nfs_vnops.c revision 200471
1/*-
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	@(#)nfs_vnops.c	8.16 (Berkeley) 5/27/95
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD: head/sys/nfsclient/nfs_vnops.c 200471 2009-12-13 11:06:39Z bz $");
37
38/*
39 * vnode op calls for Sun NFS version 2 and 3
40 */
41
42#include "opt_inet.h"
43#include "opt_kdtrace.h"
44
45#include <sys/param.h>
46#include <sys/kernel.h>
47#include <sys/systm.h>
48#include <sys/resourcevar.h>
49#include <sys/proc.h>
50#include <sys/mount.h>
51#include <sys/bio.h>
52#include <sys/buf.h>
53#include <sys/jail.h>
54#include <sys/malloc.h>
55#include <sys/mbuf.h>
56#include <sys/namei.h>
57#include <sys/socket.h>
58#include <sys/vnode.h>
59#include <sys/dirent.h>
60#include <sys/fcntl.h>
61#include <sys/lockf.h>
62#include <sys/stat.h>
63#include <sys/sysctl.h>
64#include <sys/signalvar.h>
65
66#include <vm/vm.h>
67#include <vm/vm_object.h>
68#include <vm/vm_extern.h>
69#include <vm/vm_object.h>
70
71#include <fs/fifofs/fifo.h>
72
73#include <nfs/nfsproto.h>
74#include <nfsclient/nfs.h>
75#include <nfsclient/nfsnode.h>
76#include <nfsclient/nfsmount.h>
77#include <nfsclient/nfs_kdtrace.h>
78#include <nfsclient/nfs_lock.h>
79#include <nfs/xdr_subs.h>
80#include <nfsclient/nfsm_subs.h>
81
82#include <net/if.h>
83#include <netinet/in.h>
84#include <netinet/in_var.h>
85
86#include <machine/stdarg.h>
87
88#ifdef KDTRACE_HOOKS
89#include <sys/dtrace_bsd.h>
90
91dtrace_nfsclient_accesscache_flush_probe_func_t
92    dtrace_nfsclient_accesscache_flush_done_probe;
93uint32_t nfsclient_accesscache_flush_done_id;
94
95dtrace_nfsclient_accesscache_get_probe_func_t
96    dtrace_nfsclient_accesscache_get_hit_probe,
97    dtrace_nfsclient_accesscache_get_miss_probe;
98uint32_t nfsclient_accesscache_get_hit_id;
99uint32_t nfsclient_accesscache_get_miss_id;
100
101dtrace_nfsclient_accesscache_load_probe_func_t
102    dtrace_nfsclient_accesscache_load_done_probe;
103uint32_t nfsclient_accesscache_load_done_id;
104#endif /* !KDTRACE_HOOKS */
105
106/* Defs */
107#define	TRUE	1
108#define	FALSE	0
109
110/*
111 * Ifdef for FreeBSD-current merged buffer cache. It is unfortunate that these
112 * calls are not in getblk() and brelse() so that they would not be necessary
113 * here.
114 */
115#ifndef B_VMIO
116#define vfs_busy_pages(bp, f)
117#endif
118
119static vop_read_t	nfsfifo_read;
120static vop_write_t	nfsfifo_write;
121static vop_close_t	nfsfifo_close;
122static int	nfs_flush(struct vnode *, int, int);
123static int	nfs_setattrrpc(struct vnode *, struct vattr *, struct ucred *);
124static vop_lookup_t	nfs_lookup;
125static vop_create_t	nfs_create;
126static vop_mknod_t	nfs_mknod;
127static vop_open_t	nfs_open;
128static vop_close_t	nfs_close;
129static vop_access_t	nfs_access;
130static vop_getattr_t	nfs_getattr;
131static vop_setattr_t	nfs_setattr;
132static vop_read_t	nfs_read;
133static vop_fsync_t	nfs_fsync;
134static vop_remove_t	nfs_remove;
135static vop_link_t	nfs_link;
136static vop_rename_t	nfs_rename;
137static vop_mkdir_t	nfs_mkdir;
138static vop_rmdir_t	nfs_rmdir;
139static vop_symlink_t	nfs_symlink;
140static vop_readdir_t	nfs_readdir;
141static vop_strategy_t	nfs_strategy;
142static	int	nfs_lookitup(struct vnode *, const char *, int,
143		    struct ucred *, struct thread *, struct nfsnode **);
144static	int	nfs_sillyrename(struct vnode *, struct vnode *,
145		    struct componentname *);
146static vop_access_t	nfsspec_access;
147static vop_readlink_t	nfs_readlink;
148static vop_print_t	nfs_print;
149static vop_advlock_t	nfs_advlock;
150static vop_advlockasync_t nfs_advlockasync;
151
152/*
153 * Global vfs data structures for nfs
154 */
155struct vop_vector nfs_vnodeops = {
156	.vop_default =		&default_vnodeops,
157	.vop_access =		nfs_access,
158	.vop_advlock =		nfs_advlock,
159	.vop_advlockasync =	nfs_advlockasync,
160	.vop_close =		nfs_close,
161	.vop_create =		nfs_create,
162	.vop_fsync =		nfs_fsync,
163	.vop_getattr =		nfs_getattr,
164	.vop_getpages =		nfs_getpages,
165	.vop_putpages =		nfs_putpages,
166	.vop_inactive =		nfs_inactive,
167	.vop_link =		nfs_link,
168	.vop_lookup =		nfs_lookup,
169	.vop_mkdir =		nfs_mkdir,
170	.vop_mknod =		nfs_mknod,
171	.vop_open =		nfs_open,
172	.vop_print =		nfs_print,
173	.vop_read =		nfs_read,
174	.vop_readdir =		nfs_readdir,
175	.vop_readlink =		nfs_readlink,
176	.vop_reclaim =		nfs_reclaim,
177	.vop_remove =		nfs_remove,
178	.vop_rename =		nfs_rename,
179	.vop_rmdir =		nfs_rmdir,
180	.vop_setattr =		nfs_setattr,
181	.vop_strategy =		nfs_strategy,
182	.vop_symlink =		nfs_symlink,
183	.vop_write =		nfs_write,
184};
185
186struct vop_vector nfs_fifoops = {
187	.vop_default =		&fifo_specops,
188	.vop_access =		nfsspec_access,
189	.vop_close =		nfsfifo_close,
190	.vop_fsync =		nfs_fsync,
191	.vop_getattr =		nfs_getattr,
192	.vop_inactive =		nfs_inactive,
193	.vop_print =		nfs_print,
194	.vop_read =		nfsfifo_read,
195	.vop_reclaim =		nfs_reclaim,
196	.vop_setattr =		nfs_setattr,
197	.vop_write =		nfsfifo_write,
198};
199
200static int	nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp,
201			     struct componentname *cnp, struct vattr *vap);
202static int	nfs_removerpc(struct vnode *dvp, const char *name, int namelen,
203			      struct ucred *cred, struct thread *td);
204static int	nfs_renamerpc(struct vnode *fdvp, const char *fnameptr,
205			      int fnamelen, struct vnode *tdvp,
206			      const char *tnameptr, int tnamelen,
207			      struct ucred *cred, struct thread *td);
208static int	nfs_renameit(struct vnode *sdvp, struct componentname *scnp,
209			     struct sillyrename *sp);
210
211/*
212 * Global variables
213 */
214struct mtx 	nfs_iod_mtx;
215struct proc	*nfs_iodwant[NFS_MAXASYNCDAEMON];
216struct nfsmount *nfs_iodmount[NFS_MAXASYNCDAEMON];
217int		 nfs_numasync = 0;
218vop_advlock_t	*nfs_advlock_p = nfs_dolock;
219vop_reclaim_t	*nfs_reclaim_p = NULL;
220#define	DIRHDSIZ	(sizeof (struct dirent) - (MAXNAMLEN + 1))
221
222SYSCTL_DECL(_vfs_nfs);
223
224static int	nfsaccess_cache_timeout = NFS_MAXATTRTIMO;
225SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW,
226	   &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout");
227
228static int	nfs_prime_access_cache = 0;
229SYSCTL_INT(_vfs_nfs, OID_AUTO, prime_access_cache, CTLFLAG_RW,
230	   &nfs_prime_access_cache, 0,
231	   "Prime NFS ACCESS cache when fetching attributes");
232
233static int	nfsv3_commit_on_close = 0;
234SYSCTL_INT(_vfs_nfs, OID_AUTO, nfsv3_commit_on_close, CTLFLAG_RW,
235	   &nfsv3_commit_on_close, 0, "write+commit on close, else only write");
236
237static int	nfs_clean_pages_on_close = 1;
238SYSCTL_INT(_vfs_nfs, OID_AUTO, clean_pages_on_close, CTLFLAG_RW,
239	   &nfs_clean_pages_on_close, 0, "NFS clean dirty pages on close");
240
241int nfs_directio_enable = 0;
242SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_directio_enable, CTLFLAG_RW,
243	   &nfs_directio_enable, 0, "Enable NFS directio");
244
245/*
246 * This sysctl allows other processes to mmap a file that has been opened
247 * O_DIRECT by a process.  In general, having processes mmap the file while
248 * Direct IO is in progress can lead to Data Inconsistencies.  But, we allow
249 * this by default to prevent DoS attacks - to prevent a malicious user from
250 * opening up files O_DIRECT preventing other users from mmap'ing these
251 * files.  "Protected" environments where stricter consistency guarantees are
252 * required can disable this knob.  The process that opened the file O_DIRECT
253 * cannot mmap() the file, because mmap'ed IO on an O_DIRECT open() is not
254 * meaningful.
255 */
256int nfs_directio_allow_mmap = 1;
257SYSCTL_INT(_vfs_nfs, OID_AUTO, nfs_directio_allow_mmap, CTLFLAG_RW,
258	   &nfs_directio_allow_mmap, 0, "Enable mmaped IO on file with O_DIRECT opens");
259
260#if 0
261SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_hits, CTLFLAG_RD,
262	   &nfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count");
263
264SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_misses, CTLFLAG_RD,
265	   &nfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count");
266#endif
267
268#define	NFSV3ACCESS_ALL (NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY		\
269			 | NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE	\
270			 | NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP)
271
272/*
273 * SMP Locking Note :
274 * The list of locks after the description of the lock is the ordering
275 * of other locks acquired with the lock held.
276 * np->n_mtx : Protects the fields in the nfsnode.
277       VM Object Lock
278       VI_MTX (acquired indirectly)
279 * nmp->nm_mtx : Protects the fields in the nfsmount.
280       rep->r_mtx
281 * nfs_iod_mtx : Global lock, protects shared nfsiod state.
282 * nfs_reqq_mtx : Global lock, protects the nfs_reqq list.
283       nmp->nm_mtx
284       rep->r_mtx
285 * rep->r_mtx : Protects the fields in an nfsreq.
286 */
287
288static int
289nfs3_access_otw(struct vnode *vp, int wmode, struct thread *td,
290    struct ucred *cred, uint32_t *retmode)
291{
292	const int v3 = 1;
293	u_int32_t *tl;
294	int error = 0, attrflag, i, lrupos;
295
296	struct mbuf *mreq, *mrep, *md, *mb;
297	caddr_t bpos, dpos;
298	u_int32_t rmode;
299	struct nfsnode *np = VTONFS(vp);
300
301	nfsstats.rpccnt[NFSPROC_ACCESS]++;
302	mreq = nfsm_reqhead(vp, NFSPROC_ACCESS, NFSX_FH(v3) + NFSX_UNSIGNED);
303	mb = mreq;
304	bpos = mtod(mb, caddr_t);
305	nfsm_fhtom(vp, v3);
306	tl = nfsm_build(u_int32_t *, NFSX_UNSIGNED);
307	*tl = txdr_unsigned(wmode);
308	nfsm_request(vp, NFSPROC_ACCESS, td, cred);
309	nfsm_postop_attr(vp, attrflag);
310	if (!error) {
311		lrupos = 0;
312		tl = nfsm_dissect(u_int32_t *, NFSX_UNSIGNED);
313		rmode = fxdr_unsigned(u_int32_t, *tl);
314		mtx_lock(&np->n_mtx);
315		for (i = 0; i < NFS_ACCESSCACHESIZE; i++) {
316			if (np->n_accesscache[i].uid == cred->cr_uid) {
317				np->n_accesscache[i].mode = rmode;
318				np->n_accesscache[i].stamp = time_second;
319				break;
320			}
321			if (i > 0 && np->n_accesscache[i].stamp <
322			    np->n_accesscache[lrupos].stamp)
323				lrupos = i;
324		}
325		if (i == NFS_ACCESSCACHESIZE) {
326			np->n_accesscache[lrupos].uid = cred->cr_uid;
327			np->n_accesscache[lrupos].mode = rmode;
328			np->n_accesscache[lrupos].stamp = time_second;
329		}
330		mtx_unlock(&np->n_mtx);
331		if (retmode != NULL)
332			*retmode = rmode;
333		KDTRACE_NFS_ACCESSCACHE_LOAD_DONE(vp, cred->cr_uid, rmode, 0);
334	}
335	m_freem(mrep);
336nfsmout:
337#ifdef KDTRACE_HOOKS
338	if (error) {
339		KDTRACE_NFS_ACCESSCACHE_LOAD_DONE(vp, cred->cr_uid, 0,
340		    error);
341	}
342#endif
343	return (error);
344}
345
346/*
347 * nfs access vnode op.
348 * For nfs version 2, just return ok. File accesses may fail later.
349 * For nfs version 3, use the access rpc to check accessibility. If file modes
350 * are changed on the server, accesses might still fail later.
351 */
352static int
353nfs_access(struct vop_access_args *ap)
354{
355	struct vnode *vp = ap->a_vp;
356	int error = 0, i, gotahit;
357	u_int32_t mode, rmode, wmode;
358	int v3 = NFS_ISV3(vp);
359	struct nfsnode *np = VTONFS(vp);
360
361	/*
362	 * Disallow write attempts on filesystems mounted read-only;
363	 * unless the file is a socket, fifo, or a block or character
364	 * device resident on the filesystem.
365	 */
366	if ((ap->a_accmode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
367		switch (vp->v_type) {
368		case VREG:
369		case VDIR:
370		case VLNK:
371			return (EROFS);
372		default:
373			break;
374		}
375	}
376	/*
377	 * For nfs v3, check to see if we have done this recently, and if
378	 * so return our cached result instead of making an ACCESS call.
379	 * If not, do an access rpc, otherwise you are stuck emulating
380	 * ufs_access() locally using the vattr. This may not be correct,
381	 * since the server may apply other access criteria such as
382	 * client uid-->server uid mapping that we do not know about.
383	 */
384	if (v3) {
385		if (ap->a_accmode & VREAD)
386			mode = NFSV3ACCESS_READ;
387		else
388			mode = 0;
389		if (vp->v_type != VDIR) {
390			if (ap->a_accmode & VWRITE)
391				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND);
392			if (ap->a_accmode & VEXEC)
393				mode |= NFSV3ACCESS_EXECUTE;
394		} else {
395			if (ap->a_accmode & VWRITE)
396				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND |
397					 NFSV3ACCESS_DELETE);
398			if (ap->a_accmode & VEXEC)
399				mode |= NFSV3ACCESS_LOOKUP;
400		}
401		/* XXX safety belt, only make blanket request if caching */
402		if (nfsaccess_cache_timeout > 0) {
403			wmode = NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY |
404				NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE |
405				NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP;
406		} else {
407			wmode = mode;
408		}
409
410		/*
411		 * Does our cached result allow us to give a definite yes to
412		 * this request?
413		 */
414		gotahit = 0;
415		mtx_lock(&np->n_mtx);
416		for (i = 0; i < NFS_ACCESSCACHESIZE; i++) {
417			if (ap->a_cred->cr_uid == np->n_accesscache[i].uid) {
418				if (time_second < (np->n_accesscache[i].stamp +
419				    nfsaccess_cache_timeout) &&
420				    (np->n_accesscache[i].mode & mode) == mode) {
421					nfsstats.accesscache_hits++;
422					gotahit = 1;
423				}
424				break;
425			}
426		}
427		mtx_unlock(&np->n_mtx);
428#ifdef KDTRACE_HOOKS
429		if (gotahit)
430			KDTRACE_NFS_ACCESSCACHE_GET_HIT(vp,
431			    ap->a_cred->cr_uid, mode);
432		else
433			KDTRACE_NFS_ACCESSCACHE_GET_MISS(vp,
434			    ap->a_cred->cr_uid, mode);
435#endif
436		if (gotahit == 0) {
437			/*
438			 * Either a no, or a don't know.  Go to the wire.
