nd6.c revision 290348
1/*-
2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the project nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	$KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: stable/10/sys/netinet6/nd6.c 290348 2015-11-04 01:00:42Z hrs $");
34
35#include "opt_inet.h"
36#include "opt_inet6.h"
37#include "opt_kdtrace.h"
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/callout.h>
42#include <sys/malloc.h>
43#include <sys/mbuf.h>
44#include <sys/socket.h>
45#include <sys/sockio.h>
46#include <sys/time.h>
47#include <sys/kernel.h>
48#include <sys/protosw.h>
49#include <sys/errno.h>
50#include <sys/syslog.h>
51#include <sys/lock.h>
52#include <sys/rwlock.h>
53#include <sys/queue.h>
54#include <sys/sdt.h>
55#include <sys/sysctl.h>
56
57#include <net/if.h>
58#include <net/if_arc.h>
59#include <net/if_dl.h>
60#include <net/if_types.h>
61#include <net/iso88025.h>
62#include <net/fddi.h>
63#include <net/route.h>
64#include <net/vnet.h>
65
66#include <netinet/in.h>
67#include <netinet/in_kdtrace.h>
68#include <net/if_llatbl.h>
69#define	L3_ADDR_SIN6(le)	((struct sockaddr_in6 *) L3_ADDR(le))
70#include <netinet/if_ether.h>
71#include <netinet6/in6_var.h>
72#include <netinet/ip6.h>
73#include <netinet6/ip6_var.h>
74#include <netinet6/scope6_var.h>
75#include <netinet6/nd6.h>
76#include <netinet6/in6_ifattach.h>
77#include <netinet/icmp6.h>
78#include <netinet6/send.h>
79
80#include <sys/limits.h>
81
82#include <security/mac/mac_framework.h>
83
84#define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
85#define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
86
87#define SIN6(s) ((const struct sockaddr_in6 *)(s))
88
89/* timer values */
90VNET_DEFINE(int, nd6_prune)	= 1;	/* walk list every 1 seconds */
91VNET_DEFINE(int, nd6_delay)	= 5;	/* delay first probe time 5 second */
92VNET_DEFINE(int, nd6_umaxtries)	= 3;	/* maximum unicast query */
93VNET_DEFINE(int, nd6_mmaxtries)	= 3;	/* maximum multicast query */
94VNET_DEFINE(int, nd6_useloopback) = 1;	/* use loopback interface for
95					 * local traffic */
96VNET_DEFINE(int, nd6_gctimer)	= (60 * 60 * 24); /* 1 day: garbage
97					 * collection timer */
98
99/* preventing too many loops in ND option parsing */
100static VNET_DEFINE(int, nd6_maxndopt) = 10; /* max # of ND options allowed */
101
102VNET_DEFINE(int, nd6_maxnudhint) = 0;	/* max # of subsequent upper
103					 * layer hints */
104static VNET_DEFINE(int, nd6_maxqueuelen) = 1; /* max pkts cached in unresolved
105					 * ND entries */
106#define	V_nd6_maxndopt			VNET(nd6_maxndopt)
107#define	V_nd6_maxqueuelen		VNET(nd6_maxqueuelen)
108
109#ifdef ND6_DEBUG
110VNET_DEFINE(int, nd6_debug) = 1;
111#else
112VNET_DEFINE(int, nd6_debug) = 0;
113#endif
114
115/* for debugging? */
116#if 0
117static int nd6_inuse, nd6_allocated;
118#endif
119
120VNET_DEFINE(struct nd_drhead, nd_defrouter);
121VNET_DEFINE(struct nd_prhead, nd_prefix);
122
123VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL;
124#define	V_nd6_recalc_reachtm_interval	VNET(nd6_recalc_reachtm_interval)
125
126int	(*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int);
127
128static int nd6_is_new_addr_neighbor(struct sockaddr_in6 *,
129	struct ifnet *);
130static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
131static void nd6_slowtimo(void *);
132static int regen_tmpaddr(struct in6_ifaddr *);
133static struct llentry *nd6_free(struct llentry *, int);
134static void nd6_llinfo_timer(void *);
135static void clear_llinfo_pqueue(struct llentry *);
136static int nd6_output_lle(struct ifnet *, struct ifnet *, struct mbuf *,
137	struct sockaddr_in6 *);
138static int nd6_output_ifp(struct ifnet *, struct ifnet *, struct mbuf *,
139    struct sockaddr_in6 *);
140
141static VNET_DEFINE(struct callout, nd6_slowtimo_ch);
142#define	V_nd6_slowtimo_ch		VNET(nd6_slowtimo_ch)
143
144VNET_DEFINE(struct callout, nd6_timer_ch);
145
146void
147nd6_init(void)
148{
149
150	LIST_INIT(&V_nd_prefix);
151
152	/* initialization of the default router list */
153	TAILQ_INIT(&V_nd_defrouter);
154
155	/* start timer */
156	callout_init(&V_nd6_slowtimo_ch, 0);
157	callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
158	    nd6_slowtimo, curvnet);
159
160	nd6_dad_init();
161}
162
163#ifdef VIMAGE
164void
165nd6_destroy()
166{
167
168	callout_drain(&V_nd6_slowtimo_ch);
169	callout_drain(&V_nd6_timer_ch);
170}
171#endif
172
173struct nd_ifinfo *
174nd6_ifattach(struct ifnet *ifp)
175{
176	struct nd_ifinfo *nd;
177
178	nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK|M_ZERO);
179	nd->initialized = 1;
180
181	nd->chlim = IPV6_DEFHLIM;
182	nd->basereachable = REACHABLE_TIME;
183	nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
184	nd->retrans = RETRANS_TIMER;
185
186	nd->flags = ND6_IFF_PERFORMNUD;
187
188	/* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL.
189	 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by
190	 * default regardless of the V_ip6_auto_linklocal configuration to
191	 * give a reasonable default behavior.
192	 */
193	if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) ||
194	    (ifp->if_flags & IFF_LOOPBACK))
195		nd->flags |= ND6_IFF_AUTO_LINKLOCAL;
196	/*
197	 * A loopback interface does not need to accept RTADV.
198	 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by
199	 * default regardless of the V_ip6_accept_rtadv configuration to
200	 * prevent the interface from accepting RA messages arrived
201	 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV.
202	 */
203	if (V_ip6_accept_rtadv &&
204	    !(ifp->if_flags & IFF_LOOPBACK) &&
205	    (ifp->if_type != IFT_BRIDGE))
206			nd->flags |= ND6_IFF_ACCEPT_RTADV;
207	if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK))
208		nd->flags |= ND6_IFF_NO_RADR;
209
210	/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
211	nd6_setmtu0(ifp, nd);
212
213	return nd;
214}
215
216void
217nd6_ifdetach(struct nd_ifinfo *nd)
218{
219
220	free(nd, M_IP6NDP);
221}
222
223/*
224 * Reset ND level link MTU. This function is called when the physical MTU
225 * changes, which means we might have to adjust the ND level MTU.
226 */
227void
228nd6_setmtu(struct ifnet *ifp)
229{
230
231	nd6_setmtu0(ifp, ND_IFINFO(ifp));
232}
233
234/* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
235void
236nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
237{
238	u_int32_t omaxmtu;
239
240	omaxmtu = ndi->maxmtu;
241
242	switch (ifp->if_type) {
243	case IFT_ARCNET:
244		ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
245		break;
246	case IFT_FDDI:
247		ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */
248		break;
249	case IFT_ISO88025:
250		 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu);
251		 break;
252	default:
253		ndi->maxmtu = ifp->if_mtu;
254		break;
255	}
256
257	/*
258	 * Decreasing the interface MTU under IPV6 minimum MTU may cause
259	 * undesirable situation.  We thus notify the operator of the change
260	 * explicitly.  The check for omaxmtu is necessary to restrict the
261	 * log to the case of changing the MTU, not initializing it.
262	 */
263	if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
264		log(LOG_NOTICE, "nd6_setmtu0: "
265		    "new link MTU on %s (%lu) is too small for IPv6\n",
266		    if_name(ifp), (unsigned long)ndi->maxmtu);
267	}
268
269	if (ndi->maxmtu > V_in6_maxmtu)
270		in6_setmaxmtu(); /* check all interfaces just in case */
271
272}
273
274void
275nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
276{
277
278	bzero(ndopts, sizeof(*ndopts));
279	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
280	ndopts->nd_opts_last
281		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
282
283	if (icmp6len == 0) {
284		ndopts->nd_opts_done = 1;
285		ndopts->nd_opts_search = NULL;
286	}
287}
288
289/*
290 * Take one ND option.
291 */
292struct nd_opt_hdr *
293nd6_option(union nd_opts *ndopts)
294{
295	struct nd_opt_hdr *nd_opt;
296	int olen;
297
298	KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__));
299	KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts",
300	    __func__));
301	if (ndopts->nd_opts_search == NULL)
302		return NULL;
303	if (ndopts->nd_opts_done)
304		return NULL;
305
306	nd_opt = ndopts->nd_opts_search;
307
308	/* make sure nd_opt_len is inside the buffer */
309	if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
310		bzero(ndopts, sizeof(*ndopts));
311		return NULL;
312	}
313
314	olen = nd_opt->nd_opt_len << 3;
315	if (olen == 0) {
316		/*
317		 * Message validation requires that all included
318		 * options have a length that is greater than zero.
