ip_fw2.c revision 169245
1/*-
2 * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23 * SUCH DAMAGE.
24 *
25 * $FreeBSD: head/sys/netinet/ip_fw2.c 169245 2007-05-04 11:15:41Z bz $
26 */
27
28#define        DEB(x)
29#define        DDB(x) x
30
31/*
32 * Implement IP packet firewall (new version)
33 */
34
35#if !defined(KLD_MODULE)
36#include "opt_ipfw.h"
37#include "opt_ipdivert.h"
38#include "opt_ipdn.h"
39#include "opt_inet.h"
40#ifndef INET
41#error IPFIREWALL requires INET.
42#endif /* INET */
43#endif
44#include "opt_inet6.h"
45#include "opt_ipsec.h"
46#include "opt_mac.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/condvar.h>
51#include <sys/eventhandler.h>
52#include <sys/malloc.h>
53#include <sys/mbuf.h>
54#include <sys/kernel.h>
55#include <sys/lock.h>
56#include <sys/jail.h>
57#include <sys/module.h>
58#include <sys/priv.h>
59#include <sys/proc.h>
60#include <sys/rwlock.h>
61#include <sys/socket.h>
62#include <sys/socketvar.h>
63#include <sys/sysctl.h>
64#include <sys/syslog.h>
65#include <sys/ucred.h>
66#include <net/if.h>
67#include <net/radix.h>
68#include <net/route.h>
69#include <netinet/in.h>
70#include <netinet/in_systm.h>
71#include <netinet/in_var.h>
72#include <netinet/in_pcb.h>
73#include <netinet/ip.h>
74#include <netinet/ip_var.h>
75#include <netinet/ip_icmp.h>
76#include <netinet/ip_fw.h>
77#include <netinet/ip_divert.h>
78#include <netinet/ip_dummynet.h>
79#include <netinet/ip_carp.h>
80#include <netinet/pim.h>
81#include <netinet/tcp.h>
82#include <netinet/tcp_timer.h>
83#include <netinet/tcp_var.h>
84#include <netinet/tcpip.h>
85#include <netinet/udp.h>
86#include <netinet/udp_var.h>
87#include <netinet/sctp.h>
88#ifdef IPFIREWALL_NAT
89#include <netinet/libalias/alias.h>
90#include <netinet/libalias/alias_local.h>
91#endif
92#include <netgraph/ng_ipfw.h>
93
94#include <altq/if_altq.h>
95
96#ifdef IPSEC
97#include <netinet6/ipsec.h>
98#endif
99
100#include <netinet/ip6.h>
101#include <netinet/icmp6.h>
102#ifdef INET6
103#include <netinet6/scope6_var.h>
104#endif
105
106#include <netinet/if_ether.h> /* XXX for ETHERTYPE_IP */
107
108#include <machine/in_cksum.h>	/* XXX for in_cksum */
109
110#include <security/mac/mac_framework.h>
111
112/*
113 * set_disable contains one bit per set value (0..31).
114 * If the bit is set, all rules with the corresponding set
115 * are disabled. Set RESVD_SET(31) is reserved for the default rule
116 * and rules that are not deleted by the flush command,
117 * and CANNOT be disabled.
118 * Rules in set RESVD_SET can only be deleted explicitly.
119 */
120static u_int32_t set_disable;
121
122static int fw_verbose;
123static int verbose_limit;
124
125static struct callout ipfw_timeout;
126static uma_zone_t ipfw_dyn_rule_zone;
127#define	IPFW_DEFAULT_RULE	65535
128
129/*
130 * Data structure to cache our ucred related
131 * information. This structure only gets used if
132 * the user specified UID/GID based constraints in
133 * a firewall rule.
134 */
135struct ip_fw_ugid {
136	gid_t		fw_groups[NGROUPS];
137	int		fw_ngroups;
138	uid_t		fw_uid;
139	int		fw_prid;
140};
141
142#define	IPFW_TABLES_MAX		128
143struct ip_fw_chain {
144	struct ip_fw	*rules;		/* list of rules */
145	struct ip_fw	*reap;		/* list of rules to reap */
146	LIST_HEAD(, cfg_nat) nat;       /* list of nat entries */
147	struct radix_node_head *tables[IPFW_TABLES_MAX];
148	struct rwlock	rwmtx;
149};
150#define	IPFW_LOCK_INIT(_chain) \
151	rw_init(&(_chain)->rwmtx, "IPFW static rules")
152#define	IPFW_LOCK_DESTROY(_chain)	rw_destroy(&(_chain)->rwmtx)
153#define	IPFW_WLOCK_ASSERT(_chain)	do {				\
154	rw_assert(&(_chain)->rwmtx, RA_WLOCKED);					\
155	NET_ASSERT_GIANT();						\
156} while (0)
157
158#define IPFW_RLOCK(p) rw_rlock(&(p)->rwmtx)
159#define IPFW_RUNLOCK(p) rw_runlock(&(p)->rwmtx)
160#define IPFW_WLOCK(p) rw_wlock(&(p)->rwmtx)
161#define IPFW_WUNLOCK(p) rw_wunlock(&(p)->rwmtx)
162
163/*
164 * list of rules for layer 3
165 */
166static struct ip_fw_chain layer3_chain;
167
168MALLOC_DEFINE(M_IPFW, "IpFw/IpAcct", "IpFw/IpAcct chain's");
169MALLOC_DEFINE(M_IPFW_TBL, "ipfw_tbl", "IpFw tables");
170
171struct table_entry {
172	struct radix_node	rn[2];
173	struct sockaddr_in	addr, mask;
174	u_int32_t		value;
175};
176
177static int fw_debug = 1;
178static int autoinc_step = 100; /* bounded to 1..1000 in add_rule() */
179
180extern int ipfw_chg_hook(SYSCTL_HANDLER_ARGS);
181
182#ifdef SYSCTL_NODE
183SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW, 0, "Firewall");
184SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, enable,
185    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE3, &fw_enable, 0,
186    ipfw_chg_hook, "I", "Enable ipfw");
187SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step, CTLFLAG_RW,
188    &autoinc_step, 0, "Rule number autincrement step");
189SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
190    CTLFLAG_RW | CTLFLAG_SECURE3,
191    &fw_one_pass, 0,
192    "Only do a single pass through ipfw when using dummynet(4)");
193SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, debug, CTLFLAG_RW,
194    &fw_debug, 0, "Enable printing of debug ip_fw statements");
195SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose,
196    CTLFLAG_RW | CTLFLAG_SECURE3,
197    &fw_verbose, 0, "Log matches to ipfw rules");
198SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit, CTLFLAG_RW,
199    &verbose_limit, 0, "Set upper limit of matches of ipfw rules logged");
200
201/*
202 * Description of dynamic rules.
203 *
204 * Dynamic rules are stored in lists accessed through a hash table
205 * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
206 * be modified through the sysctl variable dyn_buckets which is
207 * updated when the table becomes empty.
208 *
209 * XXX currently there is only one list, ipfw_dyn.
210 *
211 * When a packet is received, its address fields are first masked
212 * with the mask defined for the rule, then hashed, then matched
213 * against the entries in the corresponding list.
214 * Dynamic rules can be used for different purposes:
215 *  + stateful rules;
216 *  + enforcing limits on the number of sessions;
217 *  + in-kernel NAT (not implemented yet)
218 *
219 * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
220 * measured in seconds and depending on the flags.
221 *
222 * The total number of dynamic rules is stored in dyn_count.
223 * The max number of dynamic rules is dyn_max. When we reach
224 * the maximum number of rules we do not create anymore. This is
225 * done to avoid consuming too much memory, but also too much
226 * time when searching on each packet (ideally, we should try instead
227 * to put a limit on the length of the list on each bucket...).
228 *
229 * Each dynamic rule holds a pointer to the parent ipfw rule so
230 * we know what action to perform. Dynamic rules are removed when
231 * the parent rule is deleted. XXX we should make them survive.
232 *
233 * There are some limitations with dynamic rules -- we do not
234 * obey the 'randomized match', and we do not do multiple
235 * passes through the firewall. XXX check the latter!!!
236 */
237static ipfw_dyn_rule **ipfw_dyn_v = NULL;
238static u_int32_t dyn_buckets = 256; /* must be power of 2 */
239static u_int32_t curr_dyn_buckets = 256; /* must be power of 2 */
240
241static struct mtx ipfw_dyn_mtx;		/* mutex guarding dynamic rules */
242#define	IPFW_DYN_LOCK_INIT() \
243	mtx_init(&ipfw_dyn_mtx, "IPFW dynamic rules", NULL, MTX_DEF)
244#define	IPFW_DYN_LOCK_DESTROY()	mtx_destroy(&ipfw_dyn_mtx)
245#define	IPFW_DYN_LOCK()		mtx_lock(&ipfw_dyn_mtx)
246#define	IPFW_DYN_UNLOCK()	mtx_unlock(&ipfw_dyn_mtx)
247#define	IPFW_DYN_LOCK_ASSERT()	mtx_assert(&ipfw_dyn_mtx, MA_OWNED)
248
249/*
250 * Timeouts for various events in handing dynamic rules.
251 */
252static u_int32_t dyn_ack_lifetime = 300;
253static u_int32_t dyn_syn_lifetime = 20;
254static u_int32_t dyn_fin_lifetime = 1;
255static u_int32_t dyn_rst_lifetime = 1;
256static u_int32_t dyn_udp_lifetime = 10;
257static u_int32_t dyn_short_lifetime = 5;
258
259/*
260 * Keepalives are sent if dyn_keepalive is set. They are sent every
261 * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
262 * seconds of lifetime of a rule.
263 * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
264 * than dyn_keepalive_period.
265 */
266
267static u_int32_t dyn_keepalive_interval = 20;
268static u_int32_t dyn_keepalive_period = 5;
269static u_int32_t dyn_keepalive = 1;	/* do send keepalives */
270
271static u_int32_t static_count;	/* # of static rules */
272static u_int32_t static_len;	/* size in bytes of static rules */
273static u_int32_t dyn_count;		/* # of dynamic rules */
274static u_int32_t dyn_max = 4096;	/* max # of dynamic rules */
275
276SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_buckets, CTLFLAG_RW,
277    &dyn_buckets, 0, "Number of dyn. buckets");
278SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, curr_dyn_buckets, CTLFLAG_RD,
279    &curr_dyn_buckets, 0, "Current Number of dyn. buckets");
280SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_count, CTLFLAG_RD,
281    &dyn_count, 0, "Number of dyn. rules");
282SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_max, CTLFLAG_RW,
283    &dyn_max, 0, "Max number of dyn. rules");
284SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count, CTLFLAG_RD,
285    &static_count, 0, "Number of static rules");
286SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_ack_lifetime, CTLFLAG_RW,
287    &dyn_ack_lifetime, 0, "Lifetime of dyn. rules for acks");
288SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_syn_lifetime, CTLFLAG_RW,
289    &dyn_syn_lifetime, 0, "Lifetime of dyn. rules for syn");
290SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_fin_lifetime, CTLFLAG_RW,
291    &dyn_fin_lifetime, 0, "Lifetime of dyn. rules for fin");
292SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_rst_lifetime, CTLFLAG_RW,
293    &dyn_rst_lifetime, 0, "Lifetime of dyn. rules for rst");
294SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_udp_lifetime, CTLFLAG_RW,
295    &dyn_udp_lifetime, 0, "Lifetime of dyn. rules for UDP");
296SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_short_lifetime, CTLFLAG_RW,
297    &dyn_short_lifetime, 0, "Lifetime of dyn. rules for other situations");
298SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, dyn_keepalive, CTLFLAG_RW,
299    &dyn_keepalive, 0, "Enable keepalives for dyn. rules");
300
301#ifdef INET6
302/*
303 * IPv6 specific variables
304 */
305SYSCTL_DECL(_net_inet6_ip6);
306
307static struct sysctl_ctx_list ip6_fw_sysctl_ctx;
308static struct sysctl_oid *ip6_fw_sysctl_tree;
309#endif /* INET6 */
310#endif /* SYSCTL_NODE */
311
312#ifdef IPFIREWALL_NAT
313MODULE_DEPEND(ipfw, libalias, 1, 1, 1);
314#endif
315static int fw_deny_unknown_exthdrs = 1;
316
317
318/*
319 * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
320 * Other macros just cast void * into the appropriate type
321 */
322#define	L3HDR(T, ip)	((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
323#define	TCP(p)		((struct tcphdr *)(p))
324#define	SCTP(p)		((struct sctphdr *)(p))
325#define	UDP(p)		((struct udphdr *)(p))
326#define	ICMP(p)		((struct icmphdr *)(p))
327#define	ICMP6(p)	((struct icmp6_hdr *)(p))
328
329static __inline int
330icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
331{
332	int type = icmp->icmp_type;
333
334	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
335}
336
337#define TT	( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
338    (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
339
340static int
341is_icmp_query(struct icmphdr *icmp)
342{
343	int type = icmp->icmp_type;
344
345	return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
346}
347#undef TT
348
349/*
350 * The following checks use two arrays of 8 or 16 bits to store the
351 * bits that we want set or clear, respectively. They are in the
352 * low and high half of cmd->arg1 or cmd->d[0].
353 *
354 * We scan options and store the bits we find set. We succeed if
355 *
356 *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
357 *
358 * The code is sometimes optimized not to store additional variables.
359 */
360
361static int
362flags_match(ipfw_insn *cmd, u_int8_t bits)
363{
364	u_char want_clear;
365	bits = ~bits;
366
367	if ( ((cmd->arg1 & 0xff) & bits) != 0)
368		return 0; /* some bits we want set were clear */
369	want_clear = (cmd->arg1 >> 8) & 0xff;
370	if ( (want_clear & bits) != want_clear)
371		return 0; /* some bits we want clear were set */
372	return 1;
373}
374
375static int
376ipopts_match(struct ip *ip, ipfw_insn *cmd)
377{
378	int optlen, bits = 0;
379	u_char *cp = (u_char *)(ip + 1);
380	int x = (ip->ip_hl << 2) - sizeof (struct ip);
381
382	for (; x > 0; x -= optlen, cp += optlen) {
383		int opt = cp[IPOPT_OPTVAL];
384
385		if (opt == IPOPT_EOL)
386			break;
387		if (opt == IPOPT_NOP)
388			optlen = 1;
389		else {
390			optlen = cp[IPOPT_OLEN];
391			if (optlen <= 0 || optlen > x)
392				return 0; /* invalid or truncated */
393		}
394		switch (opt) {
395
396		default:
397			break;
398
399		case IPOPT_LSRR:
400			bits |= IP_FW_IPOPT_LSRR;
401			break;
402
403		case IPOPT_SSRR:
404			bits |= IP_FW_IPOPT_SSRR;
405			break;
406
407		case IPOPT_RR:
408			bits |= IP_FW_IPOPT_RR;
409			break;
410
411		case IPOPT_TS:
412			bits |= IP_FW_IPOPT_TS;
413			break;
414		}
415	}
416	return (flags_match(cmd, bits));
417}
418
419static int
420tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
421{
422	int optlen, bits = 0;
423	u_char *cp = (u_char *)(tcp + 1);
424	int x = (tcp->th_off << 2) - sizeof(struct tcphdr);
425
426	for (; x > 0; x -= optlen, cp += optlen) {
427		int opt = cp[0];
428		if (opt == TCPOPT_EOL)
429			break;
430		if (opt == TCPOPT_NOP)
431			optlen = 1;
432		else {
433			optlen = cp[1];
434			if (optlen <= 0)
435				break;
436		}
437
438		switch (opt) {
439
440		default:
441			break;
442
443		case TCPOPT_MAXSEG:
444			bits |= IP_FW_TCPOPT_MSS;
445			break;
446
447		case TCPOPT_WINDOW:
448			bits |= IP_FW_TCPOPT_WINDOW;
449			break;
450
451		case TCPOPT_SACK_PERMITTED:
452		case TCPOPT_SACK:
453			bits |= IP_FW_TCPOPT_SACK;
454			break;
455
456		case TCPOPT_TIMESTAMP:
457			bits |= IP_FW_TCPOPT_TS;
458			break;
459
460		}
461	}
462	return (flags_match(cmd, bits));
463}
464
465static int
466iface_match(struct ifnet *ifp, ipfw_insn_if *cmd)
467{
468	if (ifp == NULL)	/* no iface with this packet, match fails */
469		return 0;
470	/* Check by name or by IP address */
471	if (cmd->name[0] != '\0') { /* match by name */
472		/* Check name */
473		if (cmd->p.glob) {
474			if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
475				return(1);
476		} else {
477			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
478				return(1);
479		}
480	} else {
481		struct ifaddr *ia;
482
483		/* XXX lock? */
484		TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
485			if (ia->ifa_addr->sa_family != AF_INET)
486				continue;
487			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
488			    (ia->ifa_addr))->sin_addr.s_addr)
489				return(1);	/* match */
490		}
491	}
492	return(0);	/* no match, fail ... */
493}
494
495/*
496 * The verify_path function checks if a route to the src exists and
497 * if it is reachable via ifp (when provided).
498 *
499 * The 'verrevpath' option checks that the interface that an IP packet
500 * arrives on is the same interface that traffic destined for the
501 * packet's source address would be routed out of.  The 'versrcreach'
502 * option just checks that the source address is reachable via any route
503 * (except default) in the routing table.  These two are a measure to block
504 * forged packets.  This is also commonly known as "anti-spoofing" or Unicast
505 * Reverse Path Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
506 * is purposely reminiscent of the Cisco IOS command,
507 *
508 *   ip verify unicast reverse-path
509 *   ip verify unicast source reachable-via any
510 *
511 * which implements the same functionality. But note that syntax is
512 * misleading. The check may be performed on all IP packets whether unicast,
513 * multicast, or broadcast.
514 */
515static int
516verify_path(struct in_addr src, struct ifnet *ifp)
517{
518	struct route ro;
519	struct sockaddr_in *dst;
520
521	bzero(&ro, sizeof(ro));
522
523	dst = (struct sockaddr_in *)&(ro.ro_dst);
524	dst->sin_family = AF_INET;
525	dst->sin_len = sizeof(*dst);
526	dst->sin_addr = src;
527	rtalloc_ign(&ro, RTF_CLONING);
528
529	if (ro.ro_rt == NULL)
530		return 0;
531
532	/*
533	 * If ifp is provided, check for equality with rtentry.
534	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
535	 * in order to pass packets injected back by if_simloop():
536	 * if useloopback == 1 routing entry (via lo0) for our own address
537	 * may exist, so we need to handle routing assymetry.
538	 */
539	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
540		RTFREE(ro.ro_rt);
541		return 0;
542	}
543
544	/* if no ifp provided, check if rtentry is not default route */
545	if (ifp == NULL &&
546	     satosin(rt_key(ro.ro_rt))->sin_addr.s_addr == INADDR_ANY) {
547		RTFREE(ro.ro_rt);
548		return 0;
549	}
550
551	/* or if this is a blackhole/reject route */
552	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
553		RTFREE(ro.ro_rt);
554		return 0;
555	}
556
557	/* found valid route */
558	RTFREE(ro.ro_rt);
559	return 1;
560}
561
562#ifdef INET6
563/*
564 * ipv6 specific rules here...
565 */
566static __inline int
567icmp6type_match (int type, ipfw_insn_u32 *cmd)
568{
569	return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
570}
571
572static int
573flow6id_match( int curr_flow, ipfw_insn_u32 *cmd )
574{
575	int i;
576	for (i=0; i <= cmd->o.arg1; ++i )
577		if (curr_flow == cmd->d[i] )
578			return 1;
579	return 0;
580}
581
582/* support for IP6_*_ME opcodes */
583static int
584search_ip6_addr_net (struct in6_addr * ip6_addr)
585{
586	struct ifnet *mdc;
587	struct ifaddr *mdc2;
588	struct in6_ifaddr *fdm;
589	struct in6_addr copia;
590
591	TAILQ_FOREACH(mdc, &ifnet, if_link)
592		TAILQ_FOREACH(mdc2, &mdc->if_addrlist, ifa_list) {
593			if (mdc2->ifa_addr->sa_family == AF_INET6) {
594				fdm = (struct in6_ifaddr *)mdc2;
595				copia = fdm->ia_addr.sin6_addr;
596				/* need for leaving scope_id in the sock_addr */
597				in6_clearscope(&copia);
598				if (IN6_ARE_ADDR_EQUAL(ip6_addr, &copia))
599					return 1;
600			}
601		}
602	return 0;
603}
604
605static int
606verify_path6(struct in6_addr *src, struct ifnet *ifp)
607{
608	struct route_in6 ro;
609	struct sockaddr_in6 *dst;
610
611	bzero(&ro, sizeof(ro));
612
613	dst = (struct sockaddr_in6 * )&(ro.ro_dst);
614	dst->sin6_family = AF_INET6;
615	dst->sin6_len = sizeof(*dst);
616	dst->sin6_addr = *src;
617	rtalloc_ign((struct route *)&ro, RTF_CLONING);
618
619	if (ro.ro_rt == NULL)
620		return 0;
621
622	/*
623	 * if ifp is provided, check for equality with rtentry
624	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
625	 * to support the case of sending packets to an address of our own.
626	 * (where the former interface is the first argument of if_simloop()
627	 *  (=ifp), the latter is lo0)
628	 */
629	if (ifp != NULL && ro.ro_rt->rt_ifa->ifa_ifp != ifp) {
630		RTFREE(ro.ro_rt);
631		return 0;
632	}
633
634	/* if no ifp provided, check if rtentry is not default route */
635	if (ifp == NULL &&
636	    IN6_IS_ADDR_UNSPECIFIED(&satosin6(rt_key(ro.ro_rt))->sin6_addr)) {
637		RTFREE(ro.ro_rt);
638		return 0;
639	}
640
641	/* or if this is a blackhole/reject route */
642	if (ifp == NULL && ro.ro_rt->rt_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
643		RTFREE(ro.ro_rt);
644		return 0;
645	}
646
647	/* found valid route */
648	RTFREE(ro.ro_rt);
649	return 1;
650
651}
652static __inline int
653hash_packet6(struct ipfw_flow_id *id)
654{
655	u_int32_t i;
656	i = (id->dst_ip6.__u6_addr.__u6_addr32[2]) ^
657	    (id->dst_ip6.__u6_addr.__u6_addr32[3]) ^
658	    (id->src_ip6.__u6_addr.__u6_addr32[2]) ^
659	    (id->src_ip6.__u6_addr.__u6_addr32[3]) ^
660	    (id->dst_port) ^ (id->src_port);
661	return i;
662}
663
664static int
665is_icmp6_query(int icmp6_type)
666{
667	if ((icmp6_type <= ICMP6_MAXTYPE) &&
668	    (icmp6_type == ICMP6_ECHO_REQUEST ||
669	    icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
670	    icmp6_type == ICMP6_WRUREQUEST ||
671	    icmp6_type == ICMP6_FQDN_QUERY ||
672	    icmp6_type == ICMP6_NI_QUERY))
673		return (1);
674
675	return (0);
676}
677
678static void
679send_reject6(struct ip_fw_args *args, int code, u_int hlen, struct ip6_hdr *ip6)
680{
681	struct mbuf *m;
682
683	m = args->m;
684	if (code == ICMP6_UNREACH_RST && args->f_id.proto == IPPROTO_TCP) {
685		struct tcphdr *tcp;
686		tcp_seq ack, seq;
687		int flags;
688		struct {
689			struct ip6_hdr ip6;
690			struct tcphdr th;
691		} ti;
692		tcp = (struct tcphdr *)((char *)ip6 + hlen);
693
694		if ((tcp->th_flags & TH_RST) != 0) {
695			m_freem(m);
696			args->m = NULL;
697			return;
698		}
699
700		ti.ip6 = *ip6;
701		ti.th = *tcp;
702		ti.th.th_seq = ntohl(ti.th.th_seq);
703		ti.th.th_ack = ntohl(ti.th.th_ack);
704		ti.ip6.ip6_nxt = IPPROTO_TCP;
705
706		if (ti.th.th_flags & TH_ACK) {
707			ack = 0;
708			seq = ti.th.th_ack;
709			flags = TH_RST;
710		} else {
711			ack = ti.th.th_seq;
712			if ((m->m_flags & M_PKTHDR) != 0) {
713				/*
714				 * total new data to ACK is:
715				 * total packet length,
716				 * minus the header length,
717				 * minus the tcp header length.
