pcrtc.c revision 103734
1/*-
2 * Copyright (c) 1990 The Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * William Jolitz and Don Ahn.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)clock.c	7.2 (Berkeley) 5/12/91
37 * $FreeBSD: head/sys/pc98/cbus/pcrtc.c 103734 2002-09-21 08:00:01Z phk $
38 */
39
40/*
41 * Routines to handle clock hardware.
42 */
43
44/*
45 * inittodr, settodr and support routines written
46 * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
47 *
48 * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
49 */
50
51/*
52 * modified for PC98 by Kakefuda
53 */
54
55#include "opt_clock.h"
56#include "opt_isa.h"
57#include "opt_mca.h"
58
59#include <sys/param.h>
60#include <sys/systm.h>
61#include <sys/bus.h>
62#include <sys/lock.h>
63#include <sys/mutex.h>
64#include <sys/proc.h>
65#include <sys/time.h>
66#include <sys/timetc.h>
67#include <sys/kernel.h>
68#include <sys/sysctl.h>
69#include <sys/cons.h>
70#include <sys/power.h>
71
72#include <machine/clock.h>
73#include <machine/cputypes.h>
74#include <machine/frame.h>
75#include <machine/limits.h>
76#include <machine/md_var.h>
77#include <machine/psl.h>
78#ifdef APIC_IO
79#include <machine/segments.h>
80#endif
81#if defined(SMP) || defined(APIC_IO)
82#include <machine/smp.h>
83#endif /* SMP || APIC_IO */
84#include <machine/specialreg.h>
85
86#include <i386/isa/icu.h>
87#ifdef PC98
88#include <pc98/pc98/pc98.h>
89#include <pc98/pc98/pc98_machdep.h>
90#include <i386/isa/isa_device.h>
91#else
92#include <i386/isa/isa.h>
93#include <isa/rtc.h>
94#endif
95#ifdef DEV_ISA
96#include <isa/isavar.h>
97#endif
98#include <i386/isa/timerreg.h>
99
100#include <i386/isa/intr_machdep.h>
101
102#ifdef DEV_MCA
103#include <i386/isa/mca_machdep.h>
104#endif
105
106#ifdef APIC_IO
107#include <i386/isa/intr_machdep.h>
108/* The interrupt triggered by the 8254 (timer) chip */
109int apic_8254_intr;
110static u_long read_intr_count(int vec);
111static void setup_8254_mixed_mode(void);
112#endif
113
114/*
115 * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
116 * can use a simple formula for leap years.
117 */
118#define	LEAPYEAR(y) ((u_int)(y) % 4 == 0)
119#define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
120
121#define	TIMER_DIV(x) ((timer_freq + (x) / 2) / (x))
122
123/*
124 * Time in timer cycles that it takes for microtime() to disable interrupts
125 * and latch the count.  microtime() currently uses "cli; outb ..." so it
126 * normally takes less than 2 timer cycles.  Add a few for cache misses.
127 * Add a few more to allow for latency in bogus calls to microtime() with
128 * interrupts already disabled.
129 */
130#define	TIMER0_LATCH_COUNT	20
131
132/*
133 * Maximum frequency that we are willing to allow for timer0.  Must be
134 * low enough to guarantee that the timer interrupt handler returns
135 * before the next timer interrupt.
136 */
137#define	TIMER0_MAX_FREQ		20000
138
139int	adjkerntz;		/* local offset from GMT in seconds */
140int	clkintr_pending;
141int	disable_rtc_set;	/* disable resettodr() if != 0 */
142int	statclock_disable;
143#ifndef TIMER_FREQ
144#ifdef PC98
145#define TIMER_FREQ   2457600
146#else /* IBM-PC */
147#define TIMER_FREQ   1193182
148#endif /* PC98 */
149#endif
150u_int	timer_freq = TIMER_FREQ;
151int	timer0_max_count;
152u_int	tsc_freq;
153int	tsc_is_broken;
154u_int	tsc_present;
155int	wall_cmos_clock;	/* wall CMOS clock assumed if != 0 */
156struct mtx clock_lock;
157
158static	int	beeping = 0;
159static	const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
160static	u_int	hardclock_max_count;
161static	u_int32_t i8254_lastcount;
162static	u_int32_t i8254_offset;
163static	int	i8254_ticked;
164/*
165 * XXX new_function and timer_func should not handle clockframes, but
166 * timer_func currently needs to hold hardclock to handle the
167 * timer0_state == 0 case.  We should use inthand_add()/inthand_remove()
168 * to switch between clkintr() and a slightly different timerintr().
169 */
170static	void	(*new_function)(struct clockframe *frame);
171static	u_int	new_rate;
172#ifndef PC98
173static	u_char	rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
174static	u_char	rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
175#endif
176static	u_int	timer0_prescaler_count;
177
178/* Values for timerX_state: */
179#define	RELEASED	0
180#define	RELEASE_PENDING	1
181#define	ACQUIRED	2
182#define	ACQUIRE_PENDING	3
183
184static	u_char	timer0_state;
185#ifdef	PC98
186static 	u_char	timer1_state;
187#endif
188static	u_char	timer2_state;
189static	void	(*timer_func)(struct clockframe *frame) = hardclock;
190#ifdef PC98
191static void rtc_serialcombit(int);
192static void rtc_serialcom(int);
193static int rtc_inb(void);
194static void rtc_outb(int);
195#endif
196
197static	unsigned i8254_get_timecount(struct timecounter *tc);
198static	unsigned tsc_get_timecount(struct timecounter *tc);
199static	void	set_timer_freq(u_int freq, int intr_freq);
200
201static struct timecounter tsc_timecounter = {
202	tsc_get_timecount,	/* get_timecount */
203	0,			/* no poll_pps */
204 	~0u,			/* counter_mask */
205	0,			/* frequency */
206	 "TSC"			/* name */
207};
208
209static struct timecounter i8254_timecounter = {
210	i8254_get_timecount,	/* get_timecount */
211	0,			/* no poll_pps */
212	~0u,			/* counter_mask */
213	0,			/* frequency */
214	"i8254"			/* name */
215};
216
217static void
218clkintr(struct clockframe frame)
219{
220
221	if (timecounter->tc_get_timecount == i8254_get_timecount) {
222		mtx_lock_spin(&clock_lock);
223		if (i8254_ticked)
224			i8254_ticked = 0;
225		else {
226			i8254_offset += timer0_max_count;
227			i8254_lastcount = 0;
228		}
229		clkintr_pending = 0;
230		mtx_unlock_spin(&clock_lock);
231	}
232	timer_func(&frame);
233#ifdef SMP
234	if (timer_func == hardclock)
235		forward_hardclock();
236#endif
237	switch (timer0_state) {
238
239	case RELEASED:
240		break;
241
242	case ACQUIRED:
243		if ((timer0_prescaler_count += timer0_max_count)
244		    >= hardclock_max_count) {
245			timer0_prescaler_count -= hardclock_max_count;
246			hardclock(&frame);
247#ifdef SMP
248			forward_hardclock();
249#endif
250		}
251		break;
252
253	case ACQUIRE_PENDING:
