pcrtc.c revision 112550
1/*-
2 * Copyright (c) 1990 The Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * William Jolitz and Don Ahn.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)clock.c	7.2 (Berkeley) 5/12/91
37 * $FreeBSD: head/sys/pc98/cbus/pcrtc.c 112550 2003-03-24 19:10:33Z mdodd $
38 */
39
40/*
41 * Routines to handle clock hardware.
42 */
43
44/*
45 * inittodr, settodr and support routines written
46 * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
47 *
48 * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
49 */
50
51/*
52 * modified for PC98 by Kakefuda
53 */
54
55#include "opt_clock.h"
56#include "opt_isa.h"
57#include "opt_mca.h"
58
59#include <sys/param.h>
60#include <sys/systm.h>
61#include <sys/bus.h>
62#include <sys/lock.h>
63#include <sys/mutex.h>
64#include <sys/proc.h>
65#include <sys/time.h>
66#include <sys/timetc.h>
67#include <sys/kernel.h>
68#include <sys/sysctl.h>
69#include <sys/cons.h>
70#include <sys/power.h>
71
72#include <machine/clock.h>
73#include <machine/cputypes.h>
74#include <machine/frame.h>
75#include <machine/limits.h>
76#include <machine/md_var.h>
77#include <machine/psl.h>
78#ifdef APIC_IO
79#include <machine/segments.h>
80#endif
81#if defined(SMP) || defined(APIC_IO)
82#include <machine/smp.h>
83#endif /* SMP || APIC_IO */
84#include <machine/specialreg.h>
85
86#include <i386/isa/icu.h>
87#include <pc98/pc98/pc98.h>
88#include <pc98/pc98/pc98_machdep.h>
89#include <i386/isa/isa_device.h>
90#ifdef DEV_ISA
91#include <isa/isavar.h>
92#endif
93#include <i386/isa/timerreg.h>
94
95#include <i386/isa/intr_machdep.h>
96
97#ifdef APIC_IO
98#include <i386/isa/intr_machdep.h>
99/* The interrupt triggered by the 8254 (timer) chip */
100int apic_8254_intr;
101static u_long read_intr_count(int vec);
102static void setup_8254_mixed_mode(void);
103#endif
104
105/*
106 * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
107 * can use a simple formula for leap years.
108 */
109#define	LEAPYEAR(y) ((u_int)(y) % 4 == 0)
110#define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
111
112#define	TIMER_DIV(x) ((timer_freq + (x) / 2) / (x))
113
114/*
115 * Time in timer cycles that it takes for microtime() to disable interrupts
116 * and latch the count.  microtime() currently uses "cli; outb ..." so it
117 * normally takes less than 2 timer cycles.  Add a few for cache misses.
118 * Add a few more to allow for latency in bogus calls to microtime() with
119 * interrupts already disabled.
120 */
121#define	TIMER0_LATCH_COUNT	20
122
123/*
124 * Maximum frequency that we are willing to allow for timer0.  Must be
125 * low enough to guarantee that the timer interrupt handler returns
126 * before the next timer interrupt.
127 */
128#define	TIMER0_MAX_FREQ		20000
129
130int	adjkerntz;		/* local offset from GMT in seconds */
131int	clkintr_pending;
132int	disable_rtc_set;	/* disable resettodr() if != 0 */
133int	pscnt = 1;
134int	psdiv = 1;
135int	statclock_disable;
136#ifndef TIMER_FREQ
137#define TIMER_FREQ   2457600
138#endif
139u_int	timer_freq = TIMER_FREQ;
140int	timer0_max_count;
141int	wall_cmos_clock;	/* wall CMOS clock assumed if != 0 */
142struct mtx clock_lock;
143
144static	int	beeping = 0;
145static	const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
146static	u_int	hardclock_max_count;
147static	u_int32_t i8254_lastcount;
148static	u_int32_t i8254_offset;
149static	int	i8254_ticked;
150/*
151 * XXX new_function and timer_func should not handle clockframes, but
152 * timer_func currently needs to hold hardclock to handle the
153 * timer0_state == 0 case.  We should use inthand_add()/inthand_remove()
154 * to switch between clkintr() and a slightly different timerintr().