718				 */
719				ack += m->m_pkthdr.len - hlen
720					- (ti.th.th_off << 2);
721			} else if (ip6->ip6_plen) {
722				ack += ntohs(ip6->ip6_plen) + sizeof(*ip6) -
723				    hlen - (ti.th.th_off << 2);
724			} else {
725				m_freem(m);
726				return;
727			}
728			if (tcp->th_flags & TH_SYN)
729				ack++;
730			seq = 0;
731			flags = TH_RST|TH_ACK;
732		}
733		bcopy(&ti, ip6, sizeof(ti));
734		/*
735		 * m is only used to recycle the mbuf
736		 * The data in it is never read so we don't need
737		 * to correct the offsets or anything
738		 */
739		tcp_respond(NULL, ip6, tcp, m, ack, seq, flags);
740	} else if (code != ICMP6_UNREACH_RST) { /* Send an ICMPv6 unreach. */
741#if 0
742		/*
743		 * Unlike above, the mbufs need to line up with the ip6 hdr,
744		 * as the contents are read. We need to m_adj() the
745		 * needed amount.
746		 * The mbuf will however be thrown away so we can adjust it.
747		 * Remember we did an m_pullup on it already so we
748		 * can make some assumptions about contiguousness.
749		 */
750		if (args->L3offset)
751			m_adj(m, args->L3offset);
752#endif
753		icmp6_error(m, ICMP6_DST_UNREACH, code, 0);
754	} else
755		m_freem(m);
756
757	args->m = NULL;
758}
759
760#endif /* INET6 */
761
762static u_int64_t norule_counter;	/* counter for ipfw_log(NULL...) */
763
764#define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0
765#define SNP(buf) buf, sizeof(buf)
766
767/*
768 * We enter here when we have a rule with O_LOG.
769 * XXX this function alone takes about 2Kbytes of code!
770 */
771static void
772ipfw_log(struct ip_fw *f, u_int hlen, struct ip_fw_args *args,
773	struct mbuf *m, struct ifnet *oif, u_short offset, uint32_t tablearg,
774	struct ip  *ip)
775{
776	struct ether_header *eh = args->eh;
777	char *action;
778	int limit_reached = 0;
779	char action2[40], proto[128], fragment[32];
780
781	fragment[0] = '\0';
782	proto[0] = '\0';
783
784	if (f == NULL) {	/* bogus pkt */
785		if (verbose_limit != 0 && norule_counter >= verbose_limit)
786			return;
787		norule_counter++;
788		if (norule_counter == verbose_limit)
789			limit_reached = verbose_limit;
790		action = "Refuse";
791	} else {	/* O_LOG is the first action, find the real one */
792		ipfw_insn *cmd = ACTION_PTR(f);
793		ipfw_insn_log *l = (ipfw_insn_log *)cmd;
794
795		if (l->max_log != 0 && l->log_left == 0)
796			return;
797		l->log_left--;
798		if (l->log_left == 0)
799			limit_reached = l->max_log;
800		cmd += F_LEN(cmd);	/* point to first action */
801		if (cmd->opcode == O_ALTQ) {
802			ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
803
804			snprintf(SNPARGS(action2, 0), "Altq %d",
805				altq->qid);
806			cmd += F_LEN(cmd);
807		}
808		if (cmd->opcode == O_PROB)
809			cmd += F_LEN(cmd);
810
811		if (cmd->opcode == O_TAG)
812			cmd += F_LEN(cmd);
813
814		action = action2;
815		switch (cmd->opcode) {
816		case O_DENY:
817			action = "Deny";
818			break;
819
820		case O_REJECT:
821			if (cmd->arg1==ICMP_REJECT_RST)
822				action = "Reset";
823			else if (cmd->arg1==ICMP_UNREACH_HOST)
824				action = "Reject";
825			else
826				snprintf(SNPARGS(action2, 0), "Unreach %d",
827					cmd->arg1);
828			break;
829
830		case O_UNREACH6:
831			if (cmd->arg1==ICMP6_UNREACH_RST)
832				action = "Reset";
833			else
834				snprintf(SNPARGS(action2, 0), "Unreach %d",
835					cmd->arg1);
836			break;
837
838		case O_ACCEPT:
839			action = "Accept";
840			break;
841		case O_COUNT:
842			action = "Count";
843			break;
844		case O_DIVERT:
845			snprintf(SNPARGS(action2, 0), "Divert %d",
846				cmd->arg1);
847			break;
848		case O_TEE:
849			snprintf(SNPARGS(action2, 0), "Tee %d",
850				cmd->arg1);
851			break;
852		case O_SKIPTO:
853			snprintf(SNPARGS(action2, 0), "SkipTo %d",
854				cmd->arg1);
855			break;
856		case O_PIPE:
857			snprintf(SNPARGS(action2, 0), "Pipe %d",
858				cmd->arg1);
859			break;
860		case O_QUEUE:
861			snprintf(SNPARGS(action2, 0), "Queue %d",
862				cmd->arg1);
863			break;
864		case O_FORWARD_IP: {
865			ipfw_insn_sa *sa = (ipfw_insn_sa *)cmd;
866			int len;
867			struct in_addr dummyaddr;
868			if (sa->sa.sin_addr.s_addr == INADDR_ANY)
869				dummyaddr.s_addr = htonl(tablearg);
870			else
871				dummyaddr.s_addr = sa->sa.sin_addr.s_addr;
872
873			len = snprintf(SNPARGS(action2, 0), "Forward to %s",
874				inet_ntoa(dummyaddr));
875
876			if (sa->sa.sin_port)
877				snprintf(SNPARGS(action2, len), ":%d",
878				    sa->sa.sin_port);
879			}
880			break;
881		case O_NETGRAPH:
882			snprintf(SNPARGS(action2, 0), "Netgraph %d",
883				cmd->arg1);
884			break;
885		case O_NGTEE:
886			snprintf(SNPARGS(action2, 0), "Ngtee %d",
887				cmd->arg1);
888			break;
889		case O_NAT:
890			action = "Nat";
891 			break;
892		default:
893			action = "UNKNOWN";
894			break;
895		}
896	}
897
898	if (hlen == 0) {	/* non-ip */
899		snprintf(SNPARGS(proto, 0), "MAC");
900
901	} else {
902		int len;
903		char src[48], dst[48];
904		struct icmphdr *icmp;
905		struct tcphdr *tcp;
906		struct udphdr *udp;
907#ifdef INET6
908		struct ip6_hdr *ip6 = NULL;
909		struct icmp6_hdr *icmp6;
910#endif
911		src[0] = '\0';
912		dst[0] = '\0';
913#ifdef INET6
914		if (IS_IP6_FLOW_ID(&(args->f_id))) {
915			char ip6buf[INET6_ADDRSTRLEN];
916			snprintf(src, sizeof(src), "[%s]",
917			    ip6_sprintf(ip6buf, &args->f_id.src_ip6));
918			snprintf(dst, sizeof(dst), "[%s]",
919			    ip6_sprintf(ip6buf, &args->f_id.dst_ip6));
920
921			ip6 = (struct ip6_hdr *)ip;
922			tcp = (struct tcphdr *)(((char *)ip) + hlen);
923			udp = (struct udphdr *)(((char *)ip) + hlen);
924		} else
925#endif
926		{
927			tcp = L3HDR(struct tcphdr, ip);
928			udp = L3HDR(struct udphdr, ip);
929
930			inet_ntoa_r(ip->ip_src, src);
931			inet_ntoa_r(ip->ip_dst, dst);
932		}
933
934		switch (args->f_id.proto) {
935		case IPPROTO_TCP:
936			len = snprintf(SNPARGS(proto, 0), "TCP %s", src);
937			if (offset == 0)
938				snprintf(SNPARGS(proto, len), ":%d %s:%d",
939				    ntohs(tcp->th_sport),
940				    dst,
941				    ntohs(tcp->th_dport));
942			else
943				snprintf(SNPARGS(proto, len), " %s", dst);
944			break;
945
946		case IPPROTO_UDP:
947			len = snprintf(SNPARGS(proto, 0), "UDP %s", src);
948			if (offset == 0)
949				snprintf(SNPARGS(proto, len), ":%d %s:%d",
950				    ntohs(udp->uh_sport),
951				    dst,
952				    ntohs(udp->uh_dport));
953			else
954				snprintf(SNPARGS(proto, len), " %s", dst);
955			break;
956
957		case IPPROTO_ICMP:
958			icmp = L3HDR(struct icmphdr, ip);
959			if (offset == 0)
960				len = snprintf(SNPARGS(proto, 0),
961				    "ICMP:%u.%u ",
962				    icmp->icmp_type, icmp->icmp_code);
963			else
964				len = snprintf(SNPARGS(proto, 0), "ICMP ");
965			len += snprintf(SNPARGS(proto, len), "%s", src);
966			snprintf(SNPARGS(proto, len), " %s", dst);
967			break;
968#ifdef INET6
969		case IPPROTO_ICMPV6:
970			icmp6 = (struct icmp6_hdr *)(((char *)ip) + hlen);
971			if (offset == 0)
972				len = snprintf(SNPARGS(proto, 0),
973				    "ICMPv6:%u.%u ",
974				    icmp6->icmp6_type, icmp6->icmp6_code);
975			else
976				len = snprintf(SNPARGS(proto, 0), "ICMPv6 ");
977			len += snprintf(SNPARGS(proto, len), "%s", src);
978			snprintf(SNPARGS(proto, len), " %s", dst);
979			break;
980#endif
981		default:
982			len = snprintf(SNPARGS(proto, 0), "P:%d %s",
983			    args->f_id.proto, src);
984			snprintf(SNPARGS(proto, len), " %s", dst);
985			break;
986		}
987
988#ifdef INET6
989		if (IS_IP6_FLOW_ID(&(args->f_id))) {
990			if (offset & (IP6F_OFF_MASK | IP6F_MORE_FRAG))
991				snprintf(SNPARGS(fragment, 0),
992				    " (frag %08x:%d@%d%s)",
993				    args->f_id.frag_id6,
994				    ntohs(ip6->ip6_plen) - hlen,
995				    ntohs(offset & IP6F_OFF_MASK) << 3,
996				    (offset & IP6F_MORE_FRAG) ? "+" : "");
997		} else
998#endif
999		{
1000			int ip_off, ip_len;
1001			if (eh != NULL) { /* layer 2 packets are as on the wire */
1002				ip_off = ntohs(ip->ip_off);
1003				ip_len = ntohs(ip->ip_len);
1004			} else {
1005				ip_off = ip->ip_off;
1006				ip_len = ip->ip_len;
1007			}
1008			if (ip_off & (IP_MF | IP_OFFMASK))
1009				snprintf(SNPARGS(fragment, 0),
1010				    " (frag %d:%d@%d%s)",
1011				    ntohs(ip->ip_id), ip_len - (ip->ip_hl << 2),
1012				    offset << 3,
1013				    (ip_off & IP_MF) ? "+" : "");
1014		}
1015	}
1016	if (oif || m->m_pkthdr.rcvif)
1017		log(LOG_SECURITY | LOG_INFO,
1018		    "ipfw: %d %s %s %s via %s%s\n",
1019		    f ? f->rulenum : -1,
1020		    action, proto, oif ? "out" : "in",
1021		    oif ? oif->if_xname : m->m_pkthdr.rcvif->if_xname,
1022		    fragment);
1023	else
1024		log(LOG_SECURITY | LOG_INFO,
1025		    "ipfw: %d %s %s [no if info]%s\n",
1026		    f ? f->rulenum : -1,
1027		    action, proto, fragment);
1028	if (limit_reached)
1029		log(LOG_SECURITY | LOG_NOTICE,
1030		    "ipfw: limit %d reached on entry %d\n",
1031		    limit_reached, f ? f->rulenum : -1);
1032}
1033
1034/*
1035 * IMPORTANT: the hash function for dynamic rules must be commutative
1036 * in source and destination (ip,port), because rules are bidirectional
1037 * and we want to find both in the same bucket.
1038 */
1039static __inline int
1040hash_packet(struct ipfw_flow_id *id)
1041{
1042	u_int32_t i;
1043
1044#ifdef INET6
1045	if (IS_IP6_FLOW_ID(id))
1046		i = hash_packet6(id);
1047	else
1048#endif /* INET6 */
1049	i = (id->dst_ip) ^ (id->src_ip) ^ (id->dst_port) ^ (id->src_port);
1050	i &= (curr_dyn_buckets - 1);
1051	return i;
1052}
1053
1054/**
1055 * unlink a dynamic rule from a chain. prev is a pointer to
1056 * the previous one, q is a pointer to the rule to delete,
1057 * head is a pointer to the head of the queue.
1058 * Modifies q and potentially also head.
1059 */
1060#define UNLINK_DYN_RULE(prev, head, q) {				\
1061	ipfw_dyn_rule *old_q = q;					\
1062									\
1063	/* remove a refcount to the parent */				\
1064	if (q->dyn_type == O_LIMIT)					\
1065		q->parent->count--;					\
1066	DEB(printf("ipfw: unlink entry 0x%08x %d -> 0x%08x %d, %d left\n",\
1067		(q->id.src_ip), (q->id.src_port),			\
1068		(q->id.dst_ip), (q->id.dst_port), dyn_count-1 ); )	\
1069	if (prev != NULL)						\
1070		prev->next = q = q->next;				\
1071	else								\
1072		head = q = q->next;					\
1073	dyn_count--;							\
1074	uma_zfree(ipfw_dyn_rule_zone, old_q); }
1075
1076#define TIME_LEQ(a,b)       ((int)((a)-(b)) <= 0)
1077
1078/**
1079 * Remove dynamic rules pointing to "rule", or all of them if rule == NULL.
1080 *
1081 * If keep_me == NULL, rules are deleted even if not expired,
1082 * otherwise only expired rules are removed.
1083 *
1084 * The value of the second parameter is also used to point to identify
1085 * a rule we absolutely do not want to remove (e.g. because we are
1086 * holding a reference to it -- this is the case with O_LIMIT_PARENT
1087 * rules). The pointer is only used for comparison, so any non-null
1088 * value will do.
1089 */
1090static void
1091remove_dyn_rule(struct ip_fw *rule, ipfw_dyn_rule *keep_me)
1092{
1093	static u_int32_t last_remove = 0;
1094
1095#define FORCE (keep_me == NULL)
1096
1097	ipfw_dyn_rule *prev, *q;
1098	int i, pass = 0, max_pass = 0;
1099
1100	IPFW_DYN_LOCK_ASSERT();
1101
1102	if (ipfw_dyn_v == NULL || dyn_count == 0)
1103		return;
1104	/* do not expire more than once per second, it is useless */
1105	if (!FORCE && last_remove == time_uptime)
1106		return;
1107	last_remove = time_uptime;
1108
1109	/*
1110	 * because O_LIMIT refer to parent rules, during the first pass only
1111	 * remove child and mark any pending LIMIT_PARENT, and remove
1112	 * them in a second pass.
1113	 */
1114next_pass:
1115	for (i = 0 ; i < curr_dyn_buckets ; i++) {
1116		for (prev=NULL, q = ipfw_dyn_v[i] ; q ; ) {
1117			/*
1118			 * Logic can become complex here, so we split tests.
1119			 */
1120			if (q == keep_me)
1121				goto next;
1122			if (rule != NULL && rule != q->rule)
1123				goto next; /* not the one we are looking for */
1124			if (q->dyn_type == O_LIMIT_PARENT) {
1125				/*
1126				 * handle parent in the second pass,
1127				 * record we need one.
1128				 */
1129				max_pass = 1;
1130				if (pass == 0)
1131					goto next;
1132				if (FORCE && q->count != 0 ) {
1133					/* XXX should not happen! */
1134					printf("ipfw: OUCH! cannot remove rule,"
1135					     " count %d\n", q->count);
1136				}
1137			} else {
1138				if (!FORCE &&
1139				    !TIME_LEQ( q->expire, time_uptime ))
1140					goto next;
1141			}
1142             if (q->dyn_type != O_LIMIT_PARENT || !q->count) {
1143                     UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
1144                     continue;
1145             }
1146next:
1147			prev=q;
1148			q=q->next;
1149		}
1150	}
1151	if (pass++ < max_pass)
1152		goto next_pass;
1153}
1154
1155
1156/**
1157 * lookup a dynamic rule.
1158 */
1159static ipfw_dyn_rule *
1160lookup_dyn_rule_locked(struct ipfw_flow_id *pkt, int *match_direction,
1161	struct tcphdr *tcp)
1162{
1163	/*
1164	 * stateful ipfw extensions.
1165	 * Lookup into dynamic session queue
1166	 */
1167#define MATCH_REVERSE	0
1168#define MATCH_FORWARD	1
1169#define MATCH_NONE	2
1170#define MATCH_UNKNOWN	3
1171	int i, dir = MATCH_NONE;
1172	ipfw_dyn_rule *prev, *q=NULL;
1173
1174	IPFW_DYN_LOCK_ASSERT();
1175
1176	if (ipfw_dyn_v == NULL)
1177		goto done;	/* not found */
1178	i = hash_packet( pkt );
1179	for (prev=NULL, q = ipfw_dyn_v[i] ; q != NULL ; ) {
1180		if (q->dyn_type == O_LIMIT_PARENT && q->count)
1181			goto next;
1182		if (TIME_LEQ( q->expire, time_uptime)) { /* expire entry */
1183			UNLINK_DYN_RULE(prev, ipfw_dyn_v[i], q);
1184			continue;
1185		}
1186		if (pkt->proto == q->id.proto &&
1187		    q->dyn_type != O_LIMIT_PARENT) {
1188			if (IS_IP6_FLOW_ID(pkt)) {
1189			    if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1190				&(q->id.src_ip6)) &&
1191			    IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1192				&(q->id.dst_ip6)) &&
1193			    pkt->src_port == q->id.src_port &&
1194			    pkt->dst_port == q->id.dst_port ) {
1195				dir = MATCH_FORWARD;
1196				break;
1197			    }
1198			    if (IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1199				    &(q->id.dst_ip6)) &&
1200				IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1201				    &(q->id.src_ip6)) &&
1202				pkt->src_port == q->id.dst_port &&
1203				pkt->dst_port == q->id.src_port ) {
1204				    dir = MATCH_REVERSE;
1205				    break;
1206			    }
1207			} else {
1208			    if (pkt->src_ip == q->id.src_ip &&
1209				pkt->dst_ip == q->id.dst_ip &&
1210				pkt->src_port == q->id.src_port &&
1211				pkt->dst_port == q->id.dst_port ) {
1212				    dir = MATCH_FORWARD;
1213				    break;
1214			    }
1215			    if (pkt->src_ip == q->id.dst_ip &&
1216				pkt->dst_ip == q->id.src_ip &&
1217				pkt->src_port == q->id.dst_port &&
1218				pkt->dst_port == q->id.src_port ) {
1219				    dir = MATCH_REVERSE;
1220				    break;
1221			    }
1222			}
1223		}
1224next:
1225		prev = q;
1226		q = q->next;
1227	}
1228	if (q == NULL)
1229		goto done; /* q = NULL, not found */
1230
1231	if ( prev != NULL) { /* found and not in front */
1232		prev->next = q->next;
1233		q->next = ipfw_dyn_v[i];
1234		ipfw_dyn_v[i] = q;
1235	}
1236	if (pkt->proto == IPPROTO_TCP) { /* update state according to flags */
1237		u_char flags = pkt->flags & (TH_FIN|TH_SYN|TH_RST);
1238
1239#define BOTH_SYN	(TH_SYN | (TH_SYN << 8))
1240#define BOTH_FIN	(TH_FIN | (TH_FIN << 8))
1241		q->state |= (dir == MATCH_FORWARD ) ? flags : (flags << 8);
1242		switch (q->state) {
1243		case TH_SYN:				/* opening */
1244			q->expire = time_uptime + dyn_syn_lifetime;
1245			break;
1246
1247		case BOTH_SYN:			/* move to established */
1248		case BOTH_SYN | TH_FIN :	/* one side tries to close */
1249		case BOTH_SYN | (TH_FIN << 8) :
1250 			if (tcp) {
1251#define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
1252			    u_int32_t ack = ntohl(tcp->th_ack);
1253			    if (dir == MATCH_FORWARD) {
1254				if (q->ack_fwd == 0 || _SEQ_GE(ack, q->ack_fwd))
1255				    q->ack_fwd = ack;
1256				else { /* ignore out-of-sequence */
1257				    break;
1258				}
1259			    } else {
1260				if (q->ack_rev == 0 || _SEQ_GE(ack, q->ack_rev))
1261				    q->ack_rev = ack;
1262				else { /* ignore out-of-sequence */
1263				    break;
1264				}
1265			    }
1266			}
1267			q->expire = time_uptime + dyn_ack_lifetime;
1268			break;
1269
1270		case BOTH_SYN | BOTH_FIN:	/* both sides closed */
1271			if (dyn_fin_lifetime >= dyn_keepalive_period)
1272				dyn_fin_lifetime = dyn_keepalive_period - 1;
1273			q->expire = time_uptime + dyn_fin_lifetime;
1274			break;
1275
1276		default:
1277#if 0
1278			/*
1279			 * reset or some invalid combination, but can also
1280			 * occur if we use keep-state the wrong way.