254		mtx_lock_spin(&clock_lock);
255		i8254_offset = i8254_get_timecount(NULL);
256		i8254_lastcount = 0;
257		timer0_max_count = TIMER_DIV(new_rate);
258		outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
259		outb(TIMER_CNTR0, timer0_max_count & 0xff);
260		outb(TIMER_CNTR0, timer0_max_count >> 8);
261		mtx_unlock_spin(&clock_lock);
262		timer_func = new_function;
263		timer0_state = ACQUIRED;
264		break;
265
266	case RELEASE_PENDING:
267		if ((timer0_prescaler_count += timer0_max_count)
268		    >= hardclock_max_count) {
269			mtx_lock_spin(&clock_lock);
270			i8254_offset = i8254_get_timecount(NULL);
271			i8254_lastcount = 0;
272			timer0_max_count = hardclock_max_count;
273			outb(TIMER_MODE,
274			     TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
275			outb(TIMER_CNTR0, timer0_max_count & 0xff);
276			outb(TIMER_CNTR0, timer0_max_count >> 8);
277			mtx_unlock_spin(&clock_lock);
278			timer0_prescaler_count = 0;
279			timer_func = hardclock;
280			timer0_state = RELEASED;
281			hardclock(&frame);
282#ifdef SMP
283			forward_hardclock();
284#endif
285		}
286		break;
287	}
288#ifdef DEV_MCA
289	/* Reset clock interrupt by asserting bit 7 of port 0x61 */
290	if (MCA_system)
291		outb(0x61, inb(0x61) | 0x80);
292#endif
293}
294
295/*
296 * The acquire and release functions must be called at ipl >= splclock().
297 */
298int
299acquire_timer0(int rate, void (*function)(struct clockframe *frame))
300{
301	static int old_rate;
302
303	if (rate <= 0 || rate > TIMER0_MAX_FREQ)
304		return (-1);
305	switch (timer0_state) {
306
307	case RELEASED:
308		timer0_state = ACQUIRE_PENDING;
309		break;
310
311	case RELEASE_PENDING:
312		if (rate != old_rate)
313			return (-1);
314		/*
315		 * The timer has been released recently, but is being
316		 * re-acquired before the release completed.  In this
317		 * case, we simply reclaim it as if it had not been
318		 * released at all.
319		 */
320		timer0_state = ACQUIRED;
321		break;
322
323	default:
324		return (-1);	/* busy */
325	}
326	new_function = function;
327	old_rate = new_rate = rate;
328	return (0);
329}
330
331#ifdef PC98
332int
333acquire_timer1(int mode)
334{
335
336	if (timer1_state != RELEASED)
337		return (-1);
338	timer1_state = ACQUIRED;
339
340	/*
341	 * This access to the timer registers is as atomic as possible
342	 * because it is a single instruction.  We could do better if we
343	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
344	 * and this is probably good enough for timer2, so we aren't as
345	 * careful with it as with timer0.
346	 */
347	outb(TIMER_MODE, TIMER_SEL1 | (mode & 0x3f));
348
349	return (0);
350}
351#endif
352
353int
354acquire_timer2(int mode)
355{
356
357	if (timer2_state != RELEASED)
358		return (-1);
359	timer2_state = ACQUIRED;
360
361	/*
362	 * This access to the timer registers is as atomic as possible
363	 * because it is a single instruction.  We could do better if we
364	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
365	 * and this is probably good enough for timer2, so we aren't as
366	 * careful with it as with timer0.
367	 */
368	outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
369
370	return (0);
371}
372
373int
374release_timer0()
375{
376	switch (timer0_state) {
377
378	case ACQUIRED:
379		timer0_state = RELEASE_PENDING;
380		break;
381
382	case ACQUIRE_PENDING:
383		/* Nothing happened yet, release quickly. */
384		timer0_state = RELEASED;
385		break;
386
387	default:
388		return (-1);
389	}
390	return (0);
391}
392
393#ifdef PC98
394int
395release_timer1()
396{
397
398	if (timer1_state != ACQUIRED)
399		return (-1);
400	timer1_state = RELEASED;
401	outb(TIMER_MODE, TIMER_SEL1 | TIMER_SQWAVE | TIMER_16BIT);
402	return (0);
403}
404#endif
405
406int
407release_timer2()
408{
409
410	if (timer2_state != ACQUIRED)
411		return (-1);
412	timer2_state = RELEASED;
413	outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
414	return (0);
415}
416
417#ifndef PC98
418/*
419 * This routine receives statistical clock interrupts from the RTC.
420 * As explained above, these occur at 128 interrupts per second.
421 * When profiling, we receive interrupts at a rate of 1024 Hz.
422 *
423 * This does not actually add as much overhead as it sounds, because
424 * when the statistical clock is active, the hardclock driver no longer
425 * needs to keep (inaccurate) statistics on its own.  This decouples
426 * statistics gathering from scheduling interrupts.
427 *
428 * The RTC chip requires that we read status register C (RTC_INTR)
429 * to acknowledge an interrupt, before it will generate the next one.
430 * Under high interrupt load, rtcintr() can be indefinitely delayed and
431 * the clock can tick immediately after the read from RTC_INTR.  In this
432 * case, the mc146818A interrupt signal will not drop for long enough
433 * to register with the 8259 PIC.  If an interrupt is missed, the stat
434 * clock will halt, considerably degrading system performance.  This is
435 * why we use 'while' rather than a more straightforward 'if' below.
436 * Stat clock ticks can still be lost, causing minor loss of accuracy
437 * in the statistics, but the stat clock will no longer stop.
438 */
439static void
440rtcintr(struct clockframe frame)
441{
442	while (rtcin(RTC_INTR) & RTCIR_PERIOD) {
443		statclock(&frame);
444#ifdef SMP
445		forward_statclock();
446#endif
447	}
448}
449
450#include "opt_ddb.h"
451#ifdef DDB
452#include <ddb/ddb.h>
453
454DB_SHOW_COMMAND(rtc, rtc)
455{
456	printf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
457	       rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
458	       rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
459	       rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
460}
461#endif /* DDB */
462#endif /* for PC98 */
463
464static int
465getit(void)
466{
467	int high, low;
468
469	mtx_lock_spin(&clock_lock);
470
471	/* Select timer0 and latch counter value. */
472	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
473
474	low = inb(TIMER_CNTR0);
475	high = inb(TIMER_CNTR0);
476
477	mtx_unlock_spin(&clock_lock);
478	return ((high << 8) | low);
479}
480
481/*
482 * Wait "n" microseconds.