319		 */
320		bzero(ndopts, sizeof(*ndopts));
321		return NULL;
322	}
323
324	ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
325	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
326		/* option overruns the end of buffer, invalid */
327		bzero(ndopts, sizeof(*ndopts));
328		return NULL;
329	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
330		/* reached the end of options chain */
331		ndopts->nd_opts_done = 1;
332		ndopts->nd_opts_search = NULL;
333	}
334	return nd_opt;
335}
336
337/*
338 * Parse multiple ND options.
339 * This function is much easier to use, for ND routines that do not need
340 * multiple options of the same type.
341 */
342int
343nd6_options(union nd_opts *ndopts)
344{
345	struct nd_opt_hdr *nd_opt;
346	int i = 0;
347
348	KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__));
349	KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts",
350	    __func__));
351	if (ndopts->nd_opts_search == NULL)
352		return 0;
353
354	while (1) {
355		nd_opt = nd6_option(ndopts);
356		if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
357			/*
358			 * Message validation requires that all included
359			 * options have a length that is greater than zero.
360			 */
361			ICMP6STAT_INC(icp6s_nd_badopt);
362			bzero(ndopts, sizeof(*ndopts));
363			return -1;
364		}
365
366		if (nd_opt == NULL)
367			goto skip1;
368
369		switch (nd_opt->nd_opt_type) {
370		case ND_OPT_SOURCE_LINKADDR:
371		case ND_OPT_TARGET_LINKADDR:
372		case ND_OPT_MTU:
373		case ND_OPT_REDIRECTED_HEADER:
374		case ND_OPT_NONCE:
375			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
376				nd6log((LOG_INFO,
377				    "duplicated ND6 option found (type=%d)\n",
378				    nd_opt->nd_opt_type));
379				/* XXX bark? */
380			} else {
381				ndopts->nd_opt_array[nd_opt->nd_opt_type]
382					= nd_opt;
383			}
384			break;
385		case ND_OPT_PREFIX_INFORMATION:
386			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
387				ndopts->nd_opt_array[nd_opt->nd_opt_type]
388					= nd_opt;
389			}
390			ndopts->nd_opts_pi_end =
391				(struct nd_opt_prefix_info *)nd_opt;
392			break;
393		/* What about ND_OPT_ROUTE_INFO? RFC 4191 */
394		case ND_OPT_RDNSS:	/* RFC 6106 */
395		case ND_OPT_DNSSL:	/* RFC 6106 */
396			/*
397			 * Silently ignore options we know and do not care about
398			 * in the kernel.
399			 */
400			break;
401		default:
402			/*
403			 * Unknown options must be silently ignored,
404			 * to accomodate future extension to the protocol.
405			 */
406			nd6log((LOG_DEBUG,
407			    "nd6_options: unsupported option %d - "
408			    "option ignored\n", nd_opt->nd_opt_type));
409		}
410
411skip1:
412		i++;
413		if (i > V_nd6_maxndopt) {
414			ICMP6STAT_INC(icp6s_nd_toomanyopt);
415			nd6log((LOG_INFO, "too many loop in nd opt\n"));
416			break;
417		}
418
419		if (ndopts->nd_opts_done)
420			break;
421	}
422
423	return 0;
424}
425
426/*
427 * ND6 timer routine to handle ND6 entries
428 */
429void
430nd6_llinfo_settimer_locked(struct llentry *ln, long tick)
431{
432	int canceled;
433
434	LLE_WLOCK_ASSERT(ln);
435
436	if (tick < 0) {
437		ln->la_expire = 0;
438		ln->ln_ntick = 0;
439		canceled = callout_stop(&ln->ln_timer_ch);
440	} else {
441		ln->la_expire = time_uptime + tick / hz;
442		LLE_ADDREF(ln);
443		if (tick > INT_MAX) {
444			ln->ln_ntick = tick - INT_MAX;
445			canceled = callout_reset(&ln->ln_timer_ch, INT_MAX,
446			    nd6_llinfo_timer, ln);
447		} else {
448			ln->ln_ntick = 0;
449			canceled = callout_reset(&ln->ln_timer_ch, tick,
450			    nd6_llinfo_timer, ln);
451		}
452	}
453	if (canceled)
454		LLE_REMREF(ln);
455}
456
457void
458nd6_llinfo_settimer(struct llentry *ln, long tick)
459{
460
461	LLE_WLOCK(ln);
462	nd6_llinfo_settimer_locked(ln, tick);
463	LLE_WUNLOCK(ln);
464}
465
466static void
467nd6_llinfo_timer(void *arg)
468{
469	struct llentry *ln;
470	struct in6_addr *dst;
471	struct ifnet *ifp;
472	struct nd_ifinfo *ndi = NULL;
473
474	KASSERT(arg != NULL, ("%s: arg NULL", __func__));
475	ln = (struct llentry *)arg;
476	LLE_WLOCK(ln);
477	if (callout_pending(&ln->la_timer)) {
478		/*
479		 * Here we are a bit odd here in the treatment of
480		 * active/pending. If the pending bit is set, it got
481		 * rescheduled before I ran. The active
482		 * bit we ignore, since if it was stopped
483		 * in ll_tablefree() and was currently running
484		 * it would have return 0 so the code would
485		 * not have deleted it since the callout could
486		 * not be stopped so we want to go through
487		 * with the delete here now. If the callout
488		 * was restarted, the pending bit will be back on and
489		 * we just want to bail since the callout_reset would
490		 * return 1 and our reference would have been removed
491		 * by nd6_llinfo_settimer_locked above since canceled
492		 * would have been 1.
493		 */
494		LLE_WUNLOCK(ln);
495		return;
496	}
497	ifp = ln->lle_tbl->llt_ifp;
498	CURVNET_SET(ifp->if_vnet);
499
500	if (ln->ln_ntick > 0) {
501		if (ln->ln_ntick > INT_MAX) {
502			ln->ln_ntick -= INT_MAX;
503			nd6_llinfo_settimer_locked(ln, INT_MAX);
504		} else {
505			ln->ln_ntick = 0;
506			nd6_llinfo_settimer_locked(ln, ln->ln_ntick);
507		}
508		goto done;
509	}
510
511	ndi = ND_IFINFO(ifp);
512	dst = &L3_ADDR_SIN6(ln)->sin6_addr;
513	if (ln->la_flags & LLE_STATIC) {
514		goto done;
515	}
516
517	if (ln->la_flags & LLE_DELETED) {
518		(void)nd6_free(ln, 0);
519		ln = NULL;
520		goto done;
521	}
522
523	switch (ln->ln_state) {
524	case ND6_LLINFO_INCOMPLETE:
525		if (ln->la_asked < V_nd6_mmaxtries) {
526			ln->la_asked++;
527			nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000);
528			LLE_WUNLOCK(ln);
529			nd6_ns_output(ifp, NULL, dst, ln, NULL);
530			LLE_WLOCK(ln);
531		} else {
532			struct mbuf *m = ln->la_hold;
533			if (m) {
534				struct mbuf *m0;
535
536				/*
537				 * assuming every packet in la_hold has the
538				 * same IP header.  Send error after unlock.
539				 */
540				m0 = m->m_nextpkt;
541				m->m_nextpkt = NULL;
542				ln->la_hold = m0;
543				clear_llinfo_pqueue(ln);
544			}
545			EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_TIMEDOUT);
546			(void)nd6_free(ln, 0);
547			ln = NULL;
548			if (m != NULL)
549				icmp6_error2(m, ICMP6_DST_UNREACH,
550				    ICMP6_DST_UNREACH_ADDR, 0, ifp);
551		}
552		break;
553	case ND6_LLINFO_REACHABLE:
554		if (!ND6_LLINFO_PERMANENT(ln)) {
555			ln->ln_state = ND6_LLINFO_STALE;
556			nd6_llinfo_settimer_locked(ln, (long)V_nd6_gctimer * hz);
557		}
558		break;
559
560	case ND6_LLINFO_STALE:
561		/* Garbage Collection(RFC 2461 5.3) */
562		if (!ND6_LLINFO_PERMANENT(ln)) {
563			EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED);
564			(void)nd6_free(ln, 1);
565			ln = NULL;
566		}
567		break;
568
569	case ND6_LLINFO_DELAY:
570		if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
571			/* We need NUD */
572			ln->la_asked = 1;
573			ln->ln_state = ND6_LLINFO_PROBE;
574			nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000);
575			LLE_WUNLOCK(ln);
576			nd6_ns_output(ifp, dst, dst, ln, NULL);
577			LLE_WLOCK(ln);
578		} else {
579			ln->ln_state = ND6_LLINFO_STALE; /* XXX */
580			nd6_llinfo_settimer_locked(ln, (long)V_nd6_gctimer * hz);
581		}
582		break;
583	case ND6_LLINFO_PROBE:
584		if (ln->la_asked < V_nd6_umaxtries) {
585			ln->la_asked++;
586			nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000);
587			LLE_WUNLOCK(ln);
588			nd6_ns_output(ifp, dst, dst, ln, NULL);
589			LLE_WLOCK(ln);
590		} else {
591			EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED);
592			(void)nd6_free(ln, 0);
593			ln = NULL;
594		}
595		break;
596	default:
597		panic("%s: paths in a dark night can be confusing: %d",
598		    __func__, ln->ln_state);
599	}
600done:
601	if (ln != NULL)
602		LLE_FREE_LOCKED(ln);
603	CURVNET_RESTORE();
604}
605
606
607/*
608 * ND6 timer routine to expire default route list and prefix list
609 */
610void
611nd6_timer(void *arg)
612{
613	CURVNET_SET((struct vnet *) arg);
614	struct nd_defrouter *dr, *ndr;
615	struct nd_prefix *pr, *npr;
616	struct in6_ifaddr *ia6, *nia6;
617
618	callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz,
619	    nd6_timer, curvnet);
620
621	/* expire default router list */
622	TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) {
623		if (dr->expire && dr->expire < time_uptime)
624			defrtrlist_del(dr);
625	}
626
627	/*
628	 * expire interface addresses.