1281			 */
1282			if ( (q->state & ((TH_RST << 8)|TH_RST)) == 0)
1283				printf("invalid state: 0x%x\n", q->state);
1284#endif
1285			if (dyn_rst_lifetime >= dyn_keepalive_period)
1286				dyn_rst_lifetime = dyn_keepalive_period - 1;
1287			q->expire = time_uptime + dyn_rst_lifetime;
1288			break;
1289		}
1290	} else if (pkt->proto == IPPROTO_UDP) {
1291		q->expire = time_uptime + dyn_udp_lifetime;
1292	} else {
1293		/* other protocols */
1294		q->expire = time_uptime + dyn_short_lifetime;
1295	}
1296done:
1297	if (match_direction)
1298		*match_direction = dir;
1299	return q;
1300}
1301
1302static ipfw_dyn_rule *
1303lookup_dyn_rule(struct ipfw_flow_id *pkt, int *match_direction,
1304	struct tcphdr *tcp)
1305{
1306	ipfw_dyn_rule *q;
1307
1308	IPFW_DYN_LOCK();
1309	q = lookup_dyn_rule_locked(pkt, match_direction, tcp);
1310	if (q == NULL)
1311		IPFW_DYN_UNLOCK();
1312	/* NB: return table locked when q is not NULL */
1313	return q;
1314}
1315
1316static void
1317realloc_dynamic_table(void)
1318{
1319	IPFW_DYN_LOCK_ASSERT();
1320
1321	/*
1322	 * Try reallocation, make sure we have a power of 2 and do
1323	 * not allow more than 64k entries. In case of overflow,
1324	 * default to 1024.
1325	 */
1326
1327	if (dyn_buckets > 65536)
1328		dyn_buckets = 1024;
1329	if ((dyn_buckets & (dyn_buckets-1)) != 0) { /* not a power of 2 */
1330		dyn_buckets = curr_dyn_buckets; /* reset */
1331		return;
1332	}
1333	curr_dyn_buckets = dyn_buckets;
1334	if (ipfw_dyn_v != NULL)
1335		free(ipfw_dyn_v, M_IPFW);
1336	for (;;) {
1337		ipfw_dyn_v = malloc(curr_dyn_buckets * sizeof(ipfw_dyn_rule *),
1338		       M_IPFW, M_NOWAIT | M_ZERO);
1339		if (ipfw_dyn_v != NULL || curr_dyn_buckets <= 2)
1340			break;
1341		curr_dyn_buckets /= 2;
1342	}
1343}
1344
1345/**
1346 * Install state of type 'type' for a dynamic session.
1347 * The hash table contains two type of rules:
1348 * - regular rules (O_KEEP_STATE)
1349 * - rules for sessions with limited number of sess per user
1350 *   (O_LIMIT). When they are created, the parent is
1351 *   increased by 1, and decreased on delete. In this case,
1352 *   the third parameter is the parent rule and not the chain.
1353 * - "parent" rules for the above (O_LIMIT_PARENT).
1354 */
1355static ipfw_dyn_rule *
1356add_dyn_rule(struct ipfw_flow_id *id, u_int8_t dyn_type, struct ip_fw *rule)
1357{
1358	ipfw_dyn_rule *r;
1359	int i;
1360
1361	IPFW_DYN_LOCK_ASSERT();
1362
1363	if (ipfw_dyn_v == NULL ||
1364	    (dyn_count == 0 && dyn_buckets != curr_dyn_buckets)) {
1365		realloc_dynamic_table();
1366		if (ipfw_dyn_v == NULL)
1367			return NULL; /* failed ! */
1368	}
1369	i = hash_packet(id);
1370
1371	r = uma_zalloc(ipfw_dyn_rule_zone, M_NOWAIT | M_ZERO);
1372	if (r == NULL) {
1373		printf ("ipfw: sorry cannot allocate state\n");
1374		return NULL;
1375	}
1376
1377	/* increase refcount on parent, and set pointer */
1378	if (dyn_type == O_LIMIT) {
1379		ipfw_dyn_rule *parent = (ipfw_dyn_rule *)rule;
1380		if ( parent->dyn_type != O_LIMIT_PARENT)
1381			panic("invalid parent");
1382		parent->count++;
1383		r->parent = parent;
1384		rule = parent->rule;
1385	}
1386
1387	r->id = *id;
1388	r->expire = time_uptime + dyn_syn_lifetime;
1389	r->rule = rule;
1390	r->dyn_type = dyn_type;
1391	r->pcnt = r->bcnt = 0;
1392	r->count = 0;
1393
1394	r->bucket = i;
1395	r->next = ipfw_dyn_v[i];
1396	ipfw_dyn_v[i] = r;
1397	dyn_count++;
1398	DEB(printf("ipfw: add dyn entry ty %d 0x%08x %d -> 0x%08x %d, total %d\n",
1399	   dyn_type,
1400	   (r->id.src_ip), (r->id.src_port),
1401	   (r->id.dst_ip), (r->id.dst_port),
1402	   dyn_count ); )
1403	return r;
1404}
1405
1406/**
1407 * lookup dynamic parent rule using pkt and rule as search keys.
1408 * If the lookup fails, then install one.
1409 */
1410static ipfw_dyn_rule *
1411lookup_dyn_parent(struct ipfw_flow_id *pkt, struct ip_fw *rule)
1412{
1413	ipfw_dyn_rule *q;
1414	int i;
1415
1416	IPFW_DYN_LOCK_ASSERT();
1417
1418	if (ipfw_dyn_v) {
1419		int is_v6 = IS_IP6_FLOW_ID(pkt);
1420		i = hash_packet( pkt );
1421		for (q = ipfw_dyn_v[i] ; q != NULL ; q=q->next)
1422			if (q->dyn_type == O_LIMIT_PARENT &&
1423			    rule== q->rule &&
1424			    pkt->proto == q->id.proto &&
1425			    pkt->src_port == q->id.src_port &&
1426			    pkt->dst_port == q->id.dst_port &&
1427			    (
1428				(is_v6 &&
1429				 IN6_ARE_ADDR_EQUAL(&(pkt->src_ip6),
1430					&(q->id.src_ip6)) &&
1431				 IN6_ARE_ADDR_EQUAL(&(pkt->dst_ip6),
1432					&(q->id.dst_ip6))) ||
1433				(!is_v6 &&
1434				 pkt->src_ip == q->id.src_ip &&
1435				 pkt->dst_ip == q->id.dst_ip)
1436			    )
1437			) {
1438				q->expire = time_uptime + dyn_short_lifetime;
1439				DEB(printf("ipfw: lookup_dyn_parent found 0x%p\n",q);)
1440				return q;
1441			}
1442	}
1443	return add_dyn_rule(pkt, O_LIMIT_PARENT, rule);
1444}
1445
1446/**
1447 * Install dynamic state for rule type cmd->o.opcode
1448 *
1449 * Returns 1 (failure) if state is not installed because of errors or because
1450 * session limitations are enforced.
1451 */
1452static int
1453install_state(struct ip_fw *rule, ipfw_insn_limit *cmd,
1454    struct ip_fw_args *args, uint32_t tablearg)
1455{
1456	static int last_log;
1457	ipfw_dyn_rule *q;
1458	struct in_addr da;
1459	char src[48], dst[48];
1460
1461	src[0] = '\0';
1462	dst[0] = '\0';
1463
1464	DEB(
1465	printf("ipfw: %s: type %d 0x%08x %u -> 0x%08x %u\n",
1466	    __func__, cmd->o.opcode,
1467	    (args->f_id.src_ip), (args->f_id.src_port),
1468	    (args->f_id.dst_ip), (args->f_id.dst_port));
1469	)
1470
1471	IPFW_DYN_LOCK();
1472
1473	q = lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
1474
1475	if (q != NULL) {	/* should never occur */
1476		if (last_log != time_uptime) {
1477			last_log = time_uptime;
1478			printf("ipfw: %s: entry already present, done\n",
1479			    __func__);
1480		}
1481		IPFW_DYN_UNLOCK();
1482		return (0);
1483	}
1484
1485	if (dyn_count >= dyn_max)
1486		/* Run out of slots, try to remove any expired rule. */
1487		remove_dyn_rule(NULL, (ipfw_dyn_rule *)1);
1488
1489	if (dyn_count >= dyn_max) {
1490		if (last_log != time_uptime) {
1491			last_log = time_uptime;
1492			printf("ipfw: %s: Too many dynamic rules\n", __func__);
1493		}
1494		IPFW_DYN_UNLOCK();
1495		return (1);	/* cannot install, notify caller */
1496	}
1497
1498	switch (cmd->o.opcode) {
1499	case O_KEEP_STATE:	/* bidir rule */
1500		add_dyn_rule(&args->f_id, O_KEEP_STATE, rule);
1501		break;
1502
1503	case O_LIMIT: {		/* limit number of sessions */
1504		struct ipfw_flow_id id;
1505		ipfw_dyn_rule *parent;
1506		uint32_t conn_limit;
1507		uint16_t limit_mask = cmd->limit_mask;
1508
1509		conn_limit = (cmd->conn_limit == IP_FW_TABLEARG) ?
1510		    tablearg : cmd->conn_limit;
1511
1512		DEB(
1513		if (cmd->conn_limit == IP_FW_TABLEARG)
1514			printf("ipfw: %s: O_LIMIT rule, conn_limit: %u "
1515			    "(tablearg)\n", __func__, conn_limit);
1516		else
1517			printf("ipfw: %s: O_LIMIT rule, conn_limit: %u\n",
1518			    __func__, conn_limit);
1519		)
1520
1521		id.dst_ip = id.src_ip = id.dst_port = id.src_port = 0;
1522		id.proto = args->f_id.proto;
1523		id.addr_type = args->f_id.addr_type;
1524
1525		if (IS_IP6_FLOW_ID (&(args->f_id))) {
1526			if (limit_mask & DYN_SRC_ADDR)
1527				id.src_ip6 = args->f_id.src_ip6;
1528			if (limit_mask & DYN_DST_ADDR)
1529				id.dst_ip6 = args->f_id.dst_ip6;
1530		} else {
1531			if (limit_mask & DYN_SRC_ADDR)
1532				id.src_ip = args->f_id.src_ip;
1533			if (limit_mask & DYN_DST_ADDR)
1534				id.dst_ip = args->f_id.dst_ip;
1535		}
1536		if (limit_mask & DYN_SRC_PORT)
1537			id.src_port = args->f_id.src_port;
1538		if (limit_mask & DYN_DST_PORT)
1539			id.dst_port = args->f_id.dst_port;
1540		if ((parent = lookup_dyn_parent(&id, rule)) == NULL) {
1541			printf("ipfw: %s: add parent failed\n", __func__);
1542			IPFW_DYN_UNLOCK();
1543			return (1);
1544		}
1545
1546		if (parent->count >= conn_limit) {
1547			/* See if we can remove some expired rule. */
1548			remove_dyn_rule(rule, parent);
1549			if (parent->count >= conn_limit) {
1550				if (fw_verbose && last_log != time_uptime) {
1551					last_log = time_uptime;
1552#ifdef INET6
1553					/*
1554					 * XXX IPv6 flows are not
1555					 * supported yet.
1556					 */
1557					if (IS_IP6_FLOW_ID(&(args->f_id))) {
1558						char ip6buf[INET6_ADDRSTRLEN];
1559						snprintf(src, sizeof(src),
1560						    "[%s]", ip6_sprintf(ip6buf,
1561							&args->f_id.src_ip6));
1562						snprintf(dst, sizeof(dst),
1563						    "[%s]", ip6_sprintf(ip6buf,
1564							&args->f_id.dst_ip6));
1565					} else
1566#endif
1567					{
1568						da.s_addr =
1569						    htonl(args->f_id.src_ip);
1570						inet_ntoa_r(da, src);
1571						da.s_addr =
1572						    htonl(args->f_id.dst_ip);
1573						inet_ntoa_r(da, dst);
1574					}
1575					log(LOG_SECURITY | LOG_DEBUG,
1576					    "%s %s:%u -> %s:%u, %s\n",
1577					    "drop session",
1578					    src, (args->f_id.src_port),
1579					    dst, (args->f_id.dst_port),
1580					    "too many entries");
1581				}
1582				IPFW_DYN_UNLOCK();
1583				return (1);
1584			}
1585		}
1586		add_dyn_rule(&args->f_id, O_LIMIT, (struct ip_fw *)parent);
1587		break;
1588	}
1589	default:
1590		printf("ipfw: %s: unknown dynamic rule type %u\n",
1591		    __func__, cmd->o.opcode);
1592		IPFW_DYN_UNLOCK();
1593		return (1);
1594	}
1595
1596	/* XXX just set lifetime */
1597	lookup_dyn_rule_locked(&args->f_id, NULL, NULL);
1598
1599	IPFW_DYN_UNLOCK();
1600	return (0);
1601}
1602
1603/*
1604 * Generate a TCP packet, containing either a RST or a keepalive.
1605 * When flags & TH_RST, we are sending a RST packet, because of a
1606 * "reset" action matched the packet.
1607 * Otherwise we are sending a keepalive, and flags & TH_
1608 * The 'replyto' mbuf is the mbuf being replied to, if any, and is required
1609 * so that MAC can label the reply appropriately.
1610 */
1611static struct mbuf *
1612send_pkt(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t seq,
1613    u_int32_t ack, int flags)
1614{
1615	struct mbuf *m;
1616	struct ip *ip;
1617	struct tcphdr *tcp;
1618
1619	MGETHDR(m, M_DONTWAIT, MT_DATA);
1620	if (m == 0)
1621		return (NULL);
1622	m->m_pkthdr.rcvif = (struct ifnet *)0;
1623
1624#ifdef MAC
1625	if (replyto != NULL)
1626		mac_create_mbuf_netlayer(replyto, m);
1627	else
1628		mac_create_mbuf_from_firewall(m);
1629#else
1630	(void)replyto;		/* don't warn about unused arg */
1631#endif
1632
1633	m->m_pkthdr.len = m->m_len = sizeof(struct ip) + sizeof(struct tcphdr);
1634	m->m_data += max_linkhdr;
1635
1636	ip = mtod(m, struct ip *);
1637	bzero(ip, m->m_len);
1638	tcp = (struct tcphdr *)(ip + 1); /* no IP options */
1639	ip->ip_p = IPPROTO_TCP;
1640	tcp->th_off = 5;
1641	/*
1642	 * Assume we are sending a RST (or a keepalive in the reverse
1643	 * direction), swap src and destination addresses and ports.
1644	 */
1645	ip->ip_src.s_addr = htonl(id->dst_ip);
1646	ip->ip_dst.s_addr = htonl(id->src_ip);
1647	tcp->th_sport = htons(id->dst_port);
1648	tcp->th_dport = htons(id->src_port);
1649	if (flags & TH_RST) {	/* we are sending a RST */
1650		if (flags & TH_ACK) {
1651			tcp->th_seq = htonl(ack);
1652			tcp->th_ack = htonl(0);
1653			tcp->th_flags = TH_RST;
1654		} else {
1655			if (flags & TH_SYN)
1656				seq++;
1657			tcp->th_seq = htonl(0);
1658			tcp->th_ack = htonl(seq);
1659			tcp->th_flags = TH_RST | TH_ACK;
1660		}
1661	} else {
1662		/*
1663		 * We are sending a keepalive. flags & TH_SYN determines
1664		 * the direction, forward if set, reverse if clear.
1665		 * NOTE: seq and ack are always assumed to be correct
1666		 * as set by the caller. This may be confusing...
1667		 */
1668		if (flags & TH_SYN) {
1669			/*
1670			 * we have to rewrite the correct addresses!
1671			 */
1672			ip->ip_dst.s_addr = htonl(id->dst_ip);
1673			ip->ip_src.s_addr = htonl(id->src_ip);
1674			tcp->th_dport = htons(id->dst_port);
1675			tcp->th_sport = htons(id->src_port);
1676		}
1677		tcp->th_seq = htonl(seq);
1678		tcp->th_ack = htonl(ack);
1679		tcp->th_flags = TH_ACK;
1680	}
1681	/*
1682	 * set ip_len to the payload size so we can compute
1683	 * the tcp checksum on the pseudoheader
1684	 * XXX check this, could save a couple of words ?
1685	 */
1686	ip->ip_len = htons(sizeof(struct tcphdr));
1687	tcp->th_sum = in_cksum(m, m->m_pkthdr.len);
1688	/*
1689	 * now fill fields left out earlier
1690	 */
1691	ip->ip_ttl = ip_defttl;
1692	ip->ip_len = m->m_pkthdr.len;
1693	m->m_flags |= M_SKIP_FIREWALL;
1694	return (m);
1695}
1696
1697/*
1698 * sends a reject message, consuming the mbuf passed as an argument.
1699 */
1700static void
1701send_reject(struct ip_fw_args *args, int code, int ip_len, struct ip *ip)
1702{
1703
1704#if 0
1705	/* XXX When ip is not guaranteed to be at mtod() we will
1706	 * need to account for this */
1707	 * The mbuf will however be thrown away so we can adjust it.
1708	 * Remember we did an m_pullup on it already so we
1709	 * can make some assumptions about contiguousness.
1710	 */
1711	if (args->L3offset)
1712		m_adj(m, args->L3offset);
1713#endif
1714	if (code != ICMP_REJECT_RST) { /* Send an ICMP unreach */
1715		/* We need the IP header in host order for icmp_error(). */
1716		if (args->eh != NULL) {
1717			ip->ip_len = ntohs(ip->ip_len);
1718			ip->ip_off = ntohs(ip->ip_off);
1719		}
1720		icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
1721	} else if (args->f_id.proto == IPPROTO_TCP) {
1722		struct tcphdr *const tcp =
1723		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
1724		if ( (tcp->th_flags & TH_RST) == 0) {
1725			struct mbuf *m;
1726			m = send_pkt(args->m, &(args->f_id),
1727				ntohl(tcp->th_seq), ntohl(tcp->th_ack),
1728				tcp->th_flags | TH_RST);
1729			if (m != NULL)
1730				ip_output(m, NULL, NULL, 0, NULL, NULL);
1731		}
1732		m_freem(args->m);
1733	} else
1734		m_freem(args->m);
1735	args->m = NULL;
1736}
1737
1738/**
1739 *
1740 * Given an ip_fw *, lookup_next_rule will return a pointer
1741 * to the next rule, which can be either the jump
1742 * target (for skipto instructions) or the next one in the list (in
1743 * all other cases including a missing jump target).
1744 * The result is also written in the "next_rule" field of the rule.
1745 * Backward jumps are not allowed, so start looking from the next
1746 * rule...
1747 *
1748 * This never returns NULL -- in case we do not have an exact match,
1749 * the next rule is returned. When the ruleset is changed,
1750 * pointers are flushed so we are always correct.
1751 */
1752
1753static struct ip_fw *
1754lookup_next_rule(struct ip_fw *me)
1755{
1756	struct ip_fw *rule = NULL;
1757	ipfw_insn *cmd;
1758
1759	/* look for action, in case it is a skipto */
1760	cmd = ACTION_PTR(me);
1761	if (cmd->opcode == O_LOG)
1762		cmd += F_LEN(cmd);
1763	if (cmd->opcode == O_ALTQ)
1764		cmd += F_LEN(cmd);
1765	if (cmd->opcode == O_TAG)
1766		cmd += F_LEN(cmd);
1767	if ( cmd->opcode == O_SKIPTO )
1768		for (rule = me->next; rule ; rule = rule->next)
1769			if (rule->rulenum >= cmd->arg1)
1770				break;
1771	if (rule == NULL)			/* failure or not a skipto */
1772		rule = me->next;
1773	me->next_rule = rule;
1774	return rule;
1775}
1776
1777static int
1778add_table_entry(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1779	uint8_t mlen, uint32_t value)
1780{
1781	struct radix_node_head *rnh;
1782	struct table_entry *ent;
1783
1784	if (tbl >= IPFW_TABLES_MAX)
1785		return (EINVAL);
1786	rnh = ch->tables[tbl];
1787	ent = malloc(sizeof(*ent), M_IPFW_TBL, M_NOWAIT | M_ZERO);
1788	if (ent == NULL)
1789		return (ENOMEM);
1790	ent->value = value;
1791	ent->addr.sin_len = ent->mask.sin_len = 8;
1792	ent->mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1793	ent->addr.sin_addr.s_addr = addr & ent->mask.sin_addr.s_addr;
1794	IPFW_WLOCK(&layer3_chain);
1795	if (rnh->rnh_addaddr(&ent->addr, &ent->mask, rnh, (void *)ent) ==
1796	    NULL) {
1797		IPFW_WUNLOCK(&layer3_chain);
1798		free(ent, M_IPFW_TBL);
1799		return (EEXIST);
1800	}
1801	IPFW_WUNLOCK(&layer3_chain);
1802	return (0);
1803}
1804
1805static int
1806del_table_entry(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1807	uint8_t mlen)
1808{
1809	struct radix_node_head *rnh;
1810	struct table_entry *ent;
1811	struct sockaddr_in sa, mask;
1812
1813	if (tbl >= IPFW_TABLES_MAX)
1814		return (EINVAL);
1815	rnh = ch->tables[tbl];
1816	sa.sin_len = mask.sin_len = 8;
1817	mask.sin_addr.s_addr = htonl(mlen ? ~((1 << (32 - mlen)) - 1) : 0);
1818	sa.sin_addr.s_addr = addr & mask.sin_addr.s_addr;
1819	IPFW_WLOCK(ch);
1820	ent = (struct table_entry *)rnh->rnh_deladdr(&sa, &mask, rnh);
1821	if (ent == NULL) {
1822		IPFW_WUNLOCK(ch);
1823		return (ESRCH);
1824	}
1825	IPFW_WUNLOCK(ch);
1826	free(ent, M_IPFW_TBL);
1827	return (0);
1828}
1829
1830static int
1831flush_table_entry(struct radix_node *rn, void *arg)
1832{
1833	struct radix_node_head * const rnh = arg;
1834	struct table_entry *ent;
1835
1836	ent = (struct table_entry *)
1837	    rnh->rnh_deladdr(rn->rn_key, rn->rn_mask, rnh);
1838	if (ent != NULL)
1839		free(ent, M_IPFW_TBL);
1840	return (0);
1841}
1842
1843static int
1844flush_table(struct ip_fw_chain *ch, uint16_t tbl)
1845{
1846	struct radix_node_head *rnh;
1847
1848	IPFW_WLOCK_ASSERT(ch);
1849
1850	if (tbl >= IPFW_TABLES_MAX)
1851		return (EINVAL);
1852	rnh = ch->tables[tbl];
1853	KASSERT(rnh != NULL, ("NULL IPFW table"));
1854	rnh->rnh_walktree(rnh, flush_table_entry, rnh);
1855	return (0);
1856}
1857
1858static void
1859flush_tables(struct ip_fw_chain *ch)
1860{
1861	uint16_t tbl;
1862
1863	IPFW_WLOCK_ASSERT(ch);
1864
1865	for (tbl = 0; tbl < IPFW_TABLES_MAX; tbl++)
1866		flush_table(ch, tbl);
1867}
1868
1869static int
1870init_tables(struct ip_fw_chain *ch)
1871{
1872	int i;
1873	uint16_t j;
1874
1875	for (i = 0; i < IPFW_TABLES_MAX; i++) {
1876		if (!rn_inithead((void **)&ch->tables[i], 32)) {
1877			for (j = 0; j < i; j++) {
1878				(void) flush_table(ch, j);
1879			}
1880			return (ENOMEM);
1881		}
1882	}
1883	return (0);
1884}
1885
1886static int
1887lookup_table(struct ip_fw_chain *ch, uint16_t tbl, in_addr_t addr,
1888	uint32_t *val)
1889{
1890	struct radix_node_head *rnh;
1891	struct table_entry *ent;
1892	struct sockaddr_in sa;
1893
1894	if (tbl >= IPFW_TABLES_MAX)
1895		return (0);
1896	rnh = ch->tables[tbl];
1897	sa.sin_len = 8;
1898	sa.sin_addr.s_addr = addr;
1899	ent = (struct table_entry *)(rnh->rnh_lookup(&sa, NULL, rnh));
1900	if (ent != NULL) {
1901		*val = ent->value;
1902		return (1);
1903	}
1904	return (0);
1905}
1906
1907static int
1908count_table_entry(struct radix_node *rn, void *arg)
1909{
1910	u_int32_t * const cnt = arg;
1911
1912	(*cnt)++;
1913	return (0);
1914}
1915
1916static int
1917count_table(struct ip_fw_chain *ch, uint32_t tbl, uint32_t *cnt)
1918{
1919	struct radix_node_head *rnh;
1920
1921	if (tbl >= IPFW_TABLES_MAX)
1922		return (EINVAL);
1923	rnh = ch->tables[tbl];
1924	*cnt = 0;
1925	rnh->rnh_walktree(rnh, count_table_entry, cnt);
1926	return (0);
1927}
1928
1929static int
1930dump_table_entry(struct radix_node *rn, void *arg)
1931{
1932	struct table_entry * const n = (struct table_entry *)rn;
1933	ipfw_table * const tbl = arg;
1934	ipfw_table_entry *ent;
1935
1936	if (tbl->cnt == tbl->size)
1937		return (1);
1938	ent = &tbl->ent[tbl->cnt];
1939	ent->tbl = tbl->tbl;
1940	if (in_nullhost(n->mask.sin_addr))
1941		ent->masklen = 0;
1942	else
1943		ent->masklen = 33 - ffs(ntohl(n->mask.sin_addr.s_addr));
1944	ent->addr = n->addr.sin_addr.s_addr;
1945	ent->value = n->value;
1946	tbl->cnt++;
1947	return (0);
1948}
1949
1950static int
1951dump_table(struct ip_fw_chain *ch, ipfw_table *tbl)
1952{
1953	struct radix_node_head *rnh;
1954
1955	if (tbl->tbl >= IPFW_TABLES_MAX)
1956		return (EINVAL);
1957	rnh = ch->tables[tbl->tbl];
1958	tbl->cnt = 0;
1959	rnh->rnh_walktree(rnh, dump_table_entry, tbl);
1960	return (0);
1961}
1962
1963static void
1964fill_ugid_cache(struct inpcb *inp, struct ip_fw_ugid *ugp)
1965{
1966	struct ucred *cr;
1967
1968	if (inp->inp_socket != NULL) {
1969		cr = inp->inp_socket->so_cred;
1970		ugp->fw_prid = jailed(cr) ?