483 * Relies on timer 1 counting down from (timer_freq / hz)
484 * Note: timer had better have been programmed before this is first used!
485 */
486void
487DELAY(int n)
488{
489	int delta, prev_tick, tick, ticks_left;
490
491#ifdef DELAYDEBUG
492	int getit_calls = 1;
493	int n1;
494	static int state = 0;
495
496	if (state == 0) {
497		state = 1;
498		for (n1 = 1; n1 <= 10000000; n1 *= 10)
499			DELAY(n1);
500		state = 2;
501	}
502	if (state == 1)
503		printf("DELAY(%d)...", n);
504#endif
505	/*
506	 * Guard against the timer being uninitialized if we are called
507	 * early for console i/o.
508	 */
509	if (timer0_max_count == 0)
510		set_timer_freq(timer_freq, hz);
511
512	/*
513	 * Read the counter first, so that the rest of the setup overhead is
514	 * counted.  Guess the initial overhead is 20 usec (on most systems it
515	 * takes about 1.5 usec for each of the i/o's in getit().  The loop
516	 * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
517	 * multiplications and divisions to scale the count take a while).
518	 */
519	prev_tick = getit();
520	n -= 0;			/* XXX actually guess no initial overhead */
521	/*
522	 * Calculate (n * (timer_freq / 1e6)) without using floating point
523	 * and without any avoidable overflows.
524	 */
525	if (n <= 0)
526		ticks_left = 0;
527	else if (n < 256)
528		/*
529		 * Use fixed point to avoid a slow division by 1000000.
530		 * 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
531		 * 2^15 is the first power of 2 that gives exact results
532		 * for n between 0 and 256.
533		 */
534		ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
535	else
536		/*
537		 * Don't bother using fixed point, although gcc-2.7.2
538		 * generates particularly poor code for the long long
539		 * division, since even the slow way will complete long
540		 * before the delay is up (unless we're interrupted).
541		 */
542		ticks_left = ((u_int)n * (long long)timer_freq + 999999)
543			     / 1000000;
544
545	while (ticks_left > 0) {
546		tick = getit();
547#ifdef DELAYDEBUG
548		++getit_calls;
549#endif
550		delta = prev_tick - tick;
551		prev_tick = tick;
552		if (delta < 0) {
553			delta += timer0_max_count;
554			/*
555			 * Guard against timer0_max_count being wrong.
556			 * This shouldn't happen in normal operation,
557			 * but it may happen if set_timer_freq() is
558			 * traced.
559			 */
560			if (delta < 0)
561				delta = 0;
562		}
563		ticks_left -= delta;
564	}
565#ifdef DELAYDEBUG
566	if (state == 1)
567		printf(" %d calls to getit() at %d usec each\n",
568		       getit_calls, (n + 5) / getit_calls);
569#endif
570}
571
572static void
573sysbeepstop(void *chan)
574{
575#ifdef PC98	/* PC98 */
576	outb(IO_PPI, inb(IO_PPI)|0x08);	/* disable counter1 output to speaker */
577	release_timer1();
578#else
579	outb(IO_PPI, inb(IO_PPI)&0xFC);	/* disable counter2 output to speaker */
580	release_timer2();
581#endif
582	beeping = 0;
583}
584
585int
586sysbeep(int pitch, int period)
587{
588	int x = splclock();
589
590#ifdef PC98
591	if (acquire_timer1(TIMER_SQWAVE|TIMER_16BIT))
592		if (!beeping) {
593			/* Something else owns it. */
594			splx(x);
595			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
596		}
597	disable_intr();
598	outb(0x3fdb, pitch);
599	outb(0x3fdb, (pitch>>8));
600	enable_intr();
601	if (!beeping) {
602		/* enable counter1 output to speaker */
603		outb(IO_PPI, (inb(IO_PPI) & 0xf7));
604		beeping = period;
605		timeout(sysbeepstop, (void *)NULL, period);
606	}
607#else
608	if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
609		if (!beeping) {
610			/* Something else owns it. */
611			splx(x);
612			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
613		}
614	mtx_lock_spin(&clock_lock);
615	outb(TIMER_CNTR2, pitch);
616	outb(TIMER_CNTR2, (pitch>>8));
617	mtx_unlock_spin(&clock_lock);
618	if (!beeping) {
619		/* enable counter2 output to speaker */
620		outb(IO_PPI, inb(IO_PPI) | 3);
621		beeping = period;
622		timeout(sysbeepstop, (void *)NULL, period);
623	}
624#endif
625	splx(x);
626	return (0);
627}
628
629#ifndef PC98
630/*
631 * RTC support routines
632 */
633
634int
635rtcin(reg)
636	int reg;
637{
638	int s;
639	u_char val;
640
641	s = splhigh();
642	outb(IO_RTC, reg);
643	inb(0x84);
644	val = inb(IO_RTC + 1);
645	inb(0x84);
646	splx(s);
647	return (val);
648}
649
650static __inline void
651writertc(u_char reg, u_char val)
652{
653	int s;
654
655	s = splhigh();
656	inb(0x84);
657	outb(IO_RTC, reg);
658	inb(0x84);
659	outb(IO_RTC + 1, val);
660	inb(0x84);		/* XXX work around wrong order in rtcin() */
661	splx(s);
662}
663
664static __inline int
665readrtc(int port)
666{
667	return(bcd2bin(rtcin(port)));
668}
669#endif
670
671#ifdef PC98
672unsigned int delaycount;
673#define FIRST_GUESS	0x2000
674static void findcpuspeed(void)
675{
676	int i;
677	int remainder;
678
679	/* Put counter in count down mode */
680	outb(TIMER_MODE, TIMER_SEL0 | TIMER_16BIT | TIMER_RATEGEN);
681	outb(TIMER_CNTR0, 0xff);
682	outb(TIMER_CNTR0, 0xff);
683	for (i = FIRST_GUESS; i; i--)
684		;
685	remainder = getit();
686	delaycount = (FIRST_GUESS * TIMER_DIV(1000)) / (0xffff - remainder);
687}
688#endif
689
690#ifdef PC98
691static u_int
692calibrate_clocks(void)
693{
694	int	timeout;
695	u_int	count, prev_count, tot_count;
696	u_short	sec, start_sec;
697
698	if (bootverbose)
699	        printf("Calibrating clock(s) ... ");
700	/* Check ARTIC. */
701	if (!(PC98_SYSTEM_PARAMETER(0x458) & 0x80) &&
702	    !(PC98_SYSTEM_PARAMETER(0x45b) & 0x04))
703		goto fail;
704	timeout = 100000000;
705
706	/* Read the ARTIC. */
707	sec = inw(0x5e);
708
709	/* Wait for the ARTIC to changes. */
710	start_sec = sec;
711	for (;;) {
712		sec = inw(0x5e);
713		if (sec != start_sec)
714			break;
715		if (--timeout == 0)
716			goto fail;
717	}
718	prev_count = getit();
719	if (prev_count == 0 || prev_count > timer0_max_count)
720		goto fail;
721	tot_count = 0;
722
723	if (tsc_present)
724		wrmsr(0x10, 0LL);	/* XXX 0x10 is the MSR for the TSC */
725	start_sec = sec;
726	for (;;) {
727		sec = inw(0x5e);
728		count = getit();
729		if (count == 0 || count > timer0_max_count)
730			goto fail;
731		if (count > prev_count)
732			tot_count += prev_count - (count - timer0_max_count);
733		else
734			tot_count += prev_count - count;
735		prev_count = count;
736		if ((sec == start_sec + 1200) ||
737		    (sec < start_sec &&
738		        (u_int)sec + 0x10000 == (u_int)start_sec + 1200))
739			break;
740		if (--timeout == 0)
741			goto fail;
742	}
743	/*
744	 * Read the cpu cycle counter.  The timing considerations are
745	 * similar to those for the i8254 clock.
