pcrtc.c revision 105710
1/*-
2 * Copyright (c) 1990 The Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * William Jolitz and Don Ahn.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)clock.c	7.2 (Berkeley) 5/12/91
37 * $FreeBSD: head/sys/pc98/cbus/pcrtc.c 105710 2002-10-22 15:19:46Z nyan $
38 */
39
40/*
41 * Routines to handle clock hardware.
42 */
43
44/*
45 * inittodr, settodr and support routines written
46 * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
47 *
48 * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
49 */
50
51/*
52 * modified for PC98 by Kakefuda
53 */
54
55#include "opt_clock.h"
56#include "opt_isa.h"
57#include "opt_mca.h"
58
59#include <sys/param.h>
60#include <sys/systm.h>
61#include <sys/bus.h>
62#include <sys/lock.h>
63#include <sys/mutex.h>
64#include <sys/proc.h>
65#include <sys/time.h>
66#include <sys/timetc.h>
67#include <sys/kernel.h>
68#include <sys/sysctl.h>
69#include <sys/cons.h>
70#include <sys/power.h>
71
72#include <machine/clock.h>
73#include <machine/cputypes.h>
74#include <machine/frame.h>
75#include <machine/limits.h>
76#include <machine/md_var.h>
77#include <machine/psl.h>
78#ifdef APIC_IO
79#include <machine/segments.h>
80#endif
81#if defined(SMP) || defined(APIC_IO)
82#include <machine/smp.h>
83#endif /* SMP || APIC_IO */
84#include <machine/specialreg.h>
85
86#include <i386/isa/icu.h>
87#ifdef PC98
88#include <pc98/pc98/pc98.h>
89#include <pc98/pc98/pc98_machdep.h>
90#include <i386/isa/isa_device.h>
91#else
92#include <i386/isa/isa.h>
93#include <isa/rtc.h>
94#endif
95#ifdef DEV_ISA
96#include <isa/isavar.h>
97#endif
98#include <i386/isa/timerreg.h>
99
100#include <i386/isa/intr_machdep.h>
101
102#ifdef DEV_MCA
103#include <i386/isa/mca_machdep.h>
104#endif
105
106#ifdef APIC_IO
107#include <i386/isa/intr_machdep.h>
108/* The interrupt triggered by the 8254 (timer) chip */
109int apic_8254_intr;
110static u_long read_intr_count(int vec);
111static void setup_8254_mixed_mode(void);
112#endif
113
114/*
115 * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
116 * can use a simple formula for leap years.
117 */
118#define	LEAPYEAR(y) ((u_int)(y) % 4 == 0)
119#define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
120
121#define	TIMER_DIV(x) ((timer_freq + (x) / 2) / (x))
122
123/*
124 * Time in timer cycles that it takes for microtime() to disable interrupts
125 * and latch the count.  microtime() currently uses "cli; outb ..." so it
126 * normally takes less than 2 timer cycles.  Add a few for cache misses.
127 * Add a few more to allow for latency in bogus calls to microtime() with
128 * interrupts already disabled.
129 */
130#define	TIMER0_LATCH_COUNT	20
131
132/*
133 * Maximum frequency that we are willing to allow for timer0.  Must be
134 * low enough to guarantee that the timer interrupt handler returns
135 * before the next timer interrupt.
136 */
137#define	TIMER0_MAX_FREQ		20000
138
139int	adjkerntz;		/* local offset from GMT in seconds */
140int	clkintr_pending;
141int	disable_rtc_set;	/* disable resettodr() if != 0 */
142int	statclock_disable;
143#ifndef TIMER_FREQ
144#ifdef PC98
145#define TIMER_FREQ   2457600
146#else /* IBM-PC */
147#define TIMER_FREQ   1193182
148#endif /* PC98 */
149#endif
150u_int	timer_freq = TIMER_FREQ;
151int	timer0_max_count;
152u_int	tsc_freq;
153int	tsc_is_broken;
154u_int	tsc_present;
155int	wall_cmos_clock;	/* wall CMOS clock assumed if != 0 */
156struct mtx clock_lock;
157
158static	int	beeping = 0;
159static	const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
160static	u_int	hardclock_max_count;
161static	u_int32_t i8254_lastcount;
162static	u_int32_t i8254_offset;
163static	int	i8254_ticked;
164/*
165 * XXX new_function and timer_func should not handle clockframes, but
166 * timer_func currently needs to hold hardclock to handle the
167 * timer0_state == 0 case.  We should use inthand_add()/inthand_remove()
168 * to switch between clkintr() and a slightly different timerintr().
169 */
170static	void	(*new_function)(struct clockframe *frame);
171static	u_int	new_rate;
172#ifndef PC98
173static	u_char	rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
174static	u_char	rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
175#endif
176static	u_int	timer0_prescaler_count;
177
178/* Values for timerX_state: */
179#define	RELEASED	0
180#define	RELEASE_PENDING	1
181#define	ACQUIRED	2
182#define	ACQUIRE_PENDING	3
183
184static	u_char	timer0_state;
185#ifdef	PC98
186static 	u_char	timer1_state;
187#endif
188static	u_char	timer2_state;
189static	void	(*timer_func)(struct clockframe *frame) = hardclock;
190#ifdef PC98
191static void rtc_serialcombit(int);
192static void rtc_serialcom(int);
193static int rtc_inb(void);
194static void rtc_outb(int);
195#endif
196
197static	unsigned i8254_get_timecount(struct timecounter *tc);
198static	unsigned tsc_get_timecount(struct timecounter *tc);
199static	void	set_timer_freq(u_int freq, int intr_freq);
200
201static struct timecounter tsc_timecounter = {
202	tsc_get_timecount,	/* get_timecount */
203	0,			/* no poll_pps */
204 	~0u,			/* counter_mask */
205	0,			/* frequency */
206	 "TSC"			/* name */
207};
208
209static struct timecounter i8254_timecounter = {
210	i8254_get_timecount,	/* get_timecount */
211	0,			/* no poll_pps */
212	~0u,			/* counter_mask */
213	0,			/* frequency */
214	"i8254"			/* name */
215};
216
217static void
218clkintr(struct clockframe frame)
219{
220
221	if (timecounter->tc_get_timecount == i8254_get_timecount) {
222		mtx_lock_spin(&clock_lock);
223		if (i8254_ticked)
224			i8254_ticked = 0;
225		else {
226			i8254_offset += timer0_max_count;
227			i8254_lastcount = 0;
228		}
229		clkintr_pending = 0;
230		mtx_unlock_spin(&clock_lock);
231	}
232	timer_func(&frame);
233#ifdef SMP
234	if (timer_func == hardclock)
235		forward_hardclock();
236#endif
237	switch (timer0_state) {
238
239	case RELEASED:
240		break;
241
242	case ACQUIRED:
243		if ((timer0_prescaler_count += timer0_max_count)
244		    >= hardclock_max_count) {
245			timer0_prescaler_count -= hardclock_max_count;
246			hardclock(&frame);
247#ifdef SMP
248			forward_hardclock();
249#endif
250		}
251		break;
252
253	case ACQUIRE_PENDING:
254		mtx_lock_spin(&clock_lock);
255		i8254_offset = i8254_get_timecount(NULL);
256		i8254_lastcount = 0;
257		timer0_max_count = TIMER_DIV(new_rate);
258		outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
259		outb(TIMER_CNTR0, timer0_max_count & 0xff);
260		outb(TIMER_CNTR0, timer0_max_count >> 8);
261		mtx_unlock_spin(&clock_lock);
262		timer_func = new_function;
263		timer0_state = ACQUIRED;
264		break;
265
266	case RELEASE_PENDING:
267		if ((timer0_prescaler_count += timer0_max_count)
268		    >= hardclock_max_count) {
269			mtx_lock_spin(&clock_lock);
270			i8254_offset = i8254_get_timecount(NULL);
271			i8254_lastcount = 0;
272			timer0_max_count = hardclock_max_count;
273			outb(TIMER_MODE,
274			     TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
275			outb(TIMER_CNTR0, timer0_max_count & 0xff);
276			outb(TIMER_CNTR0, timer0_max_count >> 8);
277			mtx_unlock_spin(&clock_lock);
278			timer0_prescaler_count = 0;
279			timer_func = hardclock;
280			timer0_state = RELEASED;
281			hardclock(&frame);
282#ifdef SMP
283			forward_hardclock();
284#endif
285		}
286		break;
287	}
288#ifdef DEV_MCA
289	/* Reset clock interrupt by asserting bit 7 of port 0x61 */
290	if (MCA_system)
291		outb(0x61, inb(0x61) | 0x80);
292#endif
293}
294
295/*
296 * The acquire and release functions must be called at ipl >= splclock().
297 */
298int
299acquire_timer0(int rate, void (*function)(struct clockframe *frame))
300{
301	static int old_rate;
302
303	if (rate <= 0 || rate > TIMER0_MAX_FREQ)
304		return (-1);
305	switch (timer0_state) {
306
307	case RELEASED:
308		timer0_state = ACQUIRE_PENDING;
309		break;
310
311	case RELEASE_PENDING:
312		if (rate != old_rate)
313			return (-1);
314		/*
315		 * The timer has been released recently, but is being
316		 * re-acquired before the release completed.  In this
317		 * case, we simply reclaim it as if it had not been
318		 * released at all.
319		 */
320		timer0_state = ACQUIRED;
321		break;
322
323	default:
324		return (-1);	/* busy */
325	}
326	new_function = function;
327	old_rate = new_rate = rate;
328	return (0);
329}
330
331#ifdef PC98
332int
333acquire_timer1(int mode)
334{
335
336	if (timer1_state != RELEASED)
337		return (-1);
338	timer1_state = ACQUIRED;
339
340	/*
341	 * This access to the timer registers is as atomic as possible
342	 * because it is a single instruction.  We could do better if we
343	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
344	 * and this is probably good enough for timer2, so we aren't as
345	 * careful with it as with timer0.
346	 */
347	outb(TIMER_MODE, TIMER_SEL1 | (mode & 0x3f));
348
349	return (0);
350}
351#endif
352
353int
354acquire_timer2(int mode)
355{
356
357	if (timer2_state != RELEASED)
358		return (-1);
359	timer2_state = ACQUIRED;
360
361	/*
362	 * This access to the timer registers is as atomic as possible
363	 * because it is a single instruction.  We could do better if we
364	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
365	 * and this is probably good enough for timer2, so we aren't as
366	 * careful with it as with timer0.
367	 */
368	outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
369
370	return (0);
371}
372
373int
374release_timer0()
375{
376	switch (timer0_state) {
377
378	case ACQUIRED:
379		timer0_state = RELEASE_PENDING;
380		break;
381
382	case ACQUIRE_PENDING:
383		/* Nothing happened yet, release quickly. */
384		timer0_state = RELEASED;
385		break;
386
387	default:
388		return (-1);
389	}
390	return (0);
391}
392
393#ifdef PC98
394int
395release_timer1()
396{
397
398	if (timer1_state != ACQUIRED)
399		return (-1);
400	timer1_state = RELEASED;
401	outb(TIMER_MODE, TIMER_SEL1 | TIMER_SQWAVE | TIMER_16BIT);
402	return (0);
403}
404#endif
405
406int
407release_timer2()
408{
409
410	if (timer2_state != ACQUIRED)
411		return (-1);
412	timer2_state = RELEASED;
413	outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
414	return (0);
415}
416
417#ifndef PC98
418/*
419 * This routine receives statistical clock interrupts from the RTC.
420 * As explained above, these occur at 128 interrupts per second.
421 * When profiling, we receive interrupts at a rate of 1024 Hz.
422 *
423 * This does not actually add as much overhead as it sounds, because
424 * when the statistical clock is active, the hardclock driver no longer
425 * needs to keep (inaccurate) statistics on its own.  This decouples
426 * statistics gathering from scheduling interrupts.
427 *
428 * The RTC chip requires that we read status register C (RTC_INTR)
429 * to acknowledge an interrupt, before it will generate the next one.
430 * Under high interrupt load, rtcintr() can be indefinitely delayed and
431 * the clock can tick immediately after the read from RTC_INTR.  In this
432 * case, the mc146818A interrupt signal will not drop for long enough
433 * to register with the 8259 PIC.  If an interrupt is missed, the stat
434 * clock will halt, considerably degrading system performance.  This is
435 * why we use 'while' rather than a more straightforward 'if' below.
436 * Stat clock ticks can still be lost, causing minor loss of accuracy
437 * in the statistics, but the stat clock will no longer stop.
438 */
439static void
440rtcintr(struct clockframe frame)
441{
442	while (rtcin(RTC_INTR) & RTCIR_PERIOD) {
443		statclock(&frame);
444#ifdef SMP
445		forward_statclock();
446#endif
447	}
448}
449
450#include "opt_ddb.h"
451#ifdef DDB
452#include <ddb/ddb.h>
453
454DB_SHOW_COMMAND(rtc, rtc)
455{
456	printf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
457	       rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
458	       rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
459	       rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
460}
461#endif /* DDB */
462#endif /* for PC98 */
463
464static int
465getit(void)
466{
467	int high, low;
468
469	mtx_lock_spin(&clock_lock);
470
471	/* Select timer0 and latch counter value. */
472	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
473
474	low = inb(TIMER_CNTR0);
475	high = inb(TIMER_CNTR0);
476
477	mtx_unlock_spin(&clock_lock);
478	return ((high << 8) | low);
479}
480
481/*
482 * Wait "n" microseconds.
