nd6.c revision 174510
1/*-
2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the project nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	$KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/netinet6/nd6.c 174510 2007-12-10 16:03:40Z obrien $");
34
35#include "opt_inet.h"
36#include "opt_inet6.h"
37#include "opt_mac.h"
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/callout.h>
42#include <sys/malloc.h>
43#include <sys/mbuf.h>
44#include <sys/socket.h>
45#include <sys/sockio.h>
46#include <sys/time.h>
47#include <sys/kernel.h>
48#include <sys/protosw.h>
49#include <sys/errno.h>
50#include <sys/syslog.h>
51#include <sys/queue.h>
52#include <sys/sysctl.h>
53
54#include <net/if.h>
55#include <net/if_arc.h>
56#include <net/if_dl.h>
57#include <net/if_types.h>
58#include <net/iso88025.h>
59#include <net/fddi.h>
60#include <net/route.h>
61
62#include <netinet/in.h>
63#include <netinet/if_ether.h>
64#include <netinet6/in6_var.h>
65#include <netinet/ip6.h>
66#include <netinet6/ip6_var.h>
67#include <netinet6/scope6_var.h>
68#include <netinet6/nd6.h>
69#include <netinet/icmp6.h>
70
71#include <sys/limits.h>
72
73#include <security/mac/mac_framework.h>
74
75#define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
76#define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
77
78#define SIN6(s) ((struct sockaddr_in6 *)s)
79#define SDL(s) ((struct sockaddr_dl *)s)
80
81/* timer values */
82int	nd6_prune	= 1;	/* walk list every 1 seconds */
83int	nd6_delay	= 5;	/* delay first probe time 5 second */
84int	nd6_umaxtries	= 3;	/* maximum unicast query */
85int	nd6_mmaxtries	= 3;	/* maximum multicast query */
86int	nd6_useloopback = 1;	/* use loopback interface for local traffic */
87int	nd6_gctimer	= (60 * 60 * 24); /* 1 day: garbage collection timer */
88
89/* preventing too many loops in ND option parsing */
90int nd6_maxndopt = 10;	/* max # of ND options allowed */
91
92int nd6_maxnudhint = 0;	/* max # of subsequent upper layer hints */
93int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
94
95#ifdef ND6_DEBUG
96int nd6_debug = 1;
97#else
98int nd6_debug = 0;
99#endif
100
101/* for debugging? */
102static int nd6_inuse, nd6_allocated;
103
104struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6};
105struct nd_drhead nd_defrouter;
106struct nd_prhead nd_prefix = { 0 };
107
108int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
109static struct sockaddr_in6 all1_sa;
110
111static int nd6_is_new_addr_neighbor __P((struct sockaddr_in6 *,
112	struct ifnet *));
113static void nd6_setmtu0 __P((struct ifnet *, struct nd_ifinfo *));
114static void nd6_slowtimo __P((void *));
115static int regen_tmpaddr __P((struct in6_ifaddr *));
116static struct llinfo_nd6 *nd6_free __P((struct rtentry *, int));
117static void nd6_llinfo_timer __P((void *));
118static void clear_llinfo_pqueue __P((struct llinfo_nd6 *));
119
120struct callout nd6_slowtimo_ch;
121struct callout nd6_timer_ch;
122extern struct callout in6_tmpaddrtimer_ch;
123
124void
125nd6_init(void)
126{
127	static int nd6_init_done = 0;
128	int i;
129
130	if (nd6_init_done) {
131		log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
132		return;
133	}
134
135	all1_sa.sin6_family = AF_INET6;
136	all1_sa.sin6_len = sizeof(struct sockaddr_in6);
137	for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
138		all1_sa.sin6_addr.s6_addr[i] = 0xff;
139
140	/* initialization of the default router list */
141	TAILQ_INIT(&nd_defrouter);
142
143	nd6_init_done = 1;
144
145	/* start timer */
146	callout_init(&nd6_slowtimo_ch, 0);
147	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
148	    nd6_slowtimo, NULL);
149}
150
151struct nd_ifinfo *
152nd6_ifattach(struct ifnet *ifp)
153{
154	struct nd_ifinfo *nd;
155
156	nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK);
157	bzero(nd, sizeof(*nd));
158
159	nd->initialized = 1;
160
161	nd->chlim = IPV6_DEFHLIM;
162	nd->basereachable = REACHABLE_TIME;
163	nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
164	nd->retrans = RETRANS_TIMER;
165	/*
166	 * Note that the default value of ip6_accept_rtadv is 0, which means
167	 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV
168	 * here.