155 */
156static	void	(*new_function)(struct clockframe *frame);
157static	u_int	new_rate;
158static	u_int	timer0_prescaler_count;
159
160/* Values for timerX_state: */
161#define	RELEASED	0
162#define	RELEASE_PENDING	1
163#define	ACQUIRED	2
164#define	ACQUIRE_PENDING	3
165
166static	u_char	timer0_state;
167static 	u_char	timer1_state;
168static	u_char	timer2_state;
169static	void	(*timer_func)(struct clockframe *frame) = hardclock;
170static void rtc_serialcombit(int);
171static void rtc_serialcom(int);
172static int rtc_inb(void);
173static void rtc_outb(int);
174
175static	unsigned i8254_get_timecount(struct timecounter *tc);
176static	void	set_timer_freq(u_int freq, int intr_freq);
177
178static struct timecounter i8254_timecounter = {
179	i8254_get_timecount,	/* get_timecount */
180	0,			/* no poll_pps */
181	~0u,			/* counter_mask */
182	0,			/* frequency */
183	"i8254"			/* name */
184};
185
186static void
187clkintr(struct clockframe frame)
188{
189
190	if (timecounter->tc_get_timecount == i8254_get_timecount) {
191		mtx_lock_spin(&clock_lock);
192		if (i8254_ticked)
193			i8254_ticked = 0;
194		else {
195			i8254_offset += timer0_max_count;
196			i8254_lastcount = 0;
197		}
198		clkintr_pending = 0;
199		mtx_unlock_spin(&clock_lock);
200	}
201	timer_func(&frame);
202#ifdef SMP
203	if (timer_func == hardclock)
204		forward_hardclock();
205#endif
206	switch (timer0_state) {
207
208	case RELEASED:
209		break;
210
211	case ACQUIRED:
212		if ((timer0_prescaler_count += timer0_max_count)
213		    >= hardclock_max_count) {
214			timer0_prescaler_count -= hardclock_max_count;
215			hardclock(&frame);
216#ifdef SMP
217			forward_hardclock();
218#endif
219		}
220		break;
221
222	case ACQUIRE_PENDING:
223		mtx_lock_spin(&clock_lock);
224		i8254_offset = i8254_get_timecount(NULL);
225		i8254_lastcount = 0;
226		timer0_max_count = TIMER_DIV(new_rate);
227		outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
228		outb(TIMER_CNTR0, timer0_max_count & 0xff);
229		outb(TIMER_CNTR0, timer0_max_count >> 8);
230		mtx_unlock_spin(&clock_lock);
231		timer_func = new_function;
232		timer0_state = ACQUIRED;
233		break;
234
235	case RELEASE_PENDING:
236		if ((timer0_prescaler_count += timer0_max_count)
237		    >= hardclock_max_count) {
238			mtx_lock_spin(&clock_lock);
239			i8254_offset = i8254_get_timecount(NULL);
240			i8254_lastcount = 0;
241			timer0_max_count = hardclock_max_count;
242			outb(TIMER_MODE,
243			     TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
244			outb(TIMER_CNTR0, timer0_max_count & 0xff);
245			outb(TIMER_CNTR0, timer0_max_count >> 8);
246			mtx_unlock_spin(&clock_lock);
247			timer0_prescaler_count = 0;
248			timer_func = hardclock;
249			timer0_state = RELEASED;
250			hardclock(&frame);
251#ifdef SMP
252			forward_hardclock();
253#endif
254		}
255		break;
256	}
257}
258
259/*
260 * The acquire and release functions must be called at ipl >= splclock().
261 */
262int
263acquire_timer0(int rate, void (*function)(struct clockframe *frame))
264{
265	static int old_rate;
266
267	if (rate <= 0 || rate > TIMER0_MAX_FREQ)
268		return (-1);
269	switch (timer0_state) {
270
271	case RELEASED:
272		timer0_state = ACQUIRE_PENDING;
273		break;
274
275	case RELEASE_PENDING:
276		if (rate != old_rate)
277			return (-1);
278		/*
279		 * The timer has been released recently, but is being
280		 * re-acquired before the release completed.  In this
281		 * case, we simply reclaim it as if it had not been
282		 * released at all.
283		 */
284		timer0_state = ACQUIRED;
285		break;
286
287	default:
288		return (-1);	/* busy */
289	}
290	new_function = function;
291	old_rate = new_rate = rate;
292	return (0);
293}
294
295int
296acquire_timer1(int mode)
297{
298
299	if (timer1_state != RELEASED)
300		return (-1);
301	timer1_state = ACQUIRED;
302
303	/*
304	 * This access to the timer registers is as atomic as possible
305	 * because it is a single instruction.  We could do better if we
306	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
307	 * and this is probably good enough for timer2, so we aren't as
308	 * careful with it as with timer0.