483 * Relies on timer 1 counting down from (timer_freq / hz)
484 * Note: timer had better have been programmed before this is first used!
485 */
486void
487DELAY(int n)
488{
489	int delta, prev_tick, tick, ticks_left;
490
491#ifdef DELAYDEBUG
492	int getit_calls = 1;
493	int n1;
494	static int state = 0;
495
496	if (state == 0) {
497		state = 1;
498		for (n1 = 1; n1 <= 10000000; n1 *= 10)
499			DELAY(n1);
500		state = 2;
501	}
502	if (state == 1)
503		printf("DELAY(%d)...", n);
504#endif
505	/*
506	 * Guard against the timer being uninitialized if we are called
507	 * early for console i/o.
508	 */
509	if (timer0_max_count == 0)
510		set_timer_freq(timer_freq, hz);
511
512	/*
513	 * Read the counter first, so that the rest of the setup overhead is
514	 * counted.  Guess the initial overhead is 20 usec (on most systems it
515	 * takes about 1.5 usec for each of the i/o's in getit().  The loop
516	 * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
517	 * multiplications and divisions to scale the count take a while).
518	 */
519	prev_tick = getit();
520	n -= 0;			/* XXX actually guess no initial overhead */
521	/*
522	 * Calculate (n * (timer_freq / 1e6)) without using floating point
523	 * and without any avoidable overflows.
524	 */
525	if (n <= 0)
526		ticks_left = 0;
527	else if (n < 256)
528		/*
529		 * Use fixed point to avoid a slow division by 1000000.
530		 * 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
531		 * 2^15 is the first power of 2 that gives exact results
532		 * for n between 0 and 256.
533		 */
534		ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
535	else
536		/*
537		 * Don't bother using fixed point, although gcc-2.7.2
538		 * generates particularly poor code for the long long
539		 * division, since even the slow way will complete long
540		 * before the delay is up (unless we're interrupted).
541		 */
542		ticks_left = ((u_int)n * (long long)timer_freq + 999999)
543			     / 1000000;
544
545	while (ticks_left > 0) {
546		tick = getit();
547#ifdef DELAYDEBUG
548		++getit_calls;
549#endif
550		delta = prev_tick - tick;
551		prev_tick = tick;
552		if (delta < 0) {
553			delta += timer0_max_count;
554			/*
555			 * Guard against timer0_max_count being wrong.
556			 * This shouldn't happen in normal operation,
557			 * but it may happen if set_timer_freq() is
558			 * traced.
559			 */
560			if (delta < 0)
561				delta = 0;
562		}
563		ticks_left -= delta;
564	}
565#ifdef DELAYDEBUG
566	if (state == 1)
567		printf(" %d calls to getit() at %d usec each\n",
568		       getit_calls, (n + 5) / getit_calls);
569#endif
570}
571
572static void
573sysbeepstop(void *chan)
574{
575#ifdef PC98	/* PC98 */
576	outb(IO_PPI, inb(IO_PPI)|0x08);	/* disable counter1 output to speaker */
577	release_timer1();
578#else
579	outb(IO_PPI, inb(IO_PPI)&0xFC);	/* disable counter2 output to speaker */
580	release_timer2();
581#endif
582	beeping = 0;
583}
584
585int
586sysbeep(int pitch, int period)
587{
588	int x = splclock();
589
590#ifdef PC98
591	if (acquire_timer1(TIMER_SQWAVE|TIMER_16BIT))
592		if (!beeping) {
593			/* Something else owns it. */
594			splx(x);
595			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
596		}
597	disable_intr();
598	outb(0x3fdb, pitch);
599	outb(0x3fdb, (pitch>>8));
600	enable_intr();
601	if (!beeping) {
602		/* enable counter1 output to speaker */
603		outb(IO_PPI, (inb(IO_PPI) & 0xf7));
604		beeping = period;
605		timeout(sysbeepstop, (void *)NULL, period);
606	}
607#else
608	if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
609		if (!beeping) {
610			/* Something else owns it. */
611			splx(x);
612			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
613		}
614	mtx_lock_spin(&clock_lock);
615	outb(TIMER_CNTR2, pitch);
616	outb(TIMER_CNTR2, (pitch>>8));
617	mtx_unlock_spin(&clock_lock);
618	if (!beeping) {
619		/* enable counter2 output to speaker */
620		outb(IO_PPI, inb(IO_PPI) | 3);
621		beeping = period;
622		timeout(sysbeepstop, (void *)NULL, period);
623	}
624#endif
625	splx(x);
626	return (0);
627}
628
629#ifndef PC98
630/*
631 * RTC support routines
632 */
633
634int
635rtcin(reg)
636	int reg;
637{
638	int s;
639	u_char val;
640
641	s = splhigh();
642	outb(IO_RTC, reg);
643	inb(0x84);
644	val = inb(IO_RTC + 1);
645	inb(0x84);
646	splx(s);
647	return (val);
648}
649
650static __inline void
651writertc(u_char reg, u_char val)
652{
653	int s;
654
655	s = splhigh();
656	inb(0x84);
657	outb(IO_RTC, reg);
658	inb(0x84);
659	outb(IO_RTC + 1, val);
660	inb(0x84);		/* XXX work around wrong order in rtcin() */
661	splx(s);
662}
663
664static __inline int
665readrtc(int port)
666{
667	return(bcd2bin(rtcin(port)));
668}
669#endif
670
671#ifdef PC98
672unsigned int delaycount;
673#define FIRST_GUESS	0x2000
674static void findcpuspeed(void)
675{
676	int i;
677	int remainder;
678
679	/* Put counter in count down mode */
680	outb(TIMER_MODE, TIMER_SEL0 | TIMER_16BIT | TIMER_RATEGEN);
681	outb(TIMER_CNTR0, 0xff);
682	outb(TIMER_CNTR0, 0xff);
683	for (i = FIRST_GUESS; i; i--)
684		;
685	remainder = getit();
686	delaycount = (FIRST_GUESS * TIMER_DIV(1000)) / (0xffff - remainder);
687}
688#endif
689
690#ifdef PC98
691static u_int
692calibrate_clocks(void)
693{
694	int	timeout;
695	u_int	count, prev_count, tot_count;
696	u_short	sec, start_sec;
697
698	if (bootverbose)
699	        printf("Calibrating clock(s) ... ");
700	/* Check ARTIC. */
701	if (!(PC98_SYSTEM_PARAMETER(0x458) & 0x80) &&
702	    !(PC98_SYSTEM_PARAMETER(0x45b) & 0x04))
703		goto fail;
704	timeout = 100000000;
705
706	/* Read the ARTIC. */
707	sec = inw(0x5e);
708
709	/* Wait for the ARTIC to changes. */
710	start_sec = sec;
711	for (;;) {
712		sec = inw(0x5e);
713		if (sec != start_sec)
714			break;
715		if (--timeout == 0)
716			goto fail;
717	}
718	prev_count = getit();
719	if (prev_count == 0 || prev_count > timer0_max_count)
720		goto fail;
721	tot_count = 0;
722
723	if (tsc_present)
724		wrmsr(0x10, 0LL);	/* XXX 0x10 is the MSR for the TSC */
725	start_sec = sec;
726	for (;;) {
727		sec = inw(0x5e);
728		count = getit();
729		if (count == 0 || count > timer0_max_count)
730			goto fail;
731		if (count > prev_count)
732			tot_count += prev_count - (count - timer0_max_count);
733		else
734			tot_count += prev_count - count;
735		prev_count = count;
736		if ((sec == start_sec + 1200) ||
737		    (sec < start_sec &&
738		        (u_int)sec + 0x10000 == (u_int)start_sec + 1200))
739			break;
740		if (--timeout == 0)
741			goto fail;
742	}
743	/*
744	 * Read the cpu cycle counter.  The timing considerations are
745	 * similar to those for the i8254 clock.