439			 */
440			nfsstats.accesscache_misses++;
441		        error = nfs3_access_otw(vp, wmode, ap->a_td, ap->a_cred,
442			    &rmode);
443			if (!error) {
444				if ((rmode & mode) != mode)
445					error = EACCES;
446			}
447		}
448		return (error);
449	} else {
450		if ((error = nfsspec_access(ap)) != 0) {
451			return (error);
452		}
453		/*
454		 * Attempt to prevent a mapped root from accessing a file
455		 * which it shouldn't.  We try to read a byte from the file
456		 * if the user is root and the file is not zero length.
457		 * After calling nfsspec_access, we should have the correct
458		 * file size cached.
459		 */
460		mtx_lock(&np->n_mtx);
461		if (ap->a_cred->cr_uid == 0 && (ap->a_accmode & VREAD)
462		    && VTONFS(vp)->n_size > 0) {
463			struct iovec aiov;
464			struct uio auio;
465			char buf[1];
466
467			mtx_unlock(&np->n_mtx);
468			aiov.iov_base = buf;
469			aiov.iov_len = 1;
470			auio.uio_iov = &aiov;
471			auio.uio_iovcnt = 1;
472			auio.uio_offset = 0;
473			auio.uio_resid = 1;
474			auio.uio_segflg = UIO_SYSSPACE;
475			auio.uio_rw = UIO_READ;
476			auio.uio_td = ap->a_td;
477
478			if (vp->v_type == VREG)
479				error = nfs_readrpc(vp, &auio, ap->a_cred);
480			else if (vp->v_type == VDIR) {
481				char* bp;
482				bp = malloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK);
483				aiov.iov_base = bp;
484				aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ;
485				error = nfs_readdirrpc(vp, &auio, ap->a_cred);
486				free(bp, M_TEMP);
487			} else if (vp->v_type == VLNK)
488				error = nfs_readlinkrpc(vp, &auio, ap->a_cred);
489			else
490				error = EACCES;
491		} else
492			mtx_unlock(&np->n_mtx);
493		return (error);
494	}
495}
496
497int nfs_otw_getattr_avoid = 0;
498
499/*
500 * nfs open vnode op
501 * Check to see if the type is ok
502 * and that deletion is not in progress.
503 * For paged in text files, you will need to flush the page cache
504 * if consistency is lost.
505 */
506/* ARGSUSED */
507static int
508nfs_open(struct vop_open_args *ap)
509{
510	struct vnode *vp = ap->a_vp;
511	struct nfsnode *np = VTONFS(vp);
512	struct vattr vattr;
513	int error;
514	int fmode = ap->a_mode;
515
516	if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK)
517		return (EOPNOTSUPP);
518
519	/*
520	 * Get a valid lease. If cached data is stale, flush it.
521	 */
522	mtx_lock(&np->n_mtx);
523	if (np->n_flag & NMODIFIED) {
524		mtx_unlock(&np->n_mtx);
525		error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
526		if (error == EINTR || error == EIO)
527			return (error);
528		np->n_attrstamp = 0;
529		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
530		if (vp->v_type == VDIR)
531			np->n_direofoffset = 0;
532		error = VOP_GETATTR(vp, &vattr, ap->a_cred);
533		if (error)
534			return (error);
535		mtx_lock(&np->n_mtx);
536		np->n_mtime = vattr.va_mtime;
537		mtx_unlock(&np->n_mtx);
538	} else {
539		struct thread *td = curthread;
540
541		if (np->n_ac_ts_syscalls != td->td_syscalls ||
542		    np->n_ac_ts_tid != td->td_tid ||
543		    td->td_proc == NULL ||
544		    np->n_ac_ts_pid != td->td_proc->p_pid) {
545			np->n_attrstamp = 0;
546			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
547		}
548		mtx_unlock(&np->n_mtx);
549		error = VOP_GETATTR(vp, &vattr, ap->a_cred);
550		if (error)
551			return (error);
552		mtx_lock(&np->n_mtx);
553		if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) {
554			if (vp->v_type == VDIR)
555				np->n_direofoffset = 0;
556			mtx_unlock(&np->n_mtx);
557			error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
558			if (error == EINTR || error == EIO) {
559				return (error);
560			}
561			mtx_lock(&np->n_mtx);
562			np->n_mtime = vattr.va_mtime;
563		}
564		mtx_unlock(&np->n_mtx);
565	}
566	/*
567	 * If the object has >= 1 O_DIRECT active opens, we disable caching.
568	 */
569	if (nfs_directio_enable && (fmode & O_DIRECT) && (vp->v_type == VREG)) {
570		if (np->n_directio_opens == 0) {
571			error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
572			if (error)
573				return (error);
574			mtx_lock(&np->n_mtx);
575			np->n_flag |= NNONCACHE;
576			mtx_unlock(&np->n_mtx);
577		}
578		np->n_directio_opens++;
579	}
580	vnode_create_vobject(vp, vattr.va_size, ap->a_td);
581	return (0);
582}
583
584/*
585 * nfs close vnode op
586 * What an NFS client should do upon close after writing is a debatable issue.
587 * Most NFS clients push delayed writes to the server upon close, basically for
588 * two reasons:
589 * 1 - So that any write errors may be reported back to the client process
590 *     doing the close system call. By far the two most likely errors are
591 *     NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure.
592 * 2 - To put a worst case upper bound on cache inconsistency between
593 *     multiple clients for the file.
594 * There is also a consistency problem for Version 2 of the protocol w.r.t.
595 * not being able to tell if other clients are writing a file concurrently,
596 * since there is no way of knowing if the changed modify time in the reply
597 * is only due to the write for this client.
598 * (NFS Version 3 provides weak cache consistency data in the reply that
599 *  should be sufficient to detect and handle this case.)
600 *
601 * The current code does the following:
602 * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers
603 * for NFS Version 3 - flush dirty buffers to the server but don't invalidate
604 *                     or commit them (this satisfies 1 and 2 except for the
605 *                     case where the server crashes after this close but
606 *                     before the commit RPC, which is felt to be "good
607 *                     enough". Changing the last argument to nfs_flush() to
608 *                     a 1 would force a commit operation, if it is felt a
609 *                     commit is necessary now.
610 */
611/* ARGSUSED */
612static int
613nfs_close(struct vop_close_args *ap)
614{
615	struct vnode *vp = ap->a_vp;
616	struct nfsnode *np = VTONFS(vp);
617	int error = 0;
618	int fmode = ap->a_fflag;
619
620	if (vp->v_type == VREG) {
621	    /*
622	     * Examine and clean dirty pages, regardless of NMODIFIED.
623	     * This closes a major hole in close-to-open consistency.
624	     * We want to push out all dirty pages (and buffers) on
625	     * close, regardless of whether they were dirtied by
626	     * mmap'ed writes or via write().
627	     */
628	    if (nfs_clean_pages_on_close && vp->v_object) {
629		VM_OBJECT_LOCK(vp->v_object);
630		vm_object_page_clean(vp->v_object, 0, 0, 0);
631		VM_OBJECT_UNLOCK(vp->v_object);
632	    }
633	    mtx_lock(&np->n_mtx);
634	    if (np->n_flag & NMODIFIED) {
635		mtx_unlock(&np->n_mtx);
636		if (NFS_ISV3(vp)) {
637		    /*
638		     * Under NFSv3 we have dirty buffers to dispose of.  We
639		     * must flush them to the NFS server.  We have the option
640		     * of waiting all the way through the commit rpc or just
641		     * waiting for the initial write.  The default is to only
642		     * wait through the initial write so the data is in the
643		     * server's cache, which is roughly similar to the state
644		     * a standard disk subsystem leaves the file in on close().
645		     *
646		     * We cannot clear the NMODIFIED bit in np->n_flag due to
647		     * potential races with other processes, and certainly
648		     * cannot clear it if we don't commit.
649		     */
650		    int cm = nfsv3_commit_on_close ? 1 : 0;
651		    error = nfs_flush(vp, MNT_WAIT, cm);
652		    /* np->n_flag &= ~NMODIFIED; */
653		} else
654		    error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
655		mtx_lock(&np->n_mtx);
656	    }
657	    if (np->n_flag & NWRITEERR) {
658		np->n_flag &= ~NWRITEERR;
659		error = np->n_error;
660	    }
661	    mtx_unlock(&np->n_mtx);
662	}
663	if (nfs_directio_enable)
664		KASSERT((np->n_directio_asyncwr == 0),
665			("nfs_close: dirty unflushed (%d) directio buffers\n",
666			 np->n_directio_asyncwr));
667	if (nfs_directio_enable && (fmode & O_DIRECT) && (vp->v_type == VREG)) {
668		mtx_lock(&np->n_mtx);
669		KASSERT((np->n_directio_opens > 0),
670			("nfs_close: unexpectedly value (0) of n_directio_opens\n"));
671		np->n_directio_opens--;
672		if (np->n_directio_opens == 0)
673			np->n_flag &= ~NNONCACHE;
674		mtx_unlock(&np->n_mtx);
675	}
676	return (error);
677}
678
679/*
680 * nfs getattr call from vfs.
681 */
682static int
683nfs_getattr(struct vop_getattr_args *ap)
684{
685	struct vnode *vp = ap->a_vp;
686	struct nfsnode *np = VTONFS(vp);
687	struct thread *td = curthread;
688	struct vattr *vap = ap->a_vap;
689	struct vattr vattr;
690	caddr_t bpos, dpos;
691	int error = 0;
692	struct mbuf *mreq, *mrep, *md, *mb;
693	int v3 = NFS_ISV3(vp);
694
695	/*
696	 * Update local times for special files.
697	 */
698	mtx_lock(&np->n_mtx);
699	if (np->n_flag & (NACC | NUPD))
700		np->n_flag |= NCHG;
701	mtx_unlock(&np->n_mtx);
702	/*
703	 * First look in the cache.
704	 */
705	if (nfs_getattrcache(vp, &vattr) == 0)
706		goto nfsmout;
707	if (v3 && nfs_prime_access_cache && nfsaccess_cache_timeout > 0) {
708		nfsstats.accesscache_misses++;
709		nfs3_access_otw(vp, NFSV3ACCESS_ALL, td, ap->a_cred, NULL);
710		if (nfs_getattrcache(vp, &vattr) == 0)
711			goto nfsmout;
712	}
713	nfsstats.rpccnt[NFSPROC_GETATTR]++;
714	mreq = nfsm_reqhead(vp, NFSPROC_GETATTR, NFSX_FH(v3));
715	mb = mreq;
716	bpos = mtod(mb, caddr_t);
717	nfsm_fhtom(vp, v3);
718	nfsm_request(vp, NFSPROC_GETATTR, td, ap->a_cred);
719	if (!error) {
720		nfsm_loadattr(vp, &vattr);
721	}
722	m_freem(mrep);
723nfsmout:
724	vap->va_type = vattr.va_type;
725	vap->va_mode = vattr.va_mode;
726	vap->va_nlink = vattr.va_nlink;
727	vap->va_uid = vattr.va_uid;
728	vap->va_gid = vattr.va_gid;
729	vap->va_fsid = vattr.va_fsid;
730	vap->va_fileid = vattr.va_fileid;
731	vap->va_size = vattr.va_size;
732	vap->va_blocksize = vattr.va_blocksize;
733	vap->va_atime = vattr.va_atime;
734	vap->va_mtime = vattr.va_mtime;
735	vap->va_ctime = vattr.va_ctime;
736	vap->va_gen = vattr.va_gen;
737	vap->va_flags = vattr.va_flags;
738	vap->va_rdev = vattr.va_rdev;
739	vap->va_bytes = vattr.va_bytes;
740	vap->va_filerev = vattr.va_filerev;
741
742	return (error);
743}
744
745/*
746 * nfs setattr call.
747 */
748static int
749nfs_setattr(struct vop_setattr_args *ap)
750{
751	struct vnode *vp = ap->a_vp;
752	struct nfsnode *np = VTONFS(vp);
753	struct vattr *vap = ap->a_vap;
754	struct thread *td = curthread;
755	int error = 0;
756	u_quad_t tsize;
757
758#ifndef nolint
759	tsize = (u_quad_t)0;
760#endif
761
762	/*
763	 * Setting of flags is not supported.
764	 */
765	if (vap->va_flags != VNOVAL)
766		return (EOPNOTSUPP);
767
768	/*
769	 * Disallow write attempts if the filesystem is mounted read-only.
770	 */
771  	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
772	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
773	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
774	    (vp->v_mount->mnt_flag & MNT_RDONLY)) {
775		error = EROFS;
776		goto out;
777	}
778	if (vap->va_size != VNOVAL) {
779 		switch (vp->v_type) {
780 		case VDIR:
781 			return (EISDIR);
782 		case VCHR:
783 		case VBLK:
784 		case VSOCK:
785 		case VFIFO:
786			if (vap->va_mtime.tv_sec == VNOVAL &&
787			    vap->va_atime.tv_sec == VNOVAL &&
788			    vap->va_mode == (mode_t)VNOVAL &&
789			    vap->va_uid == (uid_t)VNOVAL &&
790			    vap->va_gid == (gid_t)VNOVAL)
791				return (0);
792 			vap->va_size = VNOVAL;
793 			break;
794 		default:
795			/*
796			 * Disallow write attempts if the filesystem is
797			 * mounted read-only.
798			 */
799			if (vp->v_mount->mnt_flag & MNT_RDONLY)
800				return (EROFS);
801			/*
802			 *  We run vnode_pager_setsize() early (why?),
803			 * we must set np->n_size now to avoid vinvalbuf
804			 * V_SAVE races that might setsize a lower
805			 * value.
806			 */
807			mtx_lock(&np->n_mtx);
808			tsize = np->n_size;
809			mtx_unlock(&np->n_mtx);
810			error = nfs_meta_setsize(vp, ap->a_cred, td,
811			    vap->va_size);
812			mtx_lock(&np->n_mtx);
813 			if (np->n_flag & NMODIFIED) {
814			    tsize = np->n_size;
815			    mtx_unlock(&np->n_mtx);
816 			    if (vap->va_size == 0)
817 				error = nfs_vinvalbuf(vp, 0, td, 1);
818 			    else
819 				error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
820 			    if (error) {
821				vnode_pager_setsize(vp, tsize);
822				goto out;
823			    }
824 			} else
825			    mtx_unlock(&np->n_mtx);
826			/*
827			 * np->n_size has already been set to vap->va_size
828			 * in nfs_meta_setsize(). We must set it again since
829			 * nfs_loadattrcache() could be called through
830			 * nfs_meta_setsize() and could modify np->n_size.
831			 */
832			mtx_lock(&np->n_mtx);
833 			np->n_vattr.va_size = np->n_size = vap->va_size;
834			mtx_unlock(&np->n_mtx);
835  		};
836  	} else {
837		mtx_lock(&np->n_mtx);
838		if ((vap->va_mtime.tv_sec != VNOVAL || vap->va_atime.tv_sec != VNOVAL) &&
839		    (np->n_flag & NMODIFIED) && vp->v_type == VREG) {
840			mtx_unlock(&np->n_mtx);
841			if ((error = nfs_vinvalbuf(vp, V_SAVE, td, 1)) != 0 &&
842			    (error == EINTR || error == EIO))
843				return error;
844		} else
845			mtx_unlock(&np->n_mtx);
846	}
847	error = nfs_setattrrpc(vp, vap, ap->a_cred);
848	if (error && vap->va_size != VNOVAL) {
849		mtx_lock(&np->n_mtx);
850		np->n_size = np->n_vattr.va_size = tsize;
851		vnode_pager_setsize(vp, tsize);
852		mtx_unlock(&np->n_mtx);
853	}
854out:
855	return (error);
856}
857
858/*
859 * Do an nfs setattr rpc.
860 */
861static int
862nfs_setattrrpc(struct vnode *vp, struct vattr *vap, struct ucred *cred)
863{
864	struct nfsv2_sattr *sp;
865	struct nfsnode *np = VTONFS(vp);
866	caddr_t bpos, dpos;
867	u_int32_t *tl;
868	int error = 0, i, wccflag = NFSV3_WCCRATTR;
869	struct mbuf *mreq, *mrep, *md, *mb;
870	int v3 = NFS_ISV3(vp);
871
872	nfsstats.rpccnt[NFSPROC_SETATTR]++;
873	mreq = nfsm_reqhead(vp, NFSPROC_SETATTR, NFSX_FH(v3) + NFSX_SATTR(v3));
874	mb = mreq;
875	bpos = mtod(mb, caddr_t);
876	nfsm_fhtom(vp, v3);
877	if (v3) {
878		nfsm_v3attrbuild(vap, TRUE);
879		tl = nfsm_build(u_int32_t *, NFSX_UNSIGNED);
880		*tl = nfs_false;
881	} else {
882		sp = nfsm_build(struct nfsv2_sattr *, NFSX_V2SATTR);
883		if (vap->va_mode == (mode_t)VNOVAL)
884			sp->sa_mode = nfs_xdrneg1;
885		else
886			sp->sa_mode = vtonfsv2_mode(vp->v_type, vap->va_mode);
887		if (vap->va_uid == (uid_t)VNOVAL)
888			sp->sa_uid = nfs_xdrneg1;
889		else
890			sp->sa_uid = txdr_unsigned(vap->va_uid);
891		if (vap->va_gid == (gid_t)VNOVAL)
892			sp->sa_gid = nfs_xdrneg1;
893		else
894			sp->sa_gid = txdr_unsigned(vap->va_gid);
895		sp->sa_size = txdr_unsigned(vap->va_size);
896		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
897		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
898	}
899	nfsm_request(vp, NFSPROC_SETATTR, curthread, cred);
900	if (v3) {
901		mtx_lock(&np->n_mtx);
902		for (i = 0; i < NFS_ACCESSCACHESIZE; i++)
903			np->n_accesscache[i].stamp = 0;
904		mtx_unlock(&np->n_mtx);
905		KDTRACE_NFS_ACCESSCACHE_FLUSH_DONE(vp);
906		nfsm_wcc_data(vp, wccflag);
907	} else
908		nfsm_loadattr(vp, NULL);
909	m_freem(mrep);
910nfsmout:
911	return (error);
912}
913
914/*
915 * nfs lookup call, one step at a time...