309	 */
310	outb(TIMER_MODE, TIMER_SEL1 | (mode & 0x3f));
311
312	return (0);
313}
314
315int
316acquire_timer2(int mode)
317{
318
319	if (timer2_state != RELEASED)
320		return (-1);
321	timer2_state = ACQUIRED;
322
323	/*
324	 * This access to the timer registers is as atomic as possible
325	 * because it is a single instruction.  We could do better if we
326	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
327	 * and this is probably good enough for timer2, so we aren't as
328	 * careful with it as with timer0.
329	 */
330	outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
331
332	return (0);
333}
334
335int
336release_timer0()
337{
338	switch (timer0_state) {
339
340	case ACQUIRED:
341		timer0_state = RELEASE_PENDING;
342		break;
343
344	case ACQUIRE_PENDING:
345		/* Nothing happened yet, release quickly. */
346		timer0_state = RELEASED;
347		break;
348
349	default:
350		return (-1);
351	}
352	return (0);
353}
354
355int
356release_timer1()
357{
358
359	if (timer1_state != ACQUIRED)
360		return (-1);
361	timer1_state = RELEASED;
362	outb(TIMER_MODE, TIMER_SEL1 | TIMER_SQWAVE | TIMER_16BIT);
363	return (0);
364}
365
366int
367release_timer2()
368{
369
370	if (timer2_state != ACQUIRED)
371		return (-1);
372	timer2_state = RELEASED;
373	outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
374	return (0);
375}
376
377
378static int
379getit(void)
380{
381	int high, low;
382
383	mtx_lock_spin(&clock_lock);
384
385	/* Select timer0 and latch counter value. */
386	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
387
388	low = inb(TIMER_CNTR0);
389	high = inb(TIMER_CNTR0);
390
391	mtx_unlock_spin(&clock_lock);
392	return ((high << 8) | low);
393}
394
395/*
396 * Wait "n" microseconds.
397 * Relies on timer 1 counting down from (timer_freq / hz)
398 * Note: timer had better have been programmed before this is first used!
399 */
400void
401DELAY(int n)
402{
403	int delta, prev_tick, tick, ticks_left;
404
405#ifdef DELAYDEBUG
406	int getit_calls = 1;
407	int n1;
408	static int state = 0;
409
410	if (state == 0) {
411		state = 1;
412		for (n1 = 1; n1 <= 10000000; n1 *= 10)
413			DELAY(n1);
414		state = 2;
415	}
416	if (state == 1)
417		printf("DELAY(%d)...", n);
418#endif
419	/*
420	 * Guard against the timer being uninitialized if we are called
421	 * early for console i/o.
422	 */
423	if (timer0_max_count == 0)
424		set_timer_freq(timer_freq, hz);
425
426	/*
427	 * Read the counter first, so that the rest of the setup overhead is
428	 * counted.  Guess the initial overhead is 20 usec (on most systems it
429	 * takes about 1.5 usec for each of the i/o's in getit().  The loop
430	 * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
431	 * multiplications and divisions to scale the count take a while).
432	 */
433	prev_tick = getit();
434	n -= 0;			/* XXX actually guess no initial overhead */
435	/*
436	 * Calculate (n * (timer_freq / 1e6)) without using floating point
437	 * and without any avoidable overflows.
438	 */
439	if (n <= 0)
440		ticks_left = 0;
441	else if (n < 256)
442		/*
443		 * Use fixed point to avoid a slow division by 1000000.
444		 * 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
445		 * 2^15 is the first power of 2 that gives exact results
446		 * for n between 0 and 256.
447		 */
448		ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
449	else
450		/*
451		 * Don't bother using fixed point, although gcc-2.7.2
452		 * generates particularly poor code for the long long
453		 * division, since even the slow way will complete long
454		 * before the delay is up (unless we're interrupted).
455		 */
456		ticks_left = ((u_int)n * (long long)timer_freq + 999999)
457			     / 1000000;
458
459	while (ticks_left > 0) {
460		tick = getit();
461#ifdef DELAYDEBUG
462		++getit_calls;
463#endif
464		delta = prev_tick - tick;
465		prev_tick = tick;
466		if (delta < 0) {
467			delta += timer0_max_count;
468			/*
469			 * Guard against timer0_max_count being wrong.
470			 * This shouldn't happen in normal operation,
471			 * but it may happen if set_timer_freq() is
472			 * traced.