746	 */
747	if (tsc_present)
748		tsc_freq = rdtsc();
749
750	if (bootverbose) {
751		if (tsc_present)
752		        printf("TSC clock: %u Hz, ", tsc_freq);
753	        printf("i8254 clock: %u Hz\n", tot_count);
754	}
755	return (tot_count);
756
757fail:
758	if (bootverbose)
759	        printf("failed, using default i8254 clock of %u Hz\n",
760		       timer_freq);
761	return (timer_freq);
762}
763#else
764static u_int
765calibrate_clocks(void)
766{
767	u_int64_t old_tsc;
768	u_int count, prev_count, tot_count;
769	int sec, start_sec, timeout;
770
771	if (bootverbose)
772	        printf("Calibrating clock(s) ... ");
773	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
774		goto fail;
775	timeout = 100000000;
776
777	/* Read the mc146818A seconds counter. */
778	for (;;) {
779		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
780			sec = rtcin(RTC_SEC);
781			break;
782		}
783		if (--timeout == 0)
784			goto fail;
785	}
786
787	/* Wait for the mC146818A seconds counter to change. */
788	start_sec = sec;
789	for (;;) {
790		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
791			sec = rtcin(RTC_SEC);
792			if (sec != start_sec)
793				break;
794		}
795		if (--timeout == 0)
796			goto fail;
797	}
798
799	/* Start keeping track of the i8254 counter. */
800	prev_count = getit();
801	if (prev_count == 0 || prev_count > timer0_max_count)
802		goto fail;
803	tot_count = 0;
804
805	if (tsc_present)
806		old_tsc = rdtsc();
807	else
808		old_tsc = 0;		/* shut up gcc */
809
810	/*
811	 * Wait for the mc146818A seconds counter to change.  Read the i8254
812	 * counter for each iteration since this is convenient and only
813	 * costs a few usec of inaccuracy. The timing of the final reads
814	 * of the counters almost matches the timing of the initial reads,
815	 * so the main cause of inaccuracy is the varying latency from
816	 * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
817	 * rtcin(RTC_SEC) that returns a changed seconds count.  The
818	 * maximum inaccuracy from this cause is < 10 usec on 486's.
819	 */
820	start_sec = sec;
821	for (;;) {
822		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
823			sec = rtcin(RTC_SEC);
824		count = getit();
825		if (count == 0 || count > timer0_max_count)
826			goto fail;
827		if (count > prev_count)
828			tot_count += prev_count - (count - timer0_max_count);
829		else
830			tot_count += prev_count - count;
831		prev_count = count;
832		if (sec != start_sec)
833			break;
834		if (--timeout == 0)
835			goto fail;
836	}
837
838	/*
839	 * Read the cpu cycle counter.  The timing considerations are
840	 * similar to those for the i8254 clock.
841	 */
842	if (tsc_present)
843		tsc_freq = rdtsc() - old_tsc;
844
845	if (bootverbose) {
846		if (tsc_present)
847		        printf("TSC clock: %u Hz, ", tsc_freq);
848	        printf("i8254 clock: %u Hz\n", tot_count);
849	}
850	return (tot_count);
851
852fail:
853	if (bootverbose)
854	        printf("failed, using default i8254 clock of %u Hz\n",
855		       timer_freq);
856	return (timer_freq);
857}
858#endif	/* !PC98 */
859
860static void
861set_timer_freq(u_int freq, int intr_freq)
862{
863	int new_timer0_max_count;
864
865	mtx_lock_spin(&clock_lock);
866	timer_freq = freq;
867	new_timer0_max_count = hardclock_max_count = TIMER_DIV(intr_freq);
868	if (new_timer0_max_count != timer0_max_count) {
869		timer0_max_count = new_timer0_max_count;
870		outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
871		outb(TIMER_CNTR0, timer0_max_count & 0xff);
872		outb(TIMER_CNTR0, timer0_max_count >> 8);
873	}
874	mtx_unlock_spin(&clock_lock);
875}
876
877static void
878i8254_restore(void)
879{
880
881	mtx_lock_spin(&clock_lock);
882	outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
883	outb(TIMER_CNTR0, timer0_max_count & 0xff);
884	outb(TIMER_CNTR0, timer0_max_count >> 8);
885	mtx_unlock_spin(&clock_lock);
886}
887
888#ifndef PC98
889static void
890rtc_restore(void)
891{
892
893	/* Restore all of the RTC's "status" (actually, control) registers. */
894	/* XXX locking is needed for RTC access. */
895	writertc(RTC_STATUSB, RTCSB_24HR);
896	writertc(RTC_STATUSA, rtc_statusa);
897	writertc(RTC_STATUSB, rtc_statusb);
898}
899#endif
900
901/*
902 * Restore all the timers non-atomically (XXX: should be atomically).
903 *
904 * This function is called from pmtimer_resume() to restore all the timers.
905 * This should not be necessary, but there are broken laptops that do not
906 * restore all the timers on resume.