746	 */
747	if (tsc_present)
748		tsc_freq = rdtsc();
749
750	if (bootverbose) {
751		if (tsc_present)
752		        printf("TSC clock: %u Hz, ", tsc_freq);
753	        printf("i8254 clock: %u Hz\n", tot_count);
754	}
755	return (tot_count);
756
757fail:
758	if (bootverbose)
759	        printf("failed, using default i8254 clock of %u Hz\n",
760		       timer_freq);
761	return (timer_freq);
762}
763#else
764static u_int
765calibrate_clocks(void)
766{
767	u_int64_t old_tsc;
768	u_int count, prev_count, tot_count;
769	int sec, start_sec, timeout;
770
771	if (bootverbose)
772	        printf("Calibrating clock(s) ... ");
773	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
774		goto fail;
775	timeout = 100000000;
776
777	/* Read the mc146818A seconds counter. */
778	for (;;) {
779		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
780			sec = rtcin(RTC_SEC);
781			break;
782		}
783		if (--timeout == 0)
784			goto fail;
785	}
786
787	/* Wait for the mC146818A seconds counter to change. */
788	start_sec = sec;
789	for (;;) {
790		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
791			sec = rtcin(RTC_SEC);
792			if (sec != start_sec)
793				break;
794		}
795		if (--timeout == 0)
796			goto fail;
797	}
798
799	/* Start keeping track of the i8254 counter. */
800	prev_count = getit();
801	if (prev_count == 0 || prev_count > timer0_max_count)
802		goto fail;
803	tot_count = 0;
804
805	if (tsc_present)
806		old_tsc = rdtsc();
807	else
808		old_tsc = 0;		/* shut up gcc */
809
810	/*
811	 * Wait for the mc146818A seconds counter to change.  Read the i8254
812	 * counter for each iteration since this is convenient and only
813	 * costs a few usec of inaccuracy. The timing of the final reads
814	 * of the counters almost matches the timing of the initial reads,
815	 * so the main cause of inaccuracy is the varying latency from
816	 * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
817	 * rtcin(RTC_SEC) that returns a changed seconds count.  The
818	 * maximum inaccuracy from this cause is < 10 usec on 486's.
819	 */
820	start_sec = sec;
821	for (;;) {
822		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
823			sec = rtcin(RTC_SEC);
824		count = getit();
825		if (count == 0 || count > timer0_max_count)
826			goto fail;
827		if (count > prev_count)
828			tot_count += prev_count - (count - timer0_max_count);
829		else
830			tot_count += prev_count - count;
831		prev_count = count;
832		if (sec != start_sec)
833			break;
834		if (--timeout == 0)
835			goto fail;
836	}
837
838	/*
839	 * Read the cpu cycle counter.  The timing considerations are
840	 * similar to those for the i8254 clock.
841	 */
842	if (tsc_present)
843		tsc_freq = rdtsc() - old_tsc;
844
845	if (bootverbose) {
846		if (tsc_present)
847		        printf("TSC clock: %u Hz, ", tsc_freq);
848	        printf("i8254 clock: %u Hz\n", tot_count);
849	}
850	return (tot_count);
851
852fail:
853	if (bootverbose)
854	        printf("failed, using default i8254 clock of %u Hz\n",
855		       timer_freq);
856	return (timer_freq);
857}
858#endif	/* !PC98 */
859
860static void
861set_timer_freq(u_int freq, int intr_freq)
862{
863	int new_timer0_max_count;
864
865	mtx_lock_spin(&clock_lock);
866	timer_freq = freq;
867	new_timer0_max_count = hardclock_max_count = TIMER_DIV(intr_freq);
868	if (new_timer0_max_count != timer0_max_count) {
869		timer0_max_count = new_timer0_max_count;
870		outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
871		outb(TIMER_CNTR0, timer0_max_count & 0xff);
872		outb(TIMER_CNTR0, timer0_max_count >> 8);
873	}
874	mtx_unlock_spin(&clock_lock);
875}
876
877/*
878 * i8254_restore is called from apm_default_resume() to reload
879 * the countdown register.
880 * this should not be necessary but there are broken laptops that
881 * do not restore the countdown register on resume.
882 * when it happnes, it messes up the hardclock interval and system clock,
883 * which leads to the infamous "calcru: negative time" problem.
884 */
885static void
886i8254_restore(void)
887{
888
889	mtx_lock_spin(&clock_lock);
890	outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
891	outb(TIMER_CNTR0, timer0_max_count & 0xff);
892	outb(TIMER_CNTR0, timer0_max_count >> 8);
893	mtx_unlock_spin(&clock_lock);
894}
895
896#ifndef PC98
897static void
898rtc_restore(void)
899{
900
901	/* Reenable RTC updates and interrupts. */
902	/* XXX locking is needed for RTC access? */
903	writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
904	writertc(RTC_STATUSB, rtc_statusb);
905}
906#endif
907
908/*
909 * Restore all the timers atomically.
