ip_fw2.c revision 223080
1/*-
2 * Copyright (c) 2002-2009 Luigi Rizzo, Universita` di Pisa
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 */
25
26#include <sys/cdefs.h>
27__FBSDID("$FreeBSD: head/sys/netinet/ipfw/ip_fw2.c 223080 2011-06-14 13:35:24Z ae $");
28
29/*
30 * The FreeBSD IP packet firewall, main file
31 */
32
33#if !defined(KLD_MODULE)
34#include "opt_ipfw.h"
35#include "opt_ipdivert.h"
36#include "opt_ipdn.h"
37#include "opt_inet.h"
38#ifndef INET
39#error IPFIREWALL requires INET.
40#endif /* INET */
41#endif
42#include "opt_inet6.h"
43#include "opt_ipsec.h"
44
45#include <sys/param.h>
46#include <sys/systm.h>
47#include <sys/condvar.h>
48#include <sys/eventhandler.h>
49#include <sys/malloc.h>
50#include <sys/mbuf.h>
51#include <sys/kernel.h>
52#include <sys/lock.h>
53#include <sys/jail.h>
54#include <sys/module.h>
55#include <sys/priv.h>
56#include <sys/proc.h>
57#include <sys/rwlock.h>
58#include <sys/socket.h>
59#include <sys/socketvar.h>
60#include <sys/sysctl.h>
61#include <sys/syslog.h>
62#include <sys/ucred.h>
63#include <net/ethernet.h> /* for ETHERTYPE_IP */
64#include <net/if.h>
65#include <net/route.h>
66#include <net/pf_mtag.h>
67#include <net/vnet.h>
68
69#include <netinet/in.h>
70#include <netinet/in_var.h>
71#include <netinet/in_pcb.h>
72#include <netinet/ip.h>
73#include <netinet/ip_var.h>
74#include <netinet/ip_icmp.h>
75#include <netinet/ip_fw.h>
76#include <netinet/ipfw/ip_fw_private.h>
77#include <netinet/ip_carp.h>
78#include <netinet/pim.h>
79#include <netinet/tcp_var.h>
80#include <netinet/udp.h>
81#include <netinet/udp_var.h>
82#include <netinet/sctp.h>
83
84#include <netinet/ip6.h>
85#include <netinet/icmp6.h>
86#ifdef INET6
87#include <netinet6/in6_pcb.h>
88#include <netinet6/scope6_var.h>
89#include <netinet6/ip6_var.h>
90#endif
91
92#include <machine/in_cksum.h>	/* XXX for in_cksum */
93
94#ifdef MAC
95#include <security/mac/mac_framework.h>
96#endif
97
98/*
99 * static variables followed by global ones.
100 * All ipfw global variables are here.
101 */
102
103/* ipfw_vnet_ready controls when we are open for business */
104static VNET_DEFINE(int, ipfw_vnet_ready) = 0;
105#define	V_ipfw_vnet_ready	VNET(ipfw_vnet_ready)
106
107static VNET_DEFINE(int, fw_deny_unknown_exthdrs);
108#define	V_fw_deny_unknown_exthdrs	VNET(fw_deny_unknown_exthdrs)
109
110#ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
111static int default_to_accept = 1;
112#else
113static int default_to_accept;
114#endif
115
116VNET_DEFINE(int, autoinc_step);
117VNET_DEFINE(int, fw_one_pass) = 1;
118
119/*
120 * Each rule belongs to one of 32 different sets (0..31).
121 * The variable set_disable contains one bit per set.
122 * If the bit is set, all rules in the corresponding set
123 * are disabled. Set RESVD_SET(31) is reserved for the default rule
124 * and rules that are not deleted by the flush command,
125 * and CANNOT be disabled.
126 * Rules in set RESVD_SET can only be deleted individually.
127 */
128VNET_DEFINE(u_int32_t, set_disable);
129#define	V_set_disable			VNET(set_disable)
130
131VNET_DEFINE(int, fw_verbose);
132/* counter for ipfw_log(NULL...) */
133VNET_DEFINE(u_int64_t, norule_counter);
134VNET_DEFINE(int, verbose_limit);
135
136/* layer3_chain contains the list of rules for layer 3 */
137VNET_DEFINE(struct ip_fw_chain, layer3_chain);
138
139ipfw_nat_t *ipfw_nat_ptr = NULL;
140struct cfg_nat *(*lookup_nat_ptr)(struct nat_list *, int);
141ipfw_nat_cfg_t *ipfw_nat_cfg_ptr;
142ipfw_nat_cfg_t *ipfw_nat_del_ptr;
143ipfw_nat_cfg_t *ipfw_nat_get_cfg_ptr;
144ipfw_nat_cfg_t *ipfw_nat_get_log_ptr;
145
146#ifdef SYSCTL_NODE
147uint32_t dummy_def = IPFW_DEFAULT_RULE;
148uint32_t dummy_tables_max = IPFW_TABLES_MAX;
149
150SYSBEGIN(f3)
151
152SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
153SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
154    CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_one_pass), 0,
155    "Only do a single pass through ipfw when using dummynet(4)");
156SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step,
157    CTLFLAG_RW, &VNET_NAME(autoinc_step), 0,
158    "Rule number auto-increment step");
159SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, verbose,
160    CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_verbose), 0,
161    "Log matches to ipfw rules");
162SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit,
163    CTLFLAG_RW, &VNET_NAME(verbose_limit), 0,
164    "Set upper limit of matches of ipfw rules logged");
165SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, default_rule, CTLFLAG_RD,
166    &dummy_def, 0,
167    "The default/max possible rule number.");
168SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, tables_max, CTLFLAG_RD,
169    &dummy_tables_max, 0,
170    "The maximum number of tables.");
171SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, default_to_accept, CTLFLAG_RDTUN,
172    &default_to_accept, 0,
173    "Make the default rule accept all packets.");
174TUNABLE_INT("net.inet.ip.fw.default_to_accept", &default_to_accept);
175SYSCTL_VNET_INT(_net_inet_ip_fw, OID_AUTO, static_count,
176    CTLFLAG_RD, &VNET_NAME(layer3_chain.n_rules), 0,
177    "Number of static rules");
178
179#ifdef INET6
180SYSCTL_DECL(_net_inet6_ip6);
181SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
182SYSCTL_VNET_INT(_net_inet6_ip6_fw, OID_AUTO, deny_unknown_exthdrs,
183    CTLFLAG_RW | CTLFLAG_SECURE, &VNET_NAME(fw_deny_unknown_exthdrs), 0,
184    "Deny packets with unknown IPv6 Extension Headers");
185#endif /* INET6 */
186
187SYSEND
188
189#endif /* SYSCTL_NODE */
190
191
192/*
193 * Some macros used in the various matching options.
194 * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
195 * Other macros just cast void * into the appropriate type
196 */
197#define	L3HDR(T, ip)	((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
198#define	TCP(p)		((struct tcphdr *)(p))
199#define	SCTP(p)		((struct sctphdr *)(p))
200#define	UDP(p)		((struct udphdr *)(p))
201#define	ICMP(p)		((struct icmphdr *)(p))
202#define	ICMP6(p)	((struct icmp6_hdr *)(p))
203
204static __inline int
205icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
206{
207	int type = icmp->icmp_type;
208
209	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
210}
211
212#define TT	( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
213    (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
214
215static int
216is_icmp_query(struct icmphdr *icmp)
217{
218	int type = icmp->icmp_type;
219
220	return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
221}
222#undef TT
223
224/*
225 * The following checks use two arrays of 8 or 16 bits to store the
226 * bits that we want set or clear, respectively. They are in the
227 * low and high half of cmd->arg1 or cmd->d[0].
228 *
229 * We scan options and store the bits we find set. We succeed if
230 *
231 *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
232 *
233 * The code is sometimes optimized not to store additional variables.
234 */
235
236static int
237flags_match(ipfw_insn *cmd, u_int8_t bits)
238{
239	u_char want_clear;
240	bits = ~bits;
241
242	if ( ((cmd->arg1 & 0xff) & bits) != 0)
243		return 0; /* some bits we want set were clear */
244	want_clear = (cmd->arg1 >> 8) & 0xff;
245	if ( (want_clear & bits) != want_clear)
246		return 0; /* some bits we want clear were set */
247	return 1;
248}
249
250static int
251ipopts_match(struct ip *ip, ipfw_insn *cmd)
252{
253	int optlen, bits = 0;
254	u_char *cp = (u_char *)(ip + 1);
255	int x = (ip->ip_hl << 2) - sizeof (struct ip);
256
257	for (; x > 0; x -= optlen, cp += optlen) {
258		int opt = cp[IPOPT_OPTVAL];
259
260		if (opt == IPOPT_EOL)
261			break;
262		if (opt == IPOPT_NOP)
263			optlen = 1;
264		else {
265			optlen = cp[IPOPT_OLEN];
266			if (optlen <= 0 || optlen > x)
267				return 0; /* invalid or truncated */
268		}
269		switch (opt) {
270
271		default:
272			break;
273
274		case IPOPT_LSRR:
275			bits |= IP_FW_IPOPT_LSRR;
276			break;
277
278		case IPOPT_SSRR:
279			bits |= IP_FW_IPOPT_SSRR;
280			break;
281
282		case IPOPT_RR:
283			bits |= IP_FW_IPOPT_RR;
284			break;
285
286		case IPOPT_TS:
287			bits |= IP_FW_IPOPT_TS;
288			break;
289		}
290	}
291	return (flags_match(cmd, bits));
292}
293
294static int
295tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
296{
297	int optlen, bits = 0;
298	u_char *cp = (u_char *)(tcp + 1);
299	int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
300
301	for (; x > 0; x -= optlen, cp += optlen) {
302		int opt = cp[0];
303		if (opt == TCPOPT_EOL)
304			break;
305		if (opt == TCPOPT_NOP)
306			optlen = 1;
307		else {
308			optlen = cp[1];
309			if (optlen <= 0)
310				break;
311		}
312
313		switch (opt) {
314
315		default:
316			break;
317
318		case TCPOPT_MAXSEG:
319			bits |= IP_FW_TCPOPT_MSS;
320			break;
321
322		case TCPOPT_WINDOW:
323			bits |= IP_FW_TCPOPT_WINDOW;
324			break;
325
326		case TCPOPT_SACK_PERMITTED:
327		case TCPOPT_SACK:
328			bits |= IP_FW_TCPOPT_SACK;
329			break;
330
331		case TCPOPT_TIMESTAMP:
332			bits |= IP_FW_TCPOPT_TS;
333			break;
334
335		}
336	}
337	return (flags_match(cmd, bits));
338}
339
340static int
341iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
342{
343	if (ifp == NULL)	/* no iface with this packet, match fails */
344		return 0;
345	/* Check by name or by IP address */
346	if (cmd->name[0] != '\0') { /* match by name */
347		/* Check name */
348		if (cmd->p.glob) {
349			if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
350				return(1);
351		} else {
352			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
353				return(1);
354		}
355	} else {
356#ifdef __FreeBSD__	/* and OSX too ? */
357		struct ifaddr *ia;
358
359		if_addr_rlock(ifp);
360		TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
361			if (ia->ifa_addr->sa_family != AF_INET)
362				continue;
363			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
364			    (ia->ifa_addr))->sin_addr.s_addr) {
365				if_addr_runlock(ifp);
366				return(1);	/* match */
367			}
368		}
369		if_addr_runlock(ifp);
370#endif /* __FreeBSD__ */
371	}
372	return(0);	/* no match, fail ... */
373}
374
375/*
376 * The verify_path function checks if a route to the src exists and
377 * if it is reachable via ifp (when provided).