916 * First look in cache
917 * If not found, unlock the directory nfsnode and do the rpc
918 */
919static int
920nfs_lookup(struct vop_lookup_args *ap)
921{
922	struct componentname *cnp = ap->a_cnp;
923	struct vnode *dvp = ap->a_dvp;
924	struct vnode **vpp = ap->a_vpp;
925	struct mount *mp = dvp->v_mount;
926	struct vattr vattr;
927	time_t dmtime;
928	int flags = cnp->cn_flags;
929	struct vnode *newvp;
930	struct nfsmount *nmp;
931	caddr_t bpos, dpos;
932	struct mbuf *mreq, *mrep, *md, *mb;
933	long len;
934	nfsfh_t *fhp;
935	struct nfsnode *np;
936	int error = 0, attrflag, fhsize, ltype;
937	int v3 = NFS_ISV3(dvp);
938	struct thread *td = cnp->cn_thread;
939
940	*vpp = NULLVP;
941	if ((flags & ISLASTCN) && (mp->mnt_flag & MNT_RDONLY) &&
942	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
943		return (EROFS);
944	if (dvp->v_type != VDIR)
945		return (ENOTDIR);
946	nmp = VFSTONFS(mp);
947	np = VTONFS(dvp);
948	if ((error = VOP_ACCESS(dvp, VEXEC, cnp->cn_cred, td)) != 0) {
949		*vpp = NULLVP;
950		return (error);
951	}
952	error = cache_lookup(dvp, vpp, cnp);
953	if (error > 0 && error != ENOENT)
954		return (error);
955	if (error == -1) {
956		/*
957		 * We only accept a positive hit in the cache if the
958		 * change time of the file matches our cached copy.
959		 * Otherwise, we discard the cache entry and fallback
960		 * to doing a lookup RPC.
961		 */
962		newvp = *vpp;
963		if (!VOP_GETATTR(newvp, &vattr, cnp->cn_cred)
964		    && vattr.va_ctime.tv_sec == VTONFS(newvp)->n_ctime) {
965			nfsstats.lookupcache_hits++;
966			if (cnp->cn_nameiop != LOOKUP &&
967			    (flags & ISLASTCN))
968				cnp->cn_flags |= SAVENAME;
969			return (0);
970		}
971		cache_purge(newvp);
972		if (dvp != newvp)
973			vput(newvp);
974		else
975			vrele(newvp);
976		*vpp = NULLVP;
977	} else if (error == ENOENT) {
978		if (dvp->v_iflag & VI_DOOMED)
979			return (ENOENT);
980		/*
981		 * We only accept a negative hit in the cache if the
982		 * modification time of the parent directory matches
983		 * our cached copy.  Otherwise, we discard all of the
984		 * negative cache entries for this directory.
985		 */
986		if (VOP_GETATTR(dvp, &vattr, cnp->cn_cred) == 0 &&
987		    vattr.va_mtime.tv_sec == np->n_dmtime) {
988			nfsstats.lookupcache_hits++;
989			return (ENOENT);
990		}
991		cache_purge_negative(dvp);
992		mtx_lock(&np->n_mtx);
993		np->n_dmtime = 0;
994		mtx_unlock(&np->n_mtx);
995	}
996
997	/*
998	 * Cache the modification time of the parent directory in case
999	 * the lookup fails and results in adding the first negative
1000	 * name cache entry for the directory.  Since this is reading
1001	 * a single time_t, don't bother with locking.  The
1002	 * modification time may be a bit stale, but it must be read
1003	 * before performing the lookup RPC to prevent a race where
1004	 * another lookup updates the timestamp on the directory after
1005	 * the lookup RPC has been performed on the server but before
1006	 * n_dmtime is set at the end of this function.
1007	 */
1008	dmtime = np->n_vattr.va_mtime.tv_sec;
1009	error = 0;
1010	newvp = NULLVP;
1011	nfsstats.lookupcache_misses++;
1012	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
1013	len = cnp->cn_namelen;
1014	mreq = nfsm_reqhead(dvp, NFSPROC_LOOKUP,
1015		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
1016	mb = mreq;
1017	bpos = mtod(mb, caddr_t);
1018	nfsm_fhtom(dvp, v3);
1019	nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN);
1020	nfsm_request(dvp, NFSPROC_LOOKUP, cnp->cn_thread, cnp->cn_cred);
1021	if (error) {
1022		if (v3) {
1023			nfsm_postop_attr(dvp, attrflag);
1024			m_freem(mrep);
1025		}
1026		goto nfsmout;
1027	}
1028	nfsm_getfh(fhp, fhsize, v3);
1029
1030	/*
1031	 * Handle RENAME case...
1032	 */
1033	if (cnp->cn_nameiop == RENAME && (flags & ISLASTCN)) {
1034		if (NFS_CMPFH(np, fhp, fhsize)) {
1035			m_freem(mrep);
1036			return (EISDIR);
1037		}
1038		error = nfs_nget(mp, fhp, fhsize, &np, LK_EXCLUSIVE);
1039		if (error) {
1040			m_freem(mrep);
1041			return (error);
1042		}
1043		newvp = NFSTOV(np);
1044		if (v3) {
1045			nfsm_postop_attr(newvp, attrflag);
1046			nfsm_postop_attr(dvp, attrflag);
1047		} else
1048			nfsm_loadattr(newvp, NULL);
1049		*vpp = newvp;
1050		m_freem(mrep);
1051		cnp->cn_flags |= SAVENAME;
1052		return (0);
1053	}
1054
1055	if (flags & ISDOTDOT) {
1056		ltype = VOP_ISLOCKED(dvp);
1057		error = vfs_busy(mp, MBF_NOWAIT);
1058		if (error != 0) {
1059			vfs_ref(mp);
1060			VOP_UNLOCK(dvp, 0);
1061			error = vfs_busy(mp, 0);
1062			vn_lock(dvp, ltype | LK_RETRY);
1063			vfs_rel(mp);
1064			if (error == 0 && (dvp->v_iflag & VI_DOOMED)) {
1065				vfs_unbusy(mp);
1066				error = ENOENT;
1067			}
1068			if (error != 0) {
1069				m_freem(mrep);
1070				return (error);
1071			}
1072		}
1073		VOP_UNLOCK(dvp, 0);
1074		error = nfs_nget(mp, fhp, fhsize, &np, cnp->cn_lkflags);
1075		if (error == 0)
1076			newvp = NFSTOV(np);
1077		vfs_unbusy(mp);
1078		if (newvp != dvp)
1079			vn_lock(dvp, ltype | LK_RETRY);
1080		if (dvp->v_iflag & VI_DOOMED) {
1081			if (error == 0) {
1082				if (newvp == dvp)
1083					vrele(newvp);
1084				else
1085					vput(newvp);
1086			}
1087			error = ENOENT;
1088		}
1089		if (error) {
1090			m_freem(mrep);
1091			return (error);
1092		}
1093	} else if (NFS_CMPFH(np, fhp, fhsize)) {
1094		VREF(dvp);
1095		newvp = dvp;
1096	} else {
1097		error = nfs_nget(mp, fhp, fhsize, &np, cnp->cn_lkflags);
1098		if (error) {
1099			m_freem(mrep);
1100			return (error);
1101		}
1102		newvp = NFSTOV(np);
1103	}
1104	if (v3) {
1105		nfsm_postop_attr(newvp, attrflag);
1106		nfsm_postop_attr(dvp, attrflag);
1107	} else
1108		nfsm_loadattr(newvp, NULL);
1109	if (cnp->cn_nameiop != LOOKUP && (flags & ISLASTCN))
1110		cnp->cn_flags |= SAVENAME;
1111	if ((cnp->cn_flags & MAKEENTRY) &&
1112	    (cnp->cn_nameiop != DELETE || !(flags & ISLASTCN))) {
1113		np->n_ctime = np->n_vattr.va_ctime.tv_sec;
1114		cache_enter(dvp, newvp, cnp);
1115	}
1116	*vpp = newvp;
1117	m_freem(mrep);
1118nfsmout:
1119	if (error) {
1120		if (newvp != NULLVP) {
1121			vput(newvp);
1122			*vpp = NULLVP;
1123		}
1124
1125		if (error != ENOENT)
1126			goto done;
1127
1128		/* The requested file was not found. */
1129		if ((cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME) &&
1130		    (flags & ISLASTCN)) {
1131			/*
1132			 * XXX: UFS does a full VOP_ACCESS(dvp,
1133			 * VWRITE) here instead of just checking
1134			 * MNT_RDONLY.
1135			 */
1136			if (mp->mnt_flag & MNT_RDONLY)
1137				return (EROFS);
1138			cnp->cn_flags |= SAVENAME;
1139			return (EJUSTRETURN);
1140		}
1141
1142		if ((cnp->cn_flags & MAKEENTRY) && cnp->cn_nameiop != CREATE) {
1143			/*
1144			 * Maintain n_dmtime as the modification time
1145			 * of the parent directory when the oldest -ve
1146			 * name cache entry for this directory was
1147			 * added.  If a -ve cache entry has already
1148			 * been added with a newer modification time
1149			 * by a concurrent lookup, then don't bother
1150			 * adding a cache entry.  The modification
1151			 * time of the directory might have changed
1152			 * due to the file this lookup failed to find
1153			 * being created.  In that case a subsequent
1154			 * lookup would incorrectly use the entry
1155			 * added here instead of doing an extra
1156			 * lookup.
1157			 */
1158			mtx_lock(&np->n_mtx);
1159			if (np->n_dmtime <= dmtime) {
1160				if (np->n_dmtime == 0)
1161					np->n_dmtime = dmtime;
1162				mtx_unlock(&np->n_mtx);
1163				cache_enter(dvp, NULL, cnp);
1164			} else
1165				mtx_unlock(&np->n_mtx);
1166		}
1167		return (ENOENT);
1168	}
1169done:
1170	return (error);
1171}
1172
1173/*
1174 * nfs read call.
1175 * Just call nfs_bioread() to do the work.
1176 */
1177static int
1178nfs_read(struct vop_read_args *ap)
1179{
1180	struct vnode *vp = ap->a_vp;
1181
1182	switch (vp->v_type) {
1183	case VREG:
1184		return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag, ap->a_cred));
1185	case VDIR:
1186		return (EISDIR);
1187	default:
1188		return (EOPNOTSUPP);
1189	}
1190}
1191
1192/*
1193 * nfs readlink call
1194 */
1195static int
1196nfs_readlink(struct vop_readlink_args *ap)
1197{
1198	struct vnode *vp = ap->a_vp;
1199
1200	if (vp->v_type != VLNK)
1201		return (EINVAL);
1202	return (nfs_bioread(vp, ap->a_uio, 0, ap->a_cred));
1203}
1204
1205/*
1206 * Do a readlink rpc.
1207 * Called by nfs_doio() from below the buffer cache.
1208 */
1209int
1210nfs_readlinkrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred)
1211{
1212	caddr_t bpos, dpos;
1213	int error = 0, len, attrflag;
1214	struct mbuf *mreq, *mrep, *md, *mb;
1215	int v3 = NFS_ISV3(vp);
1216
1217	nfsstats.rpccnt[NFSPROC_READLINK]++;
1218	mreq = nfsm_reqhead(vp, NFSPROC_READLINK, NFSX_FH(v3));
1219	mb = mreq;
1220	bpos = mtod(mb, caddr_t);
1221	nfsm_fhtom(vp, v3);
1222	nfsm_request(vp, NFSPROC_READLINK, uiop->uio_td, cred);
1223	if (v3)
1224		nfsm_postop_attr(vp, attrflag);
1225	if (!error) {
1226		nfsm_strsiz(len, NFS_MAXPATHLEN);
1227		if (len == NFS_MAXPATHLEN) {
1228			struct nfsnode *np = VTONFS(vp);
1229			mtx_lock(&np->n_mtx);
1230			if (np->n_size && np->n_size < NFS_MAXPATHLEN)
1231				len = np->n_size;
1232			mtx_unlock(&np->n_mtx);
1233		}
1234		nfsm_mtouio(uiop, len);
1235	}
1236	m_freem(mrep);
1237nfsmout:
1238	return (error);
1239}
1240
1241/*
1242 * nfs read rpc call
1243 * Ditto above
1244 */
1245int
1246nfs_readrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred)
1247{
1248	u_int32_t *tl;
1249	caddr_t bpos, dpos;
1250	struct mbuf *mreq, *mrep, *md, *mb;
1251	struct nfsmount *nmp;
1252	int error = 0, len, retlen, tsiz, eof, attrflag;
1253	int v3 = NFS_ISV3(vp);
1254	int rsize;
1255
1256#ifndef nolint
1257	eof = 0;
1258#endif
1259	nmp = VFSTONFS(vp->v_mount);
1260	tsiz = uiop->uio_resid;
1261	mtx_lock(&nmp->nm_mtx);
1262	if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize) {
1263		mtx_unlock(&nmp->nm_mtx);
1264		return (EFBIG);
1265	}
1266	rsize = nmp->nm_rsize;
1267	mtx_unlock(&nmp->nm_mtx);
1268	while (tsiz > 0) {
1269		nfsstats.rpccnt[NFSPROC_READ]++;
1270		len = (tsiz > rsize) ? rsize : tsiz;
1271		mreq = nfsm_reqhead(vp, NFSPROC_READ, NFSX_FH(v3) + NFSX_UNSIGNED * 3);
1272		mb = mreq;
1273		bpos = mtod(mb, caddr_t);
1274		nfsm_fhtom(vp, v3);
1275		tl = nfsm_build(u_int32_t *, NFSX_UNSIGNED * 3);
1276		if (v3) {
1277			txdr_hyper(uiop->uio_offset, tl);
1278			*(tl + 2) = txdr_unsigned(len);
1279		} else {
1280			*tl++ = txdr_unsigned(uiop->uio_offset);
1281			*tl++ = txdr_unsigned(len);
1282			*tl = 0;
1283		}
1284		nfsm_request(vp, NFSPROC_READ, uiop->uio_td, cred);
1285		if (v3) {
1286			nfsm_postop_attr(vp, attrflag);
1287			if (error) {
1288				m_freem(mrep);
1289				goto nfsmout;
1290			}
1291			tl = nfsm_dissect(u_int32_t *, 2 * NFSX_UNSIGNED);
1292			eof = fxdr_unsigned(int, *(tl + 1));
1293		} else {
1294			nfsm_loadattr(vp, NULL);
1295		}
1296		nfsm_strsiz(retlen, rsize);
1297		nfsm_mtouio(uiop, retlen);
1298		m_freem(mrep);
1299		tsiz -= retlen;
1300		if (v3) {
1301			if (eof || retlen == 0) {
1302				tsiz = 0;
1303			}
1304		} else if (retlen < len) {
1305			tsiz = 0;
1306		}
1307	}
1308nfsmout:
1309	return (error);
1310}
1311
1312/*
1313 * nfs write call
1314 */
1315int
1316nfs_writerpc(struct vnode *vp, struct uio *uiop, struct ucred *cred,
1317	     int *iomode, int *must_commit)
1318{
1319	u_int32_t *tl;
1320	int32_t backup;
1321	caddr_t bpos, dpos;
1322	struct mbuf *mreq, *mrep, *md, *mb;
1323	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1324	int error = 0, len, tsiz, wccflag = NFSV3_WCCRATTR, rlen, commit;
1325	int v3 = NFS_ISV3(vp), committed = NFSV3WRITE_FILESYNC;
1326	int wsize;
1327
1328#ifndef DIAGNOSTIC
1329	if (uiop->uio_iovcnt != 1)
1330		panic("nfs: writerpc iovcnt > 1");
1331#endif
1332	*must_commit = 0;
1333	tsiz = uiop->uio_resid;
1334	mtx_lock(&nmp->nm_mtx);
1335	if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize) {
1336		mtx_unlock(&nmp->nm_mtx);
1337		return (EFBIG);
1338	}
1339	wsize = nmp->nm_wsize;
1340	mtx_unlock(&nmp->nm_mtx);
1341	while (tsiz > 0) {
1342		nfsstats.rpccnt[NFSPROC_WRITE]++;
1343		len = (tsiz > wsize) ? wsize : tsiz;
1344		mreq = nfsm_reqhead(vp, NFSPROC_WRITE,
1345			NFSX_FH(v3) + 5 * NFSX_UNSIGNED + nfsm_rndup(len));
1346		mb = mreq;
1347		bpos = mtod(mb, caddr_t);
1348		nfsm_fhtom(vp, v3);
1349		if (v3) {
1350			tl = nfsm_build(u_int32_t *, 5 * NFSX_UNSIGNED);
1351			txdr_hyper(uiop->uio_offset, tl);
1352			tl += 2;
1353			*tl++ = txdr_unsigned(len);
1354			*tl++ = txdr_unsigned(*iomode);
1355			*tl = txdr_unsigned(len);
1356		} else {
1357			u_int32_t x;
1358
1359			tl = nfsm_build(u_int32_t *, 4 * NFSX_UNSIGNED);
1360			/* Set both "begin" and "current" to non-garbage. */
1361			x = txdr_unsigned((u_int32_t)uiop->uio_offset);
1362			*tl++ = x;	/* "begin offset" */
1363			*tl++ = x;	/* "current offset" */
1364			x = txdr_unsigned(len);
1365			*tl++ = x;	/* total to this offset */
1366			*tl = x;	/* size of this write */
1367		}
1368		nfsm_uiotom(uiop, len);
1369		nfsm_request(vp, NFSPROC_WRITE, uiop->uio_td, cred);
1370		if (v3) {
1371			wccflag = NFSV3_WCCCHK;
1372			nfsm_wcc_data(vp, wccflag);
1373			if (!error) {
1374				tl = nfsm_dissect(u_int32_t *, 2 * NFSX_UNSIGNED
1375					+ NFSX_V3WRITEVERF);
1376				rlen = fxdr_unsigned(int, *tl++);
1377				if (rlen == 0) {
1378					error = NFSERR_IO;
1379					m_freem(mrep);
1380					break;
1381				} else if (rlen < len) {
1382					backup = len - rlen;
1383					uiop->uio_iov->iov_base =
1384					    (char *)uiop->uio_iov->iov_base -
1385					    backup;
1386					uiop->uio_iov->iov_len += backup;
1387					uiop->uio_offset -= backup;
1388					uiop->uio_resid += backup;
1389					len = rlen;
1390				}
1391				commit = fxdr_unsigned(int, *tl++);
1392
1393				/*
1394				 * Return the lowest committment level
1395				 * obtained by any of the RPCs.