1971		    cr->cr_prison->pr_id : -1;
1972		ugp->fw_uid = cr->cr_uid;
1973		ugp->fw_ngroups = cr->cr_ngroups;
1974		bcopy(cr->cr_groups, ugp->fw_groups,
1975		    sizeof(ugp->fw_groups));
1976	}
1977}
1978
1979static int
1980check_uidgid(ipfw_insn_u32 *insn,
1981	int proto, struct ifnet *oif,
1982	struct in_addr dst_ip, u_int16_t dst_port,
1983	struct in_addr src_ip, u_int16_t src_port,
1984	struct ip_fw_ugid *ugp, int *lookup, struct inpcb *inp)
1985{
1986	struct inpcbinfo *pi;
1987	int wildcard;
1988	struct inpcb *pcb;
1989	int match;
1990	gid_t *gp;
1991
1992	/*
1993	 * Check to see if the UDP or TCP stack supplied us with
1994	 * the PCB. If so, rather then holding a lock and looking
1995	 * up the PCB, we can use the one that was supplied.
1996	 */
1997	if (inp && *lookup == 0) {
1998		INP_LOCK_ASSERT(inp);
1999		if (inp->inp_socket != NULL) {
2000			fill_ugid_cache(inp, ugp);
2001			*lookup = 1;
2002		}
2003	}
2004	/*
2005	 * If we have already been here and the packet has no
2006	 * PCB entry associated with it, then we can safely
2007	 * assume that this is a no match.
2008	 */
2009	if (*lookup == -1)
2010		return (0);
2011	if (proto == IPPROTO_TCP) {
2012		wildcard = 0;
2013		pi = &tcbinfo;
2014	} else if (proto == IPPROTO_UDP) {
2015		wildcard = INPLOOKUP_WILDCARD;
2016		pi = &udbinfo;
2017	} else
2018		return 0;
2019	match = 0;
2020	if (*lookup == 0) {
2021		INP_INFO_RLOCK(pi);
2022		pcb =  (oif) ?
2023			in_pcblookup_hash(pi,
2024				dst_ip, htons(dst_port),
2025				src_ip, htons(src_port),
2026				wildcard, oif) :
2027			in_pcblookup_hash(pi,
2028				src_ip, htons(src_port),
2029				dst_ip, htons(dst_port),
2030				wildcard, NULL);
2031		if (pcb != NULL) {
2032			INP_LOCK(pcb);
2033			if (pcb->inp_socket != NULL) {
2034				fill_ugid_cache(pcb, ugp);
2035				*lookup = 1;
2036			}
2037			INP_UNLOCK(pcb);
2038		}
2039		INP_INFO_RUNLOCK(pi);
2040		if (*lookup == 0) {
2041			/*
2042			 * If the lookup did not yield any results, there
2043			 * is no sense in coming back and trying again. So
2044			 * we can set lookup to -1 and ensure that we wont
2045			 * bother the pcb system again.
2046			 */
2047			*lookup = -1;
2048			return (0);
2049		}
2050	}
2051	if (insn->o.opcode == O_UID)
2052		match = (ugp->fw_uid == (uid_t)insn->d[0]);
2053	else if (insn->o.opcode == O_GID) {
2054		for (gp = ugp->fw_groups;
2055			gp < &ugp->fw_groups[ugp->fw_ngroups]; gp++)
2056			if (*gp == (gid_t)insn->d[0]) {
2057				match = 1;
2058				break;
2059			}
2060	} else if (insn->o.opcode == O_JAIL)
2061		match = (ugp->fw_prid == (int)insn->d[0]);
2062	return match;
2063}
2064
2065#ifdef IPFIREWALL_NAT
2066static eventhandler_tag ifaddr_event_tag;
2067
2068static void
2069ifaddr_change(void *arg __unused, struct ifnet *ifp) {
2070	struct cfg_nat *ptr;
2071	struct ifaddr *ifa;
2072
2073	IPFW_WLOCK(&layer3_chain);
2074	/* Check every nat entry... */
2075	LIST_FOREACH(ptr, &layer3_chain.nat, _next) {
2076		/* ...using nic 'ifp->if_xname' as dynamic alias address. */
2077		if (strncmp(ptr->if_name, ifp->if_xname, IF_NAMESIZE) == 0) {
2078			mtx_lock(&ifp->if_addr_mtx);
2079			TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
2080				if (ifa->ifa_addr == NULL)
2081					continue;
2082				if (ifa->ifa_addr->sa_family != AF_INET)
2083					continue;
2084				ptr->ip = ((struct sockaddr_in *)
2085				    (ifa->ifa_addr))->sin_addr;
2086				LibAliasSetAddress(ptr->lib, ptr->ip);
2087			}
2088			mtx_unlock(&ifp->if_addr_mtx);
2089		}
2090	}
2091	IPFW_WUNLOCK(&layer3_chain);
2092}
2093
2094static void
2095flush_nat_ptrs(const int i) {
2096	struct ip_fw *rule;
2097
2098	IPFW_WLOCK_ASSERT(&layer3_chain);
2099	for (rule = layer3_chain.rules; rule; rule = rule->next) {
2100		ipfw_insn_nat *cmd = (ipfw_insn_nat *)ACTION_PTR(rule);
2101		if (cmd->o.opcode != O_NAT)
2102			continue;
2103		if (cmd->nat != NULL && cmd->nat->id == i)
2104			cmd->nat = NULL;
2105	}
2106}
2107
2108static struct cfg_nat *
2109lookup_nat(const int i) {
2110	struct cfg_nat *ptr;
2111
2112	LIST_FOREACH(ptr, &layer3_chain.nat, _next)
2113		if (ptr->id == i)
2114			return(ptr);
2115	return (NULL);
2116}
2117
2118#define HOOK_NAT(b, p) do {                                     \
2119	IPFW_WLOCK_ASSERT(&layer3_chain);                       \
2120        LIST_INSERT_HEAD(b, p, _next);                          \
2121} while (0)
2122
2123#define UNHOOK_NAT(p) do {                                      \
2124	IPFW_WLOCK_ASSERT(&layer3_chain);                       \
2125        LIST_REMOVE(p, _next);                                  \
2126} while (0)
2127
2128#define HOOK_REDIR(b, p) do {                                   \
2129        LIST_INSERT_HEAD(b, p, _next);                          \
2130} while (0)
2131
2132#define HOOK_SPOOL(b, p) do {                                   \
2133        LIST_INSERT_HEAD(b, p, _next);                          \
2134} while (0)
2135
2136static void
2137del_redir_spool_cfg(struct cfg_nat *n, struct redir_chain *head) {
2138	struct cfg_redir *r, *tmp_r;
2139	struct cfg_spool *s, *tmp_s;
2140	int i, num;
2141
2142	LIST_FOREACH_SAFE(r, head, _next, tmp_r) {
2143		num = 1; /* Number of alias_link to delete. */
2144		switch (r->mode) {
2145		case REDIR_PORT:
2146			num = r->pport_cnt;
2147			/* FALLTHROUGH */
2148		case REDIR_ADDR:
2149		case REDIR_PROTO:
2150			/* Delete all libalias redirect entry. */
2151			for (i = 0; i < num; i++)
2152				LibAliasRedirectDelete(n->lib, r->alink[i]);
2153			/* Del spool cfg if any. */
2154			LIST_FOREACH_SAFE(s, &r->spool_chain, _next, tmp_s) {
2155				LIST_REMOVE(s, _next);
2156				free(s, M_IPFW);
2157			}
2158			free(r->alink, M_IPFW);
2159			LIST_REMOVE(r, _next);
2160			free(r, M_IPFW);
2161			break;
2162		default:
2163			printf("unknown redirect mode: %u\n", r->mode);
2164			/* XXX - panic?!?!? */
2165			break;
2166		}
2167	}
2168}
2169
2170static int
2171add_redir_spool_cfg(char *buf, struct cfg_nat *ptr) {
2172	struct cfg_redir *r, *ser_r;
2173	struct cfg_spool *s, *ser_s;
2174	int cnt, off, i;
2175	char *panic_err;
2176
2177	for (cnt = 0, off = 0; cnt < ptr->redir_cnt; cnt++) {
2178		ser_r = (struct cfg_redir *)&buf[off];
2179		r = malloc(SOF_REDIR, M_IPFW, M_WAITOK | M_ZERO);
2180		memcpy(r, ser_r, SOF_REDIR);
2181		LIST_INIT(&r->spool_chain);
2182		off += SOF_REDIR;
2183		r->alink = malloc(sizeof(struct alias_link *) * r->pport_cnt,
2184		    M_IPFW, M_WAITOK | M_ZERO);
2185		switch (r->mode) {
2186		case REDIR_ADDR:
2187			r->alink[0] = LibAliasRedirectAddr(ptr->lib, r->laddr,
2188			    r->paddr);
2189			break;
2190		case REDIR_PORT:
2191			for (i = 0 ; i < r->pport_cnt; i++) {
2192				/* If remotePort is all ports, set it to 0. */
2193				u_short remotePortCopy = r->rport + i;
2194				if (r->rport_cnt == 1 && r->rport == 0)
2195					remotePortCopy = 0;
2196				r->alink[i] = LibAliasRedirectPort(ptr->lib,
2197				    r->laddr, htons(r->lport + i), r->raddr,
2198				    htons(remotePortCopy), r->paddr,
2199				    htons(r->pport + i), r->proto);
2200				if (r->alink[i] == NULL) {
2201					r->alink[0] = NULL;
2202					break;
2203				}
2204			}
2205			break;
2206		case REDIR_PROTO:
2207			r->alink[0] = LibAliasRedirectProto(ptr->lib ,r->laddr,
2208			    r->raddr, r->paddr, r->proto);
2209			break;
2210		default:
2211			printf("unknown redirect mode: %u\n", r->mode);
2212			break;
2213		}
2214		if (r->alink[0] == NULL) {
2215			panic_err = "LibAliasRedirect* returned NULL";
2216			goto bad;
2217		} else /* LSNAT handling. */
2218			for (i = 0; i < r->spool_cnt; i++) {
2219				ser_s = (struct cfg_spool *)&buf[off];
2220				s = malloc(SOF_REDIR, M_IPFW,
2221				    M_WAITOK | M_ZERO);
2222				memcpy(s, ser_s, SOF_SPOOL);
2223				LibAliasAddServer(ptr->lib, r->alink[0],
2224				    s->addr, htons(s->port));
2225				off += SOF_SPOOL;
2226				/* Hook spool entry. */
2227				HOOK_SPOOL(&r->spool_chain, s);
2228			}
2229		/* And finally hook this redir entry. */
2230		HOOK_REDIR(&ptr->redir_chain, r);
2231	}
2232	return (1);
2233bad:
2234	/* something really bad happened: panic! */
2235	panic("%s\n", panic_err);
2236}
2237#endif
2238
2239/*
2240 * The main check routine for the firewall.
2241 *
2242 * All arguments are in args so we can modify them and return them
2243 * back to the caller.
2244 *
2245 * Parameters:
2246 *
2247 *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
2248 *		Starts with the IP header.
2249 *	args->eh (in)	Mac header if present, or NULL for layer3 packet.
2250 *	args->L3offset	Number of bytes bypassed if we came from L2.
2251 *			e.g. often sizeof(eh)  ** NOTYET **
2252 *	args->oif	Outgoing interface, or NULL if packet is incoming.
2253 *		The incoming interface is in the mbuf. (in)
2254 *	args->divert_rule (in/out)
2255 *		Skip up to the first rule past this rule number;
2256 *		upon return, non-zero port number for divert or tee.
2257 *
2258 *	args->rule	Pointer to the last matching rule (in/out)
2259 *	args->next_hop	Socket we are forwarding to (out).
2260 *	args->f_id	Addresses grabbed from the packet (out)
2261 * 	args->cookie	a cookie depending on rule action
2262 *
2263 * Return value:
2264 *
2265 *	IP_FW_PASS	the packet must be accepted
2266 *	IP_FW_DENY	the packet must be dropped
2267 *	IP_FW_DIVERT	divert packet, port in m_tag
2268 *	IP_FW_TEE	tee packet, port in m_tag
2269 *	IP_FW_DUMMYNET	to dummynet, pipe in args->cookie
2270 *	IP_FW_NETGRAPH	into netgraph, cookie args->cookie
2271 *
2272 */
2273int
2274ipfw_chk(struct ip_fw_args *args)
2275{
2276	/*
2277	 * Local variables holding state during the processing of a packet:
2278	 *
2279	 * IMPORTANT NOTE: to speed up the processing of rules, there
2280	 * are some assumption on the values of the variables, which
2281	 * are documented here. Should you change them, please check
2282	 * the implementation of the various instructions to make sure
2283	 * that they still work.
2284	 *
2285	 * args->eh	The MAC header. It is non-null for a layer2
2286	 *	packet, it is NULL for a layer-3 packet.
2287	 * **notyet**
2288	 * args->L3offset Offset in the packet to the L3 (IP or equiv.) header.
2289	 *
2290	 * m | args->m	Pointer to the mbuf, as received from the caller.
2291	 *	It may change if ipfw_chk() does an m_pullup, or if it
2292	 *	consumes the packet because it calls send_reject().
2293	 *	XXX This has to change, so that ipfw_chk() never modifies
2294	 *	or consumes the buffer.
2295	 * ip	is the beginning of the ip(4 or 6) header.
2296	 *	Calculated by adding the L3offset to the start of data.
2297	 *	(Until we start using L3offset, the packet is
2298	 *	supposed to start with the ip header).
2299	 */
2300	struct mbuf *m = args->m;
2301	struct ip *ip = mtod(m, struct ip *);
2302
2303	/*
2304	 * For rules which contain uid/gid or jail constraints, cache
2305	 * a copy of the users credentials after the pcb lookup has been
2306	 * executed. This will speed up the processing of rules with
2307	 * these types of constraints, as well as decrease contention
2308	 * on pcb related locks.
2309	 */
2310	struct ip_fw_ugid fw_ugid_cache;
2311	int ugid_lookup = 0;
2312
2313	/*
2314	 * divinput_flags	If non-zero, set to the IP_FW_DIVERT_*_FLAG
2315	 *	associated with a packet input on a divert socket.  This
2316	 *	will allow to distinguish traffic and its direction when
2317	 *	it originates from a divert socket.
2318	 */
2319	u_int divinput_flags = 0;
2320
2321	/*
2322	 * oif | args->oif	If NULL, ipfw_chk has been called on the
2323	 *	inbound path (ether_input, ip_input).
2324	 *	If non-NULL, ipfw_chk has been called on the outbound path
2325	 *	(ether_output, ip_output).
2326	 */
2327	struct ifnet *oif = args->oif;
2328
2329	struct ip_fw *f = NULL;		/* matching rule */
2330	int retval = 0;
2331
2332	/*
2333	 * hlen	The length of the IP header.
2334	 */
2335	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
2336
2337	/*
2338	 * offset	The offset of a fragment. offset != 0 means that
2339	 *	we have a fragment at this offset of an IPv4 packet.
2340	 *	offset == 0 means that (if this is an IPv4 packet)
2341	 *	this is the first or only fragment.
2342	 *	For IPv6 offset == 0 means there is no Fragment Header.
2343	 *	If offset != 0 for IPv6 always use correct mask to
2344	 *	get the correct offset because we add IP6F_MORE_FRAG
2345	 *	to be able to dectect the first fragment which would
2346	 *	otherwise have offset = 0.
2347	 */
2348	u_short offset = 0;
2349
2350	/*
2351	 * Local copies of addresses. They are only valid if we have
2352	 * an IP packet.
2353	 *
2354	 * proto	The protocol. Set to 0 for non-ip packets,
2355	 *	or to the protocol read from the packet otherwise.
2356	 *	proto != 0 means that we have an IPv4 packet.
2357	 *
2358	 * src_port, dst_port	port numbers, in HOST format. Only
2359	 *	valid for TCP and UDP packets.
2360	 *
2361	 * src_ip, dst_ip	ip addresses, in NETWORK format.
2362	 *	Only valid for IPv4 packets.
2363	 */
2364	u_int8_t proto;
2365	u_int16_t src_port = 0, dst_port = 0;	/* NOTE: host format	*/
2366	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
2367	u_int16_t ip_len=0;
2368	int pktlen;
2369	u_int16_t	etype = 0;	/* Host order stored ether type */
2370
2371	/*
2372	 * dyn_dir = MATCH_UNKNOWN when rules unchecked,
2373	 * 	MATCH_NONE when checked and not matched (q = NULL),
2374	 *	MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
2375	 */
2376	int dyn_dir = MATCH_UNKNOWN;
2377	ipfw_dyn_rule *q = NULL;
2378	struct ip_fw_chain *chain = &layer3_chain;
2379	struct m_tag *mtag;
2380
2381	/*
2382	 * We store in ulp a pointer to the upper layer protocol header.
2383	 * In the ipv4 case this is easy to determine from the header,
2384	 * but for ipv6 we might have some additional headers in the middle.
2385	 * ulp is NULL if not found.
2386	 */
2387	void *ulp = NULL;		/* upper layer protocol pointer. */
2388	/* XXX ipv6 variables */
2389	int is_ipv6 = 0;
2390	u_int16_t ext_hd = 0;	/* bits vector for extension header filtering */
2391	/* end of ipv6 variables */
2392	int is_ipv4 = 0;
2393
2394	if (m->m_flags & M_SKIP_FIREWALL)
2395		return (IP_FW_PASS);	/* accept */
2396
2397	pktlen = m->m_pkthdr.len;
2398	proto = args->f_id.proto = 0;	/* mark f_id invalid */
2399		/* XXX 0 is a valid proto: IP/IPv6 Hop-by-Hop Option */
2400
2401/*
2402 * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
2403 * then it sets p to point at the offset "len" in the mbuf. WARNING: the
2404 * pointer might become stale after other pullups (but we never use it
2405 * this way).