378 *
379 * The 'verrevpath' option checks that the interface that an IP packet
380 * arrives on is the same interface that traffic destined for the
381 * packet's source address would be routed out of.
382 * The 'versrcreach' option just checks that the source address is
383 * reachable via any route (except default) in the routing table.
384 * These two are a measure to block forged packets. This is also
385 * commonly known as "anti-spoofing" or Unicast Reverse Path
386 * Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
387 * is purposely reminiscent of the Cisco IOS command,
388 *
389 *   ip verify unicast reverse-path
390 *   ip verify unicast source reachable-via any
391 *
392 * which implements the same functionality. But note that the syntax
393 * is misleading, and the check may be performed on all IP packets
394 * whether unicast, multicast, or broadcast.
395 */
396static int
397verify_path(struct in_addr src, struct ifnet *ifp, u_int fib)
398{
399#ifndef __FreeBSD__
400	return 0;
401#else
402	struct route ro;
403	struct sockaddr_in *dst;
404
405	bzero(&ro, sizeof(ro));
406
407	dst = (struct sockaddr_in *)&(ro.ro_dst);
408	dst->sin_family = AF_INET;
409	dst->sin_len = sizeof(*dst);
410	dst->sin_addr = src;
411	in_rtalloc_ign(&ro, 0, fib);
412
413	if (ro.ro_rt == NULL)
414		return 0;
415
416	/*
417	 * If ifp is provided, check for equality with rtentry.
418	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
419	 * in order to pass packets injected back by if_simloop():
420	 * if useloopback == 1 routing entry (via lo0) for our own address
421	 * may exist, so we need to handle routing assymetry.
422	 */
423	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
424		RTFREE(ro.ro_rt);
425		return 0;
426	}
427
428	/* if no ifp provided, check if rtentry is not default route */
429	if (ifp == NULL &&
430	     satosin(rt_key(ro.ro_rt))->sin_addr.s_addr == INADDR_ANY) {
431		RTFREE(ro.ro_rt);
432		return 0;
433	}
434
435	/* or if this is a blackhole/reject route */
436	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
437		RTFREE(ro.ro_rt);
438		return 0;
439	}
440
441	/* found valid route */
442	RTFREE(ro.ro_rt);
443	return 1;
444#endif /* __FreeBSD__ */
445}
446
447#ifdef INET6
448/*
449 * ipv6 specific rules here...
450 */
451static __inline int
452icmp6type_match (int type, ipfw_insn_u32 *cmd)
453{
454	return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
455}
456
457static int
458flow6id_match( int curr_flow, ipfw_insn_u32 *cmd )
459{
460	int i;
461	for (i=0; i <= cmd->o.arg1; ++i )
462		if (curr_flow == cmd->d[i] )
463			return 1;
464	return 0;
465}
466
467/* support for IP6_*_ME opcodes */
468static int
469search_ip6_addr_net (struct in6_addr * ip6_addr)
470{
471	struct ifnet *mdc;
472	struct ifaddr *mdc2;
473	struct in6_ifaddr *fdm;
474	struct in6_addr copia;
475
476	TAILQ_FOREACH(mdc, &V_ifnet, if_link) {
477		if_addr_rlock(mdc);
478		TAILQ_FOREACH(mdc2, &mdc->if_addrhead, ifa_link) {
479			if (mdc2->ifa_addr->sa_family == AF_INET6) {
480				fdm = (struct in6_ifaddr *)mdc2;
481				copia = fdm->ia_addr.sin6_addr;
482				/* need for leaving scope_id in the sock_addr */
483				in6_clearscope(&copia);
484				if (IN6_ARE_ADDR_EQUAL(ip6_addr, &copia)) {
485					if_addr_runlock(mdc);
486					return 1;
487				}
488			}
489		}
490		if_addr_runlock(mdc);
491	}
492	return 0;
493}
494
495static int
496verify_path6(struct in6_addr *src, struct ifnet *ifp)
497{
498	struct route_in6 ro;
499	struct sockaddr_in6 *dst;
500
501	bzero(&ro, sizeof(ro));
502
503	dst = (struct sockaddr_in6 * )&(ro.ro_dst);
504	dst->sin6_family = AF_INET6;
505	dst->sin6_len = sizeof(*dst);
506	dst->sin6_addr = *src;
507	/* XXX MRT 0 for ipv6 at this time */
508	rtalloc_ign((struct route *)&ro, 0);
509
510	if (ro.ro_rt == NULL)
511		return 0;
512
513	/*
514	 * if ifp is provided, check for equality with rtentry
515	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
516	 * to support the case of sending packets to an address of our own.
517	 * (where the former interface is the first argument of if_simloop()
518	 *  (=ifp), the latter is lo0)
519	 */
520	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
521		RTFREE(ro.ro_rt);
522		return 0;
523	}
524
525	/* if no ifp provided, check if rtentry is not default route */
526	if (ifp == NULL &&
527	    IN6_IS_ADDR_UNSPECIFIED(&satosin6(rt_key(ro.ro_rt))->sin6_addr)) {
528		RTFREE(ro.ro_rt);
529		return 0;
530	}
531
532	/* or if this is a blackhole/reject route */
533	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
534		RTFREE(ro.ro_rt);
535		return 0;
536	}
537
538	/* found valid route */
539	RTFREE(ro.ro_rt);
540	return 1;
541
542}
543
544static int
545is_icmp6_query(int icmp6_type)
546{
547	if ((icmp6_type <= ICMP6_MAXTYPE) &&
548	    (icmp6_type == ICMP6_ECHO_REQUEST ||
549	    icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
550	    icmp6_type == ICMP6_WRUREQUEST ||
551	    icmp6_type == ICMP6_FQDN_QUERY ||
552	    icmp6_type == ICMP6_NI_QUERY))
553		return (1);
554
555	return (0);
556}
557
558static void
559send_reject6(struct ip_fw_args *args, int code, u_int hlen, struct ip6_hdr *ip6)
560{
561	struct mbuf *m;
562
563	m = args->m;
564	if (code == ICMP6_UNREACH_RST && args->f_id.proto == IPPROTO_TCP) {
565		struct tcphdr *tcp;
566		tcp = (struct tcphdr *)((char *)ip6 + hlen);
567
568		if ((tcp->th_flags & TH_RST) == 0) {
569			struct mbuf *m0;
570			m0 = ipfw_send_pkt(args->m, &(args->f_id),
571			    ntohl(tcp->th_seq), ntohl(tcp->th_ack),
572			    tcp->th_flags | TH_RST);
573			if (m0 != NULL)
574				ip6_output(m0, NULL, NULL, 0, NULL, NULL,
575				    NULL);
576		}
577		FREE_PKT(m);
578	} else if (code != ICMP6_UNREACH_RST) { /* Send an ICMPv6 unreach. */
579#if 0
580		/*
581		 * Unlike above, the mbufs need to line up with the ip6 hdr,
582		 * as the contents are read. We need to m_adj() the
583		 * needed amount.
584		 * The mbuf will however be thrown away so we can adjust it.
585		 * Remember we did an m_pullup on it already so we
586		 * can make some assumptions about contiguousness.
587		 */
588		if (args->L3offset)
589			m_adj(m, args->L3offset);
590#endif
591		icmp6_error(m, ICMP6_DST_UNREACH, code, 0);
592	} else
593		FREE_PKT(m);
594
595	args->m = NULL;
596}
597
598#endif /* INET6 */
599
600
601/*
602 * sends a reject message, consuming the mbuf passed as an argument.
603 */
604static void
605send_reject(struct ip_fw_args *args, int code, int iplen, struct ip *ip)
606{
607
608#if 0
609	/* XXX When ip is not guaranteed to be at mtod() we will
610	 * need to account for this */
611	 * The mbuf will however be thrown away so we can adjust it.
612	 * Remember we did an m_pullup on it already so we
613	 * can make some assumptions about contiguousness.
614	 */
615	if (args->L3offset)
616		m_adj(m, args->L3offset);
617#endif
618	if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
619		/* We need the IP header in host order for icmp_error(). */
620		SET_HOST_IPLEN(ip);
621		icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
622	} else if (args->f_id.proto == IPPROTO_TCP) {
623		struct tcphdr *const tcp =
624		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
625		if ( (tcp->th_flags & TH_RST) == 0) {
626			struct mbuf *m;
627			m = ipfw_send_pkt(args->m, &(args->f_id),
628				ntohl(tcp->th_seq), ntohl(tcp->th_ack),
629				tcp->th_flags | TH_RST);
630			if (m != NULL)
631				ip_output(m, NULL, NULL, 0, NULL, NULL);
632		}
633		FREE_PKT(args->m);
634	} else
635		FREE_PKT(args->m);
636	args->m = NULL;
637}
638
639/*
640 * Support for uid/gid/jail lookup. These tests are expensive
641 * (because we may need to look into the list of active sockets)
642 * so we cache the results. ugid_lookupp is 0 if we have not
643 * yet done a lookup, 1 if we succeeded, and -1 if we tried
644 * and failed. The function always returns the match value.
645 * We could actually spare the variable and use *uc, setting
646 * it to '(void *)check_uidgid if we have no info, NULL if
647 * we tried and failed, or any other value if successful.
648 */
649static int
650check_uidgid(ipfw_insn_u32 *insn, struct ip_fw_args *args, int *ugid_lookupp,
651    struct ucred **uc)
652{
653#ifndef __FreeBSD__
654	/* XXX */
655	return cred_check(insn, proto, oif,
656	    dst_ip, dst_port, src_ip, src_port,
657	    (struct bsd_ucred *)uc, ugid_lookupp, ((struct mbuf *)inp)->m_skb);
658#else  /* FreeBSD */
659	struct in_addr src_ip, dst_ip;
660	struct inpcbinfo *pi;
661	struct ipfw_flow_id *id;
662	struct inpcb *pcb, *inp;
663	struct ifnet *oif;
664	int lookupflags;
665	int match;
666
667	id = &args->f_id;
668	inp = args->inp;
669	oif = args->oif;
670
671	/*
672	 * Check to see if the UDP or TCP stack supplied us with
673	 * the PCB. If so, rather then holding a lock and looking
674	 * up the PCB, we can use the one that was supplied.
675	 */
676	if (inp && *ugid_lookupp == 0) {
677		INP_LOCK_ASSERT(inp);
678		if (inp->inp_socket != NULL) {
679			*uc = crhold(inp->inp_cred);
680			*ugid_lookupp = 1;
681		} else
682			*ugid_lookupp = -1;
683	}
684	/*
685	 * If we have already been here and the packet has no
686	 * PCB entry associated with it, then we can safely
687	 * assume that this is a no match.