1396				 */
1397				if (committed == NFSV3WRITE_FILESYNC)
1398					committed = commit;
1399				else if (committed == NFSV3WRITE_DATASYNC &&
1400					commit == NFSV3WRITE_UNSTABLE)
1401					committed = commit;
1402				mtx_lock(&nmp->nm_mtx);
1403				if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0){
1404				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1405					NFSX_V3WRITEVERF);
1406				    nmp->nm_state |= NFSSTA_HASWRITEVERF;
1407				} else if (bcmp((caddr_t)tl,
1408				    (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF)) {
1409				    *must_commit = 1;
1410				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1411					NFSX_V3WRITEVERF);
1412				}
1413				mtx_unlock(&nmp->nm_mtx);
1414			}
1415		} else {
1416			nfsm_loadattr(vp, NULL);
1417		}
1418		if (wccflag) {
1419			mtx_lock(&(VTONFS(vp))->n_mtx);
1420			VTONFS(vp)->n_mtime = VTONFS(vp)->n_vattr.va_mtime;
1421			mtx_unlock(&(VTONFS(vp))->n_mtx);
1422		}
1423		m_freem(mrep);
1424		if (error)
1425			break;
1426		tsiz -= len;
1427	}
1428nfsmout:
1429	if (vp->v_mount->mnt_kern_flag & MNTK_ASYNC)
1430		committed = NFSV3WRITE_FILESYNC;
1431	*iomode = committed;
1432	if (error)
1433		uiop->uio_resid = tsiz;
1434	return (error);
1435}
1436
1437/*
1438 * nfs mknod rpc
1439 * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the
1440 * mode set to specify the file type and the size field for rdev.
1441 */
1442static int
1443nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1444    struct vattr *vap)
1445{
1446	struct nfsv2_sattr *sp;
1447	u_int32_t *tl;
1448	struct vnode *newvp = NULL;
1449	struct nfsnode *np = NULL;
1450	struct vattr vattr;
1451	caddr_t bpos, dpos;
1452	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0;
1453	struct mbuf *mreq, *mrep, *md, *mb;
1454	u_int32_t rdev;
1455	int v3 = NFS_ISV3(dvp);
1456
1457	if (vap->va_type == VCHR || vap->va_type == VBLK)
1458		rdev = txdr_unsigned(vap->va_rdev);
1459	else if (vap->va_type == VFIFO || vap->va_type == VSOCK)
1460		rdev = nfs_xdrneg1;
1461	else {
1462		return (EOPNOTSUPP);
1463	}
1464	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)) != 0)
1465		return (error);
1466	nfsstats.rpccnt[NFSPROC_MKNOD]++;
1467	mreq = nfsm_reqhead(dvp, NFSPROC_MKNOD, NFSX_FH(v3) + 4 * NFSX_UNSIGNED +
1468		+ nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3));
1469	mb = mreq;
1470	bpos = mtod(mb, caddr_t);
1471	nfsm_fhtom(dvp, v3);
1472	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1473	if (v3) {
1474		tl = nfsm_build(u_int32_t *, NFSX_UNSIGNED);
1475		*tl++ = vtonfsv3_type(vap->va_type);
1476		nfsm_v3attrbuild(vap, FALSE);
1477		if (vap->va_type == VCHR || vap->va_type == VBLK) {
1478			tl = nfsm_build(u_int32_t *, 2 * NFSX_UNSIGNED);
1479			*tl++ = txdr_unsigned(major(vap->va_rdev));
1480			*tl = txdr_unsigned(minor(vap->va_rdev));
1481		}
1482	} else {
1483		sp = nfsm_build(struct nfsv2_sattr *, NFSX_V2SATTR);
1484		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1485		sp->sa_uid = nfs_xdrneg1;
1486		sp->sa_gid = nfs_xdrneg1;
1487		sp->sa_size = rdev;
1488		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1489		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1490	}
1491	nfsm_request(dvp, NFSPROC_MKNOD, cnp->cn_thread, cnp->cn_cred);
1492	if (!error) {
1493		nfsm_mtofh(dvp, newvp, v3, gotvp);
1494		if (!gotvp) {
1495			if (newvp) {
1496				vput(newvp);
1497				newvp = NULL;
1498			}
1499			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1500			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread, &np);
1501			if (!error)
1502				newvp = NFSTOV(np);
1503		}
1504	}
1505	if (v3)
1506		nfsm_wcc_data(dvp, wccflag);
1507	m_freem(mrep);
1508nfsmout:
1509	if (error) {
1510		if (newvp)
1511			vput(newvp);
1512	} else {
1513		if (cnp->cn_flags & MAKEENTRY)
1514			cache_enter(dvp, newvp, cnp);
1515		*vpp = newvp;
1516	}
1517	mtx_lock(&(VTONFS(dvp))->n_mtx);
1518	VTONFS(dvp)->n_flag |= NMODIFIED;
1519	if (!wccflag) {
1520		VTONFS(dvp)->n_attrstamp = 0;
1521		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
1522	}
1523	mtx_unlock(&(VTONFS(dvp))->n_mtx);
1524	return (error);
1525}
1526
1527/*
1528 * nfs mknod vop
1529 * just call nfs_mknodrpc() to do the work.
1530 */
1531/* ARGSUSED */
1532static int
1533nfs_mknod(struct vop_mknod_args *ap)
1534{
1535	return (nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap));
1536}
1537
1538static u_long create_verf;
1539/*
1540 * nfs file create call
1541 */
1542static int
1543nfs_create(struct vop_create_args *ap)
1544{
1545	struct vnode *dvp = ap->a_dvp;
1546	struct vattr *vap = ap->a_vap;
1547	struct componentname *cnp = ap->a_cnp;
1548	struct nfsv2_sattr *sp;
1549	u_int32_t *tl;
1550	struct nfsnode *np = NULL;
1551	struct vnode *newvp = NULL;
1552	caddr_t bpos, dpos;
1553	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0, fmode = 0;
1554	struct mbuf *mreq, *mrep, *md, *mb;
1555	struct vattr vattr;
1556	int v3 = NFS_ISV3(dvp);
1557
1558	CURVNET_SET(CRED_TO_VNET(curthread->td_ucred));
1559
1560	/*
1561	 * Oops, not for me..
1562	 */
1563	if (vap->va_type == VSOCK) {
1564		error = nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap);
1565		CURVNET_RESTORE();
1566		return (error);
1567	}
1568
1569	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)) != 0) {
1570		CURVNET_RESTORE();
1571		return (error);
1572	}
1573	if (vap->va_vaflags & VA_EXCLUSIVE)
1574		fmode |= O_EXCL;
1575again:
1576	nfsstats.rpccnt[NFSPROC_CREATE]++;
1577	mreq = nfsm_reqhead(dvp, NFSPROC_CREATE, NFSX_FH(v3) + 2 * NFSX_UNSIGNED +
1578		nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3));
1579	mb = mreq;
1580	bpos = mtod(mb, caddr_t);
1581	nfsm_fhtom(dvp, v3);
1582	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1583	if (v3) {
1584		tl = nfsm_build(u_int32_t *, NFSX_UNSIGNED);
1585		if (fmode & O_EXCL) {
1586			*tl = txdr_unsigned(NFSV3CREATE_EXCLUSIVE);
1587			tl = nfsm_build(u_int32_t *, NFSX_V3CREATEVERF);
1588#ifdef INET
1589			CURVNET_SET(CRED_TO_VNET(cnp->cn_cred));
1590			IN_IFADDR_RLOCK();
1591			if (!TAILQ_EMPTY(&V_in_ifaddrhead))
1592				*tl++ = IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr.s_addr;
1593			else
1594#endif
1595				*tl++ = create_verf;
1596#ifdef INET
1597			IN_IFADDR_RUNLOCK();
1598			CURVNET_RESTORE();
1599#endif
1600			*tl = ++create_verf;
1601		} else {
1602			*tl = txdr_unsigned(NFSV3CREATE_UNCHECKED);
1603			nfsm_v3attrbuild(vap, FALSE);
1604		}
1605	} else {
1606		sp = nfsm_build(struct nfsv2_sattr *, NFSX_V2SATTR);
1607		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1608		sp->sa_uid = nfs_xdrneg1;
1609		sp->sa_gid = nfs_xdrneg1;
1610		sp->sa_size = 0;
1611		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1612		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1613	}
1614	nfsm_request(dvp, NFSPROC_CREATE, cnp->cn_thread, cnp->cn_cred);
1615	if (!error) {
1616		nfsm_mtofh(dvp, newvp, v3, gotvp);
1617		if (!gotvp) {
1618			if (newvp) {
1619				vput(newvp);
1620				newvp = NULL;
1621			}
1622			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1623			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread, &np);
1624			if (!error)
1625				newvp = NFSTOV(np);
1626		}
1627	}
1628	if (v3)
1629		nfsm_wcc_data(dvp, wccflag);
1630	m_freem(mrep);
1631nfsmout:
1632	if (error) {
1633		if (v3 && (fmode & O_EXCL) && error == NFSERR_NOTSUPP) {
1634			fmode &= ~O_EXCL;
1635			goto again;
1636		}
1637		if (newvp)
1638			vput(newvp);
1639	} else if (v3 && (fmode & O_EXCL)) {
1640		/*
1641		 * We are normally called with only a partially initialized
1642		 * VAP.  Since the NFSv3 spec says that server may use the
1643		 * file attributes to store the verifier, the spec requires
1644		 * us to do a SETATTR RPC. FreeBSD servers store the verifier
1645		 * in atime, but we can't really assume that all servers will
1646		 * so we ensure that our SETATTR sets both atime and mtime.
1647		 */
1648		if (vap->va_mtime.tv_sec == VNOVAL)
1649			vfs_timestamp(&vap->va_mtime);
1650		if (vap->va_atime.tv_sec == VNOVAL)
1651			vap->va_atime = vap->va_mtime;
1652		error = nfs_setattrrpc(newvp, vap, cnp->cn_cred);
1653		if (error)
1654			vput(newvp);
1655	}
1656	if (!error) {
1657		if (cnp->cn_flags & MAKEENTRY)
1658			cache_enter(dvp, newvp, cnp);
1659		*ap->a_vpp = newvp;
1660	}
1661	mtx_lock(&(VTONFS(dvp))->n_mtx);
1662	VTONFS(dvp)->n_flag |= NMODIFIED;
1663	if (!wccflag) {
1664		VTONFS(dvp)->n_attrstamp = 0;
1665		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
1666	}
1667	mtx_unlock(&(VTONFS(dvp))->n_mtx);
1668	CURVNET_RESTORE();
1669	return (error);
1670}
1671
1672/*
1673 * nfs file remove call
1674 * To try and make nfs semantics closer to ufs semantics, a file that has
1675 * other processes using the vnode is renamed instead of removed and then
1676 * removed later on the last close.
1677 * - If v_usecount > 1
1678 *	  If a rename is not already in the works
1679 *	     call nfs_sillyrename() to set it up
1680 *     else
1681 *	  do the remove rpc
1682 */
1683static int
1684nfs_remove(struct vop_remove_args *ap)
1685{
1686	struct vnode *vp = ap->a_vp;
1687	struct vnode *dvp = ap->a_dvp;
1688	struct componentname *cnp = ap->a_cnp;
1689	struct nfsnode *np = VTONFS(vp);
1690	int error = 0;
1691	struct vattr vattr;
1692
1693#ifndef DIAGNOSTIC
1694	if ((cnp->cn_flags & HASBUF) == 0)
1695		panic("nfs_remove: no name");
1696	if (vrefcnt(vp) < 1)
1697		panic("nfs_remove: bad v_usecount");
1698#endif
1699	if (vp->v_type == VDIR)
1700		error = EPERM;
1701	else if (vrefcnt(vp) == 1 || (np->n_sillyrename &&
1702	    !VOP_GETATTR(vp, &vattr, cnp->cn_cred) && vattr.va_nlink > 1)) {
1703		/*
1704		 * Purge the name cache so that the chance of a lookup for
1705		 * the name succeeding while the remove is in progress is
1706		 * minimized. Without node locking it can still happen, such
1707		 * that an I/O op returns ESTALE, but since you get this if
1708		 * another host removes the file..
1709		 */
1710		cache_purge(vp);
1711		/*
1712		 * throw away biocache buffers, mainly to avoid
1713		 * unnecessary delayed writes later.
1714		 */
1715		error = nfs_vinvalbuf(vp, 0, cnp->cn_thread, 1);
1716		/* Do the rpc */
1717		if (error != EINTR && error != EIO)
1718			error = nfs_removerpc(dvp, cnp->cn_nameptr,
1719				cnp->cn_namelen, cnp->cn_cred, cnp->cn_thread);
1720		/*
1721		 * Kludge City: If the first reply to the remove rpc is lost..
1722		 *   the reply to the retransmitted request will be ENOENT
1723		 *   since the file was in fact removed
1724		 *   Therefore, we cheat and return success.
1725		 */
1726		if (error == ENOENT)
1727			error = 0;
1728	} else if (!np->n_sillyrename)
1729		error = nfs_sillyrename(dvp, vp, cnp);
1730	np->n_attrstamp = 0;
1731	KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
1732	return (error);
1733}
1734
1735/*
1736 * nfs file remove rpc called from nfs_inactive
1737 */
1738int
1739nfs_removeit(struct sillyrename *sp)
1740{
1741	/*
1742	 * Make sure that the directory vnode is still valid.
1743	 * XXX we should lock sp->s_dvp here.
1744	 */
1745	if (sp->s_dvp->v_type == VBAD)
1746		return (0);
1747	return (nfs_removerpc(sp->s_dvp, sp->s_name, sp->s_namlen, sp->s_cred,
1748		NULL));
1749}
1750
1751/*
1752 * Nfs remove rpc, called from nfs_remove() and nfs_removeit().
