to_apicintpin[apic_8254_intr].ioapic,
988			       int_to_apicintpin[apic_8254_intr].int_pin);
989			/*
990			 * Revoke current ISA IRQ 0 assignment and
991			 * configure a fallback interrupt routing from
992			 * the 8254 Timer via the 8259 PIC to the
993			 * an ExtInt interrupt line on IOAPIC #0 intpin 0.
994			 * We reuse the low level interrupt handler number.
995			 */
996			if (apic_irq(0, 0) < 0) {
997				revoke_apic_irq(apic_8254_intr);
998				assign_apic_irq(0, 0, apic_8254_intr);
999			}
1000			apic_8254_intr = apic_irq(0, 0);
1001			setup_8254_mixed_mode();
1002			inthand_add("clk", apic_8254_intr,
1003				    (driver_intr_t *)clkintr, NULL,
1004				    INTR_TYPE_CLK | INTR_FAST, NULL);
1005			crit = intr_disable();
1006			mtx_lock_spin(&icu_lock);
1007			INTREN(1 << apic_8254_intr);
1008			mtx_unlock_spin(&icu_lock);
1009			intr_restore(crit);
1010		}
1011
1012	}
1013	if (apic_int_type(0, 0) != 3 ||
1014	    int_to_apicintpin[apic_8254_intr].ioapic != 0 ||
1015	    int_to_apicintpin[apic_8254_intr].int_pin != 0)
1016		printf("APIC_IO: routing 8254 via IOAPIC #%d intpin %d\n",
1017		       int_to_apicintpin[apic_8254_intr].ioapic,
1018		       int_to_apicintpin[apic_8254_intr].int_pin);
1019	else
1020		printf("APIC_IO: "
1021		       "routing 8254 via 8259 and IOAPIC #0 intpin 0\n");
1022#endif
1023
1024	init_TSC_tc();
1025}
1026
1027#ifdef APIC_IO
1028static u_long
1029read_intr_count(int vec)
1030{
1031	u_long *up;
1032	up = intr_countp[vec];
1033	if (up)
1034		return *up;
1035	return 0UL;
1036}
1037
1038static void
1039setup_8254_mixed_mode()
1040{
1041	/*
1042	 * Allow 8254 timer to INTerrupt 8259:
1043	 *  re-initialize master 8259:
1044	 *   reset; prog 4 bytes, single ICU, edge triggered
1045	 */
1046	outb(IO_ICU1, 0x13);
1047	outb(IO_ICU1 + 2, NRSVIDT);	/* start vector (unused) */
1048	outb(IO_ICU1 + 2, 0x00);	/* ignore slave */
1049	outb(IO_ICU1 + 2, 0x03);	/* auto EOI, 8086 */
1050	outb(IO_ICU1 + 2, 0xfe);	/* unmask INT0 */
1051
1052	/* program IO APIC for type 3 INT on INT0 */
1053	if (ext_int_setup(0, 0) < 0)
1054		panic("8254 redirect via APIC pin0 impossible!");
1055}
1056#endif
1057
1058void
1059cpu_startprofclock(void)
1060{
1061}
1062
1063void
1064cpu_stopprofclock(void)
1065{
1066}
1067
1068static int
1069sysctl_machdep_i8254_freq(SYSCTL_HANDLER_ARGS)
1070{
1071	int error;
1072	u_int freq;
1073
1074	/*
1075	 * Use `i8254' instead of `timer' in external names because `timer'
1076	 * is is too generic.  Should use it everywhere.
1077	 */
1078	freq = timer_freq;
1079	error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
1080	if (error == 0 && req->newptr != NULL) {
1081#ifndef BURN_BRIDGES
1082		if (timer0_state != RELEASED)
1083			return (EBUSY);	/* too much trouble to handle */
1084#endif
1085		set_timer_freq(freq, hz);
1086		i8254_timecounter.tc_frequency = freq;
1087	}
1088	return (error);
1089}
1090
1091SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
1092    0, sizeof(u_int), sysctl_machdep_i8254_freq, "IU", "");
1093
1094static unsigned
1095i8254_get_timecount(struct timecounter *tc)
1096{
1097	u_int count;
1098	u_int high, low;
1099	u_int eflags;
1100
1101	eflags = read_eflags();
1102	mtx_lock_spin(&clock_lock);
1103
1104	/* Select timer0 and latch counter value. */
1105	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
1106
1107	low = inb(TIMER_CNTR0);
1108	high = inb(TIMER_CNTR0);
1109	count = timer0_max_count - ((high << 8) | low);
1110	if (count < i8254_lastcount ||
1111	    (!i8254_ticked && (clkintr_pending ||
1112	    ((count < 20 || (!(eflags & PSL_I) && count < timer0_max_count / 2u)) &&
1113#ifdef APIC_IO
1114#define	lapic_irr1	((volatile u_int *)&lapic)[0x210 / 4]	/* XXX XXX */
1115	    /* XXX this assumes that apic_8254_intr is < 24. */
1116	    (lapic_irr1 & (1 << apic_8254_intr))))
1117#else
1118	    (inb(IO_ICU1) & 1)))
1119#endif
1120	    )) {
1121		i8254_ticked = 1;
1122		i8254_offset += timer0_max_count;
1123	}
1124	i8254_lastcount = count;
1125	count += i8254_offset;
1126	mtx_unlock_spin(&clock_lock);
1127	return (count);
1128}
1129
1130#ifdef DEV_ISA
1131/*
1132 * Attach to the ISA PnP descriptors for the timer and realtime clock.
1133 */
1134static struct isa_pnp_id attimer_ids[] = {
1135	{ 0x0001d041 /* PNP0100 */, "AT timer" },
1136	{ 0x000bd041 /* PNP0B00 */, "AT realtime clock" },
1137	{ 0 }
1138};
1139
1140static int
1141attimer_probe(device_t dev)
1142{
1143	int result;
1144
1145	if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, attimer_ids)) <= 0)
1146		device_quiet(dev);
1147	return(result);
1148}
1149
1150static int
1151attimer_attach(device_t dev)
1152{
1153	return(0);
1154}
1155
1156static device_method_t attimer_methods[] = {
1157	/* Device interface */
1158	DEVMETHOD(device_probe,		attimer_probe),
1159	DEVMETHOD(device_attach,	attimer_attach),
1160	DEVMETHOD(device_detach,	bus_generic_detach),
1161	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1162	DEVMETHOD(device_suspend,	bus_generic_suspend),	/* XXX stop statclock? */
1163	DEVMETHOD(device_resume,	bus_generic_resume),	/* XXX restart statclock? */
1164	{ 0, 0 }
1165};
1166
1167static driver_t attimer_driver = {
1168	"attimer",
1169	attimer_methods,
1170	1,		/* no softc */
1171};
1172
1173static devclass_t attimer_devclass;
1174
1175DRIVER_MODULE(attimer, isa, attimer_driver, attimer_devclass, 0, 0);
1176#endif /* DEV_ISA */
1177