907 */
908void
909timer_restore(void)
910{
911
912	i8254_restore();		/* restore timer_freq and hz */
913#ifndef PC98
914	rtc_restore();			/* reenable RTC interrupts */
915#endif
916}
917
918/*
919 * Initialize 8254 timer 0 early so that it can be used in DELAY().
920 * XXX initialization of other timers is unintentionally left blank.
921 */
922void
923startrtclock()
924{
925	u_int delta, freq;
926
927#ifdef PC98
928	findcpuspeed();
929	if (pc98_machine_type & M_8M)
930		timer_freq = 1996800L; /* 1.9968 MHz */
931	else
932		timer_freq = 2457600L; /* 2.4576 MHz */
933#endif /* PC98 */
934
935	if (cpu_feature & CPUID_TSC)
936		tsc_present = 1;
937	else
938		tsc_present = 0;
939
940#ifndef PC98
941	writertc(RTC_STATUSA, rtc_statusa);
942	writertc(RTC_STATUSB, RTCSB_24HR);
943#endif
944
945	set_timer_freq(timer_freq, hz);
946	freq = calibrate_clocks();
947#ifdef CLK_CALIBRATION_LOOP
948	if (bootverbose) {
949		printf(
950		"Press a key on the console to abort clock calibration\n");
951		while (cncheckc() == -1)
952			calibrate_clocks();
953	}
954#endif
955
956	/*
957	 * Use the calibrated i8254 frequency if it seems reasonable.
958	 * Otherwise use the default, and don't use the calibrated i586
959	 * frequency.
960	 */
961	delta = freq > timer_freq ? freq - timer_freq : timer_freq - freq;
962	if (delta < timer_freq / 100) {
963#ifndef CLK_USE_I8254_CALIBRATION
964		if (bootverbose)
965			printf(
966"CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
967		freq = timer_freq;
968#endif
969		timer_freq = freq;
970	} else {
971		if (bootverbose)
972			printf(
973		    "%d Hz differs from default of %d Hz by more than 1%%\n",
974			       freq, timer_freq);
975		tsc_freq = 0;
976	}
977
978	set_timer_freq(timer_freq, hz);
979	i8254_timecounter.tc_frequency = timer_freq;
980	tc_init(&i8254_timecounter);
981
982#ifndef CLK_USE_TSC_CALIBRATION
983	if (tsc_freq != 0) {
984		if (bootverbose)
985			printf(
986"CLK_USE_TSC_CALIBRATION not specified - using old calibration method\n");
987		tsc_freq = 0;
988	}
989#endif
990	if (tsc_present && tsc_freq == 0) {
991		/*
992		 * Calibration of the i586 clock relative to the mc146818A
993		 * clock failed.  Do a less accurate calibration relative
994		 * to the i8254 clock.
995		 */
996		u_int64_t old_tsc = rdtsc();
997
998		DELAY(1000000);
999		tsc_freq = rdtsc() - old_tsc;
1000#ifdef CLK_USE_TSC_CALIBRATION
1001		if (bootverbose)
1002			printf("TSC clock: %u Hz (Method B)\n", tsc_freq);
1003#endif
1004	}
1005
1006#if !defined(SMP)
1007	/*
1008	 * We can not use the TSC in SMP mode, until we figure out a
1009	 * cheap (impossible), reliable and precise (yeah right!)  way
1010	 * to synchronize the TSCs of all the CPUs.
1011	 * Curse Intel for leaving the counter out of the I/O APIC.
1012	 */
1013
1014	/*
1015	 * We can not use the TSC if we support APM. Precise timekeeping
1016	 * on an APM'ed machine is at best a fools pursuit, since
1017	 * any and all of the time spent in various SMM code can't
1018	 * be reliably accounted for.  Reading the RTC is your only
1019	 * source of reliable time info.  The i8254 looses too of course
1020	 * but we need to have some kind of time...
1021	 * We don't know at this point whether APM is going to be used
1022	 * or not, nor when it might be activated.  Play it safe.
1023	 */
1024	if (power_pm_get_type() == POWER_PM_TYPE_APM) {
1025		if (bootverbose)
1026			printf("TSC initialization skipped: APM enabled.\n");
1027		return;
1028	}
1029
1030	if (tsc_present && tsc_freq != 0 && !tsc_is_broken) {
1031		tsc_timecounter.tc_frequency = tsc_freq;
1032		tc_init(&tsc_timecounter);
1033	}
1034
1035#endif /* !defined(SMP) */
1036}
1037
1038#ifdef PC98
1039static void
1040rtc_serialcombit(int i)
1041{
1042	outb(IO_RTC, ((i&0x01)<<5)|0x07);
1043	DELAY(1);
1044	outb(IO_RTC, ((i&0x01)<<5)|0x17);
1045	DELAY(1);
1046	outb(IO_RTC, ((i&0x01)<<5)|0x07);
1047	DELAY(1);
1048}
1049
1050static void
1051rtc_serialcom(int i)
1052{
1053	rtc_serialcombit(i&0x01);
1054	rtc_serialcombit((i&0x02)>>1);
1055	rtc_serialcombit((i&0x04)>>2);
1056	rtc_serialcombit((i&0x08)>>3);
1057	outb(IO_RTC, 0x07);
1058	DELAY(1);
1059	outb(IO_RTC, 0x0f);
1060	DELAY(1);
1061	outb(IO_RTC, 0x07);
1062 	DELAY(1);
1063}
1064
1065static void
1066rtc_outb(int val)
1067{
1068	int s;
1069	int sa = 0;
1070
1071	for (s=0;s<8;s++) {
1072	    sa = ((val >> s) & 0x01) ? 0x27 : 0x07;
1073	    outb(IO_RTC, sa);		/* set DI & CLK 0 */
1074	    DELAY(1);
1075	    outb(IO_RTC, sa | 0x10);	/* CLK 1 */
1076	    DELAY(1);
1077	}
1078	outb(IO_RTC, sa & 0xef);	/* CLK 0 */
1079}
1080
1081static int
1082rtc_inb(void)
1083{
1084	int s;
1085	int sa = 0;
1086
1087	for (s=0;s<8;s++) {
1088	    sa |= ((inb(0x33) & 0x01) << s);
1089	    outb(IO_RTC, 0x17);	/* CLK 1 */
1090	    DELAY(1);
1091	    outb(IO_RTC, 0x07);	/* CLK 0 */
1092	    DELAY(2);
1093	}
1094	return sa;
1095}
1096#endif /* PC-98 */
1097
1098/*
1099 * Initialize the time of day register, based on the time base which is, e.g.
1100 * from a filesystem.