688	 */
689	if (*ugid_lookupp == -1)
690		return (0);
691	if (id->proto == IPPROTO_TCP) {
692		lookupflags = 0;
693		pi = &V_tcbinfo;
694	} else if (id->proto == IPPROTO_UDP) {
695		lookupflags = INPLOOKUP_WILDCARD;
696		pi = &V_udbinfo;
697	} else
698		return 0;
699	lookupflags |= INPLOOKUP_RLOCKPCB;
700	match = 0;
701	if (*ugid_lookupp == 0) {
702		if (id->addr_type == 6) {
703#ifdef INET6
704			if (oif == NULL)
705				pcb = in6_pcblookup_mbuf(pi,
706				    &id->src_ip6, htons(id->src_port),
707				    &id->dst_ip6, htons(id->dst_port),
708				    lookupflags, oif, args->m);
709			else
710				pcb = in6_pcblookup_mbuf(pi,
711				    &id->dst_ip6, htons(id->dst_port),
712				    &id->src_ip6, htons(id->src_port),
713				    lookupflags, oif, args->m);
714#else
715			*ugid_lookupp = -1;
716			return (0);
717#endif
718		} else {
719			src_ip.s_addr = htonl(id->src_ip);
720			dst_ip.s_addr = htonl(id->dst_ip);
721			if (oif == NULL)
722				pcb = in_pcblookup_mbuf(pi,
723				    src_ip, htons(id->src_port),
724				    dst_ip, htons(id->dst_port),
725				    lookupflags, oif, args->m);
726			else
727				pcb = in_pcblookup_mbuf(pi,
728				    dst_ip, htons(id->dst_port),
729				    src_ip, htons(id->src_port),
730				    lookupflags, oif, args->m);
731		}
732		if (pcb != NULL) {
733			INP_RLOCK_ASSERT(pcb);
734			*uc = crhold(pcb->inp_cred);
735			*ugid_lookupp = 1;
736			INP_RUNLOCK(pcb);
737		}
738		if (*ugid_lookupp == 0) {
739			/*
740			 * We tried and failed, set the variable to -1
741			 * so we will not try again on this packet.
742			 */
743			*ugid_lookupp = -1;
744			return (0);
745		}
746	}
747	if (insn->o.opcode == O_UID)
748		match = ((*uc)->cr_uid == (uid_t)insn->d[0]);
749	else if (insn->o.opcode == O_GID)
750		match = groupmember((gid_t)insn->d[0], *uc);
751	else if (insn->o.opcode == O_JAIL)
752		match = ((*uc)->cr_prison->pr_id == (int)insn->d[0]);
753	return (match);
754#endif /* __FreeBSD__ */
755}
756
757/*
758 * Helper function to set args with info on the rule after the matching
759 * one. slot is precise, whereas we guess rule_id as they are
760 * assigned sequentially.
761 */
762static inline void
763set_match(struct ip_fw_args *args, int slot,
764	struct ip_fw_chain *chain)
765{
766	args->rule.chain_id = chain->id;
767	args->rule.slot = slot + 1; /* we use 0 as a marker */
768	args->rule.rule_id = 1 + chain->map[slot]->id;
769	args->rule.rulenum = chain->map[slot]->rulenum;
770}
771
772/*
773 * The main check routine for the firewall.
774 *
775 * All arguments are in args so we can modify them and return them
776 * back to the caller.
777 *
778 * Parameters:
779 *
780 *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
781 *		Starts with the IP header.
782 *	args->eh (in)	Mac header if present, NULL for layer3 packet.
783 *	args->L3offset	Number of bytes bypassed if we came from L2.
784 *			e.g. often sizeof(eh)  ** NOTYET **
785 *	args->oif	Outgoing interface, NULL if packet is incoming.
786 *		The incoming interface is in the mbuf. (in)
787 *	args->divert_rule (in/out)
788 *		Skip up to the first rule past this rule number;
789 *		upon return, non-zero port number for divert or tee.
790 *
791 *	args->rule	Pointer to the last matching rule (in/out)
792 *	args->next_hop	Socket we are forwarding to (out).
793 *	args->f_id	Addresses grabbed from the packet (out)
794 * 	args->rule.info	a cookie depending on rule action
795 *
796 * Return value:
797 *
798 *	IP_FW_PASS	the packet must be accepted
799 *	IP_FW_DENY	the packet must be dropped
800 *	IP_FW_DIVERT	divert packet, port in m_tag
801 *	IP_FW_TEE	tee packet, port in m_tag
802 *	IP_FW_DUMMYNET	to dummynet, pipe in args->cookie
803 *	IP_FW_NETGRAPH	into netgraph, cookie args->cookie
804 *		args->rule contains the matching rule,
805 *		args->rule.info has additional information.
806 *
807 */
808int
809ipfw_chk(struct ip_fw_args *args)
810{
811
812	/*
813	 * Local variables holding state while processing a packet:
814	 *
815	 * IMPORTANT NOTE: to speed up the processing of rules, there
816	 * are some assumption on the values of the variables, which
817	 * are documented here. Should you change them, please check
818	 * the implementation of the various instructions to make sure
819	 * that they still work.
820	 *
821	 * args->eh	The MAC header. It is non-null for a layer2
822	 *	packet, it is NULL for a layer-3 packet.
823	 * **notyet**
824	 * args->L3offset Offset in the packet to the L3 (IP or equiv.) header.
825	 *
826	 * m | args->m	Pointer to the mbuf, as received from the caller.
827	 *	It may change if ipfw_chk() does an m_pullup, or if it
828	 *	consumes the packet because it calls send_reject().
829	 *	XXX This has to change, so that ipfw_chk() never modifies
830	 *	or consumes the buffer.
831	 * ip	is the beginning of the ip(4 or 6) header.
832	 *	Calculated by adding the L3offset to the start of data.
833	 *	(Until we start using L3offset, the packet is
834	 *	supposed to start with the ip header).
835	 */
836	struct mbuf *m = args->m;
837	struct ip *ip = mtod(m, struct ip *);
838
839	/*
840	 * For rules which contain uid/gid or jail constraints, cache
841	 * a copy of the users credentials after the pcb lookup has been
842	 * executed. This will speed up the processing of rules with
843	 * these types of constraints, as well as decrease contention
844	 * on pcb related locks.
845	 */
846#ifndef __FreeBSD__
847	struct bsd_ucred ucred_cache;
848#else
849	struct ucred *ucred_cache = NULL;
850#endif
851	int ucred_lookup = 0;
852
853	/*
854	 * oif | args->oif	If NULL, ipfw_chk has been called on the
855	 *	inbound path (ether_input, ip_input).
856	 *	If non-NULL, ipfw_chk has been called on the outbound path
857	 *	(ether_output, ip_output).
858	 */
859	struct ifnet *oif = args->oif;
860
861	int f_pos = 0;		/* index of current rule in the array */
862	int retval = 0;
863
864	/*
865	 * hlen	The length of the IP header.
866	 */
867	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
868
869	/*
870	 * offset	The offset of a fragment. offset != 0 means that
871	 *	we have a fragment at this offset of an IPv4 packet.
872	 *	offset == 0 means that (if this is an IPv4 packet)
873	 *	this is the first or only fragment.
874	 *	For IPv6 offset == 0 means there is no Fragment Header.
875	 *	If offset != 0 for IPv6 always use correct mask to
876	 *	get the correct offset because we add IP6F_MORE_FRAG
877	 *	to be able to dectect the first fragment which would
878	 *	otherwise have offset = 0.
879	 */
880	u_short offset = 0;
881
882	/*
883	 * Local copies of addresses. They are only valid if we have
884	 * an IP packet.
885	 *
886	 * proto	The protocol. Set to 0 for non-ip packets,
887	 *	or to the protocol read from the packet otherwise.
888	 *	proto != 0 means that we have an IPv4 packet.
889	 *
890	 * src_port, dst_port	port numbers, in HOST format. Only
891	 *	valid for TCP and UDP packets.
892	 *
893	 * src_ip, dst_ip	ip addresses, in NETWORK format.
894	 *	Only valid for IPv4 packets.
895	 */
896	uint8_t proto;
897	uint16_t src_port = 0, dst_port = 0;	/* NOTE: host format	*/
898	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
899	uint16_t iplen=0;
900	int pktlen;
901	uint16_t	etype = 0;	/* Host order stored ether type */
902
903	/*
904	 * dyn_dir = MATCH_UNKNOWN when rules unchecked,
905	 * 	MATCH_NONE when checked and not matched (q = NULL),
906	 *	MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
907	 */
908	int dyn_dir = MATCH_UNKNOWN;
909	ipfw_dyn_rule *q = NULL;
910	struct ip_fw_chain *chain = &V_layer3_chain;
911
912	/*
913	 * We store in ulp a pointer to the upper layer protocol header.
914	 * In the ipv4 case this is easy to determine from the header,
915	 * but for ipv6 we might have some additional headers in the middle.
916	 * ulp is NULL if not found.
917	 */
918	void *ulp = NULL;		/* upper layer protocol pointer. */
919
920	/* XXX ipv6 variables */
921	int is_ipv6 = 0;
922	uint8_t	icmp6_type = 0;
923	uint16_t ext_hd = 0;	/* bits vector for extension header filtering */
924	/* end of ipv6 variables */
925
926	int is_ipv4 = 0;
927
928	int done = 0;		/* flag to exit the outer loop */
929
930	if (m->m_flags & M_SKIP_FIREWALL || (! V_ipfw_vnet_ready))
931		return (IP_FW_PASS);	/* accept */
932
933	dst_ip.s_addr = 0;		/* make sure it is initialized */
934	src_ip.s_addr = 0;		/* make sure it is initialized */
935	pktlen = m->m_pkthdr.len;
936	args->f_id.fib = M_GETFIB(m); /* note mbuf not altered) */
937	proto = args->f_id.proto = 0;	/* mark f_id invalid */
938		/* XXX 0 is a valid proto: IP/IPv6 Hop-by-Hop Option */
939
940/*
941 * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
942 * then it sets p to point at the offset "len" in the mbuf. WARNING: the
943 * pointer might become stale after other pullups (but we never use it
944 * this way).