1753 */
1754static int
1755nfs_removerpc(struct vnode *dvp, const char *name, int namelen,
1756    struct ucred *cred, struct thread *td)
1757{
1758	caddr_t bpos, dpos;
1759	int error = 0, wccflag = NFSV3_WCCRATTR;
1760	struct mbuf *mreq, *mrep, *md, *mb;
1761	int v3 = NFS_ISV3(dvp);
1762
1763	nfsstats.rpccnt[NFSPROC_REMOVE]++;
1764	mreq = nfsm_reqhead(dvp, NFSPROC_REMOVE,
1765		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(namelen));
1766	mb = mreq;
1767	bpos = mtod(mb, caddr_t);
1768	nfsm_fhtom(dvp, v3);
1769	nfsm_strtom(name, namelen, NFS_MAXNAMLEN);
1770	nfsm_request(dvp, NFSPROC_REMOVE, td, cred);
1771	if (v3)
1772		nfsm_wcc_data(dvp, wccflag);
1773	m_freem(mrep);
1774nfsmout:
1775	mtx_lock(&(VTONFS(dvp))->n_mtx);
1776	VTONFS(dvp)->n_flag |= NMODIFIED;
1777	if (!wccflag) {
1778		VTONFS(dvp)->n_attrstamp = 0;
1779		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
1780	}
1781	mtx_unlock(&(VTONFS(dvp))->n_mtx);
1782	return (error);
1783}
1784
1785/*
1786 * nfs file rename call
1787 */
1788static int
1789nfs_rename(struct vop_rename_args *ap)
1790{
1791	struct vnode *fvp = ap->a_fvp;
1792	struct vnode *tvp = ap->a_tvp;
1793	struct vnode *fdvp = ap->a_fdvp;
1794	struct vnode *tdvp = ap->a_tdvp;
1795	struct componentname *tcnp = ap->a_tcnp;
1796	struct componentname *fcnp = ap->a_fcnp;
1797	int error;
1798
1799#ifndef DIAGNOSTIC
1800	if ((tcnp->cn_flags & HASBUF) == 0 ||
1801	    (fcnp->cn_flags & HASBUF) == 0)
1802		panic("nfs_rename: no name");
1803#endif
1804	/* Check for cross-device rename */
1805	if ((fvp->v_mount != tdvp->v_mount) ||
1806	    (tvp && (fvp->v_mount != tvp->v_mount))) {
1807		error = EXDEV;
1808		goto out;
1809	}
1810
1811	if (fvp == tvp) {
1812		nfs_printf("nfs_rename: fvp == tvp (can't happen)\n");
1813		error = 0;
1814		goto out;
1815	}
1816	if ((error = vn_lock(fvp, LK_EXCLUSIVE)) != 0)
1817		goto out;
1818
1819	/*
1820	 * We have to flush B_DELWRI data prior to renaming
1821	 * the file.  If we don't, the delayed-write buffers
1822	 * can be flushed out later after the file has gone stale
1823	 * under NFSV3.  NFSV2 does not have this problem because
1824	 * ( as far as I can tell ) it flushes dirty buffers more
1825	 * often.
1826	 *
1827	 * Skip the rename operation if the fsync fails, this can happen
1828	 * due to the server's volume being full, when we pushed out data
1829	 * that was written back to our cache earlier. Not checking for
1830	 * this condition can result in potential (silent) data loss.
1831	 */
1832	error = VOP_FSYNC(fvp, MNT_WAIT, fcnp->cn_thread);
1833	VOP_UNLOCK(fvp, 0);
1834	if (!error && tvp)
1835		error = VOP_FSYNC(tvp, MNT_WAIT, tcnp->cn_thread);
1836	if (error)
1837		goto out;
1838
1839	/*
1840	 * If the tvp exists and is in use, sillyrename it before doing the
1841	 * rename of the new file over it.
1842	 * XXX Can't sillyrename a directory.
1843	 */
1844	if (tvp && vrefcnt(tvp) > 1 && !VTONFS(tvp)->n_sillyrename &&
1845		tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) {
1846		vput(tvp);
1847		tvp = NULL;
1848	}
1849
1850	error = nfs_renamerpc(fdvp, fcnp->cn_nameptr, fcnp->cn_namelen,
1851		tdvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred,
1852		tcnp->cn_thread);
1853
1854	if (fvp->v_type == VDIR) {
1855		if (tvp != NULL && tvp->v_type == VDIR)
1856			cache_purge(tdvp);
1857		cache_purge(fdvp);
1858	}
1859
1860out:
1861	if (tdvp == tvp)
1862		vrele(tdvp);
1863	else
1864		vput(tdvp);
1865	if (tvp)
1866		vput(tvp);
1867	vrele(fdvp);
1868	vrele(fvp);
1869	/*
1870	 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry.
1871	 */
1872	if (error == ENOENT)
1873		error = 0;
1874	return (error);
1875}
1876
1877/*
1878 * nfs file rename rpc called from nfs_remove() above
1879 */
1880static int
1881nfs_renameit(struct vnode *sdvp, struct componentname *scnp,
1882    struct sillyrename *sp)
1883{
1884
1885	return (nfs_renamerpc(sdvp, scnp->cn_nameptr, scnp->cn_namelen, sdvp,
1886	    sp->s_name, sp->s_namlen, scnp->cn_cred, scnp->cn_thread));
1887}
1888
1889/*
1890 * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit().
1891 */
1892static int
1893nfs_renamerpc(struct vnode *fdvp, const char *fnameptr, int fnamelen,
1894    struct vnode *tdvp, const char *tnameptr, int tnamelen, struct ucred *cred,
1895    struct thread *td)
1896{
1897	caddr_t bpos, dpos;
1898	int error = 0, fwccflag = NFSV3_WCCRATTR, twccflag = NFSV3_WCCRATTR;
1899	struct mbuf *mreq, *mrep, *md, *mb;
1900	int v3 = NFS_ISV3(fdvp);
1901
1902	nfsstats.rpccnt[NFSPROC_RENAME]++;
1903	mreq = nfsm_reqhead(fdvp, NFSPROC_RENAME,
1904		(NFSX_FH(v3) + NFSX_UNSIGNED)*2 + nfsm_rndup(fnamelen) +
1905		nfsm_rndup(tnamelen));
1906	mb = mreq;
1907	bpos = mtod(mb, caddr_t);
1908	nfsm_fhtom(fdvp, v3);
1909	nfsm_strtom(fnameptr, fnamelen, NFS_MAXNAMLEN);
1910	nfsm_fhtom(tdvp, v3);
1911	nfsm_strtom(tnameptr, tnamelen, NFS_MAXNAMLEN);
1912	nfsm_request(fdvp, NFSPROC_RENAME, td, cred);
1913	if (v3) {
1914		nfsm_wcc_data(fdvp, fwccflag);
1915		nfsm_wcc_data(tdvp, twccflag);
1916	}
1917	m_freem(mrep);
1918nfsmout:
1919	mtx_lock(&(VTONFS(fdvp))->n_mtx);
1920	VTONFS(fdvp)->n_flag |= NMODIFIED;
1921	mtx_unlock(&(VTONFS(fdvp))->n_mtx);
1922	mtx_lock(&(VTONFS(tdvp))->n_mtx);
1923	VTONFS(tdvp)->n_flag |= NMODIFIED;
1924	mtx_unlock(&(VTONFS(tdvp))->n_mtx);
1925	if (!fwccflag) {
1926		VTONFS(fdvp)->n_attrstamp = 0;
1927		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(fdvp);
1928	}
1929	if (!twccflag) {
1930		VTONFS(tdvp)->n_attrstamp = 0;
1931		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(tdvp);
1932	}
1933	return (error);
1934}
1935
1936/*
1937 * nfs hard link create call
1938 */
1939static int
1940nfs_link(struct vop_link_args *ap)
1941{
1942	struct vnode *vp = ap->a_vp;
1943	struct vnode *tdvp = ap->a_tdvp;
1944	struct componentname *cnp = ap->a_cnp;
1945	caddr_t bpos, dpos;
1946	int error = 0, wccflag = NFSV3_WCCRATTR, attrflag = 0;
1947	struct mbuf *mreq, *mrep, *md, *mb;
1948	int v3;
1949
1950	if (vp->v_mount != tdvp->v_mount) {
1951		return (EXDEV);
1952	}
1953
1954	/*
1955	 * Push all writes to the server, so that the attribute cache
1956	 * doesn't get "out of sync" with the server.
1957	 * XXX There should be a better way!
1958	 */
1959	VOP_FSYNC(vp, MNT_WAIT, cnp->cn_thread);
1960
1961	v3 = NFS_ISV3(vp);
1962	nfsstats.rpccnt[NFSPROC_LINK]++;
1963	mreq = nfsm_reqhead(vp, NFSPROC_LINK,
1964		NFSX_FH(v3)*2 + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen));
1965	mb = mreq;
1966	bpos = mtod(mb, caddr_t);
1967	nfsm_fhtom(vp, v3);
1968	nfsm_fhtom(tdvp, v3);
1969	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1970	nfsm_request(vp, NFSPROC_LINK, cnp->cn_thread, cnp->cn_cred);
1971	if (v3) {
1972		nfsm_postop_attr(vp, attrflag);
1973		nfsm_wcc_data(tdvp, wccflag);
1974	}
1975	m_freem(mrep);
1976nfsmout:
1977	mtx_lock(&(VTONFS(tdvp))->n_mtx);
1978	VTONFS(tdvp)->n_flag |= NMODIFIED;
1979	mtx_unlock(&(VTONFS(tdvp))->n_mtx);
1980	if (!attrflag) {
1981		VTONFS(vp)->n_attrstamp = 0;
1982		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
1983	}
1984	if (!wccflag) {
1985		VTONFS(tdvp)->n_attrstamp = 0;
1986		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(tdvp);
1987	}
1988	return (error);
1989}
1990
1991/*
1992 * nfs symbolic link create call
1993 */
1994static int
1995nfs_symlink(struct vop_symlink_args *ap)
1996{
1997	struct vnode *dvp = ap->a_dvp;
1998	struct vattr *vap = ap->a_vap;
1999	struct componentname *cnp = ap->a_cnp;
2000	struct nfsv2_sattr *sp;
2001	caddr_t bpos, dpos;
2002	int slen, error = 0, wccflag = NFSV3_WCCRATTR, gotvp;
2003	struct mbuf *mreq, *mrep, *md, *mb;
2004	struct vnode *newvp = NULL;
2005	int v3 = NFS_ISV3(dvp);
2006
2007	nfsstats.rpccnt[NFSPROC_SYMLINK]++;
2008	slen = strlen(ap->a_target);
2009	mreq = nfsm_reqhead(dvp, NFSPROC_SYMLINK, NFSX_FH(v3) + 2*NFSX_UNSIGNED +
2010	    nfsm_rndup(cnp->cn_namelen) + nfsm_rndup(slen) + NFSX_SATTR(v3));
2011	mb = mreq;
2012	bpos = mtod(mb, caddr_t);
2013	nfsm_fhtom(dvp, v3);
2014	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
2015	if (v3) {
2016		nfsm_v3attrbuild(vap, FALSE);
2017	}
2018	nfsm_strtom(ap->a_target, slen, NFS_MAXPATHLEN);
2019	if (!v3) {
2020		sp = nfsm_build(struct nfsv2_sattr *, NFSX_V2SATTR);
2021		sp->sa_mode = vtonfsv2_mode(VLNK, vap->va_mode);
2022		sp->sa_uid = nfs_xdrneg1;
2023		sp->sa_gid = nfs_xdrneg1;
2024		sp->sa_size = nfs_xdrneg1;
2025		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
2026		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
2027	}
2028
2029	/*
2030	 * Issue the NFS request and get the rpc response.
2031	 *
2032	 * Only NFSv3 responses returning an error of 0 actually return
2033	 * a file handle that can be converted into newvp without having
2034	 * to do an extra lookup rpc.
2035	 */
2036	nfsm_request(dvp, NFSPROC_SYMLINK, cnp->cn_thread, cnp->cn_cred);
2037	if (v3) {
2038		if (error == 0)
2039			nfsm_mtofh(dvp, newvp, v3, gotvp);
2040		nfsm_wcc_data(dvp, wccflag);
2041	}
2042
2043	/*
2044	 * out code jumps -> here, mrep is also freed.
2045	 */
2046
2047	m_freem(mrep);
2048nfsmout:
2049
2050	/*
2051	 * If we do not have an error and we could not extract the newvp from
2052	 * the response due to the request being NFSv2, we have to do a
2053	 * lookup in order to obtain a newvp to return.
2054	 */
2055	if (error == 0 && newvp == NULL) {
2056		struct nfsnode *np = NULL;
2057
2058		error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2059		    cnp->cn_cred, cnp->cn_thread, &np);
2060		if (!error)
2061			newvp = NFSTOV(np);
2062	}
2063	if (error) {
2064		if (newvp)
2065			vput(newvp);
2066	} else {
2067		*ap->a_vpp = newvp;
2068	}
2069	mtx_lock(&(VTONFS(dvp))->n_mtx);
2070	VTONFS(dvp)->n_flag |= NMODIFIED;
2071	mtx_unlock(&(VTONFS(dvp))->n_mtx);
2072	if (!wccflag) {
2073		VTONFS(dvp)->n_attrstamp = 0;
2074		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
2075	}
2076	return (error);
2077}
2078
2079/*
2080 * nfs make dir call
2081 */
2082static int
2083nfs_mkdir(struct vop_mkdir_args *ap)
2084{
2085	struct vnode *dvp = ap->a_dvp;
2086	struct vattr *vap = ap->a_vap;
2087	struct componentname *cnp = ap->a_cnp;
2088	struct nfsv2_sattr *sp;
2089	int len;
2090	struct nfsnode *np = NULL;
2091	struct vnode *newvp = NULL;
2092	caddr_t bpos, dpos;
2093	int error = 0, wccflag = NFSV3_WCCRATTR;
2094	int gotvp = 0;
2095	struct mbuf *mreq, *mrep, *md, *mb;
2096	struct vattr vattr;
2097	int v3 = NFS_ISV3(dvp);
2098
2099	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_cred)) != 0)
2100		return (error);
2101	len = cnp->cn_namelen;
2102	nfsstats.rpccnt[NFSPROC_MKDIR]++;
2103	mreq = nfsm_reqhead(dvp, NFSPROC_MKDIR,
2104	  NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len) + NFSX_SATTR(v3));
2105	mb = mreq;
2106	bpos = mtod(mb, caddr_t);
2107	nfsm_fhtom(dvp, v3);
2108	nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN);
2109	if (v3) {
2110		nfsm_v3attrbuild(vap, FALSE);
2111	} else {
2112		sp = nfsm_build(struct nfsv2_sattr *, NFSX_V2SATTR);
2113		sp->sa_mode = vtonfsv2_mode(VDIR, vap->va_mode);
2114		sp->sa_uid = nfs_xdrneg1;
2115		sp->sa_gid = nfs_xdrneg1;
2116		sp->sa_size = nfs_xdrneg1;
2117		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
2118		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
2119	}
2120	nfsm_request(dvp, NFSPROC_MKDIR, cnp->cn_thread, cnp->cn_cred);
2121	if (!error)
2122		nfsm_mtofh(dvp, newvp, v3, gotvp);
2123	if (v3)
2124		nfsm_wcc_data(dvp, wccflag);
2125	m_freem(mrep);
2126nfsmout:
2127	mtx_lock(&(VTONFS(dvp))->n_mtx);
2128	VTONFS(dvp)->n_flag |= NMODIFIED;
2129	mtx_unlock(&(VTONFS(dvp))->n_mtx);
2130	if (!wccflag) {
2131		VTONFS(dvp)->n_attrstamp = 0;
2132		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
2133	}
2134	if (error == 0 && newvp == NULL) {
2135		error = nfs_lookitup(dvp, cnp->cn_nameptr, len, cnp->cn_cred,
2136			cnp->cn_thread, &np);
2137		if (!error) {
2138			newvp = NFSTOV(np);
2139			if (newvp->v_type != VDIR)
2140				error = EEXIST;
2141		}
2142	}
2143	if (error) {
2144		if (newvp)
2145			vput(newvp);
2146	} else
2147		*ap->a_vpp = newvp;
2148	return (error);
2149}
2150
2151/*
2152 * nfs remove directory call
2153 */
2154static int
2155nfs_rmdir(struct vop_rmdir_args *ap)
2156{
2157	struct vnode *vp = ap->a_vp;
2158	struct vnode *dvp = ap->a_dvp;
2159	struct componentname *cnp = ap->a_cnp;
2160	caddr_t bpos, dpos;
2161	int error = 0, wccflag = NFSV3_WCCRATTR;
2162	struct mbuf *mreq, *mrep, *md, *mb;
2163	int v3 = NFS_ISV3(dvp);
2164
2165	if (dvp == vp)
2166		return (EINVAL);
2167	nfsstats.rpccnt[NFSPROC_RMDIR]++;
2168	mreq = nfsm_reqhead(dvp, NFSPROC_RMDIR,
2169		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen));
2170	mb = mreq;
2171	bpos = mtod(mb, caddr_t);
2172	nfsm_fhtom(dvp, v3);
2173	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
2174	nfsm_request(dvp, NFSPROC_RMDIR, cnp->cn_thread, cnp->cn_cred);
2175	if (v3)
2176		nfsm_wcc_data(dvp, wccflag);
2177	m_freem(mrep);
2178nfsmout:
2179	mtx_lock(&(VTONFS(dvp))->n_mtx);
2180	VTONFS(dvp)->n_flag |= NMODIFIED;
2181	mtx_unlock(&(VTONFS(dvp))->n_mtx);
2182	if (!wccflag) {
2183		VTONFS(dvp)->n_attrstamp = 0;
2184		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(dvp);
2185	}
2186	cache_purge(dvp);
2187	cache_purge(vp);
2188	/*
2189	 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry.