1101 */
1102void
1103inittodr(time_t base)
1104{
1105	unsigned long	sec, days;
1106	int		year, month;
1107	int		y, m, s;
1108	struct timespec ts;
1109#ifdef PC98
1110	int		second, min, hour;
1111#endif
1112
1113	if (base) {
1114		s = splclock();
1115		ts.tv_sec = base;
1116		ts.tv_nsec = 0;
1117		tc_setclock(&ts);
1118		splx(s);
1119	}
1120
1121#ifdef PC98
1122	rtc_serialcom(0x03);	/* Time Read */
1123	rtc_serialcom(0x01);	/* Register shift command. */
1124	DELAY(20);
1125
1126	second = bcd2bin(rtc_inb() & 0xff);	/* sec */
1127	min = bcd2bin(rtc_inb() & 0xff);	/* min */
1128	hour = bcd2bin(rtc_inb() & 0xff);	/* hour */
1129	days = bcd2bin(rtc_inb() & 0xff) - 1;	/* date */
1130
1131	month = (rtc_inb() >> 4) & 0x0f;	/* month */
1132	for (m = 1; m <	month; m++)
1133		days +=	daysinmonth[m-1];
1134	year = bcd2bin(rtc_inb() & 0xff) + 1900;	/* year */
1135	/* 2000 year problem */
1136	if (year < 1995)
1137		year += 100;
1138	if (year < 1970)
1139		goto wrong_time;
1140	for (y = 1970; y < year; y++)
1141		days +=	DAYSPERYEAR + LEAPYEAR(y);
1142	if ((month > 2)	&& LEAPYEAR(year))
1143		days ++;
1144	sec = ((( days * 24 +
1145		  hour) * 60 +
1146		  min) * 60 +
1147		  second);
1148	/* sec now contains the	number of seconds, since Jan 1 1970,
1149	   in the local	time zone */
1150
1151	s = splhigh();
1152#else	/* IBM-PC */
1153	/* Look if we have a RTC present and the time is valid */
1154	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
1155		goto wrong_time;
1156
1157	/* wait for time update to complete */
1158	/* If RTCSA_TUP is zero, we have at least 244us before next update */
1159	s = splhigh();
1160	while (rtcin(RTC_STATUSA) & RTCSA_TUP) {
1161		splx(s);
1162		s = splhigh();
1163	}
1164
1165	days = 0;
1166#ifdef USE_RTC_CENTURY
1167	year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
1168#else
1169	year = readrtc(RTC_YEAR) + 1900;
1170	if (year < 1970)
1171		year += 100;
1172#endif
1173	if (year < 1970) {
1174		splx(s);
1175		goto wrong_time;
1176	}
1177	month = readrtc(RTC_MONTH);
1178	for (m = 1; m < month; m++)
1179		days += daysinmonth[m-1];
1180	if ((month > 2) && LEAPYEAR(year))
1181		days ++;
1182	days += readrtc(RTC_DAY) - 1;
1183	for (y = 1970; y < year; y++)
1184		days += DAYSPERYEAR + LEAPYEAR(y);
1185	sec = ((( days * 24 +
1186		  readrtc(RTC_HRS)) * 60 +
1187		  readrtc(RTC_MIN)) * 60 +
1188		  readrtc(RTC_SEC));
1189	/* sec now contains the number of seconds, since Jan 1 1970,
1190	   in the local time zone */
1191#endif
1192
1193	sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1194
1195	y = time_second - sec;
1196	if (y <= -2 || y >= 2) {
1197		/* badly off, adjust it */
1198		ts.tv_sec = sec;
1199		ts.tv_nsec = 0;
1200		tc_setclock(&ts);
1201	}
1202	splx(s);
1203	return;
1204
1205wrong_time:
1206	printf("Invalid time in real time clock.\n");
1207	printf("Check and reset the date immediately!\n");
1208}
1209
1210/*
1211 * Write system time back to RTC
1212 */
1213void
1214resettodr()
1215{
1216	unsigned long	tm;
1217	int		y, m, s;
1218#ifdef PC98
1219	int		wd;
1220#endif
1221
1222	if (disable_rtc_set)
1223		return;
1224
1225	s = splclock();
1226	tm = time_second;
1227	splx(s);
1228
1229#ifdef PC98
1230	rtc_serialcom(0x01);	/* Register shift command. */
1231
1232	/* Calculate local time	to put in RTC */
1233
1234	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1235
1236	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
1237	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
1238	rtc_outb(bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
1239
1240	/* We have now the days	since 01-01-1970 in tm */
1241	wd = (tm+4)%7;
1242	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1243	     tm >= m;
1244	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1245	     tm -= m;
1246
1247	/* Now we have the years in y and the day-of-the-year in tm */
1248	for (m = 0; ; m++) {
1249		int ml;
1250
1251		ml = daysinmonth[m];
1252		if (m == 1 && LEAPYEAR(y))
1253			ml++;
1254		if (tm < ml)
1255			break;
1256		tm -= ml;
1257	}
1258
1259	m++;
1260	rtc_outb(bin2bcd(tm+1));		/* Write back Day     */
1261	rtc_outb((m << 4) | wd);		/* Write back Month & Weekday  */
1262	rtc_outb(bin2bcd(y%100));		/* Write back Year    */
1263
1264	rtc_serialcom(0x02);	/* Time set & Counter hold command. */
1265	rtc_serialcom(0x00);	/* Register hold command. */
1266#else
1267	/* Disable RTC updates and interrupts. */
1268	writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
1269
1270	/* Calculate local time to put in RTC */
1271
1272	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1273
1274	writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
1275	writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
1276	writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
1277
1278	/* We have now the days since 01-01-1970 in tm */
1279	writertc(RTC_WDAY, (tm+4)%7);			/* Write back Weekday */
1280	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1281	     tm >= m;
1282	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1283	     tm -= m;
1284
1285	/* Now we have the years in y and the day-of-the-year in tm */
1286	writertc(RTC_YEAR, bin2bcd(y%100));		/* Write back Year    */
1287#ifdef USE_RTC_CENTURY
1288	writertc(RTC_CENTURY, bin2bcd(y/100));		/* ... and Century    */
1289#endif
1290	for (m = 0; ; m++) {
1291		int ml;
1292
1293		ml = daysinmonth[m];
1294		if (m == 1 && LEAPYEAR(y))
1295			ml++;
1296		if (tm < ml)
1297			break;
1298		tm -= ml;
1299	}
1300
1301	writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
1302	writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
1303
1304	/* Reenable RTC updates and interrupts. */
1305	writertc(RTC_STATUSB, rtc_statusb);
1306#endif /* PC98 */
1307}
1308
1309
1310/*
1311 * Start both clocks running.