910 */
911void
912timer_restore(void)
913{
914
915	i8254_restore();		/* restore timer_freq and hz */
916#ifndef PC98
917	rtc_restore();			/* reenable RTC interrupts */
918#endif
919}
920
921/*
922 * Initialize 8254 timer 0 early so that it can be used in DELAY().
923 * XXX initialization of other timers is unintentionally left blank.
924 */
925void
926startrtclock()
927{
928	u_int delta, freq;
929
930#ifdef PC98
931	findcpuspeed();
932	if (pc98_machine_type & M_8M)
933		timer_freq = 1996800L; /* 1.9968 MHz */
934	else
935		timer_freq = 2457600L; /* 2.4576 MHz */
936#endif /* PC98 */
937
938	if (cpu_feature & CPUID_TSC)
939		tsc_present = 1;
940	else
941		tsc_present = 0;
942
943#ifndef PC98
944	writertc(RTC_STATUSA, rtc_statusa);
945	writertc(RTC_STATUSB, RTCSB_24HR);
946#endif
947
948	set_timer_freq(timer_freq, hz);
949	freq = calibrate_clocks();
950#ifdef CLK_CALIBRATION_LOOP
951	if (bootverbose) {
952		printf(
953		"Press a key on the console to abort clock calibration\n");
954		while (cncheckc() == -1)
955			calibrate_clocks();
956	}
957#endif
958
959	/*
960	 * Use the calibrated i8254 frequency if it seems reasonable.
961	 * Otherwise use the default, and don't use the calibrated i586
962	 * frequency.
963	 */
964	delta = freq > timer_freq ? freq - timer_freq : timer_freq - freq;
965	if (delta < timer_freq / 100) {
966#ifndef CLK_USE_I8254_CALIBRATION
967		if (bootverbose)
968			printf(
969"CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
970		freq = timer_freq;
971#endif
972		timer_freq = freq;
973	} else {
974		if (bootverbose)
975			printf(
976		    "%d Hz differs from default of %d Hz by more than 1%%\n",
977			       freq, timer_freq);
978		tsc_freq = 0;
979	}
980
981	set_timer_freq(timer_freq, hz);
982	i8254_timecounter.tc_frequency = timer_freq;
983	tc_init(&i8254_timecounter);
984
985#ifndef CLK_USE_TSC_CALIBRATION
986	if (tsc_freq != 0) {
987		if (bootverbose)
988			printf(
989"CLK_USE_TSC_CALIBRATION not specified - using old calibration method\n");
990		tsc_freq = 0;
991	}
992#endif
993	if (tsc_present && tsc_freq == 0) {
994		/*
995		 * Calibration of the i586 clock relative to the mc146818A
996		 * clock failed.  Do a less accurate calibration relative
997		 * to the i8254 clock.
998		 */
999		u_int64_t old_tsc = rdtsc();
1000
1001		DELAY(1000000);
1002		tsc_freq = rdtsc() - old_tsc;
1003#ifdef CLK_USE_TSC_CALIBRATION
1004		if (bootverbose)
1005			printf("TSC clock: %u Hz (Method B)\n", tsc_freq);
1006#endif
1007	}
1008
1009#if !defined(SMP)
1010	/*
1011	 * We can not use the TSC in SMP mode, until we figure out a
1012	 * cheap (impossible), reliable and precise (yeah right!)  way
1013	 * to synchronize the TSCs of all the CPUs.
1014	 * Curse Intel for leaving the counter out of the I/O APIC.
1015	 */
1016
1017	/*
1018	 * We can not use the TSC if we support APM. Precise timekeeping
1019	 * on an APM'ed machine is at best a fools pursuit, since
1020	 * any and all of the time spent in various SMM code can't
1021	 * be reliably accounted for.  Reading the RTC is your only
1022	 * source of reliable time info.  The i8254 looses too of course
1023	 * but we need to have some kind of time...
1024	 * We don't know at this point whether APM is going to be used
1025	 * or not, nor when it might be activated.  Play it safe.
1026	 */
1027	if (power_pm_get_type() == POWER_PM_TYPE_APM) {
1028		if (bootverbose)
1029			printf("TSC initialization skipped: APM enabled.\n");
1030		return;
1031	}
1032
1033	if (tsc_present && tsc_freq != 0 && !tsc_is_broken) {
1034		tsc_timecounter.tc_frequency = tsc_freq;
1035		tc_init(&tsc_timecounter);
1036	}
1037
1038#endif /* !defined(SMP) */
1039}
1040
1041#ifdef PC98
1042static void
1043rtc_serialcombit(int i)
1044{
1045	outb(IO_RTC, ((i&0x01)<<5)|0x07);
1046	DELAY(1);
1047	outb(IO_RTC, ((i&0x01)<<5)|0x17);
1048	DELAY(1);
1049	outb(IO_RTC, ((i&0x01)<<5)|0x07);
1050	DELAY(1);
1051}
1052
1053static void
1054rtc_serialcom(int i)
1055{
1056	rtc_serialcombit(i&0x01);
1057	rtc_serialcombit((i&0x02)>>1);
1058	rtc_serialcombit((i&0x04)>>2);
1059	rtc_serialcombit((i&0x08)>>3);
1060	outb(IO_RTC, 0x07);
1061	DELAY(1);
1062	outb(IO_RTC, 0x0f);
1063	DELAY(1);
1064	outb(IO_RTC, 0x07);
1065 	DELAY(1);
1066}
1067
1068static void
1069rtc_outb(int val)
1070{
1071	int s;
1072	int sa = 0;
1073
1074	for (s=0;s<8;s++) {
1075	    sa = ((val >> s) & 0x01) ? 0x27 : 0x07;
1076	    outb(IO_RTC, sa);		/* set DI & CLK 0 */
1077	    DELAY(1);
1078	    outb(IO_RTC, sa | 0x10);	/* CLK 1 */
1079	    DELAY(1);
1080	}
1081	outb(IO_RTC, sa & 0xef);	/* CLK 0 */
1082}
1083
1084static int
1085rtc_inb(void)
1086{
1087	int s;
1088	int sa = 0;
1089
1090	for (s=0;s<8;s++) {
1091	    sa |= ((inb(0x33) & 0x01) << s);
1092	    outb(IO_RTC, 0x17);	/* CLK 1 */
1093	    DELAY(1);
1094	    outb(IO_RTC, 0x07);	/* CLK 0 */
1095	    DELAY(2);
1096	}
1097	return sa;
1098}
1099#endif /* PC-98 */
1100
1101/*
1102 * Initialize the time of day register, based on the time base which is, e.g.
1103 * from a filesystem.