2190	 */
2191	if (error == ENOENT)
2192		error = 0;
2193	return (error);
2194}
2195
2196/*
2197 * nfs readdir call
2198 */
2199static int
2200nfs_readdir(struct vop_readdir_args *ap)
2201{
2202	struct vnode *vp = ap->a_vp;
2203	struct nfsnode *np = VTONFS(vp);
2204	struct uio *uio = ap->a_uio;
2205	int tresid, error = 0;
2206	struct vattr vattr;
2207
2208	if (vp->v_type != VDIR)
2209		return(EPERM);
2210
2211	/*
2212	 * First, check for hit on the EOF offset cache
2213	 */
2214	if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset &&
2215	    (np->n_flag & NMODIFIED) == 0) {
2216		if (VOP_GETATTR(vp, &vattr, ap->a_cred) == 0) {
2217			mtx_lock(&np->n_mtx);
2218			if (!NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime)) {
2219				mtx_unlock(&np->n_mtx);
2220				nfsstats.direofcache_hits++;
2221				goto out;
2222			} else
2223				mtx_unlock(&np->n_mtx);
2224		}
2225	}
2226
2227	/*
2228	 * Call nfs_bioread() to do the real work.
2229	 */
2230	tresid = uio->uio_resid;
2231	error = nfs_bioread(vp, uio, 0, ap->a_cred);
2232
2233	if (!error && uio->uio_resid == tresid) {
2234		nfsstats.direofcache_misses++;
2235	}
2236out:
2237	return (error);
2238}
2239
2240/*
2241 * Readdir rpc call.
2242 * Called from below the buffer cache by nfs_doio().
2243 */
2244int
2245nfs_readdirrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred)
2246{
2247	int len, left;
2248	struct dirent *dp = NULL;
2249	u_int32_t *tl;
2250	caddr_t cp;
2251	nfsuint64 *cookiep;
2252	caddr_t bpos, dpos;
2253	struct mbuf *mreq, *mrep, *md, *mb;
2254	nfsuint64 cookie;
2255	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2256	struct nfsnode *dnp = VTONFS(vp);
2257	u_quad_t fileno;
2258	int error = 0, tlen, more_dirs = 1, blksiz = 0, bigenough = 1;
2259	int attrflag;
2260	int v3 = NFS_ISV3(vp);
2261
2262#ifndef DIAGNOSTIC
2263	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2264		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2265		panic("nfs readdirrpc bad uio");
2266#endif
2267
2268	/*
2269	 * If there is no cookie, assume directory was stale.
2270	 */
2271	nfs_dircookie_lock(dnp);
2272	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2273	if (cookiep) {
2274		cookie = *cookiep;
2275		nfs_dircookie_unlock(dnp);
2276	} else {
2277		nfs_dircookie_unlock(dnp);
2278		return (NFSERR_BAD_COOKIE);
2279	}
2280
2281	/*
2282	 * Loop around doing readdir rpc's of size nm_readdirsize
2283	 * truncated to a multiple of DIRBLKSIZ.
2284	 * The stopping criteria is EOF or buffer full.
2285	 */
2286	while (more_dirs && bigenough) {
2287		nfsstats.rpccnt[NFSPROC_READDIR]++;
2288		mreq = nfsm_reqhead(vp, NFSPROC_READDIR, NFSX_FH(v3) +
2289			NFSX_READDIR(v3));
2290		mb = mreq;
2291		bpos = mtod(mb, caddr_t);
2292		nfsm_fhtom(vp, v3);
2293		if (v3) {
2294			tl = nfsm_build(u_int32_t *, 5 * NFSX_UNSIGNED);
2295			*tl++ = cookie.nfsuquad[0];
2296			*tl++ = cookie.nfsuquad[1];
2297			mtx_lock(&dnp->n_mtx);
2298			*tl++ = dnp->n_cookieverf.nfsuquad[0];
2299			*tl++ = dnp->n_cookieverf.nfsuquad[1];
2300			mtx_unlock(&dnp->n_mtx);
2301		} else {
2302			tl = nfsm_build(u_int32_t *, 2 * NFSX_UNSIGNED);
2303			*tl++ = cookie.nfsuquad[0];
2304		}
2305		*tl = txdr_unsigned(nmp->nm_readdirsize);
2306		nfsm_request(vp, NFSPROC_READDIR, uiop->uio_td, cred);
2307		if (v3) {
2308			nfsm_postop_attr(vp, attrflag);
2309			if (!error) {
2310				tl = nfsm_dissect(u_int32_t *,
2311				    2 * NFSX_UNSIGNED);
2312				mtx_lock(&dnp->n_mtx);
2313				dnp->n_cookieverf.nfsuquad[0] = *tl++;
2314				dnp->n_cookieverf.nfsuquad[1] = *tl;
2315				mtx_unlock(&dnp->n_mtx);
2316			} else {
2317				m_freem(mrep);
2318				goto nfsmout;
2319			}
2320		}
2321		tl = nfsm_dissect(u_int32_t *, NFSX_UNSIGNED);
2322		more_dirs = fxdr_unsigned(int, *tl);
2323
2324		/* loop thru the dir entries, doctoring them to 4bsd form */
2325		while (more_dirs && bigenough) {
2326			if (v3) {
2327				tl = nfsm_dissect(u_int32_t *,
2328				    3 * NFSX_UNSIGNED);
2329				fileno = fxdr_hyper(tl);
2330				len = fxdr_unsigned(int, *(tl + 2));
2331			} else {
2332				tl = nfsm_dissect(u_int32_t *,
2333				    2 * NFSX_UNSIGNED);
2334				fileno = fxdr_unsigned(u_quad_t, *tl++);
2335				len = fxdr_unsigned(int, *tl);
2336			}
2337			if (len <= 0 || len > NFS_MAXNAMLEN) {
2338				error = EBADRPC;
2339				m_freem(mrep);
2340				goto nfsmout;
2341			}
2342			tlen = nfsm_rndup(len);
2343			if (tlen == len)
2344				tlen += 4;	/* To ensure null termination */
2345			left = DIRBLKSIZ - blksiz;
2346			if ((tlen + DIRHDSIZ) > left) {
2347				dp->d_reclen += left;
2348				uiop->uio_iov->iov_base =
2349				    (char *)uiop->uio_iov->iov_base + left;
2350				uiop->uio_iov->iov_len -= left;
2351				uiop->uio_offset += left;
2352				uiop->uio_resid -= left;
2353				blksiz = 0;
2354			}
2355			if ((tlen + DIRHDSIZ) > uiop->uio_resid)
2356				bigenough = 0;
2357			if (bigenough) {
2358				dp = (struct dirent *)uiop->uio_iov->iov_base;
2359				dp->d_fileno = (int)fileno;
2360				dp->d_namlen = len;
2361				dp->d_reclen = tlen + DIRHDSIZ;
2362				dp->d_type = DT_UNKNOWN;
2363				blksiz += dp->d_reclen;
2364				if (blksiz == DIRBLKSIZ)
2365					blksiz = 0;
2366				uiop->uio_offset += DIRHDSIZ;
2367				uiop->uio_resid -= DIRHDSIZ;
2368				uiop->uio_iov->iov_base =
2369				    (char *)uiop->uio_iov->iov_base + DIRHDSIZ;
2370				uiop->uio_iov->iov_len -= DIRHDSIZ;
2371				nfsm_mtouio(uiop, len);
2372				cp = uiop->uio_iov->iov_base;
2373				tlen -= len;
2374				*cp = '\0';	/* null terminate */
2375				uiop->uio_iov->iov_base =
2376				    (char *)uiop->uio_iov->iov_base + tlen;
2377				uiop->uio_iov->iov_len -= tlen;
2378				uiop->uio_offset += tlen;
2379				uiop->uio_resid -= tlen;
2380			} else
2381				nfsm_adv(nfsm_rndup(len));
2382			if (v3) {
2383				tl = nfsm_dissect(u_int32_t *,
2384				    3 * NFSX_UNSIGNED);
2385			} else {
2386				tl = nfsm_dissect(u_int32_t *,
2387				    2 * NFSX_UNSIGNED);
2388			}
2389			if (bigenough) {
2390				cookie.nfsuquad[0] = *tl++;
2391				if (v3)
2392					cookie.nfsuquad[1] = *tl++;
2393			} else if (v3)
2394				tl += 2;
2395			else
2396				tl++;
2397			more_dirs = fxdr_unsigned(int, *tl);
2398		}
2399		/*
2400		 * If at end of rpc data, get the eof boolean
2401		 */
2402		if (!more_dirs) {
2403			tl = nfsm_dissect(u_int32_t *, NFSX_UNSIGNED);
2404			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2405		}
2406		m_freem(mrep);
2407	}
2408	/*
2409	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2410	 * by increasing d_reclen for the last record.
2411	 */
2412	if (blksiz > 0) {
2413		left = DIRBLKSIZ - blksiz;
2414		dp->d_reclen += left;
2415		uiop->uio_iov->iov_base =
2416		    (char *)uiop->uio_iov->iov_base + left;
2417		uiop->uio_iov->iov_len -= left;
2418		uiop->uio_offset += left;
2419		uiop->uio_resid -= left;
2420	}
2421
2422	/*
2423	 * We are now either at the end of the directory or have filled the
2424	 * block.
2425	 */
2426	if (bigenough)
2427		dnp->n_direofoffset = uiop->uio_offset;
2428	else {
2429		if (uiop->uio_resid > 0)
2430			nfs_printf("EEK! readdirrpc resid > 0\n");
2431		nfs_dircookie_lock(dnp);
2432		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2433		*cookiep = cookie;
2434		nfs_dircookie_unlock(dnp);
2435	}
2436nfsmout:
2437	return (error);
2438}
2439
2440/*
2441 * NFS V3 readdir plus RPC. Used in place of nfs_readdirrpc().
2442 */
2443int
2444nfs_readdirplusrpc(struct vnode *vp, struct uio *uiop, struct ucred *cred)
2445{
2446	int len, left;
2447	struct dirent *dp;
2448	u_int32_t *tl;
2449	caddr_t cp;
2450	struct vnode *newvp;
2451	nfsuint64 *cookiep;
2452	caddr_t bpos, dpos, dpossav1, dpossav2;
2453	struct mbuf *mreq, *mrep, *md, *mb, *mdsav1, *mdsav2;
2454	struct nameidata nami, *ndp = &nami;
2455	struct componentname *cnp = &ndp->ni_cnd;
2456	nfsuint64 cookie;
2457	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2458	struct nfsnode *dnp = VTONFS(vp), *np;
2459	nfsfh_t *fhp;
2460	u_quad_t fileno;
2461	int error = 0, tlen, more_dirs = 1, blksiz = 0, doit, bigenough = 1, i;
2462	int attrflag, fhsize;
2463
2464#ifndef nolint
2465	dp = NULL;
2466#endif
2467#ifndef DIAGNOSTIC
2468	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2469		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2470		panic("nfs readdirplusrpc bad uio");
2471#endif
2472	ndp->ni_dvp = vp;
2473	newvp = NULLVP;
2474
2475	/*
2476	 * If there is no cookie, assume directory was stale.
2477	 */
2478	nfs_dircookie_lock(dnp);
2479	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2480	if (cookiep) {
2481		cookie = *cookiep;
2482		nfs_dircookie_unlock(dnp);
2483	} else {
2484		nfs_dircookie_unlock(dnp);
2485		return (NFSERR_BAD_COOKIE);
2486	}
2487	/*
2488	 * Loop around doing readdir rpc's of size nm_readdirsize
2489	 * truncated to a multiple of DIRBLKSIZ.
2490	 * The stopping criteria is EOF or buffer full.
2491	 */
2492	while (more_dirs && bigenough) {
2493		nfsstats.rpccnt[NFSPROC_READDIRPLUS]++;
2494		mreq = nfsm_reqhead(vp, NFSPROC_READDIRPLUS,
2495			NFSX_FH(1) + 6 * NFSX_UNSIGNED);
2496		mb = mreq;
2497		bpos = mtod(mb, caddr_t);
2498		nfsm_fhtom(vp, 1);
2499 		tl = nfsm_build(u_int32_t *, 6 * NFSX_UNSIGNED);
2500		*tl++ = cookie.nfsuquad[0];
2501		*tl++ = cookie.nfsuquad[1];
2502		mtx_lock(&dnp->n_mtx);
2503		*tl++ = dnp->n_cookieverf.nfsuquad[0];
2504		*tl++ = dnp->n_cookieverf.nfsuquad[1];
2505		mtx_unlock(&dnp->n_mtx);
2506		*tl++ = txdr_unsigned(nmp->nm_readdirsize);
2507		*tl = txdr_unsigned(nmp->nm_rsize);
2508		nfsm_request(vp, NFSPROC_READDIRPLUS, uiop->uio_td, cred);
2509		nfsm_postop_attr(vp, attrflag);
2510		if (error) {
2511			m_freem(mrep);
2512			goto nfsmout;
2513		}
2514		tl = nfsm_dissect(u_int32_t *, 3 * NFSX_UNSIGNED);
2515		mtx_lock(&dnp->n_mtx);
2516		dnp->n_cookieverf.nfsuquad[0] = *tl++;
2517		dnp->n_cookieverf.nfsuquad[1] = *tl++;
2518		mtx_unlock(&dnp->n_mtx);
2519		more_dirs = fxdr_unsigned(int, *tl);
2520
2521		/* loop thru the dir entries, doctoring them to 4bsd form */
2522		while (more_dirs && bigenough) {
2523			tl = nfsm_dissect(u_int32_t *, 3 * NFSX_UNSIGNED);
2524			fileno = fxdr_hyper(tl);
2525			len = fxdr_unsigned(int, *(tl + 2));
2526			if (len <= 0 || len > NFS_MAXNAMLEN) {
2527				error = EBADRPC;
2528				m_freem(mrep);
2529				goto nfsmout;
2530			}
2531			tlen = nfsm_rndup(len);
2532			if (tlen == len)
2533				tlen += 4;	/* To ensure null termination*/
2534			left = DIRBLKSIZ - blksiz;
2535			if ((tlen + DIRHDSIZ) > left) {
2536				dp->d_reclen += left;
2537				uiop->uio_iov->iov_base =
2538				    (char *)uiop->uio_iov->iov_base + left;
2539				uiop->uio_iov->iov_len -= left;
2540				uiop->uio_offset += left;
2541				uiop->uio_resid -= left;
2542				blksiz = 0;
2543			}
2544			if ((tlen + DIRHDSIZ) > uiop->uio_resid)
2545				bigenough = 0;
2546			if (bigenough) {
2547				dp = (struct dirent *)uiop->uio_iov->iov_base;
2548				dp->d_fileno = (int)fileno;
2549				dp->d_namlen = len;
2550				dp->d_reclen = tlen + DIRHDSIZ;
2551				dp->d_type = DT_UNKNOWN;
2552				blksiz += dp->d_reclen;
2553				if (blksiz == DIRBLKSIZ)
2554					blksiz = 0;
2555				uiop->uio_offset += DIRHDSIZ;
2556				uiop->uio_resid -= DIRHDSIZ;
2557				uiop->uio_iov->iov_base =
2558				    (char *)uiop->uio_iov->iov_base + DIRHDSIZ;
2559				uiop->uio_iov->iov_len -= DIRHDSIZ;
2560				cnp->cn_nameptr = uiop->uio_iov->iov_base;
2561				cnp->cn_namelen = len;
2562				nfsm_mtouio(uiop, len);
2563				cp = uiop->uio_iov->iov_base;
2564				tlen -= len;
2565				*cp = '\0';
2566				uiop->uio_iov->iov_base =
2567				    (char *)uiop->uio_iov->iov_base + tlen;
2568				uiop->uio_iov->iov_len -= tlen;
2569				uiop->uio_offset += tlen;
2570				uiop->uio_resid -= tlen;
2571			} else
2572				nfsm_adv(nfsm_rndup(len));
2573			tl = nfsm_dissect(u_int32_t *, 3 * NFSX_UNSIGNED);
2574			if (bigenough) {
2575				cookie.nfsuquad[0] = *tl++;
2576				cookie.nfsuquad[1] = *tl++;
2577			} else
2578				tl += 2;
2579
2580			/*
2581			 * Since the attributes are before the file handle
2582			 * (sigh), we must skip over the attributes and then
2583			 * come back and get them.