945 */
946#define PULLUP_TO(_len, p, T)	PULLUP_LEN(_len, p, sizeof(T))
947#define PULLUP_LEN(_len, p, T)					\
948do {								\
949	int x = (_len) + T;					\
950	if ((m)->m_len < x) {					\
951		args->m = m = m_pullup(m, x);			\
952		if (m == NULL)					\
953			goto pullup_failed;			\
954	}							\
955	p = (mtod(m, char *) + (_len));				\
956} while (0)
957
958	/*
959	 * if we have an ether header,
960	 */
961	if (args->eh)
962		etype = ntohs(args->eh->ether_type);
963
964	/* Identify IP packets and fill up variables. */
965	if (pktlen >= sizeof(struct ip6_hdr) &&
966	    (args->eh == NULL || etype == ETHERTYPE_IPV6) && ip->ip_v == 6) {
967		struct ip6_hdr *ip6 = (struct ip6_hdr *)ip;
968		is_ipv6 = 1;
969		args->f_id.addr_type = 6;
970		hlen = sizeof(struct ip6_hdr);
971		proto = ip6->ip6_nxt;
972
973		/* Search extension headers to find upper layer protocols */
974		while (ulp == NULL) {
975			switch (proto) {
976			case IPPROTO_ICMPV6:
977				PULLUP_TO(hlen, ulp, struct icmp6_hdr);
978				icmp6_type = ICMP6(ulp)->icmp6_type;
979				break;
980
981			case IPPROTO_TCP:
982				PULLUP_TO(hlen, ulp, struct tcphdr);
983				dst_port = TCP(ulp)->th_dport;
984				src_port = TCP(ulp)->th_sport;
985				/* save flags for dynamic rules */
986				args->f_id._flags = TCP(ulp)->th_flags;
987				break;
988
989			case IPPROTO_SCTP:
990				PULLUP_TO(hlen, ulp, struct sctphdr);
991				src_port = SCTP(ulp)->src_port;
992				dst_port = SCTP(ulp)->dest_port;
993				break;
994
995			case IPPROTO_UDP:
996				PULLUP_TO(hlen, ulp, struct udphdr);
997				dst_port = UDP(ulp)->uh_dport;
998				src_port = UDP(ulp)->uh_sport;
999				break;
1000
1001			case IPPROTO_HOPOPTS:	/* RFC 2460 */
1002				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1003				ext_hd |= EXT_HOPOPTS;
1004				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1005				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1006				ulp = NULL;
1007				break;
1008
1009			case IPPROTO_ROUTING:	/* RFC 2460 */
1010				PULLUP_TO(hlen, ulp, struct ip6_rthdr);
1011				switch (((struct ip6_rthdr *)ulp)->ip6r_type) {
1012				case 0:
1013					ext_hd |= EXT_RTHDR0;
1014					break;
1015				case 2:
1016					ext_hd |= EXT_RTHDR2;
1017					break;
1018				default:
1019					printf("IPFW2: IPV6 - Unknown Routing "
1020					    "Header type(%d)\n",
1021					    ((struct ip6_rthdr *)ulp)->ip6r_type);
1022					if (V_fw_deny_unknown_exthdrs)
1023					    return (IP_FW_DENY);
1024					break;
1025				}
1026				ext_hd |= EXT_ROUTING;
1027				hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
1028				proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
1029				ulp = NULL;
1030				break;
1031
1032			case IPPROTO_FRAGMENT:	/* RFC 2460 */
1033				PULLUP_TO(hlen, ulp, struct ip6_frag);
1034				ext_hd |= EXT_FRAGMENT;
1035				hlen += sizeof (struct ip6_frag);
1036				proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
1037				offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
1038					IP6F_OFF_MASK;
1039				/* Add IP6F_MORE_FRAG for offset of first
1040				 * fragment to be != 0. */
1041				offset |= ((struct ip6_frag *)ulp)->ip6f_offlg &
1042					IP6F_MORE_FRAG;
1043				if (offset == 0) {
1044					printf("IPFW2: IPV6 - Invalid Fragment "
1045					    "Header\n");
1046					if (V_fw_deny_unknown_exthdrs)
1047					    return (IP_FW_DENY);
1048					break;
1049				}
1050				args->f_id.extra =
1051				    ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
1052				ulp = NULL;
1053				break;
1054
1055			case IPPROTO_DSTOPTS:	/* RFC 2460 */
1056				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1057				ext_hd |= EXT_DSTOPTS;
1058				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1059				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1060				ulp = NULL;
1061				break;
1062
1063			case IPPROTO_AH:	/* RFC 2402 */
1064				PULLUP_TO(hlen, ulp, struct ip6_ext);
1065				ext_hd |= EXT_AH;
1066				hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
1067				proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
1068				ulp = NULL;
1069				break;
1070
1071			case IPPROTO_ESP:	/* RFC 2406 */
1072				PULLUP_TO(hlen, ulp, uint32_t);	/* SPI, Seq# */
1073				/* Anything past Seq# is variable length and
1074				 * data past this ext. header is encrypted. */
1075				ext_hd |= EXT_ESP;
1076				break;
1077
1078			case IPPROTO_NONE:	/* RFC 2460 */
1079				/*
1080				 * Packet ends here, and IPv6 header has
1081				 * already been pulled up. If ip6e_len!=0
1082				 * then octets must be ignored.
1083				 */
1084				ulp = ip; /* non-NULL to get out of loop. */
1085				break;
1086
1087			case IPPROTO_OSPFIGP:
1088				/* XXX OSPF header check? */
1089				PULLUP_TO(hlen, ulp, struct ip6_ext);
1090				break;
1091
1092			case IPPROTO_PIM:
1093				/* XXX PIM header check? */
1094				PULLUP_TO(hlen, ulp, struct pim);
1095				break;
1096
1097			case IPPROTO_CARP:
1098				PULLUP_TO(hlen, ulp, struct carp_header);
1099				if (((struct carp_header *)ulp)->carp_version !=
1100				    CARP_VERSION)
1101					return (IP_FW_DENY);
1102				if (((struct carp_header *)ulp)->carp_type !=
1103				    CARP_ADVERTISEMENT)
1104					return (IP_FW_DENY);
1105				break;
1106
1107			case IPPROTO_IPV6:	/* RFC 2893 */
1108				PULLUP_TO(hlen, ulp, struct ip6_hdr);
1109				break;
1110
1111			case IPPROTO_IPV4:	/* RFC 2893 */
1112				PULLUP_TO(hlen, ulp, struct ip);
1113				break;
1114
1115			default:
1116				printf("IPFW2: IPV6 - Unknown Extension "
1117				    "Header(%d), ext_hd=%x\n", proto, ext_hd);
1118				if (V_fw_deny_unknown_exthdrs)
1119				    return (IP_FW_DENY);
1120				PULLUP_TO(hlen, ulp, struct ip6_ext);
1121				break;
1122			} /*switch */
1123		}
1124		ip = mtod(m, struct ip *);
1125		ip6 = (struct ip6_hdr *)ip;
1126		args->f_id.src_ip6 = ip6->ip6_src;
1127		args->f_id.dst_ip6 = ip6->ip6_dst;
1128		args->f_id.src_ip = 0;
1129		args->f_id.dst_ip = 0;
1130		args->f_id.flow_id6 = ntohl(ip6->ip6_flow);
1131	} else if (pktlen >= sizeof(struct ip) &&
1132	    (args->eh == NULL || etype == ETHERTYPE_IP) && ip->ip_v == 4) {
1133	    	is_ipv4 = 1;
1134		hlen = ip->ip_hl << 2;
1135		args->f_id.addr_type = 4;
1136
1137		/*
1138		 * Collect parameters into local variables for faster matching.
1139		 */
1140		proto = ip->ip_p;
1141		src_ip = ip->ip_src;
1142		dst_ip = ip->ip_dst;
1143		offset = ntohs(ip->ip_off) & IP_OFFMASK;
1144		iplen = ntohs(ip->ip_len);
1145		pktlen = iplen < pktlen ? iplen : pktlen;
1146
1147		if (offset == 0) {
1148			switch (proto) {
1149			case IPPROTO_TCP:
1150				PULLUP_TO(hlen, ulp, struct tcphdr);
1151				dst_port = TCP(ulp)->th_dport;
1152				src_port = TCP(ulp)->th_sport;
1153				/* save flags for dynamic rules */
1154				args->f_id._flags = TCP(ulp)->th_flags;
1155				break;
1156
1157			case IPPROTO_SCTP:
1158				PULLUP_TO(hlen, ulp, struct sctphdr);
1159				src_port = SCTP(ulp)->src_port;
1160				dst_port = SCTP(ulp)->dest_port;
1161				break;
1162
1163			case IPPROTO_UDP:
1164				PULLUP_TO(hlen, ulp, struct udphdr);
1165				dst_port = UDP(ulp)->uh_dport;
1166				src_port = UDP(ulp)->uh_sport;
1167				break;
1168
1169			case IPPROTO_ICMP:
1170				PULLUP_TO(hlen, ulp, struct icmphdr);
1171				//args->f_id.flags = ICMP(ulp)->icmp_type;
1172				break;
1173
1174			default:
1175				break;
1176			}
1177		}
1178
1179		ip = mtod(m, struct ip *);
1180		args->f_id.src_ip = ntohl(src_ip.s_addr);
1181		args->f_id.dst_ip = ntohl(dst_ip.s_addr);
1182	}
1183#undef PULLUP_TO
1184	if (proto) { /* we may have port numbers, store them */
1185		args->f_id.proto = proto;
1186		args->f_id.src_port = src_port = ntohs(src_port);
1187		args->f_id.dst_port = dst_port = ntohs(dst_port);
1188	}
1189
1190	IPFW_RLOCK(chain);
1191	if (! V_ipfw_vnet_ready) { /* shutting down, leave NOW. */
1192		IPFW_RUNLOCK(chain);
1193		return (IP_FW_PASS);	/* accept */
1194	}
1195	if (args->rule.slot) {
1196		/*
1197		 * Packet has already been tagged as a result of a previous
1198		 * match on rule args->rule aka args->rule_id (PIPE, QUEUE,
1199		 * REASS, NETGRAPH, DIVERT/TEE...)
1200		 * Validate the slot and continue from the next one
1201		 * if still present, otherwise do a lookup.
1202		 */
1203		f_pos = (args->rule.chain_id == chain->id) ?
1204		    args->rule.slot :
1205		    ipfw_find_rule(chain, args->rule.rulenum,
1206			args->rule.rule_id);
1207	} else {
1208		f_pos = 0;
1209	}
1210
1211	/*
1212	 * Now scan the rules, and parse microinstructions for each rule.
1213	 * We have two nested loops and an inner switch. Sometimes we
1214	 * need to break out of one or both loops, or re-enter one of
1215	 * the loops with updated variables. Loop variables are:
1216	 *
1217	 *	f_pos (outer loop) points to the current rule.
1218	 *		On output it points to the matching rule.
1219	 *	done (outer loop) is used as a flag to break the loop.
1220	 *	l (inner loop)	residual length of current rule.
1221	 *		cmd points to the current microinstruction.
1222	 *
1223	 * We break the inner loop by setting l=0 and possibly
1224	 * cmdlen=0 if we don't want to advance cmd.
1225	 * We break the outer loop by setting done=1
1226	 * We can restart the inner loop by setting l>0 and f_pos, f, cmd
1227	 * as needed.
1228	 */
1229	for (; f_pos < chain->n_rules; f_pos++) {
1230		ipfw_insn *cmd;
1231		uint32_t tablearg = 0;
1232		int l, cmdlen, skip_or; /* skip rest of OR block */
1233		struct ip_fw *f;
1234
1235		f = chain->map[f_pos];
1236		if (V_set_disable & (1 << f->set) )
1237			continue;
1238
1239		skip_or = 0;
1240		for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
1241		    l -= cmdlen, cmd += cmdlen) {
1242			int match;
1243
1244			/*
1245			 * check_body is a jump target used when we find a
1246			 * CHECK_STATE, and need to jump to the body of
1247			 * the target rule.
1248			 */
1249
1250/* check_body: */
1251			cmdlen = F_LEN(cmd);
1252			/*
1253			 * An OR block (insn_1 || .. || insn_n) has the
1254			 * F_OR bit set in all but the last instruction.
1255			 * The first match will set "skip_or", and cause
1256			 * the following instructions to be skipped until
1257			 * past the one with the F_OR bit clear.
1258			 */
1259			if (skip_or) {		/* skip this instruction */
1260				if ((cmd->len & F_OR) == 0)
1261					skip_or = 0;	/* next one is good */
1262				continue;
1263			}
1264			match = 0; /* set to 1 if we succeed */
1265
1266			switch (cmd->opcode) {
1267			/*
1268			 * The first set of opcodes compares the packet's
1269			 * fields with some pattern, setting 'match' if a
1270			 * match is found. At the end of the loop there is
1271			 * logic to deal with F_NOT and F_OR flags associated
1272			 * with the opcode.
1273			 */
1274			case O_NOP:
1275				match = 1;
1276				break;
1277
1278			case O_FORWARD_MAC:
1279				printf("ipfw: opcode %d unimplemented\n",
1280				    cmd->opcode);
1281				break;
1282
1283			case O_GID:
1284			case O_UID:
1285			case O_JAIL:
1286				/*
1287				 * We only check offset == 0 && proto != 0,
1288				 * as this ensures that we have a
1289				 * packet with the ports info.