473			 */
474			if (delta < 0)
475				delta = 0;
476		}
477		ticks_left -= delta;
478	}
479#ifdef DELAYDEBUG
480	if (state == 1)
481		printf(" %d calls to getit() at %d usec each\n",
482		       getit_calls, (n + 5) / getit_calls);
483#endif
484}
485
486static void
487sysbeepstop(void *chan)
488{
489	outb(IO_PPI, inb(IO_PPI)|0x08);	/* disable counter1 output to speaker */
490	release_timer1();
491	beeping = 0;
492}
493
494int
495sysbeep(int pitch, int period)
496{
497	int x = splclock();
498
499	if (acquire_timer1(TIMER_SQWAVE|TIMER_16BIT))
500		if (!beeping) {
501			/* Something else owns it. */
502			splx(x);
503			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
504		}
505	disable_intr();
506	outb(0x3fdb, pitch);
507	outb(0x3fdb, (pitch>>8));
508	enable_intr();
509	if (!beeping) {
510		/* enable counter1 output to speaker */
511		outb(IO_PPI, (inb(IO_PPI) & 0xf7));
512		beeping = period;
513		timeout(sysbeepstop, (void *)NULL, period);
514	}
515	splx(x);
516	return (0);
517}
518
519
520unsigned int delaycount;
521#define FIRST_GUESS	0x2000
522static void findcpuspeed(void)
523{
524	int i;
525	int remainder;
526
527	/* Put counter in count down mode */
528	outb(TIMER_MODE, TIMER_SEL0 | TIMER_16BIT | TIMER_RATEGEN);
529	outb(TIMER_CNTR0, 0xff);
530	outb(TIMER_CNTR0, 0xff);
531	for (i = FIRST_GUESS; i; i--)
532		;
533	remainder = getit();
534	delaycount = (FIRST_GUESS * TIMER_DIV(1000)) / (0xffff - remainder);
535}
536
537static u_int
538calibrate_clocks(void)
539{
540	int	timeout;
541	u_int	count, prev_count, tot_count;
542	u_short	sec, start_sec;
543
544	if (bootverbose)
545	        printf("Calibrating clock(s) ... ");
546	/* Check ARTIC. */
547	if (!(PC98_SYSTEM_PARAMETER(0x458) & 0x80) &&
548	    !(PC98_SYSTEM_PARAMETER(0x45b) & 0x04))
549		goto fail;
550	timeout = 100000000;
551
552	/* Read the ARTIC. */
553	sec = inw(0x5e);
554
555	/* Wait for the ARTIC to changes. */
556	start_sec = sec;
557	for (;;) {
558		sec = inw(0x5e);
559		if (sec != start_sec)
560			break;
561		if (--timeout == 0)
562			goto fail;
563	}
564	prev_count = getit();
565	if (prev_count == 0 || prev_count > timer0_max_count)
566		goto fail;
567	tot_count = 0;
568
569	start_sec = sec;
570	for (;;) {
571		sec = inw(0x5e);
572		count = getit();
573		if (count == 0 || count > timer0_max_count)
574			goto fail;
575		if (count > prev_count)
576			tot_count += prev_count - (count - timer0_max_count);
577		else
578			tot_count += prev_count - count;
579		prev_count = count;
580		if ((sec == start_sec + 1200) ||
581		    (sec < start_sec &&
582		        (u_int)sec + 0x10000 == (u_int)start_sec + 1200))
583			break;
584		if (--timeout == 0)
585			goto fail;
586	}
587
588	if (bootverbose) {
589	        printf("i8254 clock: %u Hz\n", tot_count);
590	}
591	return (tot_count);
592
593fail:
594	if (bootverbose)
595	        printf("failed, using default i8254 clock of %u Hz\n",
596		       timer_freq);
597	return (timer_freq);
598}
599
600static void
601set_timer_freq(u_int freq, int intr_freq)
602{
603	int new_timer0_max_count;
604
605	mtx_lock_spin(&clock_lock);
606	timer_freq = freq;
607	new_timer0_max_count = hardclock_max_count = TIMER_DIV(intr_freq);
608	if (new_timer0_max_count != timer0_max_count) {
609		timer0_max_count = new_timer0_max_count;
610		outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
611		outb(TIMER_CNTR0, timer0_max_count & 0xff);
612		outb(TIMER_CNTR0, timer0_max_count >> 8);
613	}
614	mtx_unlock_spin(&clock_lock);
615}
616
617static void
618i8254_restore(void)
619{
620
621	mtx_lock_spin(&clock_lock);
622	outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
623	outb(TIMER_CNTR0, timer0_max_count & 0xff);
624	outb(TIMER_CNTR0, timer0_max_count >> 8);
625	mtx_unlock_spin(&clock_lock);
626}
627
628
629/*
630 * Restore all the timers non-atomically (XXX: should be atomically).