629	 * in the past the loop was inside prefix expiry processing.
630	 * However, from a stricter speci-confrmance standpoint, we should
631	 * rather separate address lifetimes and prefix lifetimes.
632	 *
633	 * XXXRW: in6_ifaddrhead locking.
634	 */
635  addrloop:
636	TAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) {
637		/* check address lifetime */
638		if (IFA6_IS_INVALID(ia6)) {
639			int regen = 0;
640
641			/*
642			 * If the expiring address is temporary, try
643			 * regenerating a new one.  This would be useful when
644			 * we suspended a laptop PC, then turned it on after a
645			 * period that could invalidate all temporary
646			 * addresses.  Although we may have to restart the
647			 * loop (see below), it must be after purging the
648			 * address.  Otherwise, we'd see an infinite loop of
649			 * regeneration.
650			 */
651			if (V_ip6_use_tempaddr &&
652			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
653				if (regen_tmpaddr(ia6) == 0)
654					regen = 1;
655			}
656
657			in6_purgeaddr(&ia6->ia_ifa);
658
659			if (regen)
660				goto addrloop; /* XXX: see below */
661		} else if (IFA6_IS_DEPRECATED(ia6)) {
662			int oldflags = ia6->ia6_flags;
663
664			ia6->ia6_flags |= IN6_IFF_DEPRECATED;
665
666			/*
667			 * If a temporary address has just become deprecated,
668			 * regenerate a new one if possible.
669			 */
670			if (V_ip6_use_tempaddr &&
671			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
672			    (oldflags & IN6_IFF_DEPRECATED) == 0) {
673
674				if (regen_tmpaddr(ia6) == 0) {
675					/*
676					 * A new temporary address is
677					 * generated.
678					 * XXX: this means the address chain
679					 * has changed while we are still in
680					 * the loop.  Although the change
681					 * would not cause disaster (because
682					 * it's not a deletion, but an
683					 * addition,) we'd rather restart the
684					 * loop just for safety.  Or does this
685					 * significantly reduce performance??
686					 */
687					goto addrloop;
688				}
689			}
690		} else if ((ia6->ia6_flags & IN6_IFF_TENTATIVE) != 0) {
691			/*
692			 * Schedule DAD for a tentative address.  This happens
693			 * if the interface was down or not running
694			 * when the address was configured.
695			 */
696			int delay;
697
698			delay = arc4random() %
699			    (MAX_RTR_SOLICITATION_DELAY * hz);
700			nd6_dad_start((struct ifaddr *)ia6, delay);
701		} else {
702			/*
703			 * Check status of the interface.  If it is down,
704			 * mark the address as tentative for future DAD.
705			 */
706			if ((ia6->ia_ifp->if_flags & IFF_UP) == 0 ||
707			    (ia6->ia_ifp->if_drv_flags & IFF_DRV_RUNNING)
708				== 0 ||
709			    (ND_IFINFO(ia6->ia_ifp)->flags &
710				ND6_IFF_IFDISABLED) != 0) {
711				ia6->ia6_flags &= ~IN6_IFF_DUPLICATED;
712				ia6->ia6_flags |= IN6_IFF_TENTATIVE;
713			}
714			/*
715			 * A new RA might have made a deprecated address
716			 * preferred.
717			 */
718			ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
719		}
720	}
721
722	/* expire prefix list */
723	LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) {
724		/*
725		 * check prefix lifetime.
726		 * since pltime is just for autoconf, pltime processing for
727		 * prefix is not necessary.
728		 */
729		if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
730		    time_uptime - pr->ndpr_lastupdate > pr->ndpr_vltime) {
731
732			/*
733			 * address expiration and prefix expiration are
734			 * separate.  NEVER perform in6_purgeaddr here.
735			 */
736			prelist_remove(pr);
737		}
738	}
739	CURVNET_RESTORE();
740}
741
742/*
743 * ia6 - deprecated/invalidated temporary address
744 */
745static int
746regen_tmpaddr(struct in6_ifaddr *ia6)
747{
748	struct ifaddr *ifa;
749	struct ifnet *ifp;
750	struct in6_ifaddr *public_ifa6 = NULL;
751
752	ifp = ia6->ia_ifa.ifa_ifp;
753	IF_ADDR_RLOCK(ifp);
754	TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
755		struct in6_ifaddr *it6;
756
757		if (ifa->ifa_addr->sa_family != AF_INET6)
758			continue;
759
760		it6 = (struct in6_ifaddr *)ifa;
761
762		/* ignore no autoconf addresses. */
763		if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
764			continue;
765
766		/* ignore autoconf addresses with different prefixes. */
767		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
768			continue;
769
770		/*
771		 * Now we are looking at an autoconf address with the same
772		 * prefix as ours.  If the address is temporary and is still
773		 * preferred, do not create another one.  It would be rare, but
774		 * could happen, for example, when we resume a laptop PC after
775		 * a long period.
776		 */
777		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
778		    !IFA6_IS_DEPRECATED(it6)) {
779			public_ifa6 = NULL;
780			break;
781		}
782
783		/*
784		 * This is a public autoconf address that has the same prefix
785		 * as ours.  If it is preferred, keep it.  We can't break the
786		 * loop here, because there may be a still-preferred temporary
787		 * address with the prefix.
788		 */
789		if (!IFA6_IS_DEPRECATED(it6))
790			public_ifa6 = it6;
791	}
792	if (public_ifa6 != NULL)
793		ifa_ref(&public_ifa6->ia_ifa);
794	IF_ADDR_RUNLOCK(ifp);
795
796	if (public_ifa6 != NULL) {
797		int e;
798
799		if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
800			ifa_free(&public_ifa6->ia_ifa);
801			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
802			    " tmp addr,errno=%d\n", e);
803			return (-1);
804		}
805		ifa_free(&public_ifa6->ia_ifa);
806		return (0);
807	}
808
809	return (-1);
810}
811
812/*
813 * Nuke neighbor cache/prefix/default router management table, right before
814 * ifp goes away.
815 */
816void
817nd6_purge(struct ifnet *ifp)
818{
819	struct nd_defrouter *dr, *ndr;
820	struct nd_prefix *pr, *npr;
821
822	/*
823	 * Nuke default router list entries toward ifp.
824	 * We defer removal of default router list entries that is installed
825	 * in the routing table, in order to keep additional side effects as
826	 * small as possible.
827	 */
828	TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) {
829		if (dr->installed)
830			continue;
831
832		if (dr->ifp == ifp)
833			defrtrlist_del(dr);
834	}
835
836	TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, ndr) {
837		if (!dr->installed)
838			continue;
839
840		if (dr->ifp == ifp)
841			defrtrlist_del(dr);
842	}
843
844	/* Nuke prefix list entries toward ifp */
845	LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) {
846		if (pr->ndpr_ifp == ifp) {
847			/*
848			 * Because if_detach() does *not* release prefixes
849			 * while purging addresses the reference count will
850			 * still be above zero. We therefore reset it to
851			 * make sure that the prefix really gets purged.
852			 */
853			pr->ndpr_refcnt = 0;
854
855			/*
856			 * Previously, pr->ndpr_addr is removed as well,
857			 * but I strongly believe we don't have to do it.
858			 * nd6_purge() is only called from in6_ifdetach(),
859			 * which removes all the associated interface addresses
860			 * by itself.
861			 * (jinmei@kame.net 20010129)
862			 */
863			prelist_remove(pr);
864		}
865	}
866
867	/* cancel default outgoing interface setting */
868	if (V_nd6_defifindex == ifp->if_index)
869		nd6_setdefaultiface(0);
870
871	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
872		/* Refresh default router list. */
873		defrouter_select();
874	}
875
876	/* XXXXX
877	 * We do not nuke the neighbor cache entries here any more
878	 * because the neighbor cache is kept in if_afdata[AF_INET6].
879	 * nd6_purge() is invoked by in6_ifdetach() which is called
880	 * from if_detach() where everything gets purged. So let
881	 * in6_domifdetach() do the actual L2 table purging work.
882	 */
883}
884
885/*
886 * the caller acquires and releases the lock on the lltbls
887 * Returns the llentry locked
888 */
889struct llentry *
890nd6_lookup(struct in6_addr *addr6, int flags, struct ifnet *ifp)
891{
892	struct sockaddr_in6 sin6;
893	struct llentry *ln;
894	int llflags;
895
896	bzero(&sin6, sizeof(sin6));
897	sin6.sin6_len = sizeof(struct sockaddr_in6);
898	sin6.sin6_family = AF_INET6;
899	sin6.sin6_addr = *addr6;
900
901	IF_AFDATA_LOCK_ASSERT(ifp);
902
903	llflags = 0;
904	if (flags & ND6_CREATE)
905	    llflags |= LLE_CREATE;
906	if (flags & ND6_EXCLUSIVE)
907	    llflags |= LLE_EXCLUSIVE;
908
909	ln = lla_lookup(LLTABLE6(ifp), llflags, (struct sockaddr *)&sin6);
910	if ((ln != NULL) && (llflags & LLE_CREATE))
911		ln->ln_state = ND6_LLINFO_NOSTATE;
912
913	return (ln);
914}
915
916/*
917 * Test whether a given IPv6 address is a neighbor or not, ignoring
918 * the actual neighbor cache.  The neighbor cache is ignored in order
919 * to not reenter the routing code from within itself.