2584			 */
2585			attrflag = fxdr_unsigned(int, *tl);
2586			if (attrflag) {
2587			    dpossav1 = dpos;
2588			    mdsav1 = md;
2589			    nfsm_adv(NFSX_V3FATTR);
2590			    tl = nfsm_dissect(u_int32_t *, NFSX_UNSIGNED);
2591			    doit = fxdr_unsigned(int, *tl);
2592			    /*
2593 			     * Skip loading the attrs for "..". There's a
2594 			     * race between loading the attrs here and
2595 			     * lookups that look for the directory currently
2596 			     * being read (in the parent). We try to acquire
2597 			     * the exclusive lock on ".." here, owning the
2598 			     * lock on the directory being read. Lookup will
2599 			     * hold the lock on ".." and try to acquire the
2600 			     * lock on the directory being read.
2601 			     *
2602 			     * There are other ways of fixing this, one would
2603 			     * be to do a trylock on the ".." vnode and skip
2604 			     * loading the attrs on ".." if it happens to be
2605 			     * locked by another process. But skipping the
2606 			     * attrload on ".." seems the easiest option.
2607 			     */
2608 			    if (strcmp(dp->d_name, "..") == 0) {
2609 				    doit = 0;
2610 				    /*
2611 				     * We've already skipped over the attrs,
2612 				     * skip over the filehandle. And store d_type
2613 				     * as VDIR.
2614 				     */
2615 				    tl = nfsm_dissect(u_int32_t *, NFSX_UNSIGNED);
2616 				    i = fxdr_unsigned(int, *tl);
2617 				    nfsm_adv(nfsm_rndup(i));
2618 				    dp->d_type = IFTODT(VTTOIF(VDIR));
2619 			    }
2620			    if (doit) {
2621				nfsm_getfh(fhp, fhsize, 1);
2622				if (NFS_CMPFH(dnp, fhp, fhsize)) {
2623				    VREF(vp);
2624				    newvp = vp;
2625				    np = dnp;
2626				} else {
2627				    error = nfs_nget(vp->v_mount, fhp,
2628					fhsize, &np, LK_EXCLUSIVE);
2629				    if (error)
2630					doit = 0;
2631				    else
2632					newvp = NFSTOV(np);
2633				}
2634			    }
2635			    if (doit && bigenough) {
2636				dpossav2 = dpos;
2637				dpos = dpossav1;
2638				mdsav2 = md;
2639				md = mdsav1;
2640				nfsm_loadattr(newvp, NULL);
2641				dpos = dpossav2;
2642				md = mdsav2;
2643				dp->d_type =
2644				    IFTODT(VTTOIF(np->n_vattr.va_type));
2645				ndp->ni_vp = newvp;
2646				/* Update n_ctime, so subsequent lookup doesn't purge entry */
2647				np->n_ctime = np->n_vattr.va_ctime.tv_sec;
2648			        cache_enter(ndp->ni_dvp, ndp->ni_vp, cnp);
2649			    }
2650			} else {
2651			    /* Just skip over the file handle */
2652			    tl = nfsm_dissect(u_int32_t *, NFSX_UNSIGNED);
2653			    i = fxdr_unsigned(int, *tl);
2654			    if (i) {
2655				    tl = nfsm_dissect(u_int32_t *, NFSX_UNSIGNED);
2656				    fhsize = fxdr_unsigned(int, *tl);
2657				    nfsm_adv(nfsm_rndup(fhsize));
2658			    }
2659			}
2660			if (newvp != NULLVP) {
2661			    if (newvp == vp)
2662				vrele(newvp);
2663			    else
2664				vput(newvp);
2665			    newvp = NULLVP;
2666			}
2667			tl = nfsm_dissect(u_int32_t *, NFSX_UNSIGNED);
2668			more_dirs = fxdr_unsigned(int, *tl);
2669		}
2670		/*
2671		 * If at end of rpc data, get the eof boolean
2672		 */
2673		if (!more_dirs) {
2674			tl = nfsm_dissect(u_int32_t *, NFSX_UNSIGNED);
2675			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2676		}
2677		m_freem(mrep);
2678	}
2679	/*
2680	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2681	 * by increasing d_reclen for the last record.
2682	 */
2683	if (blksiz > 0) {
2684		left = DIRBLKSIZ - blksiz;
2685		dp->d_reclen += left;
2686		uiop->uio_iov->iov_base =
2687		    (char *)uiop->uio_iov->iov_base + left;
2688		uiop->uio_iov->iov_len -= left;
2689		uiop->uio_offset += left;
2690		uiop->uio_resid -= left;
2691	}
2692
2693	/*
2694	 * We are now either at the end of the directory or have filled the
2695	 * block.
2696	 */
2697	if (bigenough)
2698		dnp->n_direofoffset = uiop->uio_offset;
2699	else {
2700		if (uiop->uio_resid > 0)
2701			nfs_printf("EEK! readdirplusrpc resid > 0\n");
2702		nfs_dircookie_lock(dnp);
2703		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2704		*cookiep = cookie;
2705		nfs_dircookie_unlock(dnp);
2706	}
2707nfsmout:
2708	if (newvp != NULLVP) {
2709	        if (newvp == vp)
2710			vrele(newvp);
2711		else
2712			vput(newvp);
2713		newvp = NULLVP;
2714	}
2715	return (error);
2716}
2717
2718/*
2719 * Silly rename. To make the NFS filesystem that is stateless look a little
2720 * more like the "ufs" a remove of an active vnode is translated to a rename
2721 * to a funny looking filename that is removed by nfs_inactive on the
2722 * nfsnode. There is the potential for another process on a different client
2723 * to create the same funny name between the nfs_lookitup() fails and the
2724 * nfs_rename() completes, but...
2725 */
2726static int
2727nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2728{
2729	struct sillyrename *sp;
2730	struct nfsnode *np;
2731	int error;
2732	short pid;
2733	unsigned int lticks;
2734
2735	cache_purge(dvp);
2736	np = VTONFS(vp);
2737#ifndef DIAGNOSTIC
2738	if (vp->v_type == VDIR)
2739		panic("nfs: sillyrename dir");
2740#endif
2741	sp = malloc(sizeof (struct sillyrename),
2742		M_NFSREQ, M_WAITOK);
2743	sp->s_cred = crhold(cnp->cn_cred);
2744	sp->s_dvp = dvp;
2745	sp->s_removeit = nfs_removeit;
2746	VREF(dvp);
2747
2748	/*
2749	 * Fudge together a funny name.
2750	 * Changing the format of the funny name to accomodate more
2751	 * sillynames per directory.
2752	 * The name is now changed to .nfs.<ticks>.<pid>.4, where ticks is
2753	 * CPU ticks since boot.
2754	 */
2755	pid = cnp->cn_thread->td_proc->p_pid;
2756	lticks = (unsigned int)ticks;
2757	for ( ; ; ) {
2758		sp->s_namlen = sprintf(sp->s_name,
2759				       ".nfs.%08x.%04x4.4", lticks,
2760				       pid);
2761		if (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2762				 cnp->cn_thread, NULL))
2763			break;
2764		lticks++;
2765	}
2766	error = nfs_renameit(dvp, cnp, sp);
2767	if (error)
2768		goto bad;
2769	error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2770		cnp->cn_thread, &np);
2771	np->n_sillyrename = sp;
2772	return (0);
2773bad:
2774	vrele(sp->s_dvp);
2775	crfree(sp->s_cred);
2776	free((caddr_t)sp, M_NFSREQ);
2777	return (error);
2778}
2779
2780/*
2781 * Look up a file name and optionally either update the file handle or
2782 * allocate an nfsnode, depending on the value of npp.
2783 * npp == NULL	--> just do the lookup
2784 * *npp == NULL --> allocate a new nfsnode and make sure attributes are
2785 *			handled too
2786 * *npp != NULL --> update the file handle in the vnode
2787 */
2788static int
2789nfs_lookitup(struct vnode *dvp, const char *name, int len, struct ucred *cred,
2790    struct thread *td, struct nfsnode **npp)
2791{
2792	struct vnode *newvp = NULL;
2793	struct nfsnode *np, *dnp = VTONFS(dvp);
2794	caddr_t bpos, dpos;
2795	int error = 0, fhlen, attrflag;
2796	struct mbuf *mreq, *mrep, *md, *mb;
2797	nfsfh_t *nfhp;
2798	int v3 = NFS_ISV3(dvp);
2799
2800	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
2801	mreq = nfsm_reqhead(dvp, NFSPROC_LOOKUP,
2802		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
2803	mb = mreq;
2804	bpos = mtod(mb, caddr_t);
2805	nfsm_fhtom(dvp, v3);
2806	nfsm_strtom(name, len, NFS_MAXNAMLEN);
2807	nfsm_request(dvp, NFSPROC_LOOKUP, td, cred);
2808	if (npp && !error) {
2809		nfsm_getfh(nfhp, fhlen, v3);
2810		if (*npp) {
2811		    np = *npp;
2812		    if (np->n_fhsize > NFS_SMALLFH && fhlen <= NFS_SMALLFH) {
2813			free((caddr_t)np->n_fhp, M_NFSBIGFH);
2814			np->n_fhp = &np->n_fh;
2815		    } else if (np->n_fhsize <= NFS_SMALLFH && fhlen>NFS_SMALLFH)
2816			np->n_fhp =(nfsfh_t *)malloc(fhlen, M_NFSBIGFH, M_WAITOK);
2817		    bcopy((caddr_t)nfhp, (caddr_t)np->n_fhp, fhlen);
2818		    np->n_fhsize = fhlen;
2819		    newvp = NFSTOV(np);
2820		} else if (NFS_CMPFH(dnp, nfhp, fhlen)) {
2821		    VREF(dvp);
2822		    newvp = dvp;
2823		} else {
2824		    error = nfs_nget(dvp->v_mount, nfhp, fhlen, &np, LK_EXCLUSIVE);
2825		    if (error) {
2826			m_freem(mrep);
2827			return (error);
2828		    }
2829		    newvp = NFSTOV(np);
2830		}
2831		if (v3) {
2832			nfsm_postop_attr(newvp, attrflag);
2833			if (!attrflag && *npp == NULL) {
2834				m_freem(mrep);
2835				if (newvp == dvp)
2836					vrele(newvp);
2837				else
2838					vput(newvp);
2839				return (ENOENT);
2840			}
2841		} else
2842			nfsm_loadattr(newvp, NULL);
2843	}
2844	m_freem(mrep);
2845nfsmout:
2846	if (npp && *npp == NULL) {
2847		if (error) {
2848			if (newvp) {
2849				if (newvp == dvp)
2850					vrele(newvp);
2851				else
2852					vput(newvp);
2853			}
2854		} else
2855			*npp = np;
2856	}
2857	return (error);
2858}
2859
2860/*
2861 * Nfs Version 3 commit rpc
2862 */
2863int
2864nfs_commit(struct vnode *vp, u_quad_t offset, int cnt, struct ucred *cred,
2865	   struct thread *td)
2866{
2867	u_int32_t *tl;
2868	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2869	caddr_t bpos, dpos;
2870	int error = 0, wccflag = NFSV3_WCCRATTR;
2871	struct mbuf *mreq, *mrep, *md, *mb;
2872
2873	mtx_lock(&nmp->nm_mtx);
2874	if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0) {
2875		mtx_unlock(&nmp->nm_mtx);
2876		return (0);
2877	}
2878	mtx_unlock(&nmp->nm_mtx);
2879	nfsstats.rpccnt[NFSPROC_COMMIT]++;
2880	mreq = nfsm_reqhead(vp, NFSPROC_COMMIT, NFSX_FH(1));
2881	mb = mreq;
2882	bpos = mtod(mb, caddr_t);
2883	nfsm_fhtom(vp, 1);
2884	tl = nfsm_build(u_int32_t *, 3 * NFSX_UNSIGNED);
2885	txdr_hyper(offset, tl);
2886	tl += 2;
2887	*tl = txdr_unsigned(cnt);
2888	nfsm_request(vp, NFSPROC_COMMIT, td, cred);
2889	nfsm_wcc_data(vp, wccflag);
2890	if (!error) {
2891		tl = nfsm_dissect(u_int32_t *, NFSX_V3WRITEVERF);
2892		if (bcmp((caddr_t)nmp->nm_verf, (caddr_t)tl,
2893			NFSX_V3WRITEVERF)) {
2894			bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
2895				NFSX_V3WRITEVERF);
2896			error = NFSERR_STALEWRITEVERF;
2897		}
2898	}
2899	m_freem(mrep);
2900nfsmout:
2901	return (error);
2902}
2903
2904/*
2905 * Strategy routine.
2906 * For async requests when nfsiod(s) are running, queue the request by
2907 * calling nfs_asyncio(), otherwise just all nfs_doio() to do the
2908 * request.
2909 */
2910static int
2911nfs_strategy(struct vop_strategy_args *ap)
2912{
2913	struct buf *bp = ap->a_bp;
2914	struct ucred *cr;
2915
2916	KASSERT(!(bp->b_flags & B_DONE),
2917	    ("nfs_strategy: buffer %p unexpectedly marked B_DONE", bp));
2918	BUF_ASSERT_HELD(bp);
2919
2920	if (bp->b_iocmd == BIO_READ)
2921		cr = bp->b_rcred;
2922	else
2923		cr = bp->b_wcred;
2924
2925	/*
2926	 * If the op is asynchronous and an i/o daemon is waiting
2927	 * queue the request, wake it up and wait for completion
2928	 * otherwise just do it ourselves.
2929	 */
2930	if ((bp->b_flags & B_ASYNC) == 0 ||
2931	    nfs_asyncio(VFSTONFS(ap->a_vp->v_mount), bp, NOCRED, curthread))
2932		(void)nfs_doio(ap->a_vp, bp, cr, curthread);
2933	return (0);
2934}
2935
2936/*
2937 * fsync vnode op. Just call nfs_flush() with commit == 1.
2938 */
2939/* ARGSUSED */
2940static int
2941nfs_fsync(struct vop_fsync_args *ap)
2942{
2943
2944	return (nfs_flush(ap->a_vp, ap->a_waitfor, 1));
2945}
2946
2947/*
2948 * Flush all the blocks associated with a vnode.
2949 * 	Walk through the buffer pool and push any dirty pages
2950 *	associated with the vnode.
2951 */
2952static int
2953nfs_flush(struct vnode *vp, int waitfor, int commit)
2954{
2955	struct nfsnode *np = VTONFS(vp);
2956	struct buf *bp;
2957	int i;
2958	struct buf *nbp;
2959	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2960	int error = 0, slptimeo = 0, slpflag = 0, retv, bvecpos;
2961	int passone = 1;
2962	u_quad_t off, endoff, toff;
2963	struct ucred* wcred = NULL;
2964	struct buf **bvec = NULL;
2965	struct bufobj *bo;
2966	struct thread *td = curthread;
2967#ifndef NFS_COMMITBVECSIZ
2968#define NFS_COMMITBVECSIZ	20
2969#endif
2970	struct buf *bvec_on_stack[NFS_COMMITBVECSIZ];
2971	int bvecsize = 0, bveccount;
2972
2973	if (nmp->nm_flag & NFSMNT_INT)
2974		slpflag = NFS_PCATCH;
2975	if (!commit)
2976		passone = 0;
2977	bo = &vp->v_bufobj;
2978	/*
2979	 * A b_flags == (B_DELWRI | B_NEEDCOMMIT) block has been written to the
2980	 * server, but has not been committed to stable storage on the server
2981	 * yet. On the first pass, the byte range is worked out and the commit
2982	 * rpc is done. On the second pass, nfs_writebp() is called to do the
2983	 * job.
2984	 */
2985again:
2986	off = (u_quad_t)-1;
2987	endoff = 0;
2988	bvecpos = 0;
2989	if (NFS_ISV3(vp) && commit) {
2990		if (bvec != NULL && bvec != bvec_on_stack)
2991			free(bvec, M_TEMP);
2992		/*
2993		 * Count up how many buffers waiting for a commit.
2994		 */
2995		bveccount = 0;
2996		BO_LOCK(bo);
2997		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2998			if (!BUF_ISLOCKED(bp) &&
2999			    (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT))
3000				== (B_DELWRI | B_NEEDCOMMIT))
3001				bveccount++;
3002		}
3003		/*
3004		 * Allocate space to remember the list of bufs to commit.  It is
3005		 * important to use M_NOWAIT here to avoid a race with nfs_write.
3006		 * If we can't get memory (for whatever reason), we will end up
3007		 * committing the buffers one-by-one in the loop below.