1104 */
1105void
1106inittodr(time_t base)
1107{
1108	unsigned long	sec, days;
1109	int		year, month;
1110	int		y, m, s;
1111	struct timespec ts;
1112#ifdef PC98
1113	int		second, min, hour;
1114#endif
1115
1116	if (base) {
1117		s = splclock();
1118		ts.tv_sec = base;
1119		ts.tv_nsec = 0;
1120		tc_setclock(&ts);
1121		splx(s);
1122	}
1123
1124#ifdef PC98
1125	rtc_serialcom(0x03);	/* Time Read */
1126	rtc_serialcom(0x01);	/* Register shift command. */
1127	DELAY(20);
1128
1129	second = bcd2bin(rtc_inb() & 0xff);	/* sec */
1130	min = bcd2bin(rtc_inb() & 0xff);	/* min */
1131	hour = bcd2bin(rtc_inb() & 0xff);	/* hour */
1132	days = bcd2bin(rtc_inb() & 0xff) - 1;	/* date */
1133
1134	month = (rtc_inb() >> 4) & 0x0f;	/* month */
1135	for (m = 1; m <	month; m++)
1136		days +=	daysinmonth[m-1];
1137	year = bcd2bin(rtc_inb() & 0xff) + 1900;	/* year */
1138	/* 2000 year problem */
1139	if (year < 1995)
1140		year += 100;
1141	if (year < 1970)
1142		goto wrong_time;
1143	for (y = 1970; y < year; y++)
1144		days +=	DAYSPERYEAR + LEAPYEAR(y);
1145	if ((month > 2)	&& LEAPYEAR(year))
1146		days ++;
1147	sec = ((( days * 24 +
1148		  hour) * 60 +
1149		  min) * 60 +
1150		  second);
1151	/* sec now contains the	number of seconds, since Jan 1 1970,
1152	   in the local	time zone */
1153
1154	s = splhigh();
1155#else	/* IBM-PC */
1156	/* Look if we have a RTC present and the time is valid */
1157	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
1158		goto wrong_time;
1159
1160	/* wait for time update to complete */
1161	/* If RTCSA_TUP is zero, we have at least 244us before next update */
1162	s = splhigh();
1163	while (rtcin(RTC_STATUSA) & RTCSA_TUP) {
1164		splx(s);
1165		s = splhigh();
1166	}
1167
1168	days = 0;
1169#ifdef USE_RTC_CENTURY
1170	year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
1171#else
1172	year = readrtc(RTC_YEAR) + 1900;
1173	if (year < 1970)
1174		year += 100;
1175#endif
1176	if (year < 1970) {
1177		splx(s);
1178		goto wrong_time;
1179	}
1180	month = readrtc(RTC_MONTH);
1181	for (m = 1; m < month; m++)
1182		days += daysinmonth[m-1];
1183	if ((month > 2) && LEAPYEAR(year))
1184		days ++;
1185	days += readrtc(RTC_DAY) - 1;
1186	for (y = 1970; y < year; y++)
1187		days += DAYSPERYEAR + LEAPYEAR(y);
1188	sec = ((( days * 24 +
1189		  readrtc(RTC_HRS)) * 60 +
1190		  readrtc(RTC_MIN)) * 60 +
1191		  readrtc(RTC_SEC));
1192	/* sec now contains the number of seconds, since Jan 1 1970,
1193	   in the local time zone */
1194#endif
1195
1196	sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1197
1198	y = time_second - sec;
1199	if (y <= -2 || y >= 2) {
1200		/* badly off, adjust it */
1201		ts.tv_sec = sec;
1202		ts.tv_nsec = 0;
1203		tc_setclock(&ts);
1204	}
1205	splx(s);
1206	return;
1207
1208wrong_time:
1209	printf("Invalid time in real time clock.\n");
1210	printf("Check and reset the date immediately!\n");
1211}
1212
1213/*
1214 * Write system time back to RTC
1215 */
1216void
1217resettodr()
1218{
1219	unsigned long	tm;
1220	int		y, m, s;
1221#ifdef PC98
1222	int		wd;
1223#endif
1224
1225	if (disable_rtc_set)
1226		return;
1227
1228	s = splclock();
1229	tm = time_second;
1230	splx(s);
1231
1232#ifdef PC98
1233	rtc_serialcom(0x01);	/* Register shift command. */
1234
1235	/* Calculate local time	to put in RTC */
1236
1237	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1238
1239	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
1240	rtc_outb(bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
1241	rtc_outb(bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
1242
1243	/* We have now the days	since 01-01-1970 in tm */
1244	wd = (tm+4)%7;
1245	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1246	     tm >= m;
1247	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1248	     tm -= m;
1249
1250	/* Now we have the years in y and the day-of-the-year in tm */
1251	for (m = 0; ; m++) {
1252		int ml;
1253
1254		ml = daysinmonth[m];
1255		if (m == 1 && LEAPYEAR(y))
1256			ml++;
1257		if (tm < ml)
1258			break;
1259		tm -= ml;
1260	}
1261
1262	m++;
1263	rtc_outb(bin2bcd(tm+1));		/* Write back Day     */
1264	rtc_outb((m << 4) | wd);		/* Write back Month & Weekday  */
1265	rtc_outb(bin2bcd(y%100));		/* Write back Year    */
1266
1267	rtc_serialcom(0x02);	/* Time set & Counter hold command. */
1268	rtc_serialcom(0x00);	/* Register hold command. */
1269#else
1270	/* Disable RTC updates and interrupts. */
1271	writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
1272
1273	/* Calculate local time to put in RTC */
1274
1275	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
1276
1277	writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
1278	writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
1279	writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
1280
1281	/* We have now the days since 01-01-1970 in tm */
1282	writertc(RTC_WDAY, (tm+4)%7);			/* Write back Weekday */
1283	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
1284	     tm >= m;
1285	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
1286	     tm -= m;
1287
1288	/* Now we have the years in y and the day-of-the-year in tm */
1289	writertc(RTC_YEAR, bin2bcd(y%100));		/* Write back Year    */
1290#ifdef USE_RTC_CENTURY
1291	writertc(RTC_CENTURY, bin2bcd(y/100));		/* ... and Century    */
1292#endif
1293	for (m = 0; ; m++) {
1294		int ml;
1295
1296		ml = daysinmonth[m];
1297		if (m == 1 && LEAPYEAR(y))
1298			ml++;
1299		if (tm < ml)
1300			break;
1301		tm -= ml;
1302	}
1303
1304	writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
1305	writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
1306
1307	/* Reenable RTC updates and interrupts. */
1308	writertc(RTC_STATUSB, rtc_statusb);
1309#endif /* PC98 */
1310}
1311
1312
1313/*
1314 * Start both clocks running.