920 */
921static int
922nd6_is_new_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp)
923{
924	struct nd_prefix *pr;
925	struct ifaddr *dstaddr;
926
927	/*
928	 * A link-local address is always a neighbor.
929	 * XXX: a link does not necessarily specify a single interface.
930	 */
931	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
932		struct sockaddr_in6 sin6_copy;
933		u_int32_t zone;
934
935		/*
936		 * We need sin6_copy since sa6_recoverscope() may modify the
937		 * content (XXX).
938		 */
939		sin6_copy = *addr;
940		if (sa6_recoverscope(&sin6_copy))
941			return (0); /* XXX: should be impossible */
942		if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
943			return (0);
944		if (sin6_copy.sin6_scope_id == zone)
945			return (1);
946		else
947			return (0);
948	}
949
950	/*
951	 * If the address matches one of our addresses,
952	 * it should be a neighbor.
953	 * If the address matches one of our on-link prefixes, it should be a
954	 * neighbor.
955	 */
956	LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) {
957		if (pr->ndpr_ifp != ifp)
958			continue;
959
960		if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) {
961			struct rtentry *rt;
962
963			/* Always use the default FIB here. */
964			rt = in6_rtalloc1((struct sockaddr *)&pr->ndpr_prefix,
965			    0, 0, RT_DEFAULT_FIB);
966			if (rt == NULL)
967				continue;
968			/*
969			 * This is the case where multiple interfaces
970			 * have the same prefix, but only one is installed
971			 * into the routing table and that prefix entry
972			 * is not the one being examined here. In the case
973			 * where RADIX_MPATH is enabled, multiple route
974			 * entries (of the same rt_key value) will be
975			 * installed because the interface addresses all
976			 * differ.
977			 */
978			if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
979			       &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr)) {
980				RTFREE_LOCKED(rt);
981				continue;
982			}
983			RTFREE_LOCKED(rt);
984		}
985
986		if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
987		    &addr->sin6_addr, &pr->ndpr_mask))
988			return (1);
989	}
990
991	/*
992	 * If the address is assigned on the node of the other side of
993	 * a p2p interface, the address should be a neighbor.
994	 */
995	dstaddr = ifa_ifwithdstaddr((struct sockaddr *)addr);
996	if (dstaddr != NULL) {
997		if (dstaddr->ifa_ifp == ifp) {
998			ifa_free(dstaddr);
999			return (1);
1000		}
1001		ifa_free(dstaddr);
1002	}
1003
1004	/*
1005	 * If the default router list is empty, all addresses are regarded
1006	 * as on-link, and thus, as a neighbor.
1007	 */
1008	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV &&
1009	    TAILQ_EMPTY(&V_nd_defrouter) &&
1010	    V_nd6_defifindex == ifp->if_index) {
1011		return (1);
1012	}
1013
1014	return (0);
1015}
1016
1017
1018/*
1019 * Detect if a given IPv6 address identifies a neighbor on a given link.
1020 * XXX: should take care of the destination of a p2p link?
1021 */
1022int
1023nd6_is_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp)
1024{
1025	struct llentry *lle;
1026	int rc = 0;
1027
1028	IF_AFDATA_UNLOCK_ASSERT(ifp);
1029	if (nd6_is_new_addr_neighbor(addr, ifp))
1030		return (1);
1031
1032	/*
1033	 * Even if the address matches none of our addresses, it might be
1034	 * in the neighbor cache.
1035	 */
1036	IF_AFDATA_RLOCK(ifp);
1037	if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) {
1038		LLE_RUNLOCK(lle);
1039		rc = 1;
1040	}
1041	IF_AFDATA_RUNLOCK(ifp);
1042	return (rc);
1043}
1044
1045/*
1046 * Free an nd6 llinfo entry.
1047 * Since the function would cause significant changes in the kernel, DO NOT
1048 * make it global, unless you have a strong reason for the change, and are sure
1049 * that the change is safe.
1050 */
1051static struct llentry *
1052nd6_free(struct llentry *ln, int gc)
1053{
1054        struct llentry *next;
1055	struct nd_defrouter *dr;
1056	struct ifnet *ifp;
1057
1058	LLE_WLOCK_ASSERT(ln);
1059
1060	/*
1061	 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1062	 * even though it is not harmful, it was not really necessary.
1063	 */
1064
1065	/* cancel timer */
1066	nd6_llinfo_settimer_locked(ln, -1);
1067
1068	ifp = ln->lle_tbl->llt_ifp;
1069
1070	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
1071		dr = defrouter_lookup(&L3_ADDR_SIN6(ln)->sin6_addr, ifp);
1072
1073		if (dr != NULL && dr->expire &&
1074		    ln->ln_state == ND6_LLINFO_STALE && gc) {
1075			/*
1076			 * If the reason for the deletion is just garbage
1077			 * collection, and the neighbor is an active default
1078			 * router, do not delete it.  Instead, reset the GC
1079			 * timer using the router's lifetime.
1080			 * Simply deleting the entry would affect default
1081			 * router selection, which is not necessarily a good
1082			 * thing, especially when we're using router preference
1083			 * values.
1084			 * XXX: the check for ln_state would be redundant,
1085			 *      but we intentionally keep it just in case.
1086			 */
1087			if (dr->expire > time_uptime)
1088				nd6_llinfo_settimer_locked(ln,
1089				    (dr->expire - time_uptime) * hz);
1090			else
1091				nd6_llinfo_settimer_locked(ln,
1092				    (long)V_nd6_gctimer * hz);
1093
1094			next = LIST_NEXT(ln, lle_next);
1095			LLE_REMREF(ln);
1096			LLE_WUNLOCK(ln);
1097			return (next);
1098		}
1099
1100		if (dr) {
1101			/*
1102			 * Unreachablity of a router might affect the default
1103			 * router selection and on-link detection of advertised
1104			 * prefixes.
1105			 */
1106
1107			/*
1108			 * Temporarily fake the state to choose a new default
1109			 * router and to perform on-link determination of
1110			 * prefixes correctly.
1111			 * Below the state will be set correctly,
1112			 * or the entry itself will be deleted.
1113			 */
1114			ln->ln_state = ND6_LLINFO_INCOMPLETE;
1115		}
1116
1117		if (ln->ln_router || dr) {
1118
1119			/*
1120			 * We need to unlock to avoid a LOR with rt6_flush() with the
1121			 * rnh and for the calls to pfxlist_onlink_check() and
1122			 * defrouter_select() in the block further down for calls
1123			 * into nd6_lookup().  We still hold a ref.
1124			 */
1125			LLE_WUNLOCK(ln);
1126
1127			/*
1128			 * rt6_flush must be called whether or not the neighbor
1129			 * is in the Default Router List.
1130			 * See a corresponding comment in nd6_na_input().
1131			 */
1132			rt6_flush(&L3_ADDR_SIN6(ln)->sin6_addr, ifp);
1133		}
1134
1135		if (dr) {
1136			/*
1137			 * Since defrouter_select() does not affect the
1138			 * on-link determination and MIP6 needs the check
1139			 * before the default router selection, we perform
1140			 * the check now.
1141			 */
1142			pfxlist_onlink_check();
1143
1144			/*
1145			 * Refresh default router list.
1146			 */
1147			defrouter_select();
1148		}
1149
1150		if (ln->ln_router || dr)
1151			LLE_WLOCK(ln);
1152	}
1153
1154	/*
1155	 * Before deleting the entry, remember the next entry as the
1156	 * return value.  We need this because pfxlist_onlink_check() above
1157	 * might have freed other entries (particularly the old next entry) as
1158	 * a side effect (XXX).
1159	 */
1160	next = LIST_NEXT(ln, lle_next);
1161
1162	/*
1163	 * Save to unlock. We still hold an extra reference and will not
1164	 * free(9) in llentry_free() if someone else holds one as well.
1165	 */
1166	LLE_WUNLOCK(ln);
1167	IF_AFDATA_LOCK(ifp);
1168	LLE_WLOCK(ln);
1169
1170	/* Guard against race with other llentry_free(). */
1171	if (ln->la_flags & LLE_LINKED) {
1172		LLE_REMREF(ln);
1173		llentry_free(ln);
1174	} else
1175		LLE_FREE_LOCKED(ln);
1176
1177	IF_AFDATA_UNLOCK(ifp);
1178
1179	return (next);
1180}
1181
1182/*
1183 * Upper-layer reachability hint for Neighbor Unreachability Detection.
1184 *
1185 * XXX cost-effective methods?
1186 */
1187void
1188nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force)
1189{
1190	struct llentry *ln;
1191	struct ifnet *ifp;
1192
1193	if ((dst6 == NULL) || (rt == NULL))
1194		return;
1195
1196	ifp = rt->rt_ifp;
1197	IF_AFDATA_RLOCK(ifp);
1198	ln = nd6_lookup(dst6, ND6_EXCLUSIVE, NULL);
1199	IF_AFDATA_RUNLOCK(ifp);
1200	if (ln == NULL)
1201		return;
1202
1203	if (ln->ln_state < ND6_LLINFO_REACHABLE)
1204		goto done;
1205
1206	/*
1207	 * if we get upper-layer reachability confirmation many times,
1208	 * it is possible we have false information.