1290				 */
1291				if (offset != 0)
1292					break;
1293				if (proto == IPPROTO_TCP ||
1294				    proto == IPPROTO_UDP)
1295					match = check_uidgid(
1296						    (ipfw_insn_u32 *)cmd,
1297						    args, &ucred_lookup,
1298#ifdef __FreeBSD__
1299						    &ucred_cache);
1300#else
1301						    (void *)&ucred_cache);
1302#endif
1303				break;
1304
1305			case O_RECV:
1306				match = iface_match(m->m_pkthdr.rcvif,
1307				    (ipfw_insn_if *)cmd);
1308				break;
1309
1310			case O_XMIT:
1311				match = iface_match(oif, (ipfw_insn_if *)cmd);
1312				break;
1313
1314			case O_VIA:
1315				match = iface_match(oif ? oif :
1316				    m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
1317				break;
1318
1319			case O_MACADDR2:
1320				if (args->eh != NULL) {	/* have MAC header */
1321					u_int32_t *want = (u_int32_t *)
1322						((ipfw_insn_mac *)cmd)->addr;
1323					u_int32_t *mask = (u_int32_t *)
1324						((ipfw_insn_mac *)cmd)->mask;
1325					u_int32_t *hdr = (u_int32_t *)args->eh;
1326
1327					match =
1328					    ( want[0] == (hdr[0] & mask[0]) &&
1329					      want[1] == (hdr[1] & mask[1]) &&
1330					      want[2] == (hdr[2] & mask[2]) );
1331				}
1332				break;
1333
1334			case O_MAC_TYPE:
1335				if (args->eh != NULL) {
1336					u_int16_t *p =
1337					    ((ipfw_insn_u16 *)cmd)->ports;
1338					int i;
1339
1340					for (i = cmdlen - 1; !match && i>0;
1341					    i--, p += 2)
1342						match = (etype >= p[0] &&
1343						    etype <= p[1]);
1344				}
1345				break;
1346
1347			case O_FRAG:
1348				match = (offset != 0);
1349				break;
1350
1351			case O_IN:	/* "out" is "not in" */
1352				match = (oif == NULL);
1353				break;
1354
1355			case O_LAYER2:
1356				match = (args->eh != NULL);
1357				break;
1358
1359			case O_DIVERTED:
1360			    {
1361				/* For diverted packets, args->rule.info
1362				 * contains the divert port (in host format)
1363				 * reason and direction.
1364				 */
1365				uint32_t i = args->rule.info;
1366				match = (i&IPFW_IS_MASK) == IPFW_IS_DIVERT &&
1367				    cmd->arg1 & ((i & IPFW_INFO_IN) ? 1 : 2);
1368			    }
1369				break;
1370
1371			case O_PROTO:
1372				/*
1373				 * We do not allow an arg of 0 so the
1374				 * check of "proto" only suffices.
1375				 */
1376				match = (proto == cmd->arg1);
1377				break;
1378
1379			case O_IP_SRC:
1380				match = is_ipv4 &&
1381				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
1382				    src_ip.s_addr);
1383				break;
1384
1385			case O_IP_SRC_LOOKUP:
1386			case O_IP_DST_LOOKUP:
1387				if (is_ipv4) {
1388				    uint32_t key =
1389					(cmd->opcode == O_IP_DST_LOOKUP) ?
1390					    dst_ip.s_addr : src_ip.s_addr;
1391				    uint32_t v = 0;
1392
1393				    if (cmdlen > F_INSN_SIZE(ipfw_insn_u32)) {
1394					/* generic lookup. The key must be
1395					 * in 32bit big-endian format.
1396					 */
1397					v = ((ipfw_insn_u32 *)cmd)->d[1];
1398					if (v == 0)
1399					    key = dst_ip.s_addr;
1400					else if (v == 1)
1401					    key = src_ip.s_addr;
1402					else if (v == 6) /* dscp */
1403					    key = (ip->ip_tos >> 2) & 0x3f;
1404					else if (offset != 0)
1405					    break;
1406					else if (proto != IPPROTO_TCP &&
1407						proto != IPPROTO_UDP)
1408					    break;
1409					else if (v == 2)
1410					    key = htonl(dst_port);
1411					else if (v == 3)
1412					    key = htonl(src_port);
1413					else if (v == 4 || v == 5) {
1414					    check_uidgid(
1415						(ipfw_insn_u32 *)cmd,
1416						args, &ucred_lookup,
1417#ifdef __FreeBSD__
1418						&ucred_cache);
1419					    if (v == 4 /* O_UID */)
1420						key = ucred_cache->cr_uid;
1421					    else if (v == 5 /* O_JAIL */)
1422						key = ucred_cache->cr_prison->pr_id;
1423#else /* !__FreeBSD__ */
1424						(void *)&ucred_cache);
1425					    if (v ==4 /* O_UID */)
1426						key = ucred_cache.uid;
1427					    else if (v == 5 /* O_JAIL */)
1428						key = ucred_cache.xid;
1429#endif /* !__FreeBSD__ */
1430					    key = htonl(key);
1431					} else
1432					    break;
1433				    }
1434				    match = ipfw_lookup_table(chain,
1435					cmd->arg1, key, &v);
1436				    if (!match)
1437					break;
1438				    if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
1439					match =
1440					    ((ipfw_insn_u32 *)cmd)->d[0] == v;
1441				    else
1442					tablearg = v;
1443				}
1444				break;
1445
1446			case O_IP_SRC_MASK:
1447			case O_IP_DST_MASK:
1448				if (is_ipv4) {
1449				    uint32_t a =
1450					(cmd->opcode == O_IP_DST_MASK) ?
1451					    dst_ip.s_addr : src_ip.s_addr;
1452				    uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
1453				    int i = cmdlen-1;
1454
1455				    for (; !match && i>0; i-= 2, p+= 2)
1456					match = (p[0] == (a & p[1]));
1457				}
1458				break;
1459
1460			case O_IP_SRC_ME:
1461				if (is_ipv4) {
1462					struct ifnet *tif;
1463
1464					INADDR_TO_IFP(src_ip, tif);
1465					match = (tif != NULL);
1466					break;
1467				}
1468#ifdef INET6
1469				/* FALLTHROUGH */
1470			case O_IP6_SRC_ME:
1471				match= is_ipv6 && search_ip6_addr_net(&args->f_id.src_ip6);
1472#endif
1473				break;
1474
1475			case O_IP_DST_SET:
1476			case O_IP_SRC_SET:
1477				if (is_ipv4) {
1478					u_int32_t *d = (u_int32_t *)(cmd+1);
1479					u_int32_t addr =
1480					    cmd->opcode == O_IP_DST_SET ?
1481						args->f_id.dst_ip :
1482						args->f_id.src_ip;
1483
1484					    if (addr < d[0])
1485						    break;
1486					    addr -= d[0]; /* subtract base */
1487					    match = (addr < cmd->arg1) &&
1488						( d[ 1 + (addr>>5)] &
1489						  (1<<(addr & 0x1f)) );
1490				}
1491				break;
1492
1493			case O_IP_DST:
1494				match = is_ipv4 &&
1495				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
1496				    dst_ip.s_addr);
1497				break;
1498
1499			case O_IP_DST_ME:
1500				if (is_ipv4) {
1501					struct ifnet *tif;
1502
1503					INADDR_TO_IFP(dst_ip, tif);
1504					match = (tif != NULL);
1505					break;
1506				}
1507#ifdef INET6
1508				/* FALLTHROUGH */
1509			case O_IP6_DST_ME:
1510				match= is_ipv6 && search_ip6_addr_net(&args->f_id.dst_ip6);
1511#endif
1512				break;
1513
1514
1515			case O_IP_SRCPORT:
1516			case O_IP_DSTPORT:
1517				/*
1518				 * offset == 0 && proto != 0 is enough
1519				 * to guarantee that we have a
1520				 * packet with port info.
1521				 */
1522				if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
1523				    && offset == 0) {
1524					u_int16_t x =
1525					    (cmd->opcode == O_IP_SRCPORT) ?
1526						src_port : dst_port ;
1527					u_int16_t *p =
1528					    ((ipfw_insn_u16 *)cmd)->ports;
1529					int i;
1530
1531					for (i = cmdlen - 1; !match && i>0;
1532					    i--, p += 2)
1533						match = (x>=p[0] && x<=p[1]);
1534				}
1535				break;
1536
1537			case O_ICMPTYPE:
1538				match = (offset == 0 && proto==IPPROTO_ICMP &&
1539				    icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
1540				break;
1541
1542#ifdef INET6
1543			case O_ICMP6TYPE:
1544				match = is_ipv6 && offset == 0 &&
1545				    proto==IPPROTO_ICMPV6 &&
1546				    icmp6type_match(
1547					ICMP6(ulp)->icmp6_type,
1548					(ipfw_insn_u32 *)cmd);
1549				break;
1550#endif /* INET6 */
1551
1552			case O_IPOPT:
1553				match = (is_ipv4 &&
1554				    ipopts_match(ip, cmd) );
1555				break;
1556
1557			case O_IPVER:
1558				match = (is_ipv4 &&
1559				    cmd->arg1 == ip->ip_v);
1560				break;
1561
1562			case O_IPID:
1563			case O_IPLEN:
1564			case O_IPTTL:
1565				if (is_ipv4) {	/* only for IP packets */
1566				    uint16_t x;
1567				    uint16_t *p;
1568				    int i;
1569
1570				    if (cmd->opcode == O_IPLEN)
1571					x = iplen;
1572				    else if (cmd->opcode == O_IPTTL)
1573					x = ip->ip_ttl;
1574				    else /* must be IPID */
1575					x = ntohs(ip->ip_id);
1576				    if (cmdlen == 1) {
1577					match = (cmd->arg1 == x);
1578					break;
1579				    }
1580				    /* otherwise we have ranges */
1581				    p = ((ipfw_insn_u16 *)cmd)->ports;
1582				    i = cmdlen - 1;
1583				    for (; !match && i>0; i--, p += 2)
1584					match = (x >= p[0] && x <= p[1]);
1585				}
1586				break;
1587
1588			case O_IPPRECEDENCE:
1589				match = (is_ipv4 &&
1590				    (cmd->arg1 == (ip->ip_tos & 0xe0)) );
1591				break;
1592
1593			case O_IPTOS:
1594				match = (is_ipv4 &&
1595				    flags_match(cmd, ip->ip_tos));
1596				break;
1597
1598			case O_TCPDATALEN:
1599				if (proto == IPPROTO_TCP && offset == 0) {
1600				    struct tcphdr *tcp;
1601				    uint16_t x;
1602				    uint16_t *p;
1603				    int i;
1604
1605				    tcp = TCP(ulp);
1606				    x = iplen -
1607					((ip->ip_hl + tcp->th_off) << 2);
1608				    if (cmdlen == 1) {
1609					match = (cmd->arg1 == x);
1610					break;
1611				    }
1612				    /* otherwise we have ranges */
1613				    p = ((ipfw_insn_u16 *)cmd)->ports;
1614				    i = cmdlen - 1;
1615				    for (; !match && i>0; i--, p += 2)
1616					match = (x >= p[0] && x <= p[1]);
1617				}
1618				break;
1619
1620			case O_TCPFLAGS:
1621				match = (proto == IPPROTO_TCP && offset == 0 &&
1622				    flags_match(cmd, TCP(ulp)->th_flags));
1623				break;
1624
1625			case O_TCPOPTS:
1626				PULLUP_LEN(hlen, ulp, (TCP(ulp)->th_off << 2));
1627				match = (proto == IPPROTO_TCP && offset == 0 &&
1628				    tcpopts_match(TCP(ulp), cmd));
1629				break;
1630
1631			case O_TCPSEQ:
1632				match = (proto == IPPROTO_TCP && offset == 0 &&
1633				    ((ipfw_insn_u32 *)cmd)->d[0] ==
1634					TCP(ulp)->th_seq);
1635				break;
1636
1637			case O_TCPACK:
1638				match = (proto == IPPROTO_TCP && offset == 0 &&
1639				    ((ipfw_insn_u32 *)cmd)->d[0] ==
1640					TCP(ulp)->th_ack);
1641				break;
1642
1643			case O_TCPWIN:
1644				match = (proto == IPPROTO_TCP && offset == 0 &&
1645				    cmd->arg1 == TCP(ulp)->th_win);
1646				break;
1647
1648			case O_ESTAB:
1649				/* reject packets which have SYN only */
1650				/* XXX should i also check for TH_ACK ? */
1651				match = (proto == IPPROTO_TCP && offset == 0 &&
1652				    (TCP(ulp)->th_flags &
1653				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
1654				break;
1655
1656			case O_ALTQ: {
1657				struct pf_mtag *at;
1658				ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
1659
1660				match = 1;
1661				at = pf_find_mtag(m);
1662				if (at != NULL && at->qid != 0)
1663					break;
1664				at = pf_get_mtag(m);
1665				if (at == NULL) {
1666					/*
1667					 * Let the packet fall back to the
1668					 * default ALTQ.