1315 */
1316void
1317cpu_initclocks()
1318{
1319#ifndef PC98
1320	int diag;
1321#endif
1322#ifdef APIC_IO
1323	int apic_8254_trial;
1324	void *clkdesc;
1325#endif /* APIC_IO */
1326	register_t crit;
1327
1328#ifndef PC98
1329	if (statclock_disable) {
1330		/*
1331		 * The stat interrupt mask is different without the
1332		 * statistics clock.  Also, don't set the interrupt
1333		 * flag which would normally cause the RTC to generate
1334		 * interrupts.
1335		 */
1336		rtc_statusb = RTCSB_24HR;
1337	} else {
1338	        /* Setting stathz to nonzero early helps avoid races. */
1339		stathz = RTC_NOPROFRATE;
1340		profhz = RTC_PROFRATE;
1341        }
1342#endif
1343
1344	/* Finish initializing 8253 timer 0. */
1345#ifdef APIC_IO
1346
1347	apic_8254_intr = isa_apic_irq(0);
1348	apic_8254_trial = 0;
1349	if (apic_8254_intr >= 0 ) {
1350		if (apic_int_type(0, 0) == 3)
1351			apic_8254_trial = 1;
1352	} else {
1353		/* look for ExtInt on pin 0 */
1354		if (apic_int_type(0, 0) == 3) {
1355			apic_8254_intr = apic_irq(0, 0);
1356			setup_8254_mixed_mode();
1357		} else
1358			panic("APIC_IO: Cannot route 8254 interrupt to CPU");
1359	}
1360
1361	inthand_add("clk", apic_8254_intr, (driver_intr_t *)clkintr, NULL,
1362	    INTR_TYPE_CLK | INTR_FAST, &clkdesc);
1363	crit = intr_disable();
1364	mtx_lock_spin(&icu_lock);
1365	INTREN(1 << apic_8254_intr);
1366	mtx_unlock_spin(&icu_lock);
1367	intr_restore(crit);
1368
1369#else /* APIC_IO */
1370
1371	/*
1372	 * XXX Check the priority of this interrupt handler.  I
1373	 * couldn't find anything suitable in the BSD/OS code (grog,
1374	 * 19 July 2000).
1375	 */
1376	inthand_add("clk", 0, (driver_intr_t *)clkintr, NULL,
1377	    INTR_TYPE_CLK | INTR_FAST, NULL);
1378	crit = intr_disable();
1379	mtx_lock_spin(&icu_lock);
1380	INTREN(IRQ0);
1381	mtx_unlock_spin(&icu_lock);
1382	intr_restore(crit);
1383
1384#endif /* APIC_IO */
1385
1386#ifndef PC98
1387	/* Initialize RTC. */
1388	writertc(RTC_STATUSA, rtc_statusa);
1389	writertc(RTC_STATUSB, RTCSB_24HR);
1390
1391	/* Don't bother enabling the statistics clock. */
1392	if (statclock_disable)
1393		return;
1394	diag = rtcin(RTC_DIAG);
1395	if (diag != 0)
1396		printf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
1397#endif /* !PC98 */
1398
1399#ifndef PC98
1400#ifdef APIC_IO
1401	if (isa_apic_irq(8) != 8)
1402		panic("APIC RTC != 8");
1403#endif /* APIC_IO */
1404
1405	inthand_add("rtc", 8, (driver_intr_t *)rtcintr, NULL,
1406	    INTR_TYPE_CLK | INTR_FAST, NULL);
1407
1408	crit = intr_disable();
1409	mtx_lock_spin(&icu_lock);
1410#ifdef APIC_IO
1411	INTREN(APIC_IRQ8);
1412#else
1413	INTREN(IRQ8);
1414#endif /* APIC_IO */
1415	mtx_unlock_spin(&icu_lock);
1416	intr_restore(crit);
1417
1418	writertc(RTC_STATUSB, rtc_statusb);
1419#endif /* PC98 */
1420
1421#ifdef APIC_IO
1422	if (apic_8254_trial) {
1423
1424		printf("APIC_IO: Testing 8254 interrupt delivery\n");
1425		while (read_intr_count(8) < 6)
1426			;	/* nothing */
1427		if (read_intr_count(apic_8254_intr) < 3) {
1428			/*
1429			 * The MP table is broken.
1430			 * The 8254 was not connected to the specified pin
1431			 * on the IO APIC.
1432			 * Workaround: Limited variant of mixed mode.
1433			 */
1434			crit = intr_disable();
1435			mtx_lock_spin(&icu_lock);
1436			INTRDIS(1 << apic_8254_intr);
1437			mtx_unlock_spin(&icu_lock);
1438			intr_restore(crit);
1439			inthand_remove(clkdesc);
1440			printf("APIC_IO: Broken MP table detected: "
1441			       "8254 is not connected to "
1442			       "IOAPIC #%d intpin %d\n",
1443			       int_to_apicintpin[apic_8254_intr].ioapic,
1444			       int_to_apicintpin[apic_8254_intr].int_pin);
1445			/*
1446			 * Revoke current ISA IRQ 0 assignment and
1447			 * configure a fallback interrupt routing from
1448			 * the 8254 Timer via the 8259 PIC to the
1449			 * an ExtInt interrupt line on IOAPIC #0 intpin 0.
1450			 * We reuse the low level interrupt handler number.