1209	 */
1210	if (!force) {
1211		ln->ln_byhint++;
1212		if (ln->ln_byhint > V_nd6_maxnudhint) {
1213			goto done;
1214		}
1215	}
1216
1217 	ln->ln_state = ND6_LLINFO_REACHABLE;
1218	if (!ND6_LLINFO_PERMANENT(ln)) {
1219		nd6_llinfo_settimer_locked(ln,
1220		    (long)ND_IFINFO(rt->rt_ifp)->reachable * hz);
1221	}
1222done:
1223	LLE_WUNLOCK(ln);
1224}
1225
1226
1227/*
1228 * Rejuvenate this function for routing operations related
1229 * processing.
1230 */
1231void
1232nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info)
1233{
1234	struct sockaddr_in6 *gateway;
1235	struct nd_defrouter *dr;
1236	struct ifnet *ifp;
1237
1238	RT_LOCK_ASSERT(rt);
1239	gateway = (struct sockaddr_in6 *)rt->rt_gateway;
1240	ifp = rt->rt_ifp;
1241
1242	switch (req) {
1243	case RTM_ADD:
1244		break;
1245
1246	case RTM_DELETE:
1247		if (!ifp)
1248			return;
1249		/*
1250		 * Only indirect routes are interesting.
1251		 */
1252		if ((rt->rt_flags & RTF_GATEWAY) == 0)
1253			return;
1254		/*
1255		 * check for default route
1256		 */
1257		if (IN6_ARE_ADDR_EQUAL(&in6addr_any,
1258				       &SIN6(rt_key(rt))->sin6_addr)) {
1259
1260			dr = defrouter_lookup(&gateway->sin6_addr, ifp);
1261			if (dr != NULL)
1262				dr->installed = 0;
1263		}
1264		break;
1265	}
1266}
1267
1268
1269int
1270nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp)
1271{
1272	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1273	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1274	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1275	int error = 0;
1276
1277	if (ifp->if_afdata[AF_INET6] == NULL)
1278		return (EPFNOSUPPORT);
1279	switch (cmd) {
1280	case OSIOCGIFINFO_IN6:
1281#define ND	ndi->ndi
1282		/* XXX: old ndp(8) assumes a positive value for linkmtu. */
1283		bzero(&ND, sizeof(ND));
1284		ND.linkmtu = IN6_LINKMTU(ifp);
1285		ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1286		ND.basereachable = ND_IFINFO(ifp)->basereachable;
1287		ND.reachable = ND_IFINFO(ifp)->reachable;
1288		ND.retrans = ND_IFINFO(ifp)->retrans;
1289		ND.flags = ND_IFINFO(ifp)->flags;
1290		ND.recalctm = ND_IFINFO(ifp)->recalctm;
1291		ND.chlim = ND_IFINFO(ifp)->chlim;
1292		break;
1293	case SIOCGIFINFO_IN6:
1294		ND = *ND_IFINFO(ifp);
1295		break;
1296	case SIOCSIFINFO_IN6:
1297		/*
1298		 * used to change host variables from userland.
1299		 * intented for a use on router to reflect RA configurations.
1300		 */
1301		/* 0 means 'unspecified' */
1302		if (ND.linkmtu != 0) {
1303			if (ND.linkmtu < IPV6_MMTU ||
1304			    ND.linkmtu > IN6_LINKMTU(ifp)) {
1305				error = EINVAL;
1306				break;
1307			}
1308			ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1309		}
1310
1311		if (ND.basereachable != 0) {
1312			int obasereachable = ND_IFINFO(ifp)->basereachable;
1313
1314			ND_IFINFO(ifp)->basereachable = ND.basereachable;
1315			if (ND.basereachable != obasereachable)
1316				ND_IFINFO(ifp)->reachable =
1317				    ND_COMPUTE_RTIME(ND.basereachable);
1318		}
1319		if (ND.retrans != 0)
1320			ND_IFINFO(ifp)->retrans = ND.retrans;
1321		if (ND.chlim != 0)
1322			ND_IFINFO(ifp)->chlim = ND.chlim;
1323		/* FALLTHROUGH */
1324	case SIOCSIFINFO_FLAGS:
1325	{
1326		struct ifaddr *ifa;
1327		struct in6_ifaddr *ia;
1328
1329		if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1330		    !(ND.flags & ND6_IFF_IFDISABLED)) {
1331			/* ifdisabled 1->0 transision */
1332
1333			/*
1334			 * If the interface is marked as ND6_IFF_IFDISABLED and
1335			 * has an link-local address with IN6_IFF_DUPLICATED,
1336			 * do not clear ND6_IFF_IFDISABLED.
1337			 * See RFC 4862, Section 5.4.5.
1338			 */
1339			IF_ADDR_RLOCK(ifp);
1340			TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1341				if (ifa->ifa_addr->sa_family != AF_INET6)
1342					continue;
1343				ia = (struct in6_ifaddr *)ifa;
1344				if ((ia->ia6_flags & IN6_IFF_DUPLICATED) &&
1345				    IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
1346					break;
1347			}
1348			IF_ADDR_RUNLOCK(ifp);
1349
1350			if (ifa != NULL) {
1351				/* LLA is duplicated. */
1352				ND.flags |= ND6_IFF_IFDISABLED;
1353				log(LOG_ERR, "Cannot enable an interface"
1354				    " with a link-local address marked"
1355				    " duplicate.\n");
1356			} else {
1357				ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED;
1358				if (ifp->if_flags & IFF_UP)
1359					in6_if_up(ifp);
1360			}
1361		} else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1362			    (ND.flags & ND6_IFF_IFDISABLED)) {
1363			/* ifdisabled 0->1 transision */
1364			/* Mark all IPv6 address as tentative. */
1365
1366			ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED;
1367			if (V_ip6_dad_count > 0 &&
1368			    (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0) {
1369				IF_ADDR_RLOCK(ifp);
1370				TAILQ_FOREACH(ifa, &ifp->if_addrhead,
1371				    ifa_link) {
1372					if (ifa->ifa_addr->sa_family !=
1373					    AF_INET6)
1374						continue;
1375					ia = (struct in6_ifaddr *)ifa;
1376					ia->ia6_flags |= IN6_IFF_TENTATIVE;
1377				}
1378				IF_ADDR_RUNLOCK(ifp);
1379			}
1380		}
1381
1382		if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) {
1383			if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) {
1384				/* auto_linklocal 0->1 transision */
1385
1386				/* If no link-local address on ifp, configure */
1387				ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL;
1388				in6_ifattach(ifp, NULL);
1389			} else if (!(ND.flags & ND6_IFF_IFDISABLED) &&
1390			    ifp->if_flags & IFF_UP) {
1391				/*
1392				 * When the IF already has
1393				 * ND6_IFF_AUTO_LINKLOCAL, no link-local
1394				 * address is assigned, and IFF_UP, try to
1395				 * assign one.
1396				 */
1397				IF_ADDR_RLOCK(ifp);
1398				TAILQ_FOREACH(ifa, &ifp->if_addrhead,
1399				    ifa_link) {
1400					if (ifa->ifa_addr->sa_family !=
1401					    AF_INET6)
1402						continue;
1403					ia = (struct in6_ifaddr *)ifa;
1404					if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
1405						break;
1406				}
1407				IF_ADDR_RUNLOCK(ifp);
1408				if (ifa != NULL)
1409					/* No LLA is configured. */
1410					in6_ifattach(ifp, NULL);
1411			}
1412		}
1413	}
1414		ND_IFINFO(ifp)->flags = ND.flags;
1415		break;
1416#undef ND
1417	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
1418		/* sync kernel routing table with the default router list */
1419		defrouter_reset();
1420		defrouter_select();
1421		break;
1422	case SIOCSPFXFLUSH_IN6:
1423	{
1424		/* flush all the prefix advertised by routers */
1425		struct nd_prefix *pr, *next;
1426
1427		LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) {
1428			struct in6_ifaddr *ia, *ia_next;
1429
1430			if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1431				continue; /* XXX */
1432
1433			/* do we really have to remove addresses as well? */
1434			/* XXXRW: in6_ifaddrhead locking. */
1435			TAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link,
1436			    ia_next) {
1437				if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1438					continue;
1439
1440				if (ia->ia6_ndpr == pr)
1441					in6_purgeaddr(&ia->ia_ifa);
1442			}
1443			prelist_remove(pr);
1444		}
1445		break;
1446	}
1447	case SIOCSRTRFLUSH_IN6:
1448	{
1449		/* flush all the default routers */
1450		struct nd_defrouter *dr, *next;
1451
1452		defrouter_reset();
1453		TAILQ_FOREACH_SAFE(dr, &V_nd_defrouter, dr_entry, next) {
1454			defrtrlist_del(dr);
1455		}
1456		defrouter_select();
1457		break;
1458	}
1459	case SIOCGNBRINFO_IN6:
1460	{
1461		struct llentry *ln;
1462		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1463
1464		if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1465			return (error);
1466
1467		IF_AFDATA_RLOCK(ifp);
1468		ln = nd6_lookup(&nb_addr, 0, ifp);
1469		IF_AFDATA_RUNLOCK(ifp);
1470
1471		if (ln == NULL) {
1472			error = EINVAL;
1473			break;
1474		}
1475		nbi->state = ln->ln_state;
1476		nbi->asked = ln->la_asked;
1477		nbi->isrouter = ln->ln_router;
1478		if (ln->la_expire == 0)
1479			nbi->expire = 0;
1480		else
1481			nbi->expire = ln->la_expire +
1482			    (time_second - time_uptime);
1483		LLE_RUNLOCK(ln);
1484		break;
1485	}
1486	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1487		ndif->ifindex = V_nd6_defifindex;
1488		break;
1489	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1490		return (nd6_setdefaultiface(ndif->ifindex));
1491	}
1492	return (error);
1493}
1494
1495/*
1496 * Create neighbor cache entry and cache link-layer address,
1497 * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
1498 *
1499 * type - ICMP6 type
1500 * code - type dependent information
1501 *
1502 * XXXXX
1503 *  The caller of this function already acquired the ndp
1504 *  cache table lock because the cache entry is returned.