631 *
632 * This function is called from pmtimer_resume() to restore all the timers.
633 * This should not be necessary, but there are broken laptops that do not
634 * restore all the timers on resume.
635 */
636void
637timer_restore(void)
638{
639
640	i8254_restore();		/* restore timer_freq and hz */
641}
642
643/*
644 * Initialize 8254 timer 0 early so that it can be used in DELAY().
645 * XXX initialization of other timers is unintentionally left blank.
646 */
647void
648startrtclock()
649{
650	u_int delta, freq;
651
652	findcpuspeed();
653	if (pc98_machine_type & M_8M)
654		timer_freq = 1996800L; /* 1.9968 MHz */
655	else
656		timer_freq = 2457600L; /* 2.4576 MHz */
657
658	set_timer_freq(timer_freq, hz);
659	freq = calibrate_clocks();
660#ifdef CLK_CALIBRATION_LOOP
661	if (bootverbose) {
662		printf(
663		"Press a key on the console to abort clock calibration\n");
664		while (cncheckc() == -1)
665			calibrate_clocks();
666	}
667#endif
668
669	/*
670	 * Use the calibrated i8254 frequency if it seems reasonable.
671	 * Otherwise use the default, and don't use the calibrated i586
672	 * frequency.
673	 */
674	delta = freq > timer_freq ? freq - timer_freq : timer_freq - freq;
675	if (delta < timer_freq / 100) {
676#ifndef CLK_USE_I8254_CALIBRATION
677		if (bootverbose)
678			printf(
679"CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
680		freq = timer_freq;
681#endif
682		timer_freq = freq;
683	} else {
684		if (bootverbose)
685			printf(
686		    "%d Hz differs from default of %d Hz by more than 1%%\n",
687			       freq, timer_freq);
688	}
689
690	set_timer_freq(timer_freq, hz);
691	i8254_timecounter.tc_frequency = timer_freq;
692	tc_init(&i8254_timecounter);
693
694	init_TSC();
695}
696
697static void
698rtc_serialcombit(int i)
699{
700	outb(IO_RTC, ((i&0x01)<<5)|0x07);
701	DELAY(1);
702	outb(IO_RTC, ((i&0x01)<<5)|0x17);
703	DELAY(1);
704	outb(IO_RTC, ((i&0x01)<<5)|0x07);
705	DELAY(1);
706}
707
708static void
709rtc_serialcom(int i)
710{
711	rtc_serialcombit(i&0x01);
712	rtc_serialcombit((i&0x02)>>1);
713	rtc_serialcombit((i&0x04)>>2);
714	rtc_serialcombit((i&0x08)>>3);
715	outb(IO_RTC, 0x07);
716	DELAY(1);
717	outb(IO_RTC, 0x0f);
718	DELAY(1);
719	outb(IO_RTC, 0x07);
720 	DELAY(1);
721}
722
723static void
724rtc_outb(int val)
725{
726	int s;
727	int sa = 0;
728
729	for (s=0;s<8;s++) {
730	    sa = ((val >> s) & 0x01) ? 0x27 : 0x07;
731	    outb(IO_RTC, sa);		/* set DI & CLK 0 */
732	    DELAY(1);
733	    outb(IO_RTC, sa | 0x10);	/* CLK 1 */
734	    DELAY(1);
735	}
736	outb(IO_RTC, sa & 0xef);	/* CLK 0 */
737}
738
739static int
740rtc_inb(void)
741{
742	int s;
743	int sa = 0;
744
745	for (s=0;s<8;s++) {
746	    sa |= ((inb(0x33) & 0x01) << s);
747	    outb(IO_RTC, 0x17);	/* CLK 1 */
748	    DELAY(1);
749	    outb(IO_RTC, 0x07);	/* CLK 0 */
750	    DELAY(2);
751	}
752	return sa;
753}
754
755/*
756 * Initialize the time of day register, based on the time base which is, e.g.
757 * from a filesystem.