3008		 */
3009		if (bveccount > NFS_COMMITBVECSIZ) {
3010			/*
3011			 * Release the vnode interlock to avoid a lock
3012			 * order reversal.
3013			 */
3014			BO_UNLOCK(bo);
3015			bvec = (struct buf **)
3016				malloc(bveccount * sizeof(struct buf *),
3017				       M_TEMP, M_NOWAIT);
3018			BO_LOCK(bo);
3019			if (bvec == NULL) {
3020				bvec = bvec_on_stack;
3021				bvecsize = NFS_COMMITBVECSIZ;
3022			} else
3023				bvecsize = bveccount;
3024		} else {
3025			bvec = bvec_on_stack;
3026			bvecsize = NFS_COMMITBVECSIZ;
3027		}
3028		TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
3029			if (bvecpos >= bvecsize)
3030				break;
3031			if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
3032				nbp = TAILQ_NEXT(bp, b_bobufs);
3033				continue;
3034			}
3035			if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
3036			    (B_DELWRI | B_NEEDCOMMIT)) {
3037				BUF_UNLOCK(bp);
3038				nbp = TAILQ_NEXT(bp, b_bobufs);
3039				continue;
3040			}
3041			BO_UNLOCK(bo);
3042			bremfree(bp);
3043			/*
3044			 * Work out if all buffers are using the same cred
3045			 * so we can deal with them all with one commit.
3046			 *
3047			 * NOTE: we are not clearing B_DONE here, so we have
3048			 * to do it later on in this routine if we intend to
3049			 * initiate I/O on the bp.
3050			 *
3051			 * Note: to avoid loopback deadlocks, we do not
3052			 * assign b_runningbufspace.
3053			 */
3054			if (wcred == NULL)
3055				wcred = bp->b_wcred;
3056			else if (wcred != bp->b_wcred)
3057				wcred = NOCRED;
3058			vfs_busy_pages(bp, 1);
3059
3060			BO_LOCK(bo);
3061			/*
3062			 * bp is protected by being locked, but nbp is not
3063			 * and vfs_busy_pages() may sleep.  We have to
3064			 * recalculate nbp.
3065			 */
3066			nbp = TAILQ_NEXT(bp, b_bobufs);
3067
3068			/*
3069			 * A list of these buffers is kept so that the
3070			 * second loop knows which buffers have actually
3071			 * been committed. This is necessary, since there
3072			 * may be a race between the commit rpc and new
3073			 * uncommitted writes on the file.
3074			 */
3075			bvec[bvecpos++] = bp;
3076			toff = ((u_quad_t)bp->b_blkno) * DEV_BSIZE +
3077				bp->b_dirtyoff;
3078			if (toff < off)
3079				off = toff;
3080			toff += (u_quad_t)(bp->b_dirtyend - bp->b_dirtyoff);
3081			if (toff > endoff)
3082				endoff = toff;
3083		}
3084		BO_UNLOCK(bo);
3085	}
3086	if (bvecpos > 0) {
3087		/*
3088		 * Commit data on the server, as required.
3089		 * If all bufs are using the same wcred, then use that with
3090		 * one call for all of them, otherwise commit each one
3091		 * separately.
3092		 */
3093		if (wcred != NOCRED)
3094			retv = nfs_commit(vp, off, (int)(endoff - off),
3095					  wcred, td);
3096		else {
3097			retv = 0;
3098			for (i = 0; i < bvecpos; i++) {
3099				off_t off, size;
3100				bp = bvec[i];
3101				off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE +
3102					bp->b_dirtyoff;
3103				size = (u_quad_t)(bp->b_dirtyend
3104						  - bp->b_dirtyoff);
3105				retv = nfs_commit(vp, off, (int)size,
3106						  bp->b_wcred, td);
3107				if (retv) break;
3108			}
3109		}
3110
3111		if (retv == NFSERR_STALEWRITEVERF)
3112			nfs_clearcommit(vp->v_mount);
3113
3114		/*
3115		 * Now, either mark the blocks I/O done or mark the
3116		 * blocks dirty, depending on whether the commit
3117		 * succeeded.
3118		 */
3119		for (i = 0; i < bvecpos; i++) {
3120			bp = bvec[i];
3121			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
3122			if (retv) {
3123				/*
3124				 * Error, leave B_DELWRI intact
3125				 */
3126				vfs_unbusy_pages(bp);
3127				brelse(bp);
3128			} else {
3129				/*
3130				 * Success, remove B_DELWRI ( bundirty() ).
3131				 *
3132				 * b_dirtyoff/b_dirtyend seem to be NFS
3133				 * specific.  We should probably move that
3134				 * into bundirty(). XXX
3135				 */
3136				bufobj_wref(bo);
3137				bp->b_flags |= B_ASYNC;
3138				bundirty(bp);
3139				bp->b_flags &= ~B_DONE;
3140				bp->b_ioflags &= ~BIO_ERROR;
3141				bp->b_dirtyoff = bp->b_dirtyend = 0;
3142				bufdone(bp);
3143			}
3144		}
3145	}
3146
3147	/*
3148	 * Start/do any write(s) that are required.
3149	 */
3150loop:
3151	BO_LOCK(bo);
3152	TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
3153		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) {
3154			if (waitfor != MNT_WAIT || passone)
3155				continue;
3156
3157			error = BUF_TIMELOCK(bp,
3158			    LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
3159			    BO_MTX(bo), "nfsfsync", slpflag, slptimeo);
3160			if (error == 0) {
3161				BUF_UNLOCK(bp);
3162				goto loop;
3163			}
3164			if (error == ENOLCK) {
3165				error = 0;
3166				goto loop;
3167			}
3168			if (nfs_sigintr(nmp, td)) {
3169				error = EINTR;
3170				goto done;
3171			}
3172			if (slpflag & PCATCH) {
3173				slpflag = 0;
3174				slptimeo = 2 * hz;
3175			}
3176			goto loop;
3177		}
3178		if ((bp->b_flags & B_DELWRI) == 0)
3179			panic("nfs_fsync: not dirty");
3180		if ((passone || !commit) && (bp->b_flags & B_NEEDCOMMIT)) {
3181			BUF_UNLOCK(bp);
3182			continue;
3183		}
3184		BO_UNLOCK(bo);
3185		bremfree(bp);
3186		if (passone || !commit)
3187		    bp->b_flags |= B_ASYNC;
3188		else
3189		    bp->b_flags |= B_ASYNC;
3190		bwrite(bp);
3191		if (nfs_sigintr(nmp, td)) {
3192			error = EINTR;
3193			goto done;
3194		}
3195		goto loop;
3196	}
3197	if (passone) {
3198		passone = 0;
3199		BO_UNLOCK(bo);
3200		goto again;
3201	}
3202	if (waitfor == MNT_WAIT) {
3203		while (bo->bo_numoutput) {
3204			error = bufobj_wwait(bo, slpflag, slptimeo);
3205			if (error) {
3206			    BO_UNLOCK(bo);
3207			    error = nfs_sigintr(nmp, td);
3208			    if (error)
3209				goto done;
3210			    if (slpflag & PCATCH) {
3211				slpflag = 0;
3212				slptimeo = 2 * hz;
3213			    }
3214			    BO_LOCK(bo);
3215			}
3216		}
3217		if (bo->bo_dirty.bv_cnt != 0 && commit) {
3218			BO_UNLOCK(bo);
3219			goto loop;
3220		}
3221		/*
3222		 * Wait for all the async IO requests to drain
3223		 */
3224		BO_UNLOCK(bo);
3225		mtx_lock(&np->n_mtx);
3226		while (np->n_directio_asyncwr > 0) {
3227			np->n_flag |= NFSYNCWAIT;
3228			error = nfs_msleep(td, (caddr_t)&np->n_directio_asyncwr,
3229					   &np->n_mtx, slpflag | (PRIBIO + 1),
3230					   "nfsfsync", 0);
3231			if (error) {
3232				if (nfs_sigintr(nmp, td)) {
3233					mtx_unlock(&np->n_mtx);
3234					error = EINTR;
3235					goto done;
3236				}
3237			}
3238		}
3239		mtx_unlock(&np->n_mtx);
3240	} else
3241		BO_UNLOCK(bo);
3242	mtx_lock(&np->n_mtx);
3243	if (np->n_flag & NWRITEERR) {
3244		error = np->n_error;
3245		np->n_flag &= ~NWRITEERR;
3246	}
3247  	if (commit && bo->bo_dirty.bv_cnt == 0 &&
3248	    bo->bo_numoutput == 0 && np->n_directio_asyncwr == 0)
3249  		np->n_flag &= ~NMODIFIED;
3250	mtx_unlock(&np->n_mtx);
3251done:
3252	if (bvec != NULL && bvec != bvec_on_stack)
3253		free(bvec, M_TEMP);
3254	return (error);
3255}
3256
3257/*
3258 * NFS advisory byte-level locks.
3259 */
3260static int
3261nfs_advlock(struct vop_advlock_args *ap)
3262{
3263	struct vnode *vp = ap->a_vp;
3264	u_quad_t size;
3265	int error;
3266
3267	error = vn_lock(vp, LK_SHARED);
3268	if (error)
3269		return (error);
3270	if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) {
3271		size = VTONFS(vp)->n_size;
3272		VOP_UNLOCK(vp, 0);
3273		error = lf_advlock(ap, &(vp->v_lockf), size);
3274	} else {
3275		if (nfs_advlock_p)
3276			error = nfs_advlock_p(ap);
3277		else
3278			error = ENOLCK;
3279	}
3280
3281	return (error);
3282}
3283
3284/*
3285 * NFS advisory byte-level locks.
3286 */
3287static int
3288nfs_advlockasync(struct vop_advlockasync_args *ap)
3289{
3290	struct vnode *vp = ap->a_vp;
3291	u_quad_t size;
3292	int error;
3293
3294	error = vn_lock(vp, LK_SHARED);
3295	if (error)
3296		return (error);
3297	if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NOLOCKD) != 0) {
3298		size = VTONFS(vp)->n_size;
3299		VOP_UNLOCK(vp, 0);
3300		error = lf_advlockasync(ap, &(vp->v_lockf), size);
3301	} else {
3302		VOP_UNLOCK(vp, 0);
3303		error = EOPNOTSUPP;
3304	}
3305	return (error);
3306}
3307
3308/*
3309 * Print out the contents of an nfsnode.
3310 */
3311static int
3312nfs_print(struct vop_print_args *ap)
3313{
3314	struct vnode *vp = ap->a_vp;
3315	struct nfsnode *np = VTONFS(vp);
3316
3317	nfs_printf("\tfileid %ld fsid 0x%x",
3318	   np->n_vattr.va_fileid, np->n_vattr.va_fsid);
3319	if (vp->v_type == VFIFO)
3320		fifo_printinfo(vp);
3321	printf("\n");
3322	return (0);
3323}
3324
3325/*
3326 * This is the "real" nfs::bwrite(struct buf*).
3327 * We set B_CACHE if this is a VMIO buffer.
3328 */
3329int
3330nfs_writebp(struct buf *bp, int force __unused, struct thread *td)
3331{
3332	int s;
3333	int oldflags = bp->b_flags;
3334#if 0
3335	int retv = 1;
3336	off_t off;
3337#endif
3338
3339	BUF_ASSERT_HELD(bp);
3340
3341	if (bp->b_flags & B_INVAL) {
3342		brelse(bp);
3343		return(0);
3344	}
3345
3346	bp->b_flags |= B_CACHE;
3347
3348	/*
3349	 * Undirty the bp.  We will redirty it later if the I/O fails.
3350	 */
3351
3352	s = splbio();
3353	bundirty(bp);
3354	bp->b_flags &= ~B_DONE;
3355	bp->b_ioflags &= ~BIO_ERROR;
3356	bp->b_iocmd = BIO_WRITE;
3357
3358	bufobj_wref(bp->b_bufobj);
3359	curthread->td_ru.ru_oublock++;
3360	splx(s);
3361
3362	/*
3363	 * Note: to avoid loopback deadlocks, we do not
3364	 * assign b_runningbufspace.
3365	 */
3366	vfs_busy_pages(bp, 1);
3367
3368	BUF_KERNPROC(bp);
3369	bp->b_iooffset = dbtob(bp->b_blkno);
3370	bstrategy(bp);
3371
3372	if( (oldflags & B_ASYNC) == 0) {
3373		int rtval = bufwait(bp);
3374
3375		if (oldflags & B_DELWRI) {
3376			s = splbio();
3377			reassignbuf(bp);
3378			splx(s);
3379		}
3380		brelse(bp);
3381		return (rtval);
3382	}
3383
3384	return (0);
3385}
3386
3387/*
3388 * nfs special file access vnode op.
3389 * Essentially just get vattr and then imitate iaccess() since the device is
3390 * local to the client.
3391 */
3392static int
3393nfsspec_access(struct vop_access_args *ap)
3394{
3395	struct vattr *vap;
3396	struct ucred *cred = ap->a_cred;
3397	struct vnode *vp = ap->a_vp;
3398	accmode_t accmode = ap->a_accmode;
3399	struct vattr vattr;
3400	int error;
3401
3402	/*
3403	 * Disallow write attempts on filesystems mounted read-only;
3404	 * unless the file is a socket, fifo, or a block or character
3405	 * device resident on the filesystem.
3406	 */
3407	if ((accmode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
3408		switch (vp->v_type) {
3409		case VREG:
3410		case VDIR:
3411		case VLNK:
3412			return (EROFS);
3413		default:
3414			break;
3415		}
3416	}
3417	vap = &vattr;
3418	error = VOP_GETATTR(vp, vap, cred);
3419	if (error)
3420		goto out;
3421	error  = vaccess(vp->v_type, vap->va_mode, vap->va_uid, vap->va_gid,
3422			 accmode, cred, NULL);
3423out:
3424	return error;
3425}
3426
3427/*
3428 * Read wrapper for fifos.
3429 */
3430static int
3431nfsfifo_read(struct vop_read_args *ap)
3432{
3433	struct nfsnode *np = VTONFS(ap->a_vp);
3434	int error;
3435
3436	/*
3437	 * Set access flag.
3438	 */
3439	mtx_lock(&np->n_mtx);
3440	np->n_flag |= NACC;
3441	getnanotime(&np->n_atim);
3442	mtx_unlock(&np->n_mtx);
3443	error = fifo_specops.vop_read(ap);
3444	return error;
3445}
3446
3447/*
3448 * Write wrapper for fifos.
3449 */
3450static int
3451nfsfifo_write(struct vop_write_args *ap)
3452{
3453	struct nfsnode *np = VTONFS(ap->a_vp);
3454
3455	/*
3456	 * Set update flag.
3457	 */
3458	mtx_lock(&np->n_mtx);
3459	np->n_flag |= NUPD;
3460	getnanotime(&np->n_mtim);
3461	mtx_unlock(&np->n_mtx);
3462	return(fifo_specops.vop_write(ap));
3463}
3464
3465/*
3466 * Close wrapper for fifos.
3467 *
3468 * Update the times on the nfsnode then do fifo close.
3469 */
3470static int
3471nfsfifo_close(struct vop_close_args *ap)
3472{
3473	struct vnode *vp = ap->a_vp;
3474	struct nfsnode *np = VTONFS(vp);
3475	struct vattr vattr;
3476	struct timespec ts;
3477
3478	mtx_lock(&np->n_mtx);
3479	if (np->n_flag & (NACC | NUPD)) {
3480		getnanotime(&ts);
3481		if (np->n_flag & NACC)
3482			np->n_atim = ts;
3483		if (np->n_flag & NUPD)
3484			np->n_mtim = ts;
3485		np->n_flag |= NCHG;
3486		if (vrefcnt(vp) == 1 &&
3487		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3488			VATTR_NULL(&vattr);
3489			if (np->n_flag & NACC)
3490				vattr.va_atime = np->n_atim;
3491			if (np->n_flag & NUPD)
3492				vattr.va_mtime = np->n_mtim;
3493			mtx_unlock(&np->n_mtx);
3494			(void)VOP_SETATTR(vp, &vattr, ap->a_cred);
3495			goto out;
3496		}
3497	}
3498	mtx_unlock(&np->n_mtx);
3499out:
3500	return (fifo_specops.vop_close(ap));
3501}
3502
3503/*
3504 * Just call nfs_writebp() with the force argument set to 1.
3505 *
3506 * NOTE: B_DONE may or may not be set in a_bp on call.
3507 */
3508static int
3509nfs_bwrite(struct buf *bp)
3510{
3511
3512	return (nfs_writebp(bp, 1, curthread));
3513}
3514
3515struct buf_ops buf_ops_nfs = {
3516	.bop_name	=	"buf_ops_nfs",
3517	.bop_write	=	nfs_bwrite,
3518	.bop_strategy	=	bufstrategy,
3519	.bop_sync	=	bufsync,
3520	.bop_bdflush	=	bufbdflush,
3521};
3522