1505 */
1506struct llentry *
1507nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr,
1508    int lladdrlen, int type, int code)
1509{
1510	struct llentry *ln = NULL;
1511	int is_newentry;
1512	int do_update;
1513	int olladdr;
1514	int llchange;
1515	int flags;
1516	int newstate = 0;
1517	uint16_t router = 0;
1518	struct sockaddr_in6 sin6;
1519	struct mbuf *chain = NULL;
1520	int static_route = 0;
1521
1522	IF_AFDATA_UNLOCK_ASSERT(ifp);
1523
1524	KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__));
1525	KASSERT(from != NULL, ("%s: from == NULL", __func__));
1526
1527	/* nothing must be updated for unspecified address */
1528	if (IN6_IS_ADDR_UNSPECIFIED(from))
1529		return NULL;
1530
1531	/*
1532	 * Validation about ifp->if_addrlen and lladdrlen must be done in
1533	 * the caller.
1534	 *
1535	 * XXX If the link does not have link-layer adderss, what should
1536	 * we do? (ifp->if_addrlen == 0)
1537	 * Spec says nothing in sections for RA, RS and NA.  There's small
1538	 * description on it in NS section (RFC 2461 7.2.3).
1539	 */
1540	flags = lladdr ? ND6_EXCLUSIVE : 0;
1541	IF_AFDATA_RLOCK(ifp);
1542	ln = nd6_lookup(from, flags, ifp);
1543	IF_AFDATA_RUNLOCK(ifp);
1544	if (ln == NULL) {
1545		flags |= ND6_EXCLUSIVE;
1546		IF_AFDATA_LOCK(ifp);
1547		ln = nd6_lookup(from, flags | ND6_CREATE, ifp);
1548		IF_AFDATA_UNLOCK(ifp);
1549		is_newentry = 1;
1550	} else {
1551		/* do nothing if static ndp is set */
1552		if (ln->la_flags & LLE_STATIC) {
1553			static_route = 1;
1554			goto done;
1555		}
1556		is_newentry = 0;
1557	}
1558	if (ln == NULL)
1559		return (NULL);
1560
1561	olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0;
1562	if (olladdr && lladdr) {
1563		llchange = bcmp(lladdr, &ln->ll_addr,
1564		    ifp->if_addrlen);
1565	} else
1566		llchange = 0;
1567
1568	/*
1569	 * newentry olladdr  lladdr  llchange	(*=record)
1570	 *	0	n	n	--	(1)
1571	 *	0	y	n	--	(2)
1572	 *	0	n	y	--	(3) * STALE
1573	 *	0	y	y	n	(4) *
1574	 *	0	y	y	y	(5) * STALE
1575	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
1576	 *	1	--	y	--	(7) * STALE
1577	 */
1578
1579	if (lladdr) {		/* (3-5) and (7) */
1580		/*
1581		 * Record source link-layer address
1582		 * XXX is it dependent to ifp->if_type?
1583		 */
1584		bcopy(lladdr, &ln->ll_addr, ifp->if_addrlen);
1585		ln->la_flags |= LLE_VALID;
1586		EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED);
1587	}
1588
1589	if (!is_newentry) {
1590		if ((!olladdr && lladdr != NULL) ||	/* (3) */
1591		    (olladdr && lladdr != NULL && llchange)) {	/* (5) */
1592			do_update = 1;
1593			newstate = ND6_LLINFO_STALE;
1594		} else					/* (1-2,4) */
1595			do_update = 0;
1596	} else {
1597		do_update = 1;
1598		if (lladdr == NULL)			/* (6) */
1599			newstate = ND6_LLINFO_NOSTATE;
1600		else					/* (7) */
1601			newstate = ND6_LLINFO_STALE;
1602	}
1603
1604	if (do_update) {
1605		/*
1606		 * Update the state of the neighbor cache.
1607		 */
1608		ln->ln_state = newstate;
1609
1610		if (ln->ln_state == ND6_LLINFO_STALE) {
1611			if (ln->la_hold != NULL)
1612				nd6_grab_holdchain(ln, &chain, &sin6);
1613		} else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1614			/* probe right away */
1615			nd6_llinfo_settimer_locked((void *)ln, 0);
1616		}
1617	}
1618
1619	/*
1620	 * ICMP6 type dependent behavior.
1621	 *
1622	 * NS: clear IsRouter if new entry
1623	 * RS: clear IsRouter
1624	 * RA: set IsRouter if there's lladdr
1625	 * redir: clear IsRouter if new entry
1626	 *
1627	 * RA case, (1):
1628	 * The spec says that we must set IsRouter in the following cases:
1629	 * - If lladdr exist, set IsRouter.  This means (1-5).
1630	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
1631	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1632	 * A quetion arises for (1) case.  (1) case has no lladdr in the
1633	 * neighbor cache, this is similar to (6).
1634	 * This case is rare but we figured that we MUST NOT set IsRouter.
1635	 *
1636	 * newentry olladdr  lladdr  llchange	    NS  RS  RA	redir
1637	 *							D R
1638	 *	0	n	n	--	(1)	c   ?     s
1639	 *	0	y	n	--	(2)	c   s     s
1640	 *	0	n	y	--	(3)	c   s     s
1641	 *	0	y	y	n	(4)	c   s     s
1642	 *	0	y	y	y	(5)	c   s     s
1643	 *	1	--	n	--	(6) c	c	c s
1644	 *	1	--	y	--	(7) c	c   s	c s
1645	 *
1646	 *					(c=clear s=set)
1647	 */
1648	switch (type & 0xff) {
1649	case ND_NEIGHBOR_SOLICIT:
1650		/*
1651		 * New entry must have is_router flag cleared.
1652		 */
1653		if (is_newentry)	/* (6-7) */
1654			ln->ln_router = 0;
1655		break;
1656	case ND_REDIRECT:
1657		/*
1658		 * If the icmp is a redirect to a better router, always set the
1659		 * is_router flag.  Otherwise, if the entry is newly created,
1660		 * clear the flag.  [RFC 2461, sec 8.3]
1661		 */
1662		if (code == ND_REDIRECT_ROUTER)
1663			ln->ln_router = 1;
1664		else if (is_newentry) /* (6-7) */
1665			ln->ln_router = 0;
1666		break;
1667	case ND_ROUTER_SOLICIT:
1668		/*
1669		 * is_router flag must always be cleared.
1670		 */
1671		ln->ln_router = 0;
1672		break;
1673	case ND_ROUTER_ADVERT:
1674		/*
1675		 * Mark an entry with lladdr as a router.
1676		 */
1677		if ((!is_newentry && (olladdr || lladdr)) ||	/* (2-5) */
1678		    (is_newentry && lladdr)) {			/* (7) */
1679			ln->ln_router = 1;
1680		}
1681		break;
1682	}
1683
1684	if (ln != NULL) {
1685		static_route = (ln->la_flags & LLE_STATIC);
1686		router = ln->ln_router;
1687
1688		if (flags & ND6_EXCLUSIVE)
1689			LLE_WUNLOCK(ln);
1690		else
1691			LLE_RUNLOCK(ln);
1692		if (static_route)
1693			ln = NULL;
1694	}
1695	if (chain != NULL)
1696		nd6_flush_holdchain(ifp, ifp, chain, &sin6);
1697
1698	/*
1699	 * When the link-layer address of a router changes, select the
1700	 * best router again.  In particular, when the neighbor entry is newly
1701	 * created, it might affect the selection policy.
1702	 * Question: can we restrict the first condition to the "is_newentry"
1703	 * case?
1704	 * XXX: when we hear an RA from a new router with the link-layer
1705	 * address option, defrouter_select() is called twice, since
1706	 * defrtrlist_update called the function as well.  However, I believe
1707	 * we can compromise the overhead, since it only happens the first
1708	 * time.
1709	 * XXX: although defrouter_select() should not have a bad effect
1710	 * for those are not autoconfigured hosts, we explicitly avoid such
1711	 * cases for safety.
1712	 */
1713	if (do_update && router &&
1714	    ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
1715		/*
1716		 * guaranteed recursion
1717		 */
1718		defrouter_select();
1719	}
1720
1721	return (ln);
1722done:
1723	if (ln != NULL) {
1724		if (flags & ND6_EXCLUSIVE)
1725			LLE_WUNLOCK(ln);
1726		else
1727			LLE_RUNLOCK(ln);
1728		if (static_route)
1729			ln = NULL;
1730	}
1731	return (ln);
1732}
1733
1734static void
1735nd6_slowtimo(void *arg)
1736{
1737	CURVNET_SET((struct vnet *) arg);
1738	struct nd_ifinfo *nd6if;
1739	struct ifnet *ifp;
1740
1741	callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1742	    nd6_slowtimo, curvnet);
1743	IFNET_RLOCK_NOSLEEP();
1744	TAILQ_FOREACH(ifp, &V_ifnet, if_list) {
1745		if (ifp->if_afdata[AF_INET6] == NULL)
1746			continue;
1747		nd6if = ND_IFINFO(ifp);
1748		if (nd6if->basereachable && /* already initialized */
1749		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1750			/*
1751			 * Since reachable time rarely changes by router
1752			 * advertisements, we SHOULD insure that a new random
1753			 * value gets recomputed at least once every few hours.