1669					 */
1670					break;
1671				}
1672				at->qid = altq->qid;
1673				if (is_ipv4)
1674					at->af = AF_INET;
1675				else
1676					at->af = AF_LINK;
1677				at->hdr = ip;
1678				break;
1679			}
1680
1681			case O_LOG:
1682				ipfw_log(f, hlen, args, m,
1683					    oif, offset, tablearg, ip);
1684				match = 1;
1685				break;
1686
1687			case O_PROB:
1688				match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
1689				break;
1690
1691			case O_VERREVPATH:
1692				/* Outgoing packets automatically pass/match */
1693				match = ((oif != NULL) ||
1694				    (m->m_pkthdr.rcvif == NULL) ||
1695				    (
1696#ifdef INET6
1697				    is_ipv6 ?
1698					verify_path6(&(args->f_id.src_ip6),
1699					    m->m_pkthdr.rcvif) :
1700#endif
1701				    verify_path(src_ip, m->m_pkthdr.rcvif,
1702				        args->f_id.fib)));
1703				break;
1704
1705			case O_VERSRCREACH:
1706				/* Outgoing packets automatically pass/match */
1707				match = (hlen > 0 && ((oif != NULL) ||
1708#ifdef INET6
1709				    is_ipv6 ?
1710				        verify_path6(&(args->f_id.src_ip6),
1711				            NULL) :
1712#endif
1713				    verify_path(src_ip, NULL, args->f_id.fib)));
1714				break;
1715
1716			case O_ANTISPOOF:
1717				/* Outgoing packets automatically pass/match */
1718				if (oif == NULL && hlen > 0 &&
1719				    (  (is_ipv4 && in_localaddr(src_ip))
1720#ifdef INET6
1721				    || (is_ipv6 &&
1722				        in6_localaddr(&(args->f_id.src_ip6)))
1723#endif
1724				    ))
1725					match =
1726#ifdef INET6
1727					    is_ipv6 ? verify_path6(
1728					        &(args->f_id.src_ip6),
1729					        m->m_pkthdr.rcvif) :
1730#endif
1731					    verify_path(src_ip,
1732					    	m->m_pkthdr.rcvif,
1733					        args->f_id.fib);
1734				else
1735					match = 1;
1736				break;
1737
1738			case O_IPSEC:
1739#ifdef IPSEC
1740				match = (m_tag_find(m,
1741				    PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
1742#endif
1743				/* otherwise no match */
1744				break;
1745
1746#ifdef INET6
1747			case O_IP6_SRC:
1748				match = is_ipv6 &&
1749				    IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
1750				    &((ipfw_insn_ip6 *)cmd)->addr6);
1751				break;
1752
1753			case O_IP6_DST:
1754				match = is_ipv6 &&
1755				IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
1756				    &((ipfw_insn_ip6 *)cmd)->addr6);
1757				break;
1758			case O_IP6_SRC_MASK:
1759			case O_IP6_DST_MASK:
1760				if (is_ipv6) {
1761					int i = cmdlen - 1;
1762					struct in6_addr p;
1763					struct in6_addr *d =
1764					    &((ipfw_insn_ip6 *)cmd)->addr6;
1765
1766					for (; !match && i > 0; d += 2,
1767					    i -= F_INSN_SIZE(struct in6_addr)
1768					    * 2) {
1769						p = (cmd->opcode ==
1770						    O_IP6_SRC_MASK) ?
1771						    args->f_id.src_ip6:
1772						    args->f_id.dst_ip6;
1773						APPLY_MASK(&p, &d[1]);
1774						match =
1775						    IN6_ARE_ADDR_EQUAL(&d[0],
1776						    &p);
1777					}
1778				}
1779				break;
1780
1781			case O_FLOW6ID:
1782				match = is_ipv6 &&
1783				    flow6id_match(args->f_id.flow_id6,
1784				    (ipfw_insn_u32 *) cmd);
1785				break;
1786
1787			case O_EXT_HDR:
1788				match = is_ipv6 &&
1789				    (ext_hd & ((ipfw_insn *) cmd)->arg1);
1790				break;
1791
1792			case O_IP6:
1793				match = is_ipv6;
1794				break;
1795#endif
1796
1797			case O_IP4:
1798				match = is_ipv4;
1799				break;
1800
1801			case O_TAG: {
1802				struct m_tag *mtag;
1803				uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
1804				    tablearg : cmd->arg1;
1805
1806				/* Packet is already tagged with this tag? */
1807				mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL);
1808
1809				/* We have `untag' action when F_NOT flag is
1810				 * present. And we must remove this mtag from
1811				 * mbuf and reset `match' to zero (`match' will
1812				 * be inversed later).
1813				 * Otherwise we should allocate new mtag and
1814				 * push it into mbuf.
1815				 */
1816				if (cmd->len & F_NOT) { /* `untag' action */
1817					if (mtag != NULL)
1818						m_tag_delete(m, mtag);
1819					match = 0;
1820				} else {
1821					if (mtag == NULL) {
1822						mtag = m_tag_alloc( MTAG_IPFW,
1823						    tag, 0, M_NOWAIT);
1824						if (mtag != NULL)
1825							m_tag_prepend(m, mtag);
1826					}
1827					match = 1;
1828				}
1829				break;
1830			}
1831
1832			case O_FIB: /* try match the specified fib */
1833				if (args->f_id.fib == cmd->arg1)
1834					match = 1;
1835				break;
1836
1837			case O_SOCKARG:	{
1838				struct inpcb *inp = args->inp;
1839				struct inpcbinfo *pi;
1840
1841				if (is_ipv6) /* XXX can we remove this ? */
1842					break;
1843
1844				if (proto == IPPROTO_TCP)
1845					pi = &V_tcbinfo;
1846				else if (proto == IPPROTO_UDP)
1847					pi = &V_udbinfo;
1848				else
1849					break;
1850
1851				/*
1852				 * XXXRW: so_user_cookie should almost
1853				 * certainly be inp_user_cookie?
1854				 */
1855
1856				/* For incomming packet, lookup up the
1857				inpcb using the src/dest ip/port tuple */
1858				if (inp == NULL) {
1859					inp = in_pcblookup(pi,
1860						src_ip, htons(src_port),
1861						dst_ip, htons(dst_port),
1862						INPLOOKUP_RLOCKPCB, NULL);
1863					if (inp != NULL) {
1864						tablearg =
1865						    inp->inp_socket->so_user_cookie;
1866						if (tablearg)
1867							match = 1;
1868						INP_RUNLOCK(inp);
1869					}
1870				} else {
1871					if (inp->inp_socket) {
1872						tablearg =
1873						    inp->inp_socket->so_user_cookie;
1874						if (tablearg)
1875							match = 1;
1876					}
1877				}
1878				break;
1879			}
1880
1881			case O_TAGGED: {
1882				struct m_tag *mtag;
1883				uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
1884				    tablearg : cmd->arg1;
1885
1886				if (cmdlen == 1) {
1887					match = m_tag_locate(m, MTAG_IPFW,
1888					    tag, NULL) != NULL;
1889					break;
1890				}
1891
1892				/* we have ranges */
1893				for (mtag = m_tag_first(m);
1894				    mtag != NULL && !match;
1895				    mtag = m_tag_next(m, mtag)) {
1896					uint16_t *p;
1897					int i;
1898
1899					if (mtag->m_tag_cookie != MTAG_IPFW)
1900						continue;
1901
1902					p = ((ipfw_insn_u16 *)cmd)->ports;
1903					i = cmdlen - 1;
1904					for(; !match && i > 0; i--, p += 2)
1905						match =
1906						    mtag->m_tag_id >= p[0] &&
1907						    mtag->m_tag_id <= p[1];
1908				}
1909				break;
1910			}
1911
1912			/*
1913			 * The second set of opcodes represents 'actions',
1914			 * i.e. the terminal part of a rule once the packet
1915			 * matches all previous patterns.
1916			 * Typically there is only one action for each rule,
1917			 * and the opcode is stored at the end of the rule
1918			 * (but there are exceptions -- see below).
1919			 *
1920			 * In general, here we set retval and terminate the
1921			 * outer loop (would be a 'break 3' in some language,
1922			 * but we need to set l=0, done=1)
1923			 *
1924			 * Exceptions:
1925			 * O_COUNT and O_SKIPTO actions:
1926			 *   instead of terminating, we jump to the next rule
1927			 *   (setting l=0), or to the SKIPTO target (setting
1928			 *   f/f_len, cmd and l as needed), respectively.
1929			 *
1930			 * O_TAG, O_LOG and O_ALTQ action parameters:
1931			 *   perform some action and set match = 1;
1932			 *
1933			 * O_LIMIT and O_KEEP_STATE: these opcodes are
1934			 *   not real 'actions', and are stored right
1935			 *   before the 'action' part of the rule.
1936			 *   These opcodes try to install an entry in the
1937			 *   state tables; if successful, we continue with
1938			 *   the next opcode (match=1; break;), otherwise
1939			 *   the packet must be dropped (set retval,
1940			 *   break loops with l=0, done=1)
1941			 *
1942			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
1943			 *   cause a lookup of the state table, and a jump
1944			 *   to the 'action' part of the parent rule
1945			 *   if an entry is found, or
1946			 *   (CHECK_STATE only) a jump to the next rule if
1947			 *   the entry is not found.
1948			 *   The result of the lookup is cached so that
1949			 *   further instances of these opcodes become NOPs.
1950			 *   The jump to the next rule is done by setting
1951			 *   l=0, cmdlen=0.
1952			 */
1953			case O_LIMIT:
1954			case O_KEEP_STATE:
1955				if (ipfw_install_state(f,
1956				    (ipfw_insn_limit *)cmd, args, tablearg)) {
1957					/* error or limit violation */
1958					retval = IP_FW_DENY;
1959					l = 0;	/* exit inner loop */
1960					done = 1; /* exit outer loop */
1961				}
1962				match = 1;
1963				break;
1964
1965			case O_PROBE_STATE:
1966			case O_CHECK_STATE:
1967				/*
1968				 * dynamic rules are checked at the first
1969				 * keep-state or check-state occurrence,
1970				 * with the result being stored in dyn_dir.