2406 */
2407#define PULLUP_TO(len, p, T)						\
2408do {									\
2409	int x = (len) + sizeof(T);					\
2410	if ((m)->m_len < x) {						\
2411		args->m = m = m_pullup(m, x);				\
2412		if (m == NULL)						\
2413			goto pullup_failed;				\
2414	}								\
2415	p = (mtod(m, char *) + (len));					\
2416} while (0)
2417
2418	/*
2419	 * if we have an ether header,
2420	 */
2421	if (args->eh)
2422		etype = ntohs(args->eh->ether_type);
2423
2424	/* Identify IP packets and fill up variables. */
2425	if (pktlen >= sizeof(struct ip6_hdr) &&
2426	    (args->eh == NULL || etype == ETHERTYPE_IPV6) && ip->ip_v == 6) {
2427		struct ip6_hdr *ip6 = (struct ip6_hdr *)ip;
2428		is_ipv6 = 1;
2429		args->f_id.addr_type = 6;
2430		hlen = sizeof(struct ip6_hdr);
2431		proto = ip6->ip6_nxt;
2432
2433		/* Search extension headers to find upper layer protocols */
2434		while (ulp == NULL) {
2435			switch (proto) {
2436			case IPPROTO_ICMPV6:
2437				PULLUP_TO(hlen, ulp, struct icmp6_hdr);
2438				args->f_id.flags = ICMP6(ulp)->icmp6_type;
2439				break;
2440
2441			case IPPROTO_TCP:
2442				PULLUP_TO(hlen, ulp, struct tcphdr);
2443				dst_port = TCP(ulp)->th_dport;
2444				src_port = TCP(ulp)->th_sport;
2445				args->f_id.flags = TCP(ulp)->th_flags;
2446				break;
2447
2448			case IPPROTO_SCTP:
2449				PULLUP_TO(hlen, ulp, struct sctphdr);
2450				src_port = SCTP(ulp)->src_port;
2451				dst_port = SCTP(ulp)->dest_port;
2452				break;
2453
2454			case IPPROTO_UDP:
2455				PULLUP_TO(hlen, ulp, struct udphdr);
2456				dst_port = UDP(ulp)->uh_dport;
2457				src_port = UDP(ulp)->uh_sport;
2458				break;
2459
2460			case IPPROTO_HOPOPTS:	/* RFC 2460 */
2461				PULLUP_TO(hlen, ulp, struct ip6_hbh);
2462				ext_hd |= EXT_HOPOPTS;
2463				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
2464				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
2465				ulp = NULL;
2466				break;
2467
2468			case IPPROTO_ROUTING:	/* RFC 2460 */
2469				PULLUP_TO(hlen, ulp, struct ip6_rthdr);
2470				switch (((struct ip6_rthdr *)ulp)->ip6r_type) {
2471				case 0:
2472					ext_hd |= EXT_RTHDR0;
2473					break;
2474				case 2:
2475					ext_hd |= EXT_RTHDR2;
2476					break;
2477				default:
2478					printf("IPFW2: IPV6 - Unknown Routing "
2479					    "Header type(%d)\n",
2480					    ((struct ip6_rthdr *)ulp)->ip6r_type);
2481					if (fw_deny_unknown_exthdrs)
2482					    return (IP_FW_DENY);
2483					break;
2484				}
2485				ext_hd |= EXT_ROUTING;
2486				hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
2487				proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
2488				ulp = NULL;
2489				break;
2490
2491			case IPPROTO_FRAGMENT:	/* RFC 2460 */
2492				PULLUP_TO(hlen, ulp, struct ip6_frag);
2493				ext_hd |= EXT_FRAGMENT;
2494				hlen += sizeof (struct ip6_frag);
2495				proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
2496				offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
2497					IP6F_OFF_MASK;
2498				/* Add IP6F_MORE_FRAG for offset of first
2499				 * fragment to be != 0. */
2500				offset |= ((struct ip6_frag *)ulp)->ip6f_offlg &
2501					IP6F_MORE_FRAG;
2502				if (offset == 0) {
2503					printf("IPFW2: IPV6 - Invalid Fragment "
2504					    "Header\n");
2505					if (fw_deny_unknown_exthdrs)
2506					    return (IP_FW_DENY);
2507					break;
2508				}
2509				args->f_id.frag_id6 =
2510				    ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
2511				ulp = NULL;
2512				break;
2513
2514			case IPPROTO_DSTOPTS:	/* RFC 2460 */
2515				PULLUP_TO(hlen, ulp, struct ip6_hbh);
2516				ext_hd |= EXT_DSTOPTS;
2517				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
2518				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
2519				ulp = NULL;
2520				break;
2521
2522			case IPPROTO_AH:	/* RFC 2402 */
2523				PULLUP_TO(hlen, ulp, struct ip6_ext);
2524				ext_hd |= EXT_AH;
2525				hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
2526				proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
2527				ulp = NULL;
2528				break;
2529
2530			case IPPROTO_ESP:	/* RFC 2406 */
2531				PULLUP_TO(hlen, ulp, uint32_t);	/* SPI, Seq# */
2532				/* Anything past Seq# is variable length and
2533				 * data past this ext. header is encrypted. */
2534				ext_hd |= EXT_ESP;
2535				break;
2536
2537			case IPPROTO_NONE:	/* RFC 2460 */
2538				PULLUP_TO(hlen, ulp, struct ip6_ext);
2539				/* Packet ends here. if ip6e_len!=0 octets
2540				 * must be ignored. */
2541				break;
2542
2543			case IPPROTO_OSPFIGP:
2544				/* XXX OSPF header check? */
2545				PULLUP_TO(hlen, ulp, struct ip6_ext);
2546				break;
2547
2548			case IPPROTO_PIM:
2549				/* XXX PIM header check? */
2550				PULLUP_TO(hlen, ulp, struct pim);
2551				break;
2552
2553			case IPPROTO_CARP:
2554				PULLUP_TO(hlen, ulp, struct carp_header);
2555				if (((struct carp_header *)ulp)->carp_version !=
2556				    CARP_VERSION)
2557					return (IP_FW_DENY);
2558				if (((struct carp_header *)ulp)->carp_type !=
2559				    CARP_ADVERTISEMENT)
2560					return (IP_FW_DENY);
2561				break;
2562
2563			case IPPROTO_IPV6:	/* RFC 2893 */
2564				PULLUP_TO(hlen, ulp, struct ip6_hdr);
2565				break;
2566
2567			case IPPROTO_IPV4:	/* RFC 2893 */
2568				PULLUP_TO(hlen, ulp, struct ip);
2569				break;
2570
2571			default:
2572				printf("IPFW2: IPV6 - Unknown Extension "
2573				    "Header(%d), ext_hd=%x\n", proto, ext_hd);
2574				if (fw_deny_unknown_exthdrs)
2575				    return (IP_FW_DENY);
2576				PULLUP_TO(hlen, ulp, struct ip6_ext);
2577				break;
2578			} /*switch */
2579		}
2580		ip = mtod(m, struct ip *);
2581		ip6 = (struct ip6_hdr *)ip;
2582		args->f_id.src_ip6 = ip6->ip6_src;
2583		args->f_id.dst_ip6 = ip6->ip6_dst;
2584		args->f_id.src_ip = 0;
2585		args->f_id.dst_ip = 0;
2586		args->f_id.flow_id6 = ntohl(ip6->ip6_flow);
2587	} else if (pktlen >= sizeof(struct ip) &&
2588	    (args->eh == NULL || etype == ETHERTYPE_IP) && ip->ip_v == 4) {
2589	    	is_ipv4 = 1;
2590		hlen = ip->ip_hl << 2;
2591		args->f_id.addr_type = 4;
2592
2593		/*
2594		 * Collect parameters into local variables for faster matching.
2595		 */
2596		proto = ip->ip_p;
2597		src_ip = ip->ip_src;
2598		dst_ip = ip->ip_dst;
2599		if (args->eh != NULL) { /* layer 2 packets are as on the wire */
2600			offset = ntohs(ip->ip_off) & IP_OFFMASK;
2601			ip_len = ntohs(ip->ip_len);
2602		} else {
2603			offset = ip->ip_off & IP_OFFMASK;
2604			ip_len = ip->ip_len;
2605		}
2606		pktlen = ip_len < pktlen ? ip_len : pktlen;
2607
2608		if (offset == 0) {
2609			switch (proto) {
2610			case IPPROTO_TCP:
2611				PULLUP_TO(hlen, ulp, struct tcphdr);
2612				dst_port = TCP(ulp)->th_dport;
2613				src_port = TCP(ulp)->th_sport;
2614				args->f_id.flags = TCP(ulp)->th_flags;
2615				break;
2616
2617			case IPPROTO_UDP:
2618				PULLUP_TO(hlen, ulp, struct udphdr);
2619				dst_port = UDP(ulp)->uh_dport;
2620				src_port = UDP(ulp)->uh_sport;
2621				break;
2622
2623			case IPPROTO_ICMP:
2624				PULLUP_TO(hlen, ulp, struct icmphdr);
2625				args->f_id.flags = ICMP(ulp)->icmp_type;
2626				break;
2627
2628			default:
2629				break;
2630			}
2631		}
2632
2633		ip = mtod(m, struct ip *);
2634		args->f_id.src_ip = ntohl(src_ip.s_addr);
2635		args->f_id.dst_ip = ntohl(dst_ip.s_addr);
2636	}
2637#undef PULLUP_TO
2638	if (proto) { /* we may have port numbers, store them */
2639		args->f_id.proto = proto;
2640		args->f_id.src_port = src_port = ntohs(src_port);
2641		args->f_id.dst_port = dst_port = ntohs(dst_port);
2642	}
2643
2644	IPFW_RLOCK(chain);
2645	mtag = m_tag_find(m, PACKET_TAG_DIVERT, NULL);
2646	if (args->rule) {
2647		/*
2648		 * Packet has already been tagged. Look for the next rule
2649		 * to restart processing.
2650		 *
2651		 * If fw_one_pass != 0 then just accept it.
2652		 * XXX should not happen here, but optimized out in
2653		 * the caller.
2654		 */
2655		if (fw_one_pass) {
2656			IPFW_RUNLOCK(chain);
2657			return (IP_FW_PASS);
2658		}
2659
2660		f = args->rule->next_rule;
2661		if (f == NULL)
2662			f = lookup_next_rule(args->rule);
2663	} else {
2664		/*
2665		 * Find the starting rule. It can be either the first
2666		 * one, or the one after divert_rule if asked so.
2667		 */
2668		int skipto = mtag ? divert_cookie(mtag) : 0;
2669
2670		f = chain->rules;
2671		if (args->eh == NULL && skipto != 0) {
2672			if (skipto >= IPFW_DEFAULT_RULE) {
2673				IPFW_RUNLOCK(chain);
2674				return (IP_FW_DENY); /* invalid */
2675			}
2676			while (f && f->rulenum <= skipto)
2677				f = f->next;
2678			if (f == NULL) {	/* drop packet */
2679				IPFW_RUNLOCK(chain);
2680				return (IP_FW_DENY);
2681			}
2682		}
2683	}
2684	/* reset divert rule to avoid confusion later */
2685	if (mtag) {
2686		divinput_flags = divert_info(mtag) &
2687		    (IP_FW_DIVERT_OUTPUT_FLAG | IP_FW_DIVERT_LOOPBACK_FLAG);
2688		m_tag_delete(m, mtag);
2689	}
2690
2691	/*
2692	 * Now scan the rules, and parse microinstructions for each rule.
2693	 */
2694	for (; f; f = f->next) {
2695		ipfw_insn *cmd;
2696		uint32_t tablearg = 0;
2697		int l, cmdlen, skip_or; /* skip rest of OR block */
2698
2699again:
2700		if (set_disable & (1 << f->set) )
2701			continue;
2702
2703		skip_or = 0;
2704		for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
2705		    l -= cmdlen, cmd += cmdlen) {
2706			int match;
2707
2708			/*
2709			 * check_body is a jump target used when we find a
2710			 * CHECK_STATE, and need to jump to the body of
2711			 * the target rule.
2712			 */
2713
2714check_body:
2715			cmdlen = F_LEN(cmd);
2716			/*
2717			 * An OR block (insn_1 || .. || insn_n) has the
2718			 * F_OR bit set in all but the last instruction.
2719			 * The first match will set "skip_or", and cause
2720			 * the following instructions to be skipped until
2721			 * past the one with the F_OR bit clear.
2722			 */
2723			if (skip_or) {		/* skip this instruction */
2724				if ((cmd->len & F_OR) == 0)
2725					skip_or = 0;	/* next one is good */
2726				continue;
2727			}
2728			match = 0; /* set to 1 if we succeed */
2729
2730			switch (cmd->opcode) {
2731			/*
2732			 * The first set of opcodes compares the packet's
2733			 * fields with some pattern, setting 'match' if a
2734			 * match is found. At the end of the loop there is
2735			 * logic to deal with F_NOT and F_OR flags associated
2736			 * with the opcode.
2737			 */
2738			case O_NOP:
2739				match = 1;
2740				break;
2741
2742			case O_FORWARD_MAC:
2743				printf("ipfw: opcode %d unimplemented\n",
2744				    cmd->opcode);
2745				break;
2746
2747			case O_GID:
2748			case O_UID:
2749			case O_JAIL:
2750				/*
2751				 * We only check offset == 0 && proto != 0,
2752				 * as this ensures that we have a
2753				 * packet with the ports info.
2754				 */
2755				if (offset!=0)
2756					break;
2757				if (is_ipv6) /* XXX to be fixed later */
2758					break;
2759				if (proto == IPPROTO_TCP ||
2760				    proto == IPPROTO_UDP)
2761					match = check_uidgid(
2762						    (ipfw_insn_u32 *)cmd,
2763						    proto, oif,
2764						    dst_ip, dst_port,
2765						    src_ip, src_port, &fw_ugid_cache,
2766						    &ugid_lookup, args->inp);
2767				break;
2768
2769			case O_RECV:
2770				match = iface_match(m->m_pkthdr.rcvif,
2771				    (ipfw_insn_if *)cmd);
2772				break;
2773
2774			case O_XMIT:
2775				match = iface_match(oif, (ipfw_insn_if *)cmd);
2776				break;
2777
2778			case O_VIA:
2779				match = iface_match(oif ? oif :
2780				    m->m_pkthdr.rcvif, (ipfw_insn_if *)cmd);
2781				break;
2782
2783			case O_MACADDR2:
2784				if (args->eh != NULL) {	/* have MAC header */
2785					u_int32_t *want = (u_int32_t *)
2786						((ipfw_insn_mac *)cmd)->addr;
2787					u_int32_t *mask = (u_int32_t *)
2788						((ipfw_insn_mac *)cmd)->mask;
2789					u_int32_t *hdr = (u_int32_t *)args->eh;
2790
2791					match =
2792					    ( want[0] == (hdr[0] & mask[0]) &&
2793					      want[1] == (hdr[1] & mask[1]) &&
2794					      want[2] == (hdr[2] & mask[2]) );
2795				}
2796				break;
2797
2798			case O_MAC_TYPE:
2799				if (args->eh != NULL) {
2800					u_int16_t *p =
2801					    ((ipfw_insn_u16 *)cmd)->ports;
2802					int i;
2803
2804					for (i = cmdlen - 1; !match && i>0;
2805					    i--, p += 2)
2806						match = (etype >= p[0] &&
2807						    etype <= p[1]);
2808				}
2809				break;
2810
2811			case O_FRAG:
2812				match = (offset != 0);
2813				break;
2814
2815			case O_IN:	/* "out" is "not in" */
2816				match = (oif == NULL);
2817				break;
2818
2819			case O_LAYER2:
2820				match = (args->eh != NULL);
2821				break;
2822
2823			case O_DIVERTED:
2824				match = (cmd->arg1 & 1 && divinput_flags &
2825				    IP_FW_DIVERT_LOOPBACK_FLAG) ||
2826					(cmd->arg1 & 2 && divinput_flags &
2827				    IP_FW_DIVERT_OUTPUT_FLAG);
2828				break;
2829
2830			case O_PROTO:
2831				/*
2832				 * We do not allow an arg of 0 so the
2833				 * check of "proto" only suffices.
2834				 */
2835				match = (proto == cmd->arg1);
2836				break;
2837
2838			case O_IP_SRC:
2839				match = is_ipv4 &&
2840				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2841				    src_ip.s_addr);
2842				break;
2843
2844			case O_IP_SRC_LOOKUP:
2845			case O_IP_DST_LOOKUP:
2846				if (is_ipv4) {
2847				    uint32_t a =
2848					(cmd->opcode == O_IP_DST_LOOKUP) ?
2849					    dst_ip.s_addr : src_ip.s_addr;
2850				    uint32_t v;
2851
2852				    match = lookup_table(chain, cmd->arg1, a,
2853					&v);
2854				    if (!match)
2855					break;
2856				    if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
2857					match =
2858					    ((ipfw_insn_u32 *)cmd)->d[0] == v;
2859				    else
2860					tablearg = v;
2861				}
2862				break;
2863
2864			case O_IP_SRC_MASK:
2865			case O_IP_DST_MASK:
2866				if (is_ipv4) {
2867				    uint32_t a =
2868					(cmd->opcode == O_IP_DST_MASK) ?
2869					    dst_ip.s_addr : src_ip.s_addr;
2870				    uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
2871				    int i = cmdlen-1;
2872
2873				    for (; !match && i>0; i-= 2, p+= 2)
2874					match = (p[0] == (a & p[1]));
2875				}
2876				break;
2877
2878			case O_IP_SRC_ME:
2879				if (is_ipv4) {
2880					struct ifnet *tif;
2881
2882					INADDR_TO_IFP(src_ip, tif);
2883					match = (tif != NULL);
2884				}
2885				break;
2886
2887			case O_IP_DST_SET:
2888			case O_IP_SRC_SET:
2889				if (is_ipv4) {
2890					u_int32_t *d = (u_int32_t *)(cmd+1);
2891					u_int32_t addr =
2892					    cmd->opcode == O_IP_DST_SET ?
2893						args->f_id.dst_ip :
2894						args->f_id.src_ip;
2895
2896					    if (addr < d[0])
2897						    break;
2898					    addr -= d[0]; /* subtract base */
2899					    match = (addr < cmd->arg1) &&
2900						( d[ 1 + (addr>>5)] &
2901						  (1<<(addr & 0x1f)) );
2902				}
2903				break;
2904
2905			case O_IP_DST:
2906				match = is_ipv4 &&
2907				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2908				    dst_ip.s_addr);
2909				break;
2910
2911			case O_IP_DST_ME:
2912				if (is_ipv4) {
2913					struct ifnet *tif;
2914
2915					INADDR_TO_IFP(dst_ip, tif);
2916					match = (tif != NULL);
2917				}
2918				break;
2919
2920			case O_IP_SRCPORT:
2921			case O_IP_DSTPORT:
2922				/*
2923				 * offset == 0 && proto != 0 is enough
2924				 * to guarantee that we have a
2925				 * packet with port info.
2926				 */
2927				if ((proto==IPPROTO_UDP || proto==IPPROTO_TCP)
2928				    && offset == 0) {
2929					u_int16_t x =
2930					    (cmd->opcode == O_IP_SRCPORT) ?
2931						src_port : dst_port ;
2932					u_int16_t *p =
2933					    ((ipfw_insn_u16 *)cmd)->ports;
2934					int i;
2935
2936					for (i = cmdlen - 1; !match && i>0;
2937					    i--, p += 2)
2938						match = (x>=p[0] && x<=p[1]);
2939				}
2940				break;
2941
2942			case O_ICMPTYPE:
2943				match = (offset == 0 && proto==IPPROTO_ICMP &&
2944				    icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
2945				break;
2946
2947#ifdef INET6
2948			case O_ICMP6TYPE:
2949				match = is_ipv6 && offset == 0 &&
2950				    proto==IPPROTO_ICMPV6 &&
2951				    icmp6type_match(
2952					ICMP6(ulp)->icmp6_type,
2953					(ipfw_insn_u32 *)cmd);
2954				break;
2955#endif /* INET6 */
2956
2957			case O_IPOPT:
2958				match = (is_ipv4 &&
2959				    ipopts_match(ip, cmd) );
2960				break;
2961
2962			case O_IPVER:
2963				match = (is_ipv4 &&
2964				    cmd->arg1 == ip->ip_v);
2965				break;
2966
2967			case O_IPID:
2968			case O_IPLEN:
2969			case O_IPTTL:
2970				if (is_ipv4) {	/* only for IP packets */
2971				    uint16_t x;
2972				    uint16_t *p;
2973				    int i;
2974
2975				    if (cmd->opcode == O_IPLEN)
2976					x = ip_len;
2977				    else if (cmd->opcode == O_IPTTL)
2978					x = ip->ip_ttl;
2979				    else /* must be IPID */
2980					x = ntohs(ip->ip_id);
2981				    if (cmdlen == 1) {
2982					match = (cmd->arg1 == x);
2983					break;
2984				    }
2985				    /* otherwise we have ranges */
2986				    p = ((ipfw_insn_u16 *)cmd)->ports;
2987				    i = cmdlen - 1;
2988				    for (; !match && i>0; i--, p += 2)
2989					match = (x >= p[0] && x <= p[1]);
2990				}
2991				break;
2992
2993			case O_IPPRECEDENCE:
2994				match = (is_ipv4 &&
2995				    (cmd->arg1 == (ip->ip_tos & 0xe0)) );
2996				break;
2997
2998			case O_IPTOS:
2999				match = (is_ipv4 &&
3000				    flags_match(cmd, ip->ip_tos));
3001				break;
3002
3003			case O_TCPDATALEN:
3004				if (proto == IPPROTO_TCP && offset == 0) {
3005				    struct tcphdr *tcp;
3006				    uint16_t x;
3007				    uint16_t *p;
3008				    int i;
3009
3010				    tcp = TCP(ulp);
3011				    x = ip_len -
3012					((ip->ip_hl + tcp->th_off) << 2);
3013				    if (cmdlen == 1) {
3014					match = (cmd->arg1 == x);
3015					break;
3016				    }
3017				    /* otherwise we have ranges */
3018				    p = ((ipfw_insn_u16 *)cmd)->ports;
3019				    i = cmdlen - 1;
3020				    for (; !match && i>0; i--, p += 2)
3021					match = (x >= p[0] && x <= p[1]);
3022				}
3023				break;
3024
3025			case O_TCPFLAGS:
3026				match = (proto == IPPROTO_TCP && offset == 0 &&
3027				    flags_match(cmd, TCP(ulp)->th_flags));
3028				break;
3029
3030			case O_TCPOPTS:
3031				match = (proto == IPPROTO_TCP && offset == 0 &&
3032				    tcpopts_match(TCP(ulp), cmd));
3033				break;
3034
3035			case O_TCPSEQ:
3036				match = (proto == IPPROTO_TCP && offset == 0 &&
3037				    ((ipfw_insn_u32 *)cmd)->d[0] ==
3038					TCP(ulp)->th_seq);
3039				break;
3040
3041			case O_TCPACK:
3042				match = (proto == IPPROTO_TCP && offset == 0 &&
3043				    ((ipfw_insn_u32 *)cmd)->d[0] ==
3044					TCP(ulp)->th_ack);
3045				break;
3046
3047			case O_TCPWIN:
3048				match = (proto == IPPROTO_TCP && offset == 0 &&
3049				    cmd->arg1 == TCP(ulp)->th_win);
3050				break;
3051
3052			case O_ESTAB:
3053				/* reject packets which have SYN only */
3054				/* XXX should i also check for TH_ACK ? */
3055				match = (proto == IPPROTO_TCP && offset == 0 &&
3056				    (TCP(ulp)->th_flags &
3057				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
3058				break;
3059
3060			case O_ALTQ: {
3061				struct altq_tag *at;
3062				ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
3063
3064				match = 1;
3065				mtag = m_tag_find(m, PACKET_TAG_PF_QID, NULL);
3066				if (mtag != NULL)
3067					break;
3068				mtag = m_tag_get(PACKET_TAG_PF_QID,
3069						sizeof(struct altq_tag),
3070						M_NOWAIT);
3071				if (mtag == NULL) {
3072					/*
3073					 * Let the packet fall back to the
3074					 * default ALTQ.
3075					 */
3076					break;
3077				}
3078				at = (struct altq_tag *)(mtag+1);
3079				at->qid = altq->qid;
3080				if (is_ipv4)
3081					at->af = AF_INET;
3082				else
3083					at->af = AF_LINK;
3084				at->hdr = ip;
3085				m_tag_prepend(m, mtag);
3086				break;
3087			}
3088
3089			case O_LOG:
3090				if (fw_verbose)
3091					ipfw_log(f, hlen, args, m,
3092					    oif, offset, tablearg, ip);
3093				match = 1;
3094				break;
3095
3096			case O_PROB:
3097				match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
3098				break;
3099
3100			case O_VERREVPATH:
3101				/* Outgoing packets automatically pass/match */
3102				match = ((oif != NULL) ||
3103				    (m->m_pkthdr.rcvif == NULL) ||
3104				    (
3105#ifdef INET6
3106				    is_ipv6 ?
3107					verify_path6(&(args->f_id.src_ip6),
3108					    m->m_pkthdr.rcvif) :
3109#endif
3110				    verify_path(src_ip, m->m_pkthdr.rcvif)));
3111				break;
3112
3113			case O_VERSRCREACH:
3114				/* Outgoing packets automatically pass/match */
3115				match = (hlen > 0 && ((oif != NULL) ||
3116#ifdef INET6
3117				    is_ipv6 ?