1754			 * (RFC 2461, 6.3.4)
1755			 */
1756			nd6if->recalctm = V_nd6_recalc_reachtm_interval;
1757			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1758		}
1759	}
1760	IFNET_RUNLOCK_NOSLEEP();
1761	CURVNET_RESTORE();
1762}
1763
1764void
1765nd6_grab_holdchain(struct llentry *ln, struct mbuf **chain,
1766    struct sockaddr_in6 *sin6)
1767{
1768
1769	LLE_WLOCK_ASSERT(ln);
1770
1771	*chain = ln->la_hold;
1772	ln->la_hold = NULL;
1773	memcpy(sin6, L3_ADDR_SIN6(ln), sizeof(*sin6));
1774
1775	if (ln->ln_state == ND6_LLINFO_STALE) {
1776
1777		/*
1778		 * The first time we send a packet to a
1779		 * neighbor whose entry is STALE, we have
1780		 * to change the state to DELAY and a sets
1781		 * a timer to expire in DELAY_FIRST_PROBE_TIME
1782		 * seconds to ensure do neighbor unreachability
1783		 * detection on expiration.
1784		 * (RFC 2461 7.3.3)
1785		 */
1786		ln->la_asked = 0;
1787		ln->ln_state = ND6_LLINFO_DELAY;
1788		nd6_llinfo_settimer_locked(ln, (long)V_nd6_delay * hz);
1789	}
1790}
1791
1792static int
1793nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m,
1794    struct sockaddr_in6 *dst)
1795{
1796	int error;
1797	int ip6len;
1798	struct ip6_hdr *ip6;
1799	struct m_tag *mtag;
1800
1801#ifdef MAC
1802	mac_netinet6_nd6_send(ifp, m);
1803#endif
1804
1805	/*
1806	 * If called from nd6_ns_output() (NS), nd6_na_output() (NA),
1807	 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA
1808	 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND
1809	 * to be diverted to user space.  When re-injected into the kernel,
1810	 * send_output() will directly dispatch them to the outgoing interface.
1811	 */
1812	if (send_sendso_input_hook != NULL) {
1813		mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL);
1814		if (mtag != NULL) {
1815			ip6 = mtod(m, struct ip6_hdr *);
1816			ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen);
1817			/* Use the SEND socket */
1818			error = send_sendso_input_hook(m, ifp, SND_OUT,
1819			    ip6len);
1820			/* -1 == no app on SEND socket */
1821			if (error == 0 || error != -1)
1822			    return (error);
1823		}
1824	}
1825
1826	m_clrprotoflags(m);	/* Avoid confusing lower layers. */
1827	IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL,
1828	    mtod(m, struct ip6_hdr *));
1829
1830	if ((ifp->if_flags & IFF_LOOPBACK) == 0)
1831		origifp = ifp;
1832
1833	error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, NULL);
1834	return (error);
1835}
1836
1837/*
1838 * IPv6 packet output - light version.
1839 * Checks if destination LLE exists and is in proper state
1840 * (e.g no modification required). If not true, fall back to
1841 * "heavy" version.
1842 */
1843int
1844nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m,
1845    struct sockaddr_in6 *dst, struct rtentry *rt0)
1846{
1847	struct llentry *ln = NULL;
1848
1849	/* discard the packet if IPv6 operation is disabled on the interface */
1850	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
1851		m_freem(m);
1852		return (ENETDOWN); /* better error? */
1853	}
1854
1855	if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1856		goto sendpkt;
1857
1858	if (nd6_need_cache(ifp) == 0)
1859		goto sendpkt;
1860
1861	IF_AFDATA_RLOCK(ifp);
1862	ln = nd6_lookup(&dst->sin6_addr, 0, ifp);
1863	IF_AFDATA_RUNLOCK(ifp);
1864
1865	/*
1866	 * Perform fast path for the following cases:
1867	 * 1) lle state is REACHABLE
1868	 * 2) lle state is DELAY (NS message sentNS message sent)
1869	 *
1870	 * Every other case involves lle modification, so we handle
1871	 * them separately.
1872	 */
1873	if (ln == NULL || (ln->ln_state != ND6_LLINFO_REACHABLE &&
1874	    ln->ln_state != ND6_LLINFO_DELAY)) {
1875		/* Fall back to slow processing path */
1876		if (ln != NULL)
1877			LLE_RUNLOCK(ln);
1878		return (nd6_output_lle(ifp, origifp, m, dst));
1879	}
1880
1881sendpkt:
1882	if (ln != NULL)
1883		LLE_RUNLOCK(ln);
1884
1885	return (nd6_output_ifp(ifp, origifp, m, dst));
1886}
1887
1888
1889/*
1890 * Output IPv6 packet - heavy version.
1891 * Function assume that either
1892 * 1) destination LLE does not exist, is invalid or stale, so
1893 *   ND6_EXCLUSIVE lock needs to be acquired
1894 * 2) destination lle is provided (with ND6_EXCLUSIVE lock),
1895 *   in that case packets are queued in &chain.
1896 *
1897 */
1898static int
1899nd6_output_lle(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m,
1900    struct sockaddr_in6 *dst)
1901{
1902	struct llentry *lle = NULL;
1903	int flags = 0;
1904
1905	KASSERT(m != NULL, ("NULL mbuf, nothing to send"));
1906	/* discard the packet if IPv6 operation is disabled on the interface */
1907	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
1908		m_freem(m);
1909		return (ENETDOWN); /* better error? */
1910	}
1911
1912	if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1913		goto sendpkt;
1914
1915	if (nd6_need_cache(ifp) == 0)
1916		goto sendpkt;
1917
1918	/*
1919	 * Address resolution or Neighbor Unreachability Detection
1920	 * for the next hop.
1921	 * At this point, the destination of the packet must be a unicast
1922	 * or an anycast address(i.e. not a multicast).
1923	 */
1924	if (lle == NULL) {
1925		IF_AFDATA_RLOCK(ifp);
1926		lle = nd6_lookup(&dst->sin6_addr, ND6_EXCLUSIVE, ifp);
1927		IF_AFDATA_RUNLOCK(ifp);
1928		if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp))  {
1929			/*
1930			 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
1931			 * the condition below is not very efficient.  But we believe
1932			 * it is tolerable, because this should be a rare case.
1933			 */
1934			flags = ND6_CREATE | ND6_EXCLUSIVE;
1935			IF_AFDATA_LOCK(ifp);
1936			lle = nd6_lookup(&dst->sin6_addr, flags, ifp);
1937			IF_AFDATA_UNLOCK(ifp);
1938		}
1939	}
1940	if (lle == NULL) {
1941		if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
1942		    !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
1943			char ip6buf[INET6_ADDRSTRLEN];
1944			log(LOG_DEBUG,
1945			    "nd6_output: can't allocate llinfo for %s "
1946			    "(ln=%p)\n",
1947			    ip6_sprintf(ip6buf, &dst->sin6_addr), lle);
1948			m_freem(m);
1949			return (ENOBUFS);
1950		}
1951		goto sendpkt;	/* send anyway */
1952	}
1953
1954	LLE_WLOCK_ASSERT(lle);
1955
1956	/* We don't have to do link-layer address resolution on a p2p link. */
1957	if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
1958	    lle->ln_state < ND6_LLINFO_REACHABLE) {
1959		lle->ln_state = ND6_LLINFO_STALE;
1960		nd6_llinfo_settimer_locked(lle, (long)V_nd6_gctimer * hz);
1961	}
1962
1963	/*
1964	 * The first time we send a packet to a neighbor whose entry is
1965	 * STALE, we have to change the state to DELAY and a sets a timer to
1966	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
1967	 * neighbor unreachability detection on expiration.
1968	 * (RFC 2461 7.3.3)
1969	 */
1970	if (lle->ln_state == ND6_LLINFO_STALE) {
1971		lle->la_asked = 0;
1972		lle->ln_state = ND6_LLINFO_DELAY;
1973		nd6_llinfo_settimer_locked(lle, (long)V_nd6_delay * hz);
1974	}
1975
1976	/*
1977	 * If the neighbor cache entry has a state other than INCOMPLETE
1978	 * (i.e. its link-layer address is already resolved), just
1979	 * send the packet.
1980	 */
1981	if (lle->ln_state > ND6_LLINFO_INCOMPLETE)
1982		goto sendpkt;
1983
1984	/*
1985	 * There is a neighbor cache entry, but no ethernet address
1986	 * response yet.  Append this latest packet to the end of the
1987	 * packet queue in the mbuf, unless the number of the packet
1988	 * does not exceed nd6_maxqueuelen.  When it exceeds nd6_maxqueuelen,
1989	 * the oldest packet in the queue will be removed.
1990	 */
1991	if (lle->ln_state == ND6_LLINFO_NOSTATE)
1992		lle->ln_state = ND6_LLINFO_INCOMPLETE;
1993
1994	if (lle->la_hold != NULL) {
1995		struct mbuf *m_hold;
1996		int i;
1997
1998		i = 0;
1999		for (m_hold = lle->la_hold; m_hold; m_hold = m_hold->m_nextpkt){
2000			i++;
2001			if (m_hold->m_nextpkt == NULL) {
2002				m_hold->m_nextpkt = m;
2003				break;
2004			}
2005		}
2006		while (i >= V_nd6_maxqueuelen) {
2007			m_hold = lle->la_hold;
2008			lle->la_hold = lle->la_hold->m_nextpkt;
2009			m_freem(m_hold);
2010			i--;
2011		}
2012	} else {
2013		lle->la_hold = m;
2014	}
2015
2016	/*
2017	 * If there has been no NS for the neighbor after entering the
2018	 * INCOMPLETE state, send the first solicitation.