1451			 */
1452			if (apic_irq(0, 0) < 0) {
1453				revoke_apic_irq(apic_8254_intr);
1454				assign_apic_irq(0, 0, apic_8254_intr);
1455			}
1456			apic_8254_intr = apic_irq(0, 0);
1457			setup_8254_mixed_mode();
1458			inthand_add("clk", apic_8254_intr,
1459				    (driver_intr_t *)clkintr, NULL,
1460				    INTR_TYPE_CLK | INTR_FAST, NULL);
1461			crit = intr_disable();
1462			mtx_lock_spin(&icu_lock);
1463			INTREN(1 << apic_8254_intr);
1464			mtx_unlock_spin(&icu_lock);
1465			intr_restore(crit);
1466		}
1467
1468	}
1469	if (apic_int_type(0, 0) != 3 ||
1470	    int_to_apicintpin[apic_8254_intr].ioapic != 0 ||
1471	    int_to_apicintpin[apic_8254_intr].int_pin != 0)
1472		printf("APIC_IO: routing 8254 via IOAPIC #%d intpin %d\n",
1473		       int_to_apicintpin[apic_8254_intr].ioapic,
1474		       int_to_apicintpin[apic_8254_intr].int_pin);
1475	else
1476		printf("APIC_IO: "
1477		       "routing 8254 via 8259 and IOAPIC #0 intpin 0\n");
1478#endif
1479
1480}
1481
1482#ifdef APIC_IO
1483static u_long
1484read_intr_count(int vec)
1485{
1486	u_long *up;
1487	up = intr_countp[vec];
1488	if (up)
1489		return *up;
1490	return 0UL;
1491}
1492
1493static void
1494setup_8254_mixed_mode()
1495{
1496	/*
1497	 * Allow 8254 timer to INTerrupt 8259:
1498	 *  re-initialize master 8259:
1499	 *   reset; prog 4 bytes, single ICU, edge triggered
1500	 */
1501	outb(IO_ICU1, 0x13);
1502#ifdef PC98
1503	outb(IO_ICU1 + 2, NRSVIDT);	/* start vector (unused) */
1504	outb(IO_ICU1 + 2, 0x00);	/* ignore slave */
1505	outb(IO_ICU1 + 2, 0x03);	/* auto EOI, 8086 */
1506	outb(IO_ICU1 + 2, 0xfe);	/* unmask INT0 */
1507#else
1508	outb(IO_ICU1 + 1, NRSVIDT);	/* start vector (unused) */
1509	outb(IO_ICU1 + 1, 0x00);	/* ignore slave */
1510	outb(IO_ICU1 + 1, 0x03);	/* auto EOI, 8086 */
1511	outb(IO_ICU1 + 1, 0xfe);	/* unmask INT0 */
1512#endif
1513
1514	/* program IO APIC for type 3 INT on INT0 */
1515	if (ext_int_setup(0, 0) < 0)
1516		panic("8254 redirect via APIC pin0 impossible!");
1517}
1518#endif
1519
1520void
1521setstatclockrate(int newhz)
1522{
1523#ifndef PC98
1524	if (newhz == RTC_PROFRATE)
1525		rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
1526	else
1527		rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
1528	writertc(RTC_STATUSA, rtc_statusa);
1529#endif
1530}
1531
1532static int
1533sysctl_machdep_i8254_freq(SYSCTL_HANDLER_ARGS)
1534{
1535	int error;
1536	u_int freq;
1537
1538	/*
1539	 * Use `i8254' instead of `timer' in external names because `timer'
1540	 * is is too generic.  Should use it everywhere.
1541	 */
1542	freq = timer_freq;
1543	error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
1544	if (error == 0 && req->newptr != NULL) {
1545		if (timer0_state != RELEASED)
1546			return (EBUSY);	/* too much trouble to handle */
1547		set_timer_freq(freq, hz);
1548		i8254_timecounter.tc_frequency = freq;
1549	}
1550	return (error);
1551}
1552
1553SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
1554    0, sizeof(u_int), sysctl_machdep_i8254_freq, "IU", "");
1555
1556static int
1557sysctl_machdep_tsc_freq(SYSCTL_HANDLER_ARGS)
1558{
1559	int error;
1560	u_int freq;
1561
1562	if (tsc_timecounter.tc_frequency == 0)
1563		return (EOPNOTSUPP);
1564	freq = tsc_freq;
1565	error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
1566	if (error == 0 && req->newptr != NULL) {
1567		tsc_freq = freq;
1568		tsc_timecounter.tc_frequency = tsc_freq;
1569	}
1570	return (error);
1571}
1572
1573SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq, CTLTYPE_INT | CTLFLAG_RW,
1574    0, sizeof(u_int), sysctl_machdep_tsc_freq, "IU", "");
1575
1576static unsigned
1577i8254_get_timecount(struct timecounter *tc)
1578{
1579	u_int count;
1580	u_int high, low;
1581	u_int eflags;
1582
1583	eflags = read_eflags();
1584	mtx_lock_spin(&clock_lock);
1585
1586	/* Select timer0 and latch counter value. */
1587	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
1588
1589	low = inb(TIMER_CNTR0);
1590	high = inb(TIMER_CNTR0);
1591	count = timer0_max_count - ((high << 8) | low);
1592	if (count < i8254_lastcount ||
1593	    (!i8254_ticked && (clkintr_pending ||
1594	    ((count < 20 || (!(eflags & PSL_I) && count < timer0_max_count / 2u)) &&
1595#ifdef APIC_IO
1596#define	lapic_irr1	((volatile u_int *)&lapic)[0x210 / 4]	/* XXX XXX */
1597	    /* XXX this assumes that apic_8254_intr is < 24. */
1598	    (lapic_irr1 & (1 << apic_8254_intr))))
1599#else
1600	    (inb(IO_ICU1) & 1)))
1601#endif
1602	    )) {
1603		i8254_ticked = 1;
1604		i8254_offset += timer0_max_count;
1605	}
1606	i8254_lastcount = count;
1607	count += i8254_offset;
1608	mtx_unlock_spin(&clock_lock);
1609	return (count);
1610}
1611
1612static unsigned
1613tsc_get_timecount(struct timecounter *tc)
1614{
1615	return (rdtsc());
1616}
1617
1618#ifdef DEV_ISA
1619/*
1620 * Attach to the ISA PnP descriptors for the timer and realtime clock.
1621 */
1622static struct isa_pnp_id attimer_ids[] = {
1623	{ 0x0001d041 /* PNP0100 */, "AT timer" },
1624	{ 0x000bd041 /* PNP0B00 */, "AT realtime clock" },
1625	{ 0 }
1626};
1627
1628static int
1629attimer_probe(device_t dev)
1630{
1631	int result;
1632
1633	if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, attimer_ids)) <= 0)
1634		device_quiet(dev);
1635	return(result);
1636}
1637
1638static int
1639attimer_attach(device_t dev)
1640{
1641	return(0);
1642}
1643
1644static device_method_t attimer_methods[] = {
1645	/* Device interface */
1646	DEVMETHOD(device_probe,		attimer_probe),
1647	DEVMETHOD(device_attach,	attimer_attach),
1648	DEVMETHOD(device_detach,	bus_generic_detach),
1649	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1650	DEVMETHOD(device_suspend,	bus_generic_suspend),	/* XXX stop statclock? */
1651	DEVMETHOD(device_resume,	bus_generic_resume),	/* XXX restart statclock? */
1652	{ 0, 0 }
1653};
1654
1655static driver_t attimer_driver = {
1656	"attimer",
1657	attimer_methods,
1658	1,		/* no softc */
1659};
1660
1661static devclass_t attimer_devclass;
1662
1663DRIVER_MODULE(attimer, isa, attimer_driver, attimer_devclass, 0, 0);
1664#ifndef PC98
1665DRIVER_MODULE(attimer, acpi, attimer_driver, attimer_devclass, 0, 0);
1666#endif
1667#endif /* DEV_ISA */
1668