3118				        verify_path6(&(args->f_id.src_ip6),
3119				            NULL) :
3120#endif
3121				    verify_path(src_ip, NULL)));
3122				break;
3123
3124			case O_ANTISPOOF:
3125				/* Outgoing packets automatically pass/match */
3126				if (oif == NULL && hlen > 0 &&
3127				    (  (is_ipv4 && in_localaddr(src_ip))
3128#ifdef INET6
3129				    || (is_ipv6 &&
3130				        in6_localaddr(&(args->f_id.src_ip6)))
3131#endif
3132				    ))
3133					match =
3134#ifdef INET6
3135					    is_ipv6 ? verify_path6(
3136					        &(args->f_id.src_ip6),
3137					        m->m_pkthdr.rcvif) :
3138#endif
3139					    verify_path(src_ip,
3140					        m->m_pkthdr.rcvif);
3141				else
3142					match = 1;
3143				break;
3144
3145			case O_IPSEC:
3146#ifdef FAST_IPSEC
3147				match = (m_tag_find(m,
3148				    PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
3149#endif
3150#ifdef IPSEC
3151				match = (ipsec_getnhist(m) != 0);
3152#endif
3153				/* otherwise no match */
3154				break;
3155
3156#ifdef INET6
3157			case O_IP6_SRC:
3158				match = is_ipv6 &&
3159				    IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
3160				    &((ipfw_insn_ip6 *)cmd)->addr6);
3161				break;
3162
3163			case O_IP6_DST:
3164				match = is_ipv6 &&
3165				IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
3166				    &((ipfw_insn_ip6 *)cmd)->addr6);
3167				break;
3168			case O_IP6_SRC_MASK:
3169			case O_IP6_DST_MASK:
3170				if (is_ipv6) {
3171					int i = cmdlen - 1;
3172					struct in6_addr p;
3173					struct in6_addr *d =
3174					    &((ipfw_insn_ip6 *)cmd)->addr6;
3175
3176					for (; !match && i > 0; d += 2,
3177					    i -= F_INSN_SIZE(struct in6_addr)
3178					    * 2) {
3179						p = (cmd->opcode ==
3180						    O_IP6_SRC_MASK) ?
3181						    args->f_id.src_ip6:
3182						    args->f_id.dst_ip6;
3183						APPLY_MASK(&p, &d[1]);
3184						match =
3185						    IN6_ARE_ADDR_EQUAL(&d[0],
3186						    &p);
3187					}
3188				}
3189				break;
3190
3191			case O_IP6_SRC_ME:
3192				match= is_ipv6 && search_ip6_addr_net(&args->f_id.src_ip6);
3193				break;
3194
3195			case O_IP6_DST_ME:
3196				match= is_ipv6 && search_ip6_addr_net(&args->f_id.dst_ip6);
3197				break;
3198
3199			case O_FLOW6ID:
3200				match = is_ipv6 &&
3201				    flow6id_match(args->f_id.flow_id6,
3202				    (ipfw_insn_u32 *) cmd);
3203				break;
3204
3205			case O_EXT_HDR:
3206				match = is_ipv6 &&
3207				    (ext_hd & ((ipfw_insn *) cmd)->arg1);
3208				break;
3209
3210			case O_IP6:
3211				match = is_ipv6;
3212				break;
3213#endif
3214
3215			case O_IP4:
3216				match = is_ipv4;
3217				break;
3218
3219			case O_TAG: {
3220				uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
3221				    tablearg : cmd->arg1;
3222
3223				/* Packet is already tagged with this tag? */
3224				mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL);
3225
3226				/* We have `untag' action when F_NOT flag is
3227				 * present. And we must remove this mtag from
3228				 * mbuf and reset `match' to zero (`match' will
3229				 * be inversed later).
3230				 * Otherwise we should allocate new mtag and
3231				 * push it into mbuf.
3232				 */
3233				if (cmd->len & F_NOT) { /* `untag' action */
3234					if (mtag != NULL)
3235						m_tag_delete(m, mtag);
3236				} else if (mtag == NULL) {
3237					if ((mtag = m_tag_alloc(MTAG_IPFW,
3238					    tag, 0, M_NOWAIT)) != NULL)
3239						m_tag_prepend(m, mtag);
3240				}
3241				match = (cmd->len & F_NOT) ? 0: 1;
3242				break;
3243			}
3244
3245			case O_TAGGED: {
3246				uint32_t tag = (cmd->arg1 == IP_FW_TABLEARG) ?
3247				    tablearg : cmd->arg1;
3248
3249				if (cmdlen == 1) {
3250					match = m_tag_locate(m, MTAG_IPFW,
3251					    tag, NULL) != NULL;
3252					break;
3253				}
3254
3255				/* we have ranges */
3256				for (mtag = m_tag_first(m);
3257				    mtag != NULL && !match;
3258				    mtag = m_tag_next(m, mtag)) {
3259					uint16_t *p;
3260					int i;
3261
3262					if (mtag->m_tag_cookie != MTAG_IPFW)
3263						continue;
3264
3265					p = ((ipfw_insn_u16 *)cmd)->ports;
3266					i = cmdlen - 1;
3267					for(; !match && i > 0; i--, p += 2)
3268						match =
3269						    mtag->m_tag_id >= p[0] &&
3270						    mtag->m_tag_id <= p[1];
3271				}
3272				break;
3273			}
3274
3275			/*
3276			 * The second set of opcodes represents 'actions',
3277			 * i.e. the terminal part of a rule once the packet
3278			 * matches all previous patterns.
3279			 * Typically there is only one action for each rule,
3280			 * and the opcode is stored at the end of the rule
3281			 * (but there are exceptions -- see below).
3282			 *
3283			 * In general, here we set retval and terminate the
3284			 * outer loop (would be a 'break 3' in some language,
3285			 * but we need to do a 'goto done').
3286			 *
3287			 * Exceptions:
3288			 * O_COUNT and O_SKIPTO actions:
3289			 *   instead of terminating, we jump to the next rule
3290			 *   ('goto next_rule', equivalent to a 'break 2'),
3291			 *   or to the SKIPTO target ('goto again' after
3292			 *   having set f, cmd and l), respectively.
3293			 *
3294			 * O_TAG, O_LOG and O_ALTQ action parameters:
3295			 *   perform some action and set match = 1;
3296			 *
3297			 * O_LIMIT and O_KEEP_STATE: these opcodes are
3298			 *   not real 'actions', and are stored right
3299			 *   before the 'action' part of the rule.
3300			 *   These opcodes try to install an entry in the
3301			 *   state tables; if successful, we continue with
3302			 *   the next opcode (match=1; break;), otherwise
3303			 *   the packet *   must be dropped
3304			 *   ('goto done' after setting retval);
3305			 *
3306			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
3307			 *   cause a lookup of the state table, and a jump
3308			 *   to the 'action' part of the parent rule
3309			 *   ('goto check_body') if an entry is found, or
3310			 *   (CHECK_STATE only) a jump to the next rule if
3311			 *   the entry is not found ('goto next_rule').
3312			 *   The result of the lookup is cached to make
3313			 *   further instances of these opcodes are
3314			 *   effectively NOPs.
3315			 */
3316			case O_LIMIT:
3317			case O_KEEP_STATE:
3318				if (install_state(f,
3319				    (ipfw_insn_limit *)cmd, args, tablearg)) {
3320					retval = IP_FW_DENY;
3321					goto done; /* error/limit violation */
3322				}
3323				match = 1;
3324				break;
3325
3326			case O_PROBE_STATE:
3327			case O_CHECK_STATE:
3328				/*
3329				 * dynamic rules are checked at the first
3330				 * keep-state or check-state occurrence,
3331				 * with the result being stored in dyn_dir.
3332				 * The compiler introduces a PROBE_STATE
3333				 * instruction for us when we have a
3334				 * KEEP_STATE (because PROBE_STATE needs
3335				 * to be run first).
3336				 */
3337				if (dyn_dir == MATCH_UNKNOWN &&
3338				    (q = lookup_dyn_rule(&args->f_id,
3339				     &dyn_dir, proto == IPPROTO_TCP ?
3340					TCP(ulp) : NULL))
3341					!= NULL) {
3342					/*
3343					 * Found dynamic entry, update stats
3344					 * and jump to the 'action' part of
3345					 * the parent rule.
3346					 */
3347					q->pcnt++;
3348					q->bcnt += pktlen;
3349					f = q->rule;
3350					cmd = ACTION_PTR(f);
3351					l = f->cmd_len - f->act_ofs;
3352					IPFW_DYN_UNLOCK();
3353					goto check_body;
3354				}
3355				/*
3356				 * Dynamic entry not found. If CHECK_STATE,
3357				 * skip to next rule, if PROBE_STATE just
3358				 * ignore and continue with next opcode.
3359				 */
3360				if (cmd->opcode == O_CHECK_STATE)
3361					goto next_rule;
3362				match = 1;
3363				break;
3364
3365			case O_ACCEPT:
3366				retval = 0;	/* accept */
3367				goto done;
3368
3369			case O_PIPE:
3370			case O_QUEUE:
3371				args->rule = f; /* report matching rule */
3372				if (cmd->arg1 == IP_FW_TABLEARG)
3373					args->cookie = tablearg;
3374				else
3375					args->cookie = cmd->arg1;
3376				retval = IP_FW_DUMMYNET;
3377				goto done;
3378
3379			case O_DIVERT:
3380			case O_TEE: {
3381				struct divert_tag *dt;
3382
3383				if (args->eh) /* not on layer 2 */
3384					break;
3385				mtag = m_tag_get(PACKET_TAG_DIVERT,
3386						sizeof(struct divert_tag),
3387						M_NOWAIT);
3388				if (mtag == NULL) {
3389					/* XXX statistic */
3390					/* drop packet */
3391					IPFW_RUNLOCK(chain);
3392					return (IP_FW_DENY);
3393				}
3394				dt = (struct divert_tag *)(mtag+1);
3395				dt->cookie = f->rulenum;
3396				if (cmd->arg1 == IP_FW_TABLEARG)
3397					dt->info = tablearg;
3398				else
3399					dt->info = cmd->arg1;
3400				m_tag_prepend(m, mtag);
3401				retval = (cmd->opcode == O_DIVERT) ?
3402				    IP_FW_DIVERT : IP_FW_TEE;
3403				goto done;
3404			}
3405
3406			case O_COUNT:
3407			case O_SKIPTO:
3408				f->pcnt++;	/* update stats */
3409				f->bcnt += pktlen;
3410				f->timestamp = time_uptime;
3411				if (cmd->opcode == O_COUNT)
3412					goto next_rule;
3413				/* handle skipto */
3414				if (f->next_rule == NULL)
3415					lookup_next_rule(f);
3416				f = f->next_rule;
3417				goto again;
3418
3419			case O_REJECT:
3420				/*
3421				 * Drop the packet and send a reject notice
3422				 * if the packet is not ICMP (or is an ICMP
3423				 * query), and it is not multicast/broadcast.
3424				 */
3425				if (hlen > 0 && is_ipv4 && offset == 0 &&
3426				    (proto != IPPROTO_ICMP ||
3427				     is_icmp_query(ICMP(ulp))) &&
3428				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
3429				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
3430					send_reject(args, cmd->arg1, ip_len, ip);
3431					m = args->m;
3432				}
3433				/* FALLTHROUGH */
3434#ifdef INET6
3435			case O_UNREACH6:
3436				if (hlen > 0 && is_ipv6 &&
3437				    ((offset & IP6F_OFF_MASK) == 0) &&
3438				    (proto != IPPROTO_ICMPV6 ||
3439				     (is_icmp6_query(args->f_id.flags) == 1)) &&
3440				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
3441				    !IN6_IS_ADDR_MULTICAST(&args->f_id.dst_ip6)) {
3442					send_reject6(
3443					    args, cmd->arg1, hlen,
3444					    (struct ip6_hdr *)ip);
3445					m = args->m;
3446				}
3447				/* FALLTHROUGH */
3448#endif
3449			case O_DENY:
3450				retval = IP_FW_DENY;
3451				goto done;
3452
3453			case O_FORWARD_IP: {
3454				struct sockaddr_in *sa;
3455				sa = &(((ipfw_insn_sa *)cmd)->sa);
3456				if (args->eh)	/* not valid on layer2 pkts */
3457					break;
3458				if (!q || dyn_dir == MATCH_FORWARD) {
3459					if (sa->sin_addr.s_addr == INADDR_ANY) {
3460						bcopy(sa, &args->hopstore,
3461							sizeof(*sa));
3462						args->hopstore.sin_addr.s_addr =
3463						    htonl(tablearg);
3464						args->next_hop =
3465						    &args->hopstore;
3466					} else {
3467						args->next_hop = sa;
3468					}
3469				}
3470				retval = IP_FW_PASS;
3471			    }
3472			    goto done;
3473
3474			case O_NETGRAPH:
3475			case O_NGTEE:
3476				args->rule = f;	/* report matching rule */
3477				if (cmd->arg1 == IP_FW_TABLEARG)
3478					args->cookie = tablearg;
3479				else
3480					args->cookie = cmd->arg1;
3481				retval = (cmd->opcode == O_NETGRAPH) ?
3482				    IP_FW_NETGRAPH : IP_FW_NGTEE;
3483				goto done;
3484
3485#ifdef IPFIREWALL_NAT
3486			case O_NAT: {
3487				struct cfg_nat *t;
3488				struct mbuf *mcl;
3489				/* XXX - libalias duct tape */
3490				int ldt;
3491				char *c;
3492
3493				ldt = 0;
3494				args->rule = f;	/* Report matching rule. */
3495				retval = 0;
3496				t = ((ipfw_insn_nat *)cmd)->nat;
3497				if (t == NULL) {
3498					t = lookup_nat(cmd->arg1);
3499					if (t == NULL) {
3500						retval = IP_FW_DENY;
3501						goto done;
3502					} else
3503						((ipfw_insn_nat *)cmd)->nat =
3504						    t;
3505				}
3506				if ((mcl = m_megapullup(m, m->m_pkthdr.len)) ==
3507				    NULL)
3508					goto badnat;
3509				ip = mtod(mcl, struct ip *);
3510				if (args->eh == NULL) {
3511					ip->ip_len = htons(ip->ip_len);
3512					ip->ip_off = htons(ip->ip_off);
3513				}
3514
3515				/*
3516				 * XXX - Libalias checksum offload 'duct tape':
3517				 *
3518				 * locally generated packets have only
3519				 * pseudo-header checksum calculated
3520				 * and libalias will screw it[1], so
3521				 * mark them for later fix.  Moreover
3522				 * there are cases when libalias
3523				 * modify tcp packet data[2], mark it
3524				 * for later fix too.
3525				 *
3526				 * [1] libalias was never meant to run
3527				 * in kernel, so it doesn't have any
3528				 * knowledge about checksum
3529				 * offloading, and it expects a packet
3530				 * with a full internet
3531				 * checksum. Unfortunately, packets
3532				 * generated locally will have just the
3533				 * pseudo header calculated, and when
3534				 * libalias tries to adjust the
3535				 * checksum it will actually screw it.
3536				 *
3537				 * [2] when libalias modify tcp's data
3538				 * content, full TCP checksum has to
3539				 * be recomputed: the problem is that
3540				 * libalias doesn't have any idea
3541				 * about checksum offloading To
3542				 * workaround this, we do not do
3543				 * checksumming in LibAlias, but only
3544				 * mark the packets in th_x2 field. If
3545				 * we receive a marked packet, we
3546				 * calculate correct checksum for it
3547				 * aware of offloading.  Why such a
3548				 * terrible hack instead of
3549				 * recalculating checksum for each
3550				 * packet?  Because the previous
3551				 * checksum was not checked!
3552				 * Recalculating checksums for EVERY
3553				 * packet will hide ALL transmission
3554				 * errors. Yes, marked packets still
3555				 * suffer from this problem. But,
3556				 * sigh, natd(8) has this problem,
3557				 * too.
3558				 *
3559				 * TODO: -make libalias mbuf aware (so
3560				 * it can handle delayed checksum and tso)
3561				 */
3562
3563				if (mcl->m_pkthdr.rcvif == NULL &&
3564				    mcl->m_pkthdr.csum_flags &
3565				    CSUM_DELAY_DATA)
3566					ldt = 1;
3567
3568				c = mtod(mcl, char *);
3569				if (oif == NULL)
3570					retval = LibAliasIn(t->lib, c,
3571					    MCLBYTES);
3572				else
3573					retval = LibAliasOut(t->lib, c,
3574					    MCLBYTES);
3575				if (retval != PKT_ALIAS_OK) {
3576					/* XXX - should i add some logging? */
3577					m_free(mcl);
3578				badnat:
3579					args->m = NULL;
3580					retval = IP_FW_DENY;
3581					goto done;
3582				}
3583				mcl->m_pkthdr.len = mcl->m_len =
3584				    ntohs(ip->ip_len);
3585
3586				/*
3587				 * XXX - libalias checksum offload
3588				 * 'duct tape' (see above)
3589				 */
3590
3591				if ((ip->ip_off & htons(IP_OFFMASK)) == 0 &&
3592				    ip->ip_p == IPPROTO_TCP) {
3593					struct tcphdr 	*th;
3594
3595					th = (struct tcphdr *)(ip + 1);
3596					if (th->th_x2)
3597						ldt = 1;
3598				}
3599
3600				if (ldt) {
3601					struct tcphdr 	*th;
3602					struct udphdr 	*uh;
3603					u_short cksum;
3604
3605					ip->ip_len = ntohs(ip->ip_len);
3606					cksum = in_pseudo(
3607						ip->ip_src.s_addr,
3608						ip->ip_dst.s_addr,
3609						htons(ip->ip_p + ip->ip_len -
3610					            (ip->ip_hl << 2))
3611						);
3612
3613					switch (ip->ip_p) {
3614					case IPPROTO_TCP:
3615						th = (struct tcphdr *)(ip + 1);
3616						/*
3617						 * Maybe it was set in
3618						 * libalias...
3619						 */
3620						th->th_x2 = 0;
3621						th->th_sum = cksum;
3622						mcl->m_pkthdr.csum_data =
3623						    offsetof(struct tcphdr,
3624						    th_sum);
3625						break;
3626					case IPPROTO_UDP:
3627						uh = (struct udphdr *)(ip + 1);
3628						uh->uh_sum = cksum;
3629						mcl->m_pkthdr.csum_data =
3630						    offsetof(struct udphdr,
3631						    uh_sum);
3632						break;
3633					}
3634					/*
3635					 * No hw checksum offloading: do it
3636					 * by ourself.
3637					 */
3638					if ((mcl->m_pkthdr.csum_flags &
3639					     CSUM_DELAY_DATA) == 0) {
3640						in_delayed_cksum(mcl);
3641						mcl->m_pkthdr.csum_flags &=
3642						    ~CSUM_DELAY_DATA;
3643					}
3644					ip->ip_len = htons(ip->ip_len);
3645				}
3646
3647				if (args->eh == NULL) {
3648					ip->ip_len = ntohs(ip->ip_len);
3649					ip->ip_off = ntohs(ip->ip_off);
3650				}
3651
3652				args->m = mcl;
3653				retval = IP_FW_NAT;
3654				goto done;
3655			}
3656#endif
3657
3658			default:
3659				panic("-- unknown opcode %d\n", cmd->opcode);
3660			} /* end of switch() on opcodes */
3661
3662			if (cmd->len & F_NOT)
3663				match = !match;
3664
3665			if (match) {
3666				if (cmd->len & F_OR)
3667					skip_or = 1;
3668			} else {
3669				if (!(cmd->len & F_OR)) /* not an OR block, */
3670					break;		/* try next rule    */
3671			}
3672
3673		}	/* end of inner for, scan opcodes */
3674
3675next_rule:;		/* try next rule		*/
3676
3677	}		/* end of outer for, scan rules */
3678	printf("ipfw: ouch!, skip past end of rules, denying packet\n");
3679	IPFW_RUNLOCK(chain);
3680	return (IP_FW_DENY);
3681
3682done:
3683	/* Update statistics */
3684	f->pcnt++;
3685	f->bcnt += pktlen;
3686	f->timestamp = time_uptime;
3687	IPFW_RUNLOCK(chain);
3688	return (retval);
3689
3690pullup_failed:
3691	if (fw_verbose)
3692		printf("ipfw: pullup failed\n");
3693	return (IP_FW_DENY);
3694}
3695
3696/*
3697 * When a rule is added/deleted, clear the next_rule pointers in all rules.
3698 * These will be reconstructed on the fly as packets are matched.
3699 */
3700static void
3701flush_rule_ptrs(struct ip_fw_chain *chain)
3702{
3703	struct ip_fw *rule;
3704
3705	IPFW_WLOCK_ASSERT(chain);
3706
3707	for (rule = chain->rules; rule; rule = rule->next)
3708		rule->next_rule = NULL;
3709}
3710
3711/*
3712 * Add a new rule to the list. Copy the rule into a malloc'ed area, then
3713 * possibly create a rule number and add the rule to the list.
3714 * Update the rule_number in the input struct so the caller knows it as well.
3715 */
3716static int
3717add_rule(struct ip_fw_chain *chain, struct ip_fw *input_rule)
3718{
3719	struct ip_fw *rule, *f, *prev;
3720	int l = RULESIZE(input_rule);
3721
3722	if (chain->rules == NULL && input_rule->rulenum != IPFW_DEFAULT_RULE)
3723		return (EINVAL);
3724
3725	rule = malloc(l, M_IPFW, M_NOWAIT | M_ZERO);
3726	if (rule == NULL)
3727		return (ENOSPC);
3728
3729	bcopy(input_rule, rule, l);
3730
3731	rule->next = NULL;
3732	rule->next_rule = NULL;
3733
3734	rule->pcnt = 0;
3735	rule->bcnt = 0;
3736	rule->timestamp = 0;
3737
3738	IPFW_WLOCK(chain);
3739
3740	if (chain->rules == NULL) {	/* default rule */
3741		chain->rules = rule;
3742		goto done;
3743        }
3744
3745	/*
3746	 * If rulenum is 0, find highest numbered rule before the
3747	 * default rule, and add autoinc_step
3748	 */
3749	if (autoinc_step < 1)
3750		autoinc_step = 1;
3751	else if (autoinc_step > 1000)
3752		autoinc_step = 1000;
3753	if (rule->rulenum == 0) {
3754		/*
3755		 * locate the highest numbered rule before default
3756		 */
3757		for (f = chain->rules; f; f = f->next) {
3758			if (f->rulenum == IPFW_DEFAULT_RULE)
3759				break;
3760			rule->rulenum = f->rulenum;
3761		}
3762		if (rule->rulenum < IPFW_DEFAULT_RULE - autoinc_step)
3763			rule->rulenum += autoinc_step;
3764		input_rule->rulenum = rule->rulenum;
3765	}
3766
3767	/*
3768	 * Now insert the new rule in the right place in the sorted list.