1312 */
1313void
1314cpu_initclocks()
1315{
1316#ifndef PC98
1317	int diag;
1318#endif
1319#ifdef APIC_IO
1320	int apic_8254_trial;
1321	void *clkdesc;
1322#endif /* APIC_IO */
1323	register_t crit;
1324
1325#ifndef PC98
1326	if (statclock_disable) {
1327		/*
1328		 * The stat interrupt mask is different without the
1329		 * statistics clock.  Also, don't set the interrupt
1330		 * flag which would normally cause the RTC to generate
1331		 * interrupts.
1332		 */
1333		rtc_statusb = RTCSB_24HR;
1334	} else {
1335	        /* Setting stathz to nonzero early helps avoid races. */
1336		stathz = RTC_NOPROFRATE;
1337		profhz = RTC_PROFRATE;
1338        }
1339#endif
1340
1341	/* Finish initializing 8253 timer 0. */
1342#ifdef APIC_IO
1343
1344	apic_8254_intr = isa_apic_irq(0);
1345	apic_8254_trial = 0;
1346	if (apic_8254_intr >= 0 ) {
1347		if (apic_int_type(0, 0) == 3)
1348			apic_8254_trial = 1;
1349	} else {
1350		/* look for ExtInt on pin 0 */
1351		if (apic_int_type(0, 0) == 3) {
1352			apic_8254_intr = apic_irq(0, 0);
1353			setup_8254_mixed_mode();
1354		} else
1355			panic("APIC_IO: Cannot route 8254 interrupt to CPU");
1356	}
1357
1358	inthand_add("clk", apic_8254_intr, (driver_intr_t *)clkintr, NULL,
1359	    INTR_TYPE_CLK | INTR_FAST, &clkdesc);
1360	crit = intr_disable();
1361	mtx_lock_spin(&icu_lock);
1362	INTREN(1 << apic_8254_intr);
1363	mtx_unlock_spin(&icu_lock);
1364	intr_restore(crit);
1365
1366#else /* APIC_IO */
1367
1368	/*
1369	 * XXX Check the priority of this interrupt handler.  I
1370	 * couldn't find anything suitable in the BSD/OS code (grog,
1371	 * 19 July 2000).
1372	 */
1373	inthand_add("clk", 0, (driver_intr_t *)clkintr, NULL,
1374	    INTR_TYPE_CLK | INTR_FAST, NULL);
1375	crit = intr_disable();
1376	mtx_lock_spin(&icu_lock);
1377	INTREN(IRQ0);
1378	mtx_unlock_spin(&icu_lock);
1379	intr_restore(crit);
1380
1381#endif /* APIC_IO */
1382
1383#ifndef PC98
1384	/* Initialize RTC. */
1385	writertc(RTC_STATUSA, rtc_statusa);
1386	writertc(RTC_STATUSB, RTCSB_24HR);
1387
1388	/* Don't bother enabling the statistics clock. */
1389	if (statclock_disable)
1390		return;
1391	diag = rtcin(RTC_DIAG);
1392	if (diag != 0)
1393		printf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
1394#endif /* !PC98 */
1395
1396#ifndef PC98
1397#ifdef APIC_IO
1398	if (isa_apic_irq(8) != 8)
1399		panic("APIC RTC != 8");
1400#endif /* APIC_IO */
1401
1402	inthand_add("rtc", 8, (driver_intr_t *)rtcintr, NULL,
1403	    INTR_TYPE_CLK | INTR_FAST, NULL);
1404
1405	crit = intr_disable();
1406	mtx_lock_spin(&icu_lock);
1407#ifdef APIC_IO
1408	INTREN(APIC_IRQ8);
1409#else
1410	INTREN(IRQ8);
1411#endif /* APIC_IO */
1412	mtx_unlock_spin(&icu_lock);
1413	intr_restore(crit);
1414
1415	writertc(RTC_STATUSB, rtc_statusb);
1416#endif /* PC98 */
1417
1418#ifdef APIC_IO
1419	if (apic_8254_trial) {
1420
1421		printf("APIC_IO: Testing 8254 interrupt delivery\n");
1422		while (read_intr_count(8) < 6)
1423			;	/* nothing */
1424		if (read_intr_count(apic_8254_intr) < 3) {
1425			/*
1426			 * The MP table is broken.
1427			 * The 8254 was not connected to the specified pin
1428			 * on the IO APIC.
1429			 * Workaround: Limited variant of mixed mode.
1430			 */
1431
1432			crit = intr_disable();
1433			mtx_lock_spin(&icu_lock);
1434			INTRDIS(1 << apic_8254_intr);
1435			mtx_unlock_spin(&icu_lock);
1436			intr_restore(crit);
1437			inthand_remove(clkdesc);
1438			printf("APIC_IO: Broken MP table detected: "
1439			       "8254 is not connected to "
1440			       "IOAPIC #%d intpin %d\n",
1441			       int_to_apicintpin[apic_8254_intr].ioapic,
1442			       int_to_apicintpin[apic_8254_intr].int_pin);
1443			/*
1444			 * Revoke current ISA IRQ 0 assignment and
1445			 * configure a fallback interrupt routing from
1446			 * the 8254 Timer via the 8259 PIC to the
1447			 * an ExtInt interrupt line on IOAPIC #0 intpin 0.
1448			 * We reuse the low level interrupt handler number.