1971				 * The compiler introduces a PROBE_STATE
1972				 * instruction for us when we have a
1973				 * KEEP_STATE (because PROBE_STATE needs
1974				 * to be run first).
1975				 */
1976				if (dyn_dir == MATCH_UNKNOWN &&
1977				    (q = ipfw_lookup_dyn_rule(&args->f_id,
1978				     &dyn_dir, proto == IPPROTO_TCP ?
1979					TCP(ulp) : NULL))
1980					!= NULL) {
1981					/*
1982					 * Found dynamic entry, update stats
1983					 * and jump to the 'action' part of
1984					 * the parent rule by setting
1985					 * f, cmd, l and clearing cmdlen.
1986					 */
1987					q->pcnt++;
1988					q->bcnt += pktlen;
1989					/* XXX we would like to have f_pos
1990					 * readily accessible in the dynamic
1991				         * rule, instead of having to
1992					 * lookup q->rule.
1993					 */
1994					f = q->rule;
1995					f_pos = ipfw_find_rule(chain,
1996						f->rulenum, f->id);
1997					cmd = ACTION_PTR(f);
1998					l = f->cmd_len - f->act_ofs;
1999					ipfw_dyn_unlock();
2000					cmdlen = 0;
2001					match = 1;
2002					break;
2003				}
2004				/*
2005				 * Dynamic entry not found. If CHECK_STATE,
2006				 * skip to next rule, if PROBE_STATE just
2007				 * ignore and continue with next opcode.
2008				 */
2009				if (cmd->opcode == O_CHECK_STATE)
2010					l = 0;	/* exit inner loop */
2011				match = 1;
2012				break;
2013
2014			case O_ACCEPT:
2015				retval = 0;	/* accept */
2016				l = 0;		/* exit inner loop */
2017				done = 1;	/* exit outer loop */
2018				break;
2019
2020			case O_PIPE:
2021			case O_QUEUE:
2022				set_match(args, f_pos, chain);
2023				args->rule.info = (cmd->arg1 == IP_FW_TABLEARG) ?
2024					tablearg : cmd->arg1;
2025				if (cmd->opcode == O_PIPE)
2026					args->rule.info |= IPFW_IS_PIPE;
2027				if (V_fw_one_pass)
2028					args->rule.info |= IPFW_ONEPASS;
2029				retval = IP_FW_DUMMYNET;
2030				l = 0;          /* exit inner loop */
2031				done = 1;       /* exit outer loop */
2032				break;
2033
2034			case O_DIVERT:
2035			case O_TEE:
2036				if (args->eh) /* not on layer 2 */
2037				    break;
2038				/* otherwise this is terminal */
2039				l = 0;		/* exit inner loop */
2040				done = 1;	/* exit outer loop */
2041				retval = (cmd->opcode == O_DIVERT) ?
2042					IP_FW_DIVERT : IP_FW_TEE;
2043				set_match(args, f_pos, chain);
2044				args->rule.info = (cmd->arg1 == IP_FW_TABLEARG) ?
2045				    tablearg : cmd->arg1;
2046				break;
2047
2048			case O_COUNT:
2049				f->pcnt++;	/* update stats */
2050				f->bcnt += pktlen;
2051				f->timestamp = time_uptime;
2052				l = 0;		/* exit inner loop */
2053				break;
2054
2055			case O_SKIPTO:
2056			    f->pcnt++;	/* update stats */
2057			    f->bcnt += pktlen;
2058			    f->timestamp = time_uptime;
2059			    /* If possible use cached f_pos (in f->next_rule),
2060			     * whose version is written in f->next_rule
2061			     * (horrible hacks to avoid changing the ABI).
2062			     */
2063			    if (cmd->arg1 != IP_FW_TABLEARG &&
2064				    (uintptr_t)f->x_next == chain->id) {
2065				f_pos = (uintptr_t)f->next_rule;
2066			    } else {
2067				int i = (cmd->arg1 == IP_FW_TABLEARG) ?
2068					tablearg : cmd->arg1;
2069				/* make sure we do not jump backward */
2070				if (i <= f->rulenum)
2071				    i = f->rulenum + 1;
2072				f_pos = ipfw_find_rule(chain, i, 0);
2073				/* update the cache */
2074				if (cmd->arg1 != IP_FW_TABLEARG) {
2075				    f->next_rule =
2076					(void *)(uintptr_t)f_pos;
2077				    f->x_next =
2078					(void *)(uintptr_t)chain->id;
2079				}
2080			    }
2081			    /*
2082			     * Skip disabled rules, and re-enter
2083			     * the inner loop with the correct
2084			     * f_pos, f, l and cmd.
2085			     * Also clear cmdlen and skip_or
2086			     */
2087			    for (; f_pos < chain->n_rules - 1 &&
2088				    (V_set_disable &
2089				     (1 << chain->map[f_pos]->set));
2090				    f_pos++)
2091				;
2092			    /* Re-enter the inner loop at the skipto rule. */
2093			    f = chain->map[f_pos];
2094			    l = f->cmd_len;
2095			    cmd = f->cmd;
2096			    match = 1;
2097			    cmdlen = 0;
2098			    skip_or = 0;
2099			    continue;
2100			    break;	/* not reached */
2101
2102			case O_REJECT:
2103				/*
2104				 * Drop the packet and send a reject notice
2105				 * if the packet is not ICMP (or is an ICMP
2106				 * query), and it is not multicast/broadcast.
2107				 */
2108				if (hlen > 0 && is_ipv4 && offset == 0 &&
2109				    (proto != IPPROTO_ICMP ||
2110				     is_icmp_query(ICMP(ulp))) &&
2111				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2112				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
2113					send_reject(args, cmd->arg1, iplen, ip);
2114					m = args->m;
2115				}
2116				/* FALLTHROUGH */
2117#ifdef INET6
2118			case O_UNREACH6:
2119				if (hlen > 0 && is_ipv6 &&
2120				    ((offset & IP6F_OFF_MASK) == 0) &&
2121				    (proto != IPPROTO_ICMPV6 ||
2122				     (is_icmp6_query(icmp6_type) == 1)) &&
2123				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2124				    !IN6_IS_ADDR_MULTICAST(&args->f_id.dst_ip6)) {
2125					send_reject6(
2126					    args, cmd->arg1, hlen,
2127					    (struct ip6_hdr *)ip);
2128					m = args->m;
2129				}
2130				/* FALLTHROUGH */
2131#endif
2132			case O_DENY:
2133				retval = IP_FW_DENY;
2134				l = 0;		/* exit inner loop */
2135				done = 1;	/* exit outer loop */
2136				break;
2137
2138			case O_FORWARD_IP:
2139				if (args->eh)	/* not valid on layer2 pkts */
2140					break;
2141				if (q == NULL || q->rule != f ||
2142				    dyn_dir == MATCH_FORWARD) {
2143				    struct sockaddr_in *sa;
2144				    sa = &(((ipfw_insn_sa *)cmd)->sa);
2145				    if (sa->sin_addr.s_addr == INADDR_ANY) {
2146					bcopy(sa, &args->hopstore,
2147							sizeof(*sa));
2148					args->hopstore.sin_addr.s_addr =
2149						    htonl(tablearg);
2150					args->next_hop = &args->hopstore;
2151				    } else {
2152					args->next_hop = sa;
2153				    }
2154				}
2155				retval = IP_FW_PASS;
2156				l = 0;          /* exit inner loop */
2157				done = 1;       /* exit outer loop */
2158				break;
2159
2160			case O_NETGRAPH:
2161			case O_NGTEE:
2162				set_match(args, f_pos, chain);
2163				args->rule.info = (cmd->arg1 == IP_FW_TABLEARG) ?
2164					tablearg : cmd->arg1;
2165				if (V_fw_one_pass)
2166					args->rule.info |= IPFW_ONEPASS;
2167				retval = (cmd->opcode == O_NETGRAPH) ?
2168				    IP_FW_NETGRAPH : IP_FW_NGTEE;
2169				l = 0;          /* exit inner loop */
2170				done = 1;       /* exit outer loop */
2171				break;
2172
2173			case O_SETFIB: {
2174				uint32_t fib;
2175
2176				f->pcnt++;	/* update stats */
2177				f->bcnt += pktlen;
2178				f->timestamp = time_uptime;
2179				fib = (cmd->arg1 == IP_FW_TABLEARG) ? tablearg:
2180				    cmd->arg1;
2181				if (fib >= rt_numfibs)
2182					fib = 0;
2183				M_SETFIB(m, fib);
2184				args->f_id.fib = fib;
2185				l = 0;		/* exit inner loop */
2186				break;
2187		        }
2188
2189			case O_NAT:
2190 				if (!IPFW_NAT_LOADED) {
2191				    retval = IP_FW_DENY;
2192				} else {
2193				    struct cfg_nat *t;
2194				    int nat_id;
2195
2196				    set_match(args, f_pos, chain);
2197				    /* Check if this is 'global' nat rule */
2198				    if (cmd->arg1 == 0) {
2199					    retval = ipfw_nat_ptr(args, NULL, m);
2200					    l = 0;
2201					    done = 1;
2202					    break;
2203				    }
2204				    t = ((ipfw_insn_nat *)cmd)->nat;
2205				    if (t == NULL) {
2206					nat_id = (cmd->arg1 == IP_FW_TABLEARG) ?
2207						tablearg : cmd->arg1;
2208					t = (*lookup_nat_ptr)(&chain->nat, nat_id);
2209
2210					if (t == NULL) {
2211					    retval = IP_FW_DENY;
2212					    l = 0;	/* exit inner loop */
2213					    done = 1;	/* exit outer loop */
2214					    break;
2215					}
2216					if (cmd->arg1 != IP_FW_TABLEARG)
2217					    ((ipfw_insn_nat *)cmd)->nat = t;
2218				    }
2219				    retval = ipfw_nat_ptr(args, t, m);
2220				}
2221				l = 0;          /* exit inner loop */
2222				done = 1;       /* exit outer loop */
2223				break;
2224
2225			case O_REASS: {
2226				int ip_off;
2227
2228				f->pcnt++;
2229				f->bcnt += pktlen;
2230				l = 0;	/* in any case exit inner loop */
2231				ip_off = ntohs(ip->ip_off);
2232
2233				/* if not fragmented, go to next rule */
2234				if ((ip_off & (IP_MF | IP_OFFMASK)) == 0)
2235				    break;
2236				/*
2237				 * ip_reass() expects len & off in host
2238				 * byte order.
2239				 */
2240				SET_HOST_IPLEN(ip);
2241
2242				args->m = m = ip_reass(m);
2243
2244				/*
2245				 * do IP header checksum fixup.
2246				 */
2247				if (m == NULL) { /* fragment got swallowed */
2248				    retval = IP_FW_DENY;
2249				} else { /* good, packet complete */
2250				    int hlen;
2251
2252				    ip = mtod(m, struct ip *);
2253				    hlen = ip->ip_hl << 2;
2254				    SET_NET_IPLEN(ip);
2255				    ip->ip_sum = 0;
2256				    if (hlen == sizeof(struct ip))
2257					ip->ip_sum = in_cksum_hdr(ip);
2258				    else
2259					ip->ip_sum = in_cksum(m, hlen);
2260				    retval = IP_FW_REASS;
2261				    set_match(args, f_pos, chain);
2262				}
2263				done = 1;	/* exit outer loop */
2264				break;
2265			}
2266
2267			default:
2268				panic("-- unknown opcode %d\n", cmd->opcode);
2269			} /* end of switch() on opcodes */
2270			/*
2271			 * if we get here with l=0, then match is irrelevant.