2019	 */
2020	if (!ND6_LLINFO_PERMANENT(lle) && lle->la_asked == 0) {
2021		lle->la_asked++;
2022
2023		nd6_llinfo_settimer_locked(lle,
2024		    (long)ND_IFINFO(ifp)->retrans * hz / 1000);
2025		LLE_WUNLOCK(lle);
2026		nd6_ns_output(ifp, NULL, &dst->sin6_addr, lle, NULL);
2027	} else {
2028		/* We did the lookup so we need to do the unlock here. */
2029		LLE_WUNLOCK(lle);
2030	}
2031
2032	return (0);
2033
2034  sendpkt:
2035	if (lle != NULL)
2036		LLE_WUNLOCK(lle);
2037
2038	return (nd6_output_ifp(ifp, origifp, m, dst));
2039}
2040
2041
2042int
2043nd6_flush_holdchain(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *chain,
2044    struct sockaddr_in6 *dst)
2045{
2046	struct mbuf *m, *m_head;
2047	struct ifnet *outifp;
2048	int error = 0;
2049
2050	m_head = chain;
2051	if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2052		outifp = origifp;
2053	else
2054		outifp = ifp;
2055
2056	while (m_head) {
2057		m = m_head;
2058		m_head = m_head->m_nextpkt;
2059		error = nd6_output_ifp(ifp, origifp, m, dst);
2060	}
2061
2062	/*
2063	 * XXX
2064	 * note that intermediate errors are blindly ignored - but this is
2065	 * the same convention as used with nd6_output when called by
2066	 * nd6_cache_lladdr
2067	 */
2068	return (error);
2069}
2070
2071
2072int
2073nd6_need_cache(struct ifnet *ifp)
2074{
2075	/*
2076	 * XXX: we currently do not make neighbor cache on any interface
2077	 * other than ARCnet, Ethernet, FDDI and GIF.
2078	 *
2079	 * RFC2893 says:
2080	 * - unidirectional tunnels needs no ND
2081	 */
2082	switch (ifp->if_type) {
2083	case IFT_ARCNET:
2084	case IFT_ETHER:
2085	case IFT_FDDI:
2086	case IFT_IEEE1394:
2087#ifdef IFT_L2VLAN
2088	case IFT_L2VLAN:
2089#endif
2090#ifdef IFT_IEEE80211
2091	case IFT_IEEE80211:
2092#endif
2093	case IFT_INFINIBAND:
2094	case IFT_BRIDGE:
2095	case IFT_PROPVIRTUAL:
2096		return (1);
2097	default:
2098		return (0);
2099	}
2100}
2101
2102/*
2103 * the callers of this function need to be re-worked to drop
2104 * the lle lock, drop here for now
2105 */
2106int
2107nd6_storelladdr(struct ifnet *ifp, struct mbuf *m,
2108    const struct sockaddr *dst, u_char *desten, struct llentry **lle)
2109{
2110	struct llentry *ln;
2111
2112	*lle = NULL;
2113	IF_AFDATA_UNLOCK_ASSERT(ifp);
2114	if (m != NULL && m->m_flags & M_MCAST) {
2115		int i;
2116
2117		switch (ifp->if_type) {
2118		case IFT_ETHER:
2119		case IFT_FDDI:
2120#ifdef IFT_L2VLAN
2121		case IFT_L2VLAN:
2122#endif
2123#ifdef IFT_IEEE80211
2124		case IFT_IEEE80211:
2125#endif
2126		case IFT_BRIDGE:
2127		case IFT_ISO88025:
2128			ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
2129						 desten);
2130			return (0);
2131		case IFT_IEEE1394:
2132			/*
2133			 * netbsd can use if_broadcastaddr, but we don't do so
2134			 * to reduce # of ifdef.
2135			 */
2136			for (i = 0; i < ifp->if_addrlen; i++)
2137				desten[i] = ~0;
2138			return (0);
2139		case IFT_ARCNET:
2140			*desten = 0;
2141			return (0);
2142		default:
2143			m_freem(m);
2144			return (EAFNOSUPPORT);
2145		}
2146	}
2147
2148
2149	/*
2150	 * the entry should have been created in nd6_store_lladdr
2151	 */
2152	IF_AFDATA_RLOCK(ifp);
2153	ln = lla_lookup(LLTABLE6(ifp), 0, dst);
2154	IF_AFDATA_RUNLOCK(ifp);
2155	if ((ln == NULL) || !(ln->la_flags & LLE_VALID)) {
2156		if (ln != NULL)
2157			LLE_RUNLOCK(ln);
2158		/* this could happen, if we could not allocate memory */
2159		m_freem(m);
2160		return (1);
2161	}
2162
2163	bcopy(&ln->ll_addr, desten, ifp->if_addrlen);
2164	*lle = ln;
2165	LLE_RUNLOCK(ln);
2166	/*
2167	 * A *small* use after free race exists here
2168	 */
2169	return (0);
2170}
2171
2172static void
2173clear_llinfo_pqueue(struct llentry *ln)
2174{
2175	struct mbuf *m_hold, *m_hold_next;
2176
2177	for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) {
2178		m_hold_next = m_hold->m_nextpkt;
2179		m_freem(m_hold);
2180	}
2181
2182	ln->la_hold = NULL;
2183	return;
2184}
2185
2186static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS);
2187static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS);
2188#ifdef SYSCTL_DECL
2189SYSCTL_DECL(_net_inet6_icmp6);
2190#endif
2191SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
2192	CTLFLAG_RD, nd6_sysctl_drlist, "");
2193SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
2194	CTLFLAG_RD, nd6_sysctl_prlist, "");
2195SYSCTL_VNET_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen,
2196	CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, "");
2197SYSCTL_VNET_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer,
2198	CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), "");
2199
2200static int
2201nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS)
2202{
2203	struct in6_defrouter d;
2204	struct nd_defrouter *dr;
2205	int error;
2206
2207	if (req->newptr)
2208		return (EPERM);
2209
2210	bzero(&d, sizeof(d));
2211	d.rtaddr.sin6_family = AF_INET6;
2212	d.rtaddr.sin6_len = sizeof(d.rtaddr);
2213
2214	/*
2215	 * XXX locking
2216	 */
2217	TAILQ_FOREACH(dr, &V_nd_defrouter, dr_entry) {
2218		d.rtaddr.sin6_addr = dr->rtaddr;
2219		error = sa6_recoverscope(&d.rtaddr);
2220		if (error != 0)
2221			return (error);
2222		d.flags = dr->flags;
2223		d.rtlifetime = dr->rtlifetime;
2224		d.expire = dr->expire + (time_second - time_uptime);
2225		d.if_index = dr->ifp->if_index;
2226		error = SYSCTL_OUT(req, &d, sizeof(d));
2227		if (error != 0)
2228			return (error);
2229	}
2230	return (0);
2231}
2232
2233static int
2234nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
2235{
2236	struct in6_prefix p;
2237	struct sockaddr_in6 s6;
2238	struct nd_prefix *pr;
2239	struct nd_pfxrouter *pfr;
2240	time_t maxexpire;
2241	int error;
2242	char ip6buf[INET6_ADDRSTRLEN];
2243
2244	if (req->newptr)
2245		return (EPERM);
2246
2247	bzero(&p, sizeof(p));
2248	p.origin = PR_ORIG_RA;
2249	bzero(&s6, sizeof(s6));
2250	s6.sin6_family = AF_INET6;
2251	s6.sin6_len = sizeof(s6);
2252
2253	/*
2254	 * XXX locking
2255	 */
2256	LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) {
2257		p.prefix = pr->ndpr_prefix;
2258		if (sa6_recoverscope(&p.prefix)) {
2259			log(LOG_ERR, "scope error in prefix list (%s)\n",
2260			    ip6_sprintf(ip6buf, &p.prefix.sin6_addr));
2261			/* XXX: press on... */
2262		}
2263		p.raflags = pr->ndpr_raf;
2264		p.prefixlen = pr->ndpr_plen;
2265		p.vltime = pr->ndpr_vltime;
2266		p.pltime = pr->ndpr_pltime;
2267		p.if_index = pr->ndpr_ifp->if_index;
2268		if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2269			p.expire = 0;
2270		else {
2271			/* XXX: we assume time_t is signed. */
2272			maxexpire = (-1) &
2273			    ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1));
2274			if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate)
2275				p.expire = pr->ndpr_lastupdate +
2276				    pr->ndpr_vltime +
2277				    (time_second - time_uptime);
2278			else
2279				p.expire = maxexpire;
2280		}
2281		p.refcnt = pr->ndpr_refcnt;
2282		p.flags = pr->ndpr_stateflags;
2283		p.advrtrs = 0;
2284		LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry)
2285			p.advrtrs++;
2286		error = SYSCTL_OUT(req, &p, sizeof(p));
2287		if (error != 0)
2288			return (error);
2289		LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2290			s6.sin6_addr = pfr->router->rtaddr;
2291			if (sa6_recoverscope(&s6))
2292				log(LOG_ERR,
2293				    "scope error in prefix list (%s)\n",
2294				    ip6_sprintf(ip6buf, &pfr->router->rtaddr));
2295			error = SYSCTL_OUT(req, &s6, sizeof(s6));
2296			if (error != 0)
2297				return (error);
2298		}
2299	}
2300	return (0);
2301}
2302