758 */
759void
760inittodr(time_t base)
761{
762	unsigned long	sec, days;
763	int		year, month;
764	int		y, m, s;
765	struct timespec ts;
766	int		second, min, hour;
767
768	if (base) {
769		s = splclock();
770		ts.tv_sec = base;
771		ts.tv_nsec = 0;
772		tc_setclock(&ts);
773		splx(s);
774	}
775
776	rtc_serialcom(0x03);	/* Time Read */
777	rtc_serialcom(0x01);	/* Register shift command. */
778	DELAY(20);
779
780	second = bcd2bin(rtc_inb() & 0xff);	/* sec */
781	min = bcd2bin(rtc_inb() & 0xff);	/* min */
782	hour = bcd2bin(rtc_inb() & 0xff);	/* hour */
783	days = bcd2bin(rtc_inb() & 0xff) - 1;	/* date */
784
785	month = (rtc_inb() >> 4) & 0x0f;	/* month */
786	for (m = 1; m <	month; m++)
787		days +=	daysinmonth[m-1];
788	year = bcd2bin(rtc_inb() & 0xff) + 1900;	/* year */
789	/* 2000 year problem */
790	if (year < 1995)
791		year += 100;
792	if (year < 1970)
793		goto wrong_time;
794	for (y = 1970; y < year; y++)
795		days +=	DAYSPERYEAR + LEAPYEAR(y);
796	if ((month > 2)	&& LEAPYEAR(year))
797		days ++;
798	sec = ((( days * 24 +
799		  hour) * 60 +
800		  min) * 60 +
801		  second);
802	/* sec now contains the	number of seconds, since Jan 1 1970,
803	   in the local	time zone */
804
805	s = splhigh();
806
807	sec += tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
808
809	y = time_second - sec;
810	if (y <= -2 || y >= 2) {
811		/* badly off, adjust it */
812		ts.tv_sec = sec;
813		ts.tv_nsec = 0;
814		tc_setclock(&ts);
815	}
816	splx(s);
817	return;
818
819wrong_time:
820	printf("Invalid time in real time clock.\n");
821	printf("Check and reset the date immediately!\n");
822}
823
824/*
825 * Write system time back to RTC
826 */
827void
828resettodr()
829{
830	unsigned long	tm;
831	int		y, m, s;
832	int		wd;
833
834	if (disable_rtc_set)
835		return;
836
837	s = splclock();
838	tm = time_second;
839	splx(s);
840
841	rtc_serialcom(0x01);	/* Register shift command. */
842
843	/* Calculate local time	to put in RTC */
844
845	tm -= tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
846
847	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
848	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
849	rtc_outb(bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
850
851	/* We have now the days	since 01-01-1970 in tm */
852	wd = (tm + 4) % 7 + 1;			/* Write back Weekday */
853	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
854	     tm >= m;
855	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
856	     tm -= m;
857
858	/* Now we have the years in y and the day-of-the-year in tm */
859	for (m = 0; ; m++) {
860		int ml;
861
862		ml = daysinmonth[m];
863		if (m == 1 && LEAPYEAR(y))
864			ml++;
865		if (tm < ml)
866			break;
867		tm -= ml;
868	}
869
870	m++;
871	rtc_outb(bin2bcd(tm+1));		/* Write back Day     */
872	rtc_outb((m << 4) | wd);		/* Write back Month & Weekday  */
873	rtc_outb(bin2bcd(y%100));		/* Write back Year    */
874
875	rtc_serialcom(0x02);	/* Time set & Counter hold command. */
876	rtc_serialcom(0x00);	/* Register hold command. */
877}
878
879
880/*
881 * Start both clocks running.
882 */
883void
884cpu_initclocks()
885{
886#ifdef APIC_IO
887	int apic_8254_trial;
888	void *clkdesc;
889#endif /* APIC_IO */
890	register_t crit;
891
892
893	/* Finish initializing 8253 timer 0. */
894#ifdef APIC_IO
895
896	apic_8254_intr = isa_apic_irq(0);
897	apic_8254_trial = 0;
898	if (apic_8254_intr >= 0 ) {
899		if (apic_int_type(0, 0) == 3)
900			apic_8254_trial = 1;
901	} else {
902		/* look for ExtInt on pin 0 */
903		if (apic_int_type(0, 0) == 3) {
904			apic_8254_intr = apic_irq(0, 0);
905			setup_8254_mixed_mode();
906		} else
907			panic("APIC_IO: Cannot route 8254 interrupt to CPU");
908	}
909
910	inthand_add("clk", apic_8254_intr, (driver_intr_t *)clkintr, NULL,
911	    INTR_TYPE_CLK | INTR_FAST, &clkdesc);
912	crit = intr_disable();
913	mtx_lock_spin(&icu_lock);
914	INTREN(1 << apic_8254_intr);
915	mtx_unlock_spin(&icu_lock);
916	intr_restore(crit);
917
918#else /* APIC_IO */
919
920	/*
921	 * XXX Check the priority of this interrupt handler.  I
922	 * couldn't find anything suitable in the BSD/OS code (grog,
923	 * 19 July 2000).