2272			 */
2273
2274			if (cmd->len & F_NOT)
2275				match = !match;
2276
2277			if (match) {
2278				if (cmd->len & F_OR)
2279					skip_or = 1;
2280			} else {
2281				if (!(cmd->len & F_OR)) /* not an OR block, */
2282					break;		/* try next rule    */
2283			}
2284
2285		}	/* end of inner loop, scan opcodes */
2286#undef PULLUP_LEN
2287
2288		if (done)
2289			break;
2290
2291/* next_rule:; */	/* try next rule		*/
2292
2293	}		/* end of outer for, scan rules */
2294
2295	if (done) {
2296		struct ip_fw *rule = chain->map[f_pos];
2297		/* Update statistics */
2298		rule->pcnt++;
2299		rule->bcnt += pktlen;
2300		rule->timestamp = time_uptime;
2301	} else {
2302		retval = IP_FW_DENY;
2303		printf("ipfw: ouch!, skip past end of rules, denying packet\n");
2304	}
2305	IPFW_RUNLOCK(chain);
2306#ifdef __FreeBSD__
2307	if (ucred_cache != NULL)
2308		crfree(ucred_cache);
2309#endif
2310	return (retval);
2311
2312pullup_failed:
2313	if (V_fw_verbose)
2314		printf("ipfw: pullup failed\n");
2315	return (IP_FW_DENY);
2316}
2317
2318/*
2319 * Module and VNET glue
2320 */
2321
2322/*
2323 * Stuff that must be initialised only on boot or module load
2324 */
2325static int
2326ipfw_init(void)
2327{
2328	int error = 0;
2329
2330	ipfw_dyn_attach();
2331	/*
2332 	 * Only print out this stuff the first time around,
2333	 * when called from the sysinit code.
2334	 */
2335	printf("ipfw2 "
2336#ifdef INET6
2337		"(+ipv6) "
2338#endif
2339		"initialized, divert %s, nat %s, "
2340		"rule-based forwarding "
2341#ifdef IPFIREWALL_FORWARD
2342		"enabled, "
2343#else
2344		"disabled, "
2345#endif
2346		"default to %s, logging ",
2347#ifdef IPDIVERT
2348		"enabled",
2349#else
2350		"loadable",
2351#endif
2352#ifdef IPFIREWALL_NAT
2353		"enabled",
2354#else
2355		"loadable",
2356#endif
2357		default_to_accept ? "accept" : "deny");
2358
2359	/*
2360	 * Note: V_xxx variables can be accessed here but the vnet specific
2361	 * initializer may not have been called yet for the VIMAGE case.
2362	 * Tuneables will have been processed. We will print out values for
2363	 * the default vnet.
2364	 * XXX This should all be rationalized AFTER 8.0
2365	 */
2366	if (V_fw_verbose == 0)
2367		printf("disabled\n");
2368	else if (V_verbose_limit == 0)
2369		printf("unlimited\n");
2370	else
2371		printf("limited to %d packets/entry by default\n",
2372		    V_verbose_limit);
2373
2374	ipfw_log_bpf(1); /* init */
2375	return (error);
2376}
2377
2378/*
2379 * Called for the removal of the last instance only on module unload.
2380 */
2381static void
2382ipfw_destroy(void)
2383{
2384
2385	ipfw_log_bpf(0); /* uninit */
2386	ipfw_dyn_detach();
2387	printf("IP firewall unloaded\n");
2388}
2389
2390/*
2391 * Stuff that must be initialized for every instance
2392 * (including the first of course).
2393 */
2394static int
2395vnet_ipfw_init(const void *unused)
2396{
2397	int error;
2398	struct ip_fw *rule = NULL;
2399	struct ip_fw_chain *chain;
2400
2401	chain = &V_layer3_chain;
2402
2403	/* First set up some values that are compile time options */
2404	V_autoinc_step = 100;	/* bounded to 1..1000 in add_rule() */
2405	V_fw_deny_unknown_exthdrs = 1;
2406#ifdef IPFIREWALL_VERBOSE
2407	V_fw_verbose = 1;
2408#endif
2409#ifdef IPFIREWALL_VERBOSE_LIMIT
2410	V_verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
2411#endif
2412#ifdef IPFIREWALL_NAT
2413	LIST_INIT(&chain->nat);
2414#endif
2415
2416	/* insert the default rule and create the initial map */
2417	chain->n_rules = 1;
2418	chain->static_len = sizeof(struct ip_fw);
2419	chain->map = malloc(sizeof(struct ip_fw *), M_IPFW, M_NOWAIT | M_ZERO);
2420	if (chain->map)
2421		rule = malloc(chain->static_len, M_IPFW, M_NOWAIT | M_ZERO);
2422	if (rule == NULL) {
2423		if (chain->map)
2424			free(chain->map, M_IPFW);
2425		printf("ipfw2: ENOSPC initializing default rule "
2426			"(support disabled)\n");
2427		return (ENOSPC);
2428	}
2429	error = ipfw_init_tables(chain);
2430	if (error) {
2431		panic("init_tables"); /* XXX Marko fix this ! */
2432	}
2433
2434	/* fill and insert the default rule */
2435	rule->act_ofs = 0;
2436	rule->rulenum = IPFW_DEFAULT_RULE;
2437	rule->cmd_len = 1;
2438	rule->set = RESVD_SET;
2439	rule->cmd[0].len = 1;
2440	rule->cmd[0].opcode = default_to_accept ? O_ACCEPT : O_DENY;
2441	chain->rules = chain->default_rule = chain->map[0] = rule;
2442	chain->id = rule->id = 1;
2443
2444	IPFW_LOCK_INIT(chain);
2445	ipfw_dyn_init();
2446
2447	/* First set up some values that are compile time options */
2448	V_ipfw_vnet_ready = 1;		/* Open for business */
2449
2450	/*
2451	 * Hook the sockopt handler, and the layer2 (V_ip_fw_chk_ptr)
2452	 * and pfil hooks for ipv4 and ipv6. Even if the latter two fail
2453	 * we still keep the module alive because the sockopt and
2454	 * layer2 paths are still useful.
2455	 * ipfw[6]_hook return 0 on success, ENOENT on failure,
2456	 * so we can ignore the exact return value and just set a flag.
2457	 *
2458	 * Note that V_fw[6]_enable are manipulated by a SYSCTL_PROC so
2459	 * changes in the underlying (per-vnet) variables trigger
2460	 * immediate hook()/unhook() calls.
2461	 * In layer2 we have the same behaviour, except that V_ether_ipfw
2462	 * is checked on each packet because there are no pfil hooks.
2463	 */
2464	V_ip_fw_ctl_ptr = ipfw_ctl;
2465	V_ip_fw_chk_ptr = ipfw_chk;
2466	error = ipfw_attach_hooks(1);
2467	return (error);
2468}
2469
2470/*
2471 * Called for the removal of each instance.
2472 */
2473static int
2474vnet_ipfw_uninit(const void *unused)
2475{
2476	struct ip_fw *reap, *rule;
2477	struct ip_fw_chain *chain = &V_layer3_chain;
2478	int i;
2479
2480	V_ipfw_vnet_ready = 0; /* tell new callers to go away */
2481	/*
2482	 * disconnect from ipv4, ipv6, layer2 and sockopt.
2483	 * Then grab, release and grab again the WLOCK so we make
2484	 * sure the update is propagated and nobody will be in.
2485	 */
2486	(void)ipfw_attach_hooks(0 /* detach */);
2487	V_ip_fw_chk_ptr = NULL;
2488	V_ip_fw_ctl_ptr = NULL;
2489	IPFW_UH_WLOCK(chain);
2490	IPFW_UH_WUNLOCK(chain);
2491	IPFW_UH_WLOCK(chain);
2492
2493	IPFW_WLOCK(chain);
2494	IPFW_WUNLOCK(chain);
2495	IPFW_WLOCK(chain);
2496
2497	ipfw_dyn_uninit(0);	/* run the callout_drain */
2498	ipfw_destroy_tables(chain);
2499	reap = NULL;
2500	for (i = 0; i < chain->n_rules; i++) {
2501		rule = chain->map[i];
2502		rule->x_next = reap;
2503		reap = rule;
2504	}
2505	if (chain->map)
2506		free(chain->map, M_IPFW);
2507	IPFW_WUNLOCK(chain);
2508	IPFW_UH_WUNLOCK(chain);
2509	if (reap != NULL)
2510		ipfw_reap_rules(reap);
2511	IPFW_LOCK_DESTROY(chain);
2512	ipfw_dyn_uninit(1);	/* free the remaining parts */
2513	return 0;
2514}
2515
2516/*
2517 * Module event handler.
2518 * In general we have the choice of handling most of these events by the
2519 * event handler or by the (VNET_)SYS(UN)INIT handlers. I have chosen to
2520 * use the SYSINIT handlers as they are more capable of expressing the
2521 * flow of control during module and vnet operations, so this is just
2522 * a skeleton. Note there is no SYSINIT equivalent of the module
2523 * SHUTDOWN handler, but we don't have anything to do in that case anyhow.
2524 */
2525static int
2526ipfw_modevent(module_t mod, int type, void *unused)
2527{
2528	int err = 0;
2529
2530	switch (type) {
2531	case MOD_LOAD:
2532		/* Called once at module load or
2533	 	 * system boot if compiled in. */
2534		break;
2535	case MOD_QUIESCE:
2536		/* Called before unload. May veto unloading. */
2537		break;
2538	case MOD_UNLOAD:
2539		/* Called during unload. */
2540		break;
2541	case MOD_SHUTDOWN:
2542		/* Called during system shutdown. */
2543		break;
2544	default:
2545		err = EOPNOTSUPP;
2546		break;
2547	}
2548	return err;
2549}
2550
2551static moduledata_t ipfwmod = {
2552	"ipfw",
2553	ipfw_modevent,
2554	0
2555};
2556
2557/* Define startup order. */
2558#define	IPFW_SI_SUB_FIREWALL	SI_SUB_PROTO_IFATTACHDOMAIN
2559#define	IPFW_MODEVENT_ORDER	(SI_ORDER_ANY - 255) /* On boot slot in here. */
2560#define	IPFW_MODULE_ORDER	(IPFW_MODEVENT_ORDER + 1) /* A little later. */
2561#define	IPFW_VNET_ORDER		(IPFW_MODEVENT_ORDER + 2) /* Later still. */
2562
2563DECLARE_MODULE(ipfw, ipfwmod, IPFW_SI_SUB_FIREWALL, IPFW_MODEVENT_ORDER);
2564MODULE_VERSION(ipfw, 2);
2565/* should declare some dependencies here */
2566
2567/*
2568 * Starting up. Done in order after ipfwmod() has been called.
2569 * VNET_SYSINIT is also called for each existing vnet and each new vnet.
2570 */
2571SYSINIT(ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
2572	    ipfw_init, NULL);
2573VNET_SYSINIT(vnet_ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
2574	    vnet_ipfw_init, NULL);
2575
2576/*
2577 * Closing up shop. These are done in REVERSE ORDER, but still
2578 * after ipfwmod() has been called. Not called on reboot.
2579 * VNET_SYSUNINIT is also called for each exiting vnet as it exits.
2580 * or when the module is unloaded.
2581 */
2582SYSUNINIT(ipfw_destroy, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
2583	    ipfw_destroy, NULL);
2584VNET_SYSUNINIT(vnet_ipfw_uninit, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
2585	    vnet_ipfw_uninit, NULL);
2586/* end of file */
2587