3769	 */
3770	for (prev = NULL, f = chain->rules; f; prev = f, f = f->next) {
3771		if (f->rulenum > rule->rulenum) { /* found the location */
3772			if (prev) {
3773				rule->next = f;
3774				prev->next = rule;
3775			} else { /* head insert */
3776				rule->next = chain->rules;
3777				chain->rules = rule;
3778			}
3779			break;
3780		}
3781	}
3782	flush_rule_ptrs(chain);
3783done:
3784	static_count++;
3785	static_len += l;
3786	IPFW_WUNLOCK(chain);
3787	DEB(printf("ipfw: installed rule %d, static count now %d\n",
3788		rule->rulenum, static_count);)
3789	return (0);
3790}
3791
3792/**
3793 * Remove a static rule (including derived * dynamic rules)
3794 * and place it on the ``reap list'' for later reclamation.
3795 * The caller is in charge of clearing rule pointers to avoid
3796 * dangling pointers.
3797 * @return a pointer to the next entry.
3798 * Arguments are not checked, so they better be correct.
3799 */
3800static struct ip_fw *
3801remove_rule(struct ip_fw_chain *chain, struct ip_fw *rule, struct ip_fw *prev)
3802{
3803	struct ip_fw *n;
3804	int l = RULESIZE(rule);
3805
3806	IPFW_WLOCK_ASSERT(chain);
3807
3808	n = rule->next;
3809	IPFW_DYN_LOCK();
3810	remove_dyn_rule(rule, NULL /* force removal */);
3811	IPFW_DYN_UNLOCK();
3812	if (prev == NULL)
3813		chain->rules = n;
3814	else
3815		prev->next = n;
3816	static_count--;
3817	static_len -= l;
3818
3819	rule->next = chain->reap;
3820	chain->reap = rule;
3821
3822	return n;
3823}
3824
3825/**
3826 * Reclaim storage associated with a list of rules.  This is
3827 * typically the list created using remove_rule.
3828 */
3829static void
3830reap_rules(struct ip_fw *head)
3831{
3832	struct ip_fw *rule;
3833
3834	while ((rule = head) != NULL) {
3835		head = head->next;
3836		if (DUMMYNET_LOADED)
3837			ip_dn_ruledel_ptr(rule);
3838		free(rule, M_IPFW);
3839	}
3840}
3841
3842/*
3843 * Remove all rules from a chain (except rules in set RESVD_SET
3844 * unless kill_default = 1).  The caller is responsible for
3845 * reclaiming storage for the rules left in chain->reap.
3846 */
3847static void
3848free_chain(struct ip_fw_chain *chain, int kill_default)
3849{
3850	struct ip_fw *prev, *rule;
3851
3852	IPFW_WLOCK_ASSERT(chain);
3853
3854	flush_rule_ptrs(chain); /* more efficient to do outside the loop */
3855	for (prev = NULL, rule = chain->rules; rule ; )
3856		if (kill_default || rule->set != RESVD_SET)
3857			rule = remove_rule(chain, rule, prev);
3858		else {
3859			prev = rule;
3860			rule = rule->next;
3861		}
3862}
3863
3864/**
3865 * Remove all rules with given number, and also do set manipulation.
3866 * Assumes chain != NULL && *chain != NULL.
3867 *
3868 * The argument is an u_int32_t. The low 16 bit are the rule or set number,
3869 * the next 8 bits are the new set, the top 8 bits are the command:
3870 *
3871 *	0	delete rules with given number
3872 *	1	delete rules with given set number
3873 *	2	move rules with given number to new set
3874 *	3	move rules with given set number to new set
3875 *	4	swap sets with given numbers
3876 */
3877static int
3878del_entry(struct ip_fw_chain *chain, u_int32_t arg)
3879{
3880	struct ip_fw *prev = NULL, *rule;
3881	u_int16_t rulenum;	/* rule or old_set */
3882	u_int8_t cmd, new_set;
3883
3884	rulenum = arg & 0xffff;
3885	cmd = (arg >> 24) & 0xff;
3886	new_set = (arg >> 16) & 0xff;
3887
3888	if (cmd > 4)
3889		return EINVAL;
3890	if (new_set > RESVD_SET)
3891		return EINVAL;
3892	if (cmd == 0 || cmd == 2) {
3893		if (rulenum >= IPFW_DEFAULT_RULE)
3894			return EINVAL;
3895	} else {
3896		if (rulenum > RESVD_SET)	/* old_set */
3897			return EINVAL;
3898	}
3899
3900	IPFW_WLOCK(chain);
3901	rule = chain->rules;
3902	chain->reap = NULL;
3903	switch (cmd) {
3904	case 0:	/* delete rules with given number */
3905		/*
3906		 * locate first rule to delete
3907		 */
3908		for (; rule->rulenum < rulenum; prev = rule, rule = rule->next)
3909			;
3910		if (rule->rulenum != rulenum) {
3911			IPFW_WUNLOCK(chain);
3912			return EINVAL;
3913		}
3914
3915		/*
3916		 * flush pointers outside the loop, then delete all matching
3917		 * rules. prev remains the same throughout the cycle.
3918		 */
3919		flush_rule_ptrs(chain);
3920		while (rule->rulenum == rulenum)
3921			rule = remove_rule(chain, rule, prev);
3922		break;
3923
3924	case 1:	/* delete all rules with given set number */
3925		flush_rule_ptrs(chain);
3926		rule = chain->rules;
3927		while (rule->rulenum < IPFW_DEFAULT_RULE)
3928			if (rule->set == rulenum)
3929				rule = remove_rule(chain, rule, prev);
3930			else {
3931				prev = rule;
3932				rule = rule->next;
3933			}
3934		break;
3935
3936	case 2:	/* move rules with given number to new set */
3937		rule = chain->rules;
3938		for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3939			if (rule->rulenum == rulenum)
3940				rule->set = new_set;
3941		break;
3942
3943	case 3: /* move rules with given set number to new set */
3944		for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3945			if (rule->set == rulenum)
3946				rule->set = new_set;
3947		break;
3948
3949	case 4: /* swap two sets */
3950		for (; rule->rulenum < IPFW_DEFAULT_RULE; rule = rule->next)
3951			if (rule->set == rulenum)
3952				rule->set = new_set;
3953			else if (rule->set == new_set)
3954				rule->set = rulenum;
3955		break;
3956	}
3957	/*
3958	 * Look for rules to reclaim.  We grab the list before
3959	 * releasing the lock then reclaim them w/o the lock to
3960	 * avoid a LOR with dummynet.
3961	 */
3962	rule = chain->reap;
3963	chain->reap = NULL;
3964	IPFW_WUNLOCK(chain);
3965	if (rule)
3966		reap_rules(rule);
3967	return 0;
3968}
3969
3970/*
3971 * Clear counters for a specific rule.
3972 * The enclosing "table" is assumed locked.
3973 */
3974static void
3975clear_counters(struct ip_fw *rule, int log_only)
3976{
3977	ipfw_insn_log *l = (ipfw_insn_log *)ACTION_PTR(rule);
3978
3979	if (log_only == 0) {
3980		rule->bcnt = rule->pcnt = 0;
3981		rule->timestamp = 0;
3982	}
3983	if (l->o.opcode == O_LOG)
3984		l->log_left = l->max_log;
3985}
3986
3987/**
3988 * Reset some or all counters on firewall rules.
3989 * @arg frwl is null to clear all entries, or contains a specific
3990 * rule number.
3991 * @arg log_only is 1 if we only want to reset logs, zero otherwise.
3992 */
3993static int
3994zero_entry(struct ip_fw_chain *chain, int rulenum, int log_only)
3995{
3996	struct ip_fw *rule;
3997	char *msg;
3998
3999	IPFW_WLOCK(chain);
4000	if (rulenum == 0) {
4001		norule_counter = 0;
4002		for (rule = chain->rules; rule; rule = rule->next)
4003			clear_counters(rule, log_only);
4004		msg = log_only ? "ipfw: All logging counts reset.\n" :
4005				"ipfw: Accounting cleared.\n";
4006	} else {
4007		int cleared = 0;
4008		/*
4009		 * We can have multiple rules with the same number, so we
4010		 * need to clear them all.
4011		 */
4012		for (rule = chain->rules; rule; rule = rule->next)
4013			if (rule->rulenum == rulenum) {
4014				while (rule && rule->rulenum == rulenum) {
4015					clear_counters(rule, log_only);
4016					rule = rule->next;
4017				}
4018				cleared = 1;
4019				break;
4020			}
4021		if (!cleared) {	/* we did not find any matching rules */
4022			IPFW_WUNLOCK(chain);
4023			return (EINVAL);
4024		}
4025		msg = log_only ? "ipfw: Entry %d logging count reset.\n" :
4026				"ipfw: Entry %d cleared.\n";
4027	}
4028	IPFW_WUNLOCK(chain);
4029
4030	if (fw_verbose)
4031		log(LOG_SECURITY | LOG_NOTICE, msg, rulenum);
4032	return (0);
4033}
4034
4035/*
4036 * Check validity of the structure before insert.
4037 * Fortunately rules are simple, so this mostly need to check rule sizes.
4038 */
4039static int
4040check_ipfw_struct(struct ip_fw *rule, int size)
4041{
4042	int l, cmdlen = 0;
4043	int have_action=0;
4044	ipfw_insn *cmd;
4045
4046	if (size < sizeof(*rule)) {
4047		printf("ipfw: rule too short\n");
4048		return (EINVAL);
4049	}
4050	/* first, check for valid size */
4051	l = RULESIZE(rule);
4052	if (l != size) {
4053		printf("ipfw: size mismatch (have %d want %d)\n", size, l);
4054		return (EINVAL);
4055	}
4056	if (rule->act_ofs >= rule->cmd_len) {
4057		printf("ipfw: bogus action offset (%u > %u)\n",
4058		    rule->act_ofs, rule->cmd_len - 1);
4059		return (EINVAL);
4060	}
4061	/*
4062	 * Now go for the individual checks. Very simple ones, basically only
4063	 * instruction sizes.
4064	 */
4065	for (l = rule->cmd_len, cmd = rule->cmd ;
4066			l > 0 ; l -= cmdlen, cmd += cmdlen) {
4067		cmdlen = F_LEN(cmd);
4068		if (cmdlen > l) {
4069			printf("ipfw: opcode %d size truncated\n",
4070			    cmd->opcode);
4071			return EINVAL;
4072		}
4073		DEB(printf("ipfw: opcode %d\n", cmd->opcode);)
4074		switch (cmd->opcode) {
4075		case O_PROBE_STATE:
4076		case O_KEEP_STATE:
4077		case O_PROTO:
4078		case O_IP_SRC_ME:
4079		case O_IP_DST_ME:
4080		case O_LAYER2:
4081		case O_IN:
4082		case O_FRAG:
4083		case O_DIVERTED:
4084		case O_IPOPT:
4085		case O_IPTOS:
4086		case O_IPPRECEDENCE:
4087		case O_IPVER:
4088		case O_TCPWIN:
4089		case O_TCPFLAGS:
4090		case O_TCPOPTS:
4091		case O_ESTAB:
4092		case O_VERREVPATH:
4093		case O_VERSRCREACH:
4094		case O_ANTISPOOF:
4095		case O_IPSEC:
4096#ifdef INET6
4097		case O_IP6_SRC_ME:
4098		case O_IP6_DST_ME:
4099		case O_EXT_HDR:
4100		case O_IP6:
4101#endif
4102		case O_IP4:
4103		case O_TAG:
4104			if (cmdlen != F_INSN_SIZE(ipfw_insn))
4105				goto bad_size;
4106			break;
4107
4108		case O_UID:
4109		case O_GID:
4110		case O_JAIL:
4111		case O_IP_SRC:
4112		case O_IP_DST:
4113		case O_TCPSEQ:
4114		case O_TCPACK:
4115		case O_PROB:
4116		case O_ICMPTYPE:
4117			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32))
4118				goto bad_size;
4119			break;
4120
4121		case O_LIMIT:
4122			if (cmdlen != F_INSN_SIZE(ipfw_insn_limit))
4123				goto bad_size;
4124			break;
4125
4126		case O_LOG:
4127			if (cmdlen != F_INSN_SIZE(ipfw_insn_log))
4128				goto bad_size;
4129
4130			((ipfw_insn_log *)cmd)->log_left =
4131			    ((ipfw_insn_log *)cmd)->max_log;
4132
4133			break;
4134
4135		case O_IP_SRC_MASK:
4136		case O_IP_DST_MASK:
4137			/* only odd command lengths */
4138			if ( !(cmdlen & 1) || cmdlen > 31)
4139				goto bad_size;
4140			break;
4141
4142		case O_IP_SRC_SET:
4143		case O_IP_DST_SET:
4144			if (cmd->arg1 == 0 || cmd->arg1 > 256) {
4145				printf("ipfw: invalid set size %d\n",
4146					cmd->arg1);
4147				return EINVAL;
4148			}
4149			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
4150			    (cmd->arg1+31)/32 )
4151				goto bad_size;
4152			break;
4153
4154		case O_IP_SRC_LOOKUP:
4155		case O_IP_DST_LOOKUP:
4156			if (cmd->arg1 >= IPFW_TABLES_MAX) {
4157				printf("ipfw: invalid table number %d\n",
4158				    cmd->arg1);
4159				return (EINVAL);
4160			}
4161			if (cmdlen != F_INSN_SIZE(ipfw_insn) &&
4162			    cmdlen != F_INSN_SIZE(ipfw_insn_u32))
4163				goto bad_size;
4164			break;
4165
4166		case O_MACADDR2:
4167			if (cmdlen != F_INSN_SIZE(ipfw_insn_mac))
4168				goto bad_size;
4169			break;
4170
4171		case O_NOP:
4172		case O_IPID:
4173		case O_IPTTL:
4174		case O_IPLEN:
4175		case O_TCPDATALEN:
4176		case O_TAGGED:
4177			if (cmdlen < 1 || cmdlen > 31)
4178				goto bad_size;
4179			break;
4180
4181		case O_MAC_TYPE:
4182		case O_IP_SRCPORT:
4183		case O_IP_DSTPORT: /* XXX artificial limit, 30 port pairs */
4184			if (cmdlen < 2 || cmdlen > 31)
4185				goto bad_size;
4186			break;
4187
4188		case O_RECV:
4189		case O_XMIT:
4190		case O_VIA:
4191			if (cmdlen != F_INSN_SIZE(ipfw_insn_if))
4192				goto bad_size;
4193			break;
4194
4195		case O_ALTQ:
4196			if (cmdlen != F_INSN_SIZE(ipfw_insn_altq))
4197				goto bad_size;
4198			break;
4199
4200		case O_PIPE:
4201		case O_QUEUE:
4202			if (cmdlen != F_INSN_SIZE(ipfw_insn))
4203				goto bad_size;
4204			goto check_action;
4205
4206		case O_FORWARD_IP:
4207#ifdef	IPFIREWALL_FORWARD
4208			if (cmdlen != F_INSN_SIZE(ipfw_insn_sa))
4209				goto bad_size;
4210			goto check_action;
4211#else
4212			return EINVAL;
4213#endif
4214
4215		case O_DIVERT:
4216		case O_TEE:
4217			if (ip_divert_ptr == NULL)
4218				return EINVAL;
4219			else
4220				goto check_size;
4221		case O_NETGRAPH:
4222		case O_NGTEE:
4223			if (!NG_IPFW_LOADED)
4224				return EINVAL;
4225			else
4226				goto check_size;
4227		case O_NAT:
4228#ifdef IPFIREWALL_NAT
4229			if (cmdlen != F_INSN_SIZE(ipfw_insn_nat))
4230 				goto bad_size;
4231 			goto check_action;
4232#else
4233			return EINVAL;
4234#endif
4235		case O_FORWARD_MAC: /* XXX not implemented yet */
4236		case O_CHECK_STATE:
4237		case O_COUNT:
4238		case O_ACCEPT:
4239		case O_DENY:
4240		case O_REJECT:
4241#ifdef INET6
4242		case O_UNREACH6:
4243#endif
4244		case O_SKIPTO:
4245check_size:
4246			if (cmdlen != F_INSN_SIZE(ipfw_insn))
4247				goto bad_size;
4248check_action:
4249			if (have_action) {
4250				printf("ipfw: opcode %d, multiple actions"
4251					" not allowed\n",
4252					cmd->opcode);
4253				return EINVAL;
4254			}
4255			have_action = 1;
4256			if (l != cmdlen) {
4257				printf("ipfw: opcode %d, action must be"
4258					" last opcode\n",
4259					cmd->opcode);
4260				return EINVAL;
4261			}
4262			break;
4263#ifdef INET6
4264		case O_IP6_SRC:
4265		case O_IP6_DST:
4266			if (cmdlen != F_INSN_SIZE(struct in6_addr) +
4267			    F_INSN_SIZE(ipfw_insn))
4268				goto bad_size;
4269			break;
4270
4271		case O_FLOW6ID:
4272			if (cmdlen != F_INSN_SIZE(ipfw_insn_u32) +
4273			    ((ipfw_insn_u32 *)cmd)->o.arg1)
4274				goto bad_size;
4275			break;
4276
4277		case O_IP6_SRC_MASK:
4278		case O_IP6_DST_MASK:
4279			if ( !(cmdlen & 1) || cmdlen > 127)
4280				goto bad_size;
4281			break;
4282		case O_ICMP6TYPE:
4283			if( cmdlen != F_INSN_SIZE( ipfw_insn_icmp6 ) )
4284				goto bad_size;
4285			break;
4286#endif
4287
4288		default:
4289			switch (cmd->opcode) {
4290#ifndef INET6
4291			case O_IP6_SRC_ME:
4292			case O_IP6_DST_ME:
4293			case O_EXT_HDR:
4294			case O_IP6:
4295			case O_UNREACH6:
4296			case O_IP6_SRC:
4297			case O_IP6_DST:
4298			case O_FLOW6ID:
4299			case O_IP6_SRC_MASK:
4300			case O_IP6_DST_MASK:
4301			case O_ICMP6TYPE:
4302				printf("ipfw: no IPv6 support in kernel\n");
4303				return EPROTONOSUPPORT;
4304#endif
4305			default:
4306				printf("ipfw: opcode %d, unknown opcode\n",
4307					cmd->opcode);
4308				return EINVAL;
4309			}
4310		}
4311	}
4312	if (have_action == 0) {
4313		printf("ipfw: missing action\n");
4314		return EINVAL;
4315	}
4316	return 0;
4317
4318bad_size:
4319	printf("ipfw: opcode %d size %d wrong\n",
4320		cmd->opcode, cmdlen);
4321	return EINVAL;
4322}
4323
4324/*
4325 * Copy the static and dynamic rules to the supplied buffer
4326 * and return the amount of space actually used.
4327 */
4328static size_t
4329ipfw_getrules(struct ip_fw_chain *chain, void *buf, size_t space)
4330{
4331	char *bp = buf;
4332	char *ep = bp + space;
4333	struct ip_fw *rule;
4334	int i;
4335	time_t	boot_seconds;
4336
4337        boot_seconds = boottime.tv_sec;
4338	/* XXX this can take a long time and locking will block packet flow */
4339	IPFW_RLOCK(chain);
4340	for (rule = chain->rules; rule ; rule = rule->next) {
4341		/*
4342		 * Verify the entry fits in the buffer in case the
4343		 * rules changed between calculating buffer space and
4344		 * now.  This would be better done using a generation
4345		 * number but should suffice for now.
4346		 */
4347		i = RULESIZE(rule);
4348		if (bp + i <= ep) {
4349			bcopy(rule, bp, i);
4350			/*
4351			 * XXX HACK. Store the disable mask in the "next" pointer
4352			 * in a wild attempt to keep the ABI the same.
4353			 * Why do we do this on EVERY rule?
4354			 */
4355			bcopy(&set_disable, &(((struct ip_fw *)bp)->next_rule),
4356			    sizeof(set_disable));
4357			if (((struct ip_fw *)bp)->timestamp)
4358				((struct ip_fw *)bp)->timestamp += boot_seconds;
4359			bp += i;
4360		}
4361	}
4362	IPFW_RUNLOCK(chain);
4363	if (ipfw_dyn_v) {
4364		ipfw_dyn_rule *p, *last = NULL;
4365
4366		IPFW_DYN_LOCK();
4367		for (i = 0 ; i < curr_dyn_buckets; i++)
4368			for (p = ipfw_dyn_v[i] ; p != NULL; p = p->next) {
4369				if (bp + sizeof *p <= ep) {
4370					ipfw_dyn_rule *dst =
4371						(ipfw_dyn_rule *)bp;
4372					bcopy(p, dst, sizeof *p);
4373					bcopy(&(p->rule->rulenum), &(dst->rule),
4374					    sizeof(p->rule->rulenum));
4375					/*
4376					 * store a non-null value in "next".
4377					 * The userland code will interpret a
4378					 * NULL here as a marker
4379					 * for the last dynamic rule.
4380					 */
4381					bcopy(&dst, &dst->next, sizeof(dst));
4382					last = dst;
4383					dst->expire =
4384					    TIME_LEQ(dst->expire, time_uptime) ?
4385						0 : dst->expire - time_uptime ;
4386					bp += sizeof(ipfw_dyn_rule);
4387				}
4388			}
4389		IPFW_DYN_UNLOCK();
4390		if (last != NULL) /* mark last dynamic rule */
4391			bzero(&last->next, sizeof(last));
4392	}
4393	return (bp - (char *)buf);
4394}
4395
4396
4397/**
4398 * {set|get}sockopt parser.
4399 */
4400static int
4401ipfw_ctl(struct sockopt *sopt)
4402{
4403#define	RULE_MAXSIZE	(256*sizeof(u_int32_t))
4404	int error, rule_num;
4405	size_t size;
4406	struct ip_fw *buf, *rule;
4407	u_int32_t rulenum[2];
4408
4409	error = priv_check(sopt->sopt_td, PRIV_NETINET_IPFW);
4410	if (error)
4411		return (error);
4412
4413	/*
4414	 * Disallow modifications in really-really secure mode, but still allow
4415	 * the logging counters to be reset.
4416	 */
4417	if (sopt->sopt_name == IP_FW_ADD ||
4418	    (sopt->sopt_dir == SOPT_SET && sopt->sopt_name != IP_FW_RESETLOG)) {
4419		error = securelevel_ge(sopt->sopt_td->td_ucred, 3);
4420		if (error)
4421			return (error);
4422	}
4423
4424	error = 0;
4425
4426	switch (sopt->sopt_name) {
4427	case IP_FW_GET:
4428		/*
4429		 * pass up a copy of the current rules. Static rules
4430		 * come first (the last of which has number IPFW_DEFAULT_RULE),
4431		 * followed by a possibly empty list of dynamic rule.
4432		 * The last dynamic rule has NULL in the "next" field.
4433		 *
4434		 * Note that the calculated size is used to bound the
4435		 * amount of data returned to the user.  The rule set may
4436		 * change between calculating the size and returning the
4437		 * data in which case we'll just return what fits.