924	 */
925	inthand_add("clk", 0, (driver_intr_t *)clkintr, NULL,
926	    INTR_TYPE_CLK | INTR_FAST, NULL);
927	crit = intr_disable();
928	mtx_lock_spin(&icu_lock);
929	INTREN(IRQ0);
930	mtx_unlock_spin(&icu_lock);
931	intr_restore(crit);
932
933#endif /* APIC_IO */
934
935
936
937#ifdef APIC_IO
938	if (apic_8254_trial) {
939
940		printf("APIC_IO: Testing 8254 interrupt delivery\n");
941		while (read_intr_count(8) < 6)
942			;	/* nothing */
943		if (read_intr_count(apic_8254_intr) < 3) {
944			/*
945			 * The MP table is broken.
946			 * The 8254 was not connected to the specified pin
947			 * on the IO APIC.
948			 * Workaround: Limited variant of mixed mode.
949			 */
950
951			crit = intr_disable();
952			mtx_lock_spin(&icu_lock);
953			INTRDIS(1 << apic_8254_intr);
954			mtx_unlock_spin(&icu_lock);
955			intr_restore(crit);
956			inthand_remove(clkdesc);
957			printf("APIC_IO: Broken MP table detected: "
958			       "8254 is not connected to "
959			       "IOAPIC #%d intpin %d\n",
960			       int_to_apicintpin[apic_8254_intr].ioapic,
961			       int_to_apicintpin[apic_8254_intr].int_pin);
962			/*
963			 * Revoke current ISA IRQ 0 assignment and
964			 * configure a fallback interrupt routing from
965			 * the 8254 Timer via the 8259 PIC to the
966			 * an ExtInt interrupt line on IOAPIC #0 intpin 0.
967			 * We reuse the low level interrupt handler number.
968			 */
969			if (apic_irq(0, 0) < 0) {
970				revoke_apic_irq(apic_8254_intr);
971				assign_apic_irq(0, 0, apic_8254_intr);
972			}
973			apic_8254_intr = apic_irq(0, 0);
974			setup_8254_mixed_mode();
975			inthand_add("clk", apic_8254_intr,
976				    (driver_intr_t *)clkintr, NULL,
977				    INTR_TYPE_CLK | INTR_FAST, NULL);
978			crit = intr_disable();
979			mtx_lock_spin(&icu_lock);
980			INTREN(1 << apic_8254_intr);
981			mtx_unlock_spin(&icu_lock);
982			intr_restore(crit);
983		}
984
985	}
986	if (apic_int_type(0, 0) != 3 ||
987	    int_to_apicintpin[apic_8254_intr].ioapic != 0 ||
988	    int_to_apicintpin[apic_8254_intr].int_pin != 0)
989		printf("APIC_IO: routing 8254 via IOAPIC #%d intpin %d\n",
990		       int_to_apicintpin[apic_8254_intr].ioapic,
991		       int_to_apicintpin[apic_8254_intr].int_pin);
992	else
993		printf("APIC_IO: "
994		       "routing 8254 via 8259 and IOAPIC #0 intpin 0\n");
995#endif
996
997}
998
999#ifdef APIC_IO
1000static u_long
1001read_intr_count(int vec)
1002{
1003	u_long *up;
1004	up = intr_countp[vec];
1005	if (up)
1006		return *up;
1007	return 0UL;
1008}
1009
1010static void
1011setup_8254_mixed_mode()
1012{
1013	/*
1014	 * Allow 8254 timer to INTerrupt 8259:
1015	 *  re-initialize master 8259:
1016	 *   reset; prog 4 bytes, single ICU, edge triggered
1017	 */
1018	outb(IO_ICU1, 0x13);
1019	outb(IO_ICU1 + 2, NRSVIDT);	/* start vector (unused) */
1020	outb(IO_ICU1 + 2, 0x00);	/* ignore slave */
1021	outb(IO_ICU1 + 2, 0x03);	/* auto EOI, 8086 */
1022	outb(IO_ICU1 + 2, 0xfe);	/* unmask INT0 */
1023
1024	/* program IO APIC for type 3 INT on INT0 */
1025	if (ext_int_setup(0, 0) < 0)
1026		panic("8254 redirect via APIC pin0 impossible!");
1027}
1028#endif
1029
1030void
1031cpu_startprofclock(void)
1032{
1033}
1034
1035void
1036cpu_stopprofclock(void)
1037{
1038}
1039
1040static int
1041sysctl_machdep_i8254_freq(SYSCTL_HANDLER_ARGS)
1042{
1043	int error;
1044	u_int freq;
1045
1046	/*
1047	 * Use `i8254' instead of `timer' in external names because `timer'
1048	 * is is too generic.  Should use it everywhere.