1449			 */
1450			if (apic_irq(0, 0) < 0) {
1451				revoke_apic_irq(apic_8254_intr);
1452				assign_apic_irq(0, 0, apic_8254_intr);
1453			}
1454			apic_8254_intr = apic_irq(0, 0);
1455			setup_8254_mixed_mode();
1456			inthand_add("clk", apic_8254_intr,
1457				    (driver_intr_t *)clkintr, NULL,
1458				    INTR_TYPE_CLK | INTR_FAST, NULL);
1459			crit = intr_disable();
1460			mtx_lock_spin(&icu_lock);
1461			INTREN(1 << apic_8254_intr);
1462			mtx_unlock_spin(&icu_lock);
1463			intr_restore(crit);
1464		}
1465
1466	}
1467	if (apic_int_type(0, 0) != 3 ||
1468	    int_to_apicintpin[apic_8254_intr].ioapic != 0 ||
1469	    int_to_apicintpin[apic_8254_intr].int_pin != 0)
1470		printf("APIC_IO: routing 8254 via IOAPIC #%d intpin %d\n",
1471		       int_to_apicintpin[apic_8254_intr].ioapic,
1472		       int_to_apicintpin[apic_8254_intr].int_pin);
1473	else
1474		printf("APIC_IO: "
1475		       "routing 8254 via 8259 and IOAPIC #0 intpin 0\n");
1476#endif
1477
1478}
1479
1480#ifdef APIC_IO
1481static u_long
1482read_intr_count(int vec)
1483{
1484	u_long *up;
1485	up = intr_countp[vec];
1486	if (up)
1487		return *up;
1488	return 0UL;
1489}
1490
1491static void
1492setup_8254_mixed_mode()
1493{
1494	/*
1495	 * Allow 8254 timer to INTerrupt 8259:
1496	 *  re-initialize master 8259:
1497	 *   reset; prog 4 bytes, single ICU, edge triggered
1498	 */
1499	outb(IO_ICU1, 0x13);
1500#ifdef PC98
1501	outb(IO_ICU1 + 2, NRSVIDT);	/* start vector (unused) */
1502	outb(IO_ICU1 + 2, 0x00);	/* ignore slave */
1503	outb(IO_ICU1 + 2, 0x03);	/* auto EOI, 8086 */
1504	outb(IO_ICU1 + 2, 0xfe);	/* unmask INT0 */
1505#else
1506	outb(IO_ICU1 + 1, NRSVIDT);	/* start vector (unused) */
1507	outb(IO_ICU1 + 1, 0x00);	/* ignore slave */
1508	outb(IO_ICU1 + 1, 0x03);	/* auto EOI, 8086 */
1509	outb(IO_ICU1 + 1, 0xfe);	/* unmask INT0 */
1510#endif
1511
1512	/* program IO APIC for type 3 INT on INT0 */
1513	if (ext_int_setup(0, 0) < 0)
1514		panic("8254 redirect via APIC pin0 impossible!");
1515}
1516#endif
1517
1518void
1519setstatclockrate(int newhz)
1520{
1521#ifndef PC98
1522	if (newhz == RTC_PROFRATE)
1523		rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
1524	else
1525		rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
1526	writertc(RTC_STATUSA, rtc_statusa);
1527#endif
1528}
1529
1530static int
1531sysctl_machdep_i8254_freq(SYSCTL_HANDLER_ARGS)
1532{
1533	int error;
1534	u_int freq;
1535
1536	/*
1537	 * Use `i8254' instead of `timer' in external names because `timer'
1538	 * is is too generic.  Should use it everywhere.
1539	 */
1540	freq = timer_freq;
1541	error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
1542	if (error == 0 && req->newptr != NULL) {
1543		if (timer0_state != RELEASED)
1544			return (EBUSY);	/* too much trouble to handle */
1545		set_timer_freq(freq, hz);
1546		i8254_timecounter.tc_frequency = freq;
1547	}
1548	return (error);
1549}
1550
1551SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
1552    0, sizeof(u_int), sysctl_machdep_i8254_freq, "IU", "");
1553
1554static int
1555sysctl_machdep_tsc_freq(SYSCTL_HANDLER_ARGS)
1556{
1557	int error;
1558	u_int freq;
1559
1560	if (tsc_timecounter.tc_frequency == 0)
1561		return (EOPNOTSUPP);
1562	freq = tsc_freq;
1563	error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
1564	if (error == 0 && req->newptr != NULL) {
1565		tsc_freq = freq;
1566		tsc_timecounter.tc_frequency = tsc_freq;
1567	}
1568	return (error);
1569}
1570
1571SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq, CTLTYPE_INT | CTLFLAG_RW,
1572    0, sizeof(u_int), sysctl_machdep_tsc_freq, "IU", "");
1573
1574static unsigned
1575i8254_get_timecount(struct timecounter *tc)
1576{
1577	u_int count;
1578	u_int high, low;
1579	u_int eflags;
1580
1581	eflags = read_eflags();
1582	mtx_lock_spin(&clock_lock);
1583
1584	/* Select timer0 and latch counter value. */
1585	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
1586
1587	low = inb(TIMER_CNTR0);
1588	high = inb(TIMER_CNTR0);
1589	count = timer0_max_count - ((high << 8) | low);
1590	if (count < i8254_lastcount ||
1591	    (!i8254_ticked && (clkintr_pending ||
1592	    ((count < 20 || (!(eflags & PSL_I) && count < timer0_max_count / 2u)) &&
1593#ifdef APIC_IO
1594#define	lapic_irr1	((volatile u_int *)&lapic)[0x210 / 4]	/* XXX XXX */
1595	    /* XXX this assumes that apic_8254_intr is < 24. */
1596	    (lapic_irr1 & (1 << apic_8254_intr))))
1597#else
1598	    (inb(IO_ICU1) & 1)))
1599#endif
1600	    )) {
1601		i8254_ticked = 1;
1602		i8254_offset += timer0_max_count;
1603	}
1604	i8254_lastcount = count;
1605	count += i8254_offset;
1606	mtx_unlock_spin(&clock_lock);
1607	return (count);
1608}
1609
1610static unsigned
1611tsc_get_timecount(struct timecounter *tc)
1612{
1613	return (rdtsc());
1614}
1615
1616#ifdef DEV_ISA
1617/*
1618 * Attach to the ISA PnP descriptors for the timer and realtime clock.
1619 */
1620static struct isa_pnp_id attimer_ids[] = {
1621	{ 0x0001d041 /* PNP0100 */, "AT timer" },
1622	{ 0x000bd041 /* PNP0B00 */, "AT realtime clock" },
1623	{ 0 }
1624};
1625
1626static int
1627attimer_probe(device_t dev)
1628{
1629	int result;
1630
1631	if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, attimer_ids)) <= 0)
1632		device_quiet(dev);
1633	return(result);
1634}
1635
1636static int
1637attimer_attach(device_t dev)
1638{
1639	return(0);
1640}
1641
1642static device_method_t attimer_methods[] = {
1643	/* Device interface */
1644	DEVMETHOD(device_probe,		attimer_probe),
1645	DEVMETHOD(device_attach,	attimer_attach),
1646	DEVMETHOD(device_detach,	bus_generic_detach),
1647	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1648	DEVMETHOD(device_suspend,	bus_generic_suspend),	/* XXX stop statclock? */
1649	DEVMETHOD(device_resume,	bus_generic_resume),	/* XXX restart statclock? */
1650	{ 0, 0 }
1651};
1652
1653static driver_t attimer_driver = {
1654	"attimer",
1655	attimer_methods,
1656	1,		/* no softc */
1657};
1658
1659static devclass_t attimer_devclass;
1660
1661DRIVER_MODULE(attimer, isa, attimer_driver, attimer_devclass, 0, 0);
1662#ifndef PC98
1663DRIVER_MODULE(attimer, acpi, attimer_driver, attimer_devclass, 0, 0);
1664#endif
1665#endif /* DEV_ISA */
1666