4438		 */
4439		size = static_len;	/* size of static rules */
4440		if (ipfw_dyn_v)		/* add size of dyn.rules */
4441			size += (dyn_count * sizeof(ipfw_dyn_rule));
4442
4443		/*
4444		 * XXX todo: if the user passes a short length just to know
4445		 * how much room is needed, do not bother filling up the
4446		 * buffer, just jump to the sooptcopyout.
4447		 */
4448		buf = malloc(size, M_TEMP, M_WAITOK);
4449		error = sooptcopyout(sopt, buf,
4450				ipfw_getrules(&layer3_chain, buf, size));
4451		free(buf, M_TEMP);
4452		break;
4453
4454	case IP_FW_FLUSH:
4455		/*
4456		 * Normally we cannot release the lock on each iteration.
4457		 * We could do it here only because we start from the head all
4458		 * the times so there is no risk of missing some entries.
4459		 * On the other hand, the risk is that we end up with
4460		 * a very inconsistent ruleset, so better keep the lock
4461		 * around the whole cycle.
4462		 *
4463		 * XXX this code can be improved by resetting the head of
4464		 * the list to point to the default rule, and then freeing
4465		 * the old list without the need for a lock.
4466		 */
4467
4468		IPFW_WLOCK(&layer3_chain);
4469		layer3_chain.reap = NULL;
4470		free_chain(&layer3_chain, 0 /* keep default rule */);
4471		rule = layer3_chain.reap;
4472		layer3_chain.reap = NULL;
4473		IPFW_WUNLOCK(&layer3_chain);
4474		if (rule != NULL)
4475			reap_rules(rule);
4476		break;
4477
4478	case IP_FW_ADD:
4479		rule = malloc(RULE_MAXSIZE, M_TEMP, M_WAITOK);
4480		error = sooptcopyin(sopt, rule, RULE_MAXSIZE,
4481			sizeof(struct ip_fw) );
4482		if (error == 0)
4483			error = check_ipfw_struct(rule, sopt->sopt_valsize);
4484		if (error == 0) {
4485			error = add_rule(&layer3_chain, rule);
4486			size = RULESIZE(rule);
4487			if (!error && sopt->sopt_dir == SOPT_GET)
4488				error = sooptcopyout(sopt, rule, size);
4489		}
4490		free(rule, M_TEMP);
4491		break;
4492
4493	case IP_FW_DEL:
4494		/*
4495		 * IP_FW_DEL is used for deleting single rules or sets,
4496		 * and (ab)used to atomically manipulate sets. Argument size
4497		 * is used to distinguish between the two:
4498		 *    sizeof(u_int32_t)
4499		 *	delete single rule or set of rules,
4500		 *	or reassign rules (or sets) to a different set.
4501		 *    2*sizeof(u_int32_t)
4502		 *	atomic disable/enable sets.
4503		 *	first u_int32_t contains sets to be disabled,
4504		 *	second u_int32_t contains sets to be enabled.
4505		 */
4506		error = sooptcopyin(sopt, rulenum,
4507			2*sizeof(u_int32_t), sizeof(u_int32_t));
4508		if (error)
4509			break;
4510		size = sopt->sopt_valsize;
4511		if (size == sizeof(u_int32_t))	/* delete or reassign */
4512			error = del_entry(&layer3_chain, rulenum[0]);
4513		else if (size == 2*sizeof(u_int32_t)) /* set enable/disable */
4514			set_disable =
4515			    (set_disable | rulenum[0]) & ~rulenum[1] &
4516			    ~(1<<RESVD_SET); /* set RESVD_SET always enabled */
4517		else
4518			error = EINVAL;
4519		break;
4520
4521	case IP_FW_ZERO:
4522	case IP_FW_RESETLOG: /* argument is an int, the rule number */
4523		rule_num = 0;
4524		if (sopt->sopt_val != 0) {
4525		    error = sooptcopyin(sopt, &rule_num,
4526			    sizeof(int), sizeof(int));
4527		    if (error)
4528			break;
4529		}
4530		error = zero_entry(&layer3_chain, rule_num,
4531			sopt->sopt_name == IP_FW_RESETLOG);
4532		break;
4533
4534	case IP_FW_TABLE_ADD:
4535		{
4536			ipfw_table_entry ent;
4537
4538			error = sooptcopyin(sopt, &ent,
4539			    sizeof(ent), sizeof(ent));
4540			if (error)
4541				break;
4542			error = add_table_entry(&layer3_chain, ent.tbl,
4543			    ent.addr, ent.masklen, ent.value);
4544		}
4545		break;
4546
4547	case IP_FW_TABLE_DEL:
4548		{
4549			ipfw_table_entry ent;
4550
4551			error = sooptcopyin(sopt, &ent,
4552			    sizeof(ent), sizeof(ent));
4553			if (error)
4554				break;
4555			error = del_table_entry(&layer3_chain, ent.tbl,
4556			    ent.addr, ent.masklen);
4557		}
4558		break;
4559
4560	case IP_FW_TABLE_FLUSH:
4561		{
4562			u_int16_t tbl;
4563
4564			error = sooptcopyin(sopt, &tbl,
4565			    sizeof(tbl), sizeof(tbl));
4566			if (error)
4567				break;
4568			IPFW_WLOCK(&layer3_chain);
4569			error = flush_table(&layer3_chain, tbl);
4570			IPFW_WUNLOCK(&layer3_chain);
4571		}
4572		break;
4573
4574	case IP_FW_TABLE_GETSIZE:
4575		{
4576			u_int32_t tbl, cnt;
4577
4578			if ((error = sooptcopyin(sopt, &tbl, sizeof(tbl),
4579			    sizeof(tbl))))
4580				break;
4581			IPFW_RLOCK(&layer3_chain);
4582			error = count_table(&layer3_chain, tbl, &cnt);
4583			IPFW_RUNLOCK(&layer3_chain);
4584			if (error)
4585				break;
4586			error = sooptcopyout(sopt, &cnt, sizeof(cnt));
4587		}
4588		break;
4589
4590	case IP_FW_TABLE_LIST:
4591		{
4592			ipfw_table *tbl;
4593
4594			if (sopt->sopt_valsize < sizeof(*tbl)) {
4595				error = EINVAL;
4596				break;
4597			}
4598			size = sopt->sopt_valsize;
4599			tbl = malloc(size, M_TEMP, M_WAITOK);
4600			error = sooptcopyin(sopt, tbl, size, sizeof(*tbl));
4601			if (error) {
4602				free(tbl, M_TEMP);
4603				break;
4604			}
4605			tbl->size = (size - sizeof(*tbl)) /
4606			    sizeof(ipfw_table_entry);
4607			IPFW_RLOCK(&layer3_chain);
4608			error = dump_table(&layer3_chain, tbl);
4609			IPFW_RUNLOCK(&layer3_chain);
4610			if (error) {
4611				free(tbl, M_TEMP);
4612				break;
4613			}
4614			error = sooptcopyout(sopt, tbl, size);
4615			free(tbl, M_TEMP);
4616		}
4617		break;
4618
4619#ifdef IPFIREWALL_NAT
4620	case IP_FW_NAT_CFG:
4621	{
4622		struct cfg_nat *ptr, *ser_n;
4623		char *buf;
4624
4625		buf = malloc(NAT_BUF_LEN, M_IPFW, M_WAITOK | M_ZERO);
4626		error = sooptcopyin(sopt, buf, NAT_BUF_LEN,
4627		    sizeof(struct cfg_nat));
4628		ser_n = (struct cfg_nat *)buf;
4629
4630		/*
4631		 * Find/create nat rule.
4632		 */
4633		IPFW_WLOCK(&layer3_chain);
4634		ptr = lookup_nat(ser_n->id);
4635		if (ptr == NULL) {
4636			/* New rule: allocate and init new instance. */
4637			ptr = malloc(sizeof(struct cfg_nat),
4638		            M_IPFW, M_NOWAIT | M_ZERO);
4639			if (ptr == NULL) {
4640				IPFW_WUNLOCK(&layer3_chain);
4641				free(buf, M_IPFW);
4642				return (ENOSPC);
4643			}
4644			ptr->lib = LibAliasInit(NULL);
4645			if (ptr->lib == NULL) {
4646				IPFW_WUNLOCK(&layer3_chain);
4647				free(ptr, M_IPFW);
4648				free(buf, M_IPFW);
4649				return (EINVAL);
4650			}
4651			LIST_INIT(&ptr->redir_chain);
4652		} else {
4653			/* Entry already present: temporarly unhook it. */
4654			UNHOOK_NAT(ptr);
4655			flush_nat_ptrs(ser_n->id);
4656		}
4657		IPFW_WUNLOCK(&layer3_chain);
4658
4659		/*
4660		 * Basic nat configuration.
4661		 */
4662		ptr->id = ser_n->id;
4663		/*
4664		 * XXX - what if this rule doesn't nat any ip and just
4665		 * redirect?
4666		 * do we set aliasaddress to 0.0.0.0?
4667		 */
4668		ptr->ip = ser_n->ip;
4669		ptr->redir_cnt = ser_n->redir_cnt;
4670		ptr->mode = ser_n->mode;
4671		LibAliasSetMode(ptr->lib, ser_n->mode, ser_n->mode);
4672		LibAliasSetAddress(ptr->lib, ptr->ip);
4673		memcpy(ptr->if_name, ser_n->if_name, IF_NAMESIZE);
4674
4675		/*
4676		 * Redir and LSNAT configuration.
4677		 */
4678		/* Delete old cfgs. */
4679		del_redir_spool_cfg(ptr, &ptr->redir_chain);
4680		/* Add new entries. */
4681		add_redir_spool_cfg(&buf[(sizeof(struct cfg_nat))], ptr);
4682		free(buf, M_IPFW);
4683		IPFW_WLOCK(&layer3_chain);
4684		HOOK_NAT(&layer3_chain.nat, ptr);
4685		IPFW_WUNLOCK(&layer3_chain);
4686	}
4687	break;
4688
4689	case IP_FW_NAT_DEL:
4690	{
4691		struct cfg_nat *ptr;
4692		int i;
4693
4694		error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
4695		IPFW_WLOCK(&layer3_chain);
4696		ptr = lookup_nat(i);
4697		if (ptr == NULL) {
4698			error = EINVAL;
4699			IPFW_WUNLOCK(&layer3_chain);
4700			break;
4701		}
4702		UNHOOK_NAT(ptr);
4703		flush_nat_ptrs(i);
4704		IPFW_WUNLOCK(&layer3_chain);
4705		del_redir_spool_cfg(ptr, &ptr->redir_chain);
4706		LibAliasUninit(ptr->lib);
4707		free(ptr, M_IPFW);
4708	}
4709	break;
4710
4711	case IP_FW_NAT_GET_CONFIG:
4712	{
4713		uint8_t *data;
4714		struct cfg_nat *n;
4715		struct cfg_redir *r;
4716		struct cfg_spool *s;
4717		int nat_cnt, off;
4718
4719		nat_cnt = 0;
4720		off = sizeof(nat_cnt);
4721
4722		data = malloc(NAT_BUF_LEN, M_IPFW, M_WAITOK | M_ZERO);
4723		IPFW_RLOCK(&layer3_chain);
4724		/* Serialize all the data. */
4725		LIST_FOREACH(n, &layer3_chain.nat, _next) {
4726			nat_cnt++;
4727			if (off + SOF_NAT < NAT_BUF_LEN) {
4728				bcopy(n, &data[off], SOF_NAT);
4729				off += SOF_NAT;
4730				LIST_FOREACH(r, &n->redir_chain, _next) {
4731					if (off + SOF_REDIR < NAT_BUF_LEN) {
4732						bcopy(r, &data[off],
4733						    SOF_REDIR);
4734						off += SOF_REDIR;
4735						LIST_FOREACH(s, &r->spool_chain,
4736						    _next) {
4737							if (off + SOF_SPOOL <
4738							    NAT_BUF_LEN) {
4739								bcopy(s,
4740								    &data[off],
4741								    SOF_SPOOL);
4742								off +=
4743								    SOF_SPOOL;
4744							} else
4745								goto nospace;
4746						}
4747					} else
4748						goto nospace;
4749				}
4750			} else
4751				goto nospace;
4752		}
4753		bcopy(&nat_cnt, data, sizeof(nat_cnt));
4754		IPFW_RUNLOCK(&layer3_chain);
4755		error = sooptcopyout(sopt, data, NAT_BUF_LEN);
4756		free(data, M_IPFW);
4757		break;
4758	nospace:
4759		IPFW_RUNLOCK(&layer3_chain);
4760		printf("serialized data buffer not big enough:"
4761		    "please increase NAT_BUF_LEN\n");
4762		free(data, M_IPFW);
4763	}
4764	break;
4765
4766	case IP_FW_NAT_GET_LOG:
4767	{
4768		uint8_t *data;
4769		struct cfg_nat *ptr;
4770		int i, size, cnt, sof;
4771
4772		data = NULL;
4773		sof = LIBALIAS_BUF_SIZE;
4774		cnt = 0;
4775
4776		IPFW_RLOCK(&layer3_chain);
4777		size = i = 0;
4778		LIST_FOREACH(ptr, &layer3_chain.nat, _next) {
4779			if (ptr->lib->logDesc == NULL)
4780				continue;
4781			cnt++;
4782			size = cnt * (sof + sizeof(int));
4783			data = realloc(data, size, M_IPFW, M_NOWAIT | M_ZERO);
4784			if (data == NULL) {
4785				IPFW_RUNLOCK(&layer3_chain);
4786				return (ENOSPC);
4787			}
4788			bcopy(&ptr->id, &data[i], sizeof(int));
4789			i += sizeof(int);
4790			bcopy(ptr->lib->logDesc, &data[i], sof);
4791			i += sof;
4792		}
4793		IPFW_RUNLOCK(&layer3_chain);
4794		error = sooptcopyout(sopt, data, size);
4795		free(data, M_IPFW);
4796	}
4797	break;
4798#endif
4799
4800	default:
4801		printf("ipfw: ipfw_ctl invalid option %d\n", sopt->sopt_name);
4802		error = EINVAL;
4803	}
4804
4805	return (error);
4806#undef RULE_MAXSIZE
4807}
4808
4809/**
4810 * dummynet needs a reference to the default rule, because rules can be
4811 * deleted while packets hold a reference to them. When this happens,
4812 * dummynet changes the reference to the default rule (it could well be a
4813 * NULL pointer, but this way we do not need to check for the special
4814 * case, plus here he have info on the default behaviour).
4815 */
4816struct ip_fw *ip_fw_default_rule;
4817
4818/*
4819 * This procedure is only used to handle keepalives. It is invoked
4820 * every dyn_keepalive_period
4821 */
4822static void
4823ipfw_tick(void * __unused unused)
4824{
4825	struct mbuf *m0, *m, *mnext, **mtailp;
4826	int i;
4827	ipfw_dyn_rule *q;
4828
4829	if (dyn_keepalive == 0 || ipfw_dyn_v == NULL || dyn_count == 0)
4830		goto done;
4831
4832	/*
4833	 * We make a chain of packets to go out here -- not deferring
4834	 * until after we drop the IPFW dynamic rule lock would result
4835	 * in a lock order reversal with the normal packet input -> ipfw
4836	 * call stack.
4837	 */
4838	m0 = NULL;
4839	mtailp = &m0;
4840	IPFW_DYN_LOCK();
4841	for (i = 0 ; i < curr_dyn_buckets ; i++) {
4842		for (q = ipfw_dyn_v[i] ; q ; q = q->next ) {
4843			if (q->dyn_type == O_LIMIT_PARENT)
4844				continue;
4845			if (q->id.proto != IPPROTO_TCP)
4846				continue;
4847			if ( (q->state & BOTH_SYN) != BOTH_SYN)
4848				continue;
4849			if (TIME_LEQ( time_uptime+dyn_keepalive_interval,
4850			    q->expire))
4851				continue;	/* too early */
4852			if (TIME_LEQ(q->expire, time_uptime))
4853				continue;	/* too late, rule expired */
4854
4855			*mtailp = send_pkt(NULL, &(q->id), q->ack_rev - 1,
4856				q->ack_fwd, TH_SYN);
4857			if (*mtailp != NULL)
4858				mtailp = &(*mtailp)->m_nextpkt;
4859			*mtailp = send_pkt(NULL, &(q->id), q->ack_fwd - 1,
4860				q->ack_rev, 0);
4861			if (*mtailp != NULL)
4862				mtailp = &(*mtailp)->m_nextpkt;
4863		}
4864	}
4865	IPFW_DYN_UNLOCK();
4866	for (m = mnext = m0; m != NULL; m = mnext) {
4867		mnext = m->m_nextpkt;
4868		m->m_nextpkt = NULL;
4869		ip_output(m, NULL, NULL, 0, NULL, NULL);
4870	}
4871done:
4872	callout_reset(&ipfw_timeout, dyn_keepalive_period*hz, ipfw_tick, NULL);
4873}
4874
4875int
4876ipfw_init(void)
4877{
4878	struct ip_fw default_rule;
4879	int error;
4880
4881#ifdef INET6
4882	/* Setup IPv6 fw sysctl tree. */
4883	sysctl_ctx_init(&ip6_fw_sysctl_ctx);
4884	ip6_fw_sysctl_tree = SYSCTL_ADD_NODE(&ip6_fw_sysctl_ctx,
4885	    SYSCTL_STATIC_CHILDREN(_net_inet6_ip6), OID_AUTO, "fw",
4886	    CTLFLAG_RW | CTLFLAG_SECURE, 0, "Firewall");
4887	SYSCTL_ADD_PROC(&ip6_fw_sysctl_ctx, SYSCTL_CHILDREN(ip6_fw_sysctl_tree),
4888	    OID_AUTO, "enable", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE3,
4889	    &fw6_enable, 0, ipfw_chg_hook, "I", "Enable ipfw+6");
4890	SYSCTL_ADD_INT(&ip6_fw_sysctl_ctx, SYSCTL_CHILDREN(ip6_fw_sysctl_tree),
4891	    OID_AUTO, "deny_unknown_exthdrs", CTLFLAG_RW | CTLFLAG_SECURE,
4892	    &fw_deny_unknown_exthdrs, 0,
4893	    "Deny packets with unknown IPv6 Extension Headers");
4894#endif
4895
4896	layer3_chain.rules = NULL;
4897	IPFW_LOCK_INIT(&layer3_chain);
4898	ipfw_dyn_rule_zone = uma_zcreate("IPFW dynamic rule",
4899	    sizeof(ipfw_dyn_rule), NULL, NULL, NULL, NULL,
4900	    UMA_ALIGN_PTR, 0);
4901	IPFW_DYN_LOCK_INIT();
4902	callout_init(&ipfw_timeout, NET_CALLOUT_MPSAFE);
4903
4904	bzero(&default_rule, sizeof default_rule);
4905
4906	default_rule.act_ofs = 0;
4907	default_rule.rulenum = IPFW_DEFAULT_RULE;
4908	default_rule.cmd_len = 1;
4909	default_rule.set = RESVD_SET;
4910
4911	default_rule.cmd[0].len = 1;
4912	default_rule.cmd[0].opcode =
4913#ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
4914				1 ? O_ACCEPT :
4915#endif
4916				O_DENY;
4917
4918	error = add_rule(&layer3_chain, &default_rule);
4919	if (error != 0) {
4920		printf("ipfw2: error %u initializing default rule "
4921			"(support disabled)\n", error);
4922		IPFW_DYN_LOCK_DESTROY();
4923		IPFW_LOCK_DESTROY(&layer3_chain);
4924		uma_zdestroy(ipfw_dyn_rule_zone);
4925		return (error);
4926	}
4927
4928	ip_fw_default_rule = layer3_chain.rules;
4929	printf("ipfw2 "
4930#ifdef INET6
4931		"(+ipv6) "
4932#endif
4933		"initialized, divert %s, "
4934		"rule-based forwarding "
4935#ifdef IPFIREWALL_FORWARD
4936		"enabled, "
4937#else
4938		"disabled, "
4939#endif
4940		"default to %s, logging ",
4941#ifdef IPDIVERT
4942		"enabled",
4943#else
4944		"loadable",
4945#endif
4946		default_rule.cmd[0].opcode == O_ACCEPT ? "accept" : "deny");
4947
4948#ifdef IPFIREWALL_VERBOSE
4949	fw_verbose = 1;
4950#endif
4951#ifdef IPFIREWALL_VERBOSE_LIMIT
4952	verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
4953#endif
4954	if (fw_verbose == 0)
4955		printf("disabled\n");
4956	else if (verbose_limit == 0)
4957		printf("unlimited\n");
4958	else
4959		printf("limited to %d packets/entry by default\n",
4960		    verbose_limit);
4961
4962	error = init_tables(&layer3_chain);
4963	if (error) {
4964		IPFW_DYN_LOCK_DESTROY();
4965		IPFW_LOCK_DESTROY(&layer3_chain);
4966		uma_zdestroy(ipfw_dyn_rule_zone);
4967		return (error);
4968	}
4969	ip_fw_ctl_ptr = ipfw_ctl;
4970	ip_fw_chk_ptr = ipfw_chk;
4971	callout_reset(&ipfw_timeout, hz, ipfw_tick, NULL);
4972#ifdef IPFIREWALL_NAT
4973	LIST_INIT(&layer3_chain.nat);
4974	ifaddr_event_tag = EVENTHANDLER_REGISTER(ifaddr_event, ifaddr_change,
4975	    NULL, EVENTHANDLER_PRI_ANY);
4976#endif
4977	return (0);
4978}
4979
4980void
4981ipfw_destroy(void)
4982{
4983	struct ip_fw *reap;
4984#ifdef IPFIREWALL_NAT
4985	struct cfg_nat *ptr, *ptr_temp;
4986#endif
4987
4988	ip_fw_chk_ptr = NULL;
4989	ip_fw_ctl_ptr = NULL;
4990	callout_drain(&ipfw_timeout);
4991	IPFW_WLOCK(&layer3_chain);
4992	flush_tables(&layer3_chain);
4993#ifdef IPFIREWALL_NAT
4994	LIST_FOREACH_SAFE(ptr, &layer3_chain.nat, _next, ptr_temp) {
4995		LIST_REMOVE(ptr, _next);
4996		del_redir_spool_cfg(ptr, &ptr->redir_chain);
4997		LibAliasUninit(ptr->lib);
4998		free(ptr, M_IPFW);
4999	}
5000	EVENTHANDLER_DEREGISTER(ifaddr_event, ifaddr_event_tag);
5001#endif
5002	layer3_chain.reap = NULL;
5003	free_chain(&layer3_chain, 1 /* kill default rule */);
5004	reap = layer3_chain.reap, layer3_chain.reap = NULL;
5005	IPFW_WUNLOCK(&layer3_chain);
5006	if (reap != NULL)
5007		reap_rules(reap);
5008	IPFW_DYN_LOCK_DESTROY();
5009	uma_zdestroy(ipfw_dyn_rule_zone);
5010	IPFW_LOCK_DESTROY(&layer3_chain);
5011
5012#ifdef INET6
5013	/* Free IPv6 fw sysctl tree. */
5014	sysctl_ctx_free(&ip6_fw_sysctl_ctx);
5015#endif
5016
5017	printf("IP firewall unloaded\n");
5018}
5019