1049	 */
1050	freq = timer_freq;
1051	error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
1052	if (error == 0 && req->newptr != NULL) {
1053		if (timer0_state != RELEASED)
1054			return (EBUSY);	/* too much trouble to handle */
1055		set_timer_freq(freq, hz);
1056		i8254_timecounter.tc_frequency = freq;
1057	}
1058	return (error);
1059}
1060
1061SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
1062    0, sizeof(u_int), sysctl_machdep_i8254_freq, "IU", "");
1063
1064static unsigned
1065i8254_get_timecount(struct timecounter *tc)
1066{
1067	u_int count;
1068	u_int high, low;
1069	u_int eflags;
1070
1071	eflags = read_eflags();
1072	mtx_lock_spin(&clock_lock);
1073
1074	/* Select timer0 and latch counter value. */
1075	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
1076
1077	low = inb(TIMER_CNTR0);
1078	high = inb(TIMER_CNTR0);
1079	count = timer0_max_count - ((high << 8) | low);
1080	if (count < i8254_lastcount ||
1081	    (!i8254_ticked && (clkintr_pending ||
1082	    ((count < 20 || (!(eflags & PSL_I) && count < timer0_max_count / 2u)) &&
1083#ifdef APIC_IO
1084#define	lapic_irr1	((volatile u_int *)&lapic)[0x210 / 4]	/* XXX XXX */
1085	    /* XXX this assumes that apic_8254_intr is < 24. */
1086	    (lapic_irr1 & (1 << apic_8254_intr))))
1087#else
1088	    (inb(IO_ICU1) & 1)))
1089#endif
1090	    )) {
1091		i8254_ticked = 1;
1092		i8254_offset += timer0_max_count;
1093	}
1094	i8254_lastcount = count;
1095	count += i8254_offset;
1096	mtx_unlock_spin(&clock_lock);
1097	return (count);
1098}
1099
1100#ifdef DEV_ISA
1101/*
1102 * Attach to the ISA PnP descriptors for the timer and realtime clock.
1103 */
1104static struct isa_pnp_id attimer_ids[] = {
1105	{ 0x0001d041 /* PNP0100 */, "AT timer" },
1106	{ 0x000bd041 /* PNP0B00 */, "AT realtime clock" },
1107	{ 0 }
1108};
1109
1110static int
1111attimer_probe(device_t dev)
1112{
1113	int result;
1114
1115	if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, attimer_ids)) <= 0)
1116		device_quiet(dev);
1117	return(result);
1118}
1119
1120static int
1121attimer_attach(device_t dev)
1122{
1123	return(0);
1124}
1125
1126static device_method_t attimer_methods[] = {
1127	/* Device interface */
1128	DEVMETHOD(device_probe,		attimer_probe),
1129	DEVMETHOD(device_attach,	attimer_attach),
1130	DEVMETHOD(device_detach,	bus_generic_detach),
1131	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1132	DEVMETHOD(device_suspend,	bus_generic_suspend),	/* XXX stop statclock? */
1133	DEVMETHOD(device_resume,	bus_generic_resume),	/* XXX restart statclock? */
1134	{ 0, 0 }
1135};
1136
1137static driver_t attimer_driver = {
1138	"attimer",
1139	attimer_methods,
1140	1,		/* no softc */
1141};
1142
1143static devclass_t attimer_devclass;
1144
1145DRIVER_MODULE(attimer, isa, attimer_driver, attimer_devclass, 0, 0);
1146#endif /* DEV_ISA */
1147