169	 */
170	nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV);
171
172	/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
173	nd6_setmtu0(ifp, nd);
174
175	return nd;
176}
177
178void
179nd6_ifdetach(struct nd_ifinfo *nd)
180{
181
182	free(nd, M_IP6NDP);
183}
184
185/*
186 * Reset ND level link MTU. This function is called when the physical MTU
187 * changes, which means we might have to adjust the ND level MTU.
188 */
189void
190nd6_setmtu(struct ifnet *ifp)
191{
192
193	nd6_setmtu0(ifp, ND_IFINFO(ifp));
194}
195
196/* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
197void
198nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
199{
200	u_int32_t omaxmtu;
201
202	omaxmtu = ndi->maxmtu;
203
204	switch (ifp->if_type) {
205	case IFT_ARCNET:
206		ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
207		break;
208	case IFT_FDDI:
209		ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */
210		break;
211	case IFT_ISO88025:
212		 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu);
213		 break;
214	default:
215		ndi->maxmtu = ifp->if_mtu;
216		break;
217	}
218
219	/*
220	 * Decreasing the interface MTU under IPV6 minimum MTU may cause
221	 * undesirable situation.  We thus notify the operator of the change
222	 * explicitly.  The check for omaxmtu is necessary to restrict the
223	 * log to the case of changing the MTU, not initializing it.
224	 */
225	if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
226		log(LOG_NOTICE, "nd6_setmtu0: "
227		    "new link MTU on %s (%lu) is too small for IPv6\n",
228		    if_name(ifp), (unsigned long)ndi->maxmtu);
229	}
230
231	if (ndi->maxmtu > in6_maxmtu)
232		in6_setmaxmtu(); /* check all interfaces just in case */
233
234#undef MIN
235}
236
237void
238nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
239{
240
241	bzero(ndopts, sizeof(*ndopts));
242	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
243	ndopts->nd_opts_last
244		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
245
246	if (icmp6len == 0) {
247		ndopts->nd_opts_done = 1;
248		ndopts->nd_opts_search = NULL;
249	}
250}
251
252/*
253 * Take one ND option.
254 */
255struct nd_opt_hdr *
256nd6_option(union nd_opts *ndopts)
257{
258	struct nd_opt_hdr *nd_opt;
259	int olen;
260
261	if (ndopts == NULL)
262		panic("ndopts == NULL in nd6_option");
263	if (ndopts->nd_opts_last == NULL)
264		panic("uninitialized ndopts in nd6_option");
265	if (ndopts->nd_opts_search == NULL)
266		return NULL;
267	if (ndopts->nd_opts_done)
268		return NULL;
269
270	nd_opt = ndopts->nd_opts_search;
271
272	/* make sure nd_opt_len is inside the buffer */
273	if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
274		bzero(ndopts, sizeof(*ndopts));
275		return NULL;
276	}
277
278	olen = nd_opt->nd_opt_len << 3;
279	if (olen == 0) {
280		/*
281		 * Message validation requires that all included
282		 * options have a length that is greater than zero.
283		 */
284		bzero(ndopts, sizeof(*ndopts));
285		return NULL;
286	}
287
288	ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
289	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
290		/* option overruns the end of buffer, invalid */
291		bzero(ndopts, sizeof(*ndopts));
292		return NULL;
293	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
294		/* reached the end of options chain */
295		ndopts->nd_opts_done = 1;
296		ndopts->nd_opts_search = NULL;
297	}
298	return nd_opt;
299}
300
301/*
302 * Parse multiple ND options.
303 * This function is much easier to use, for ND routines that do not need
304 * multiple options of the same type.
305 */
306int
307nd6_options(union nd_opts *ndopts)
308{
309	struct nd_opt_hdr *nd_opt;
310	int i = 0;
311
312	if (ndopts == NULL)
313		panic("ndopts == NULL in nd6_options");
314	if (ndopts->nd_opts_last == NULL)
315		panic("uninitialized ndopts in nd6_options");
316	if (ndopts->nd_opts_search == NULL)
317		return 0;
318
319	while (1) {
320		nd_opt = nd6_option(ndopts);
321		if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
322			/*
323			 * Message validation requires that all included
324			 * options have a length that is greater than zero.
325			 */
326			icmp6stat.icp6s_nd_badopt++;
327			bzero(ndopts, sizeof(*ndopts));
328			return -1;
329		}
330
331		if (nd_opt == NULL)
332			goto skip1;
333
334		switch (nd_opt->nd_opt_type) {
335		case ND_OPT_SOURCE_LINKADDR:
336		case ND_OPT_TARGET_LINKADDR:
337		case ND_OPT_MTU:
338		case ND_OPT_REDIRECTED_HEADER:
339			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
340				nd6log((LOG_INFO,
341				    "duplicated ND6 option found (type=%d)\n",
342				    nd_opt->nd_opt_type));
343				/* XXX bark? */
344			} else {
345				ndopts->nd_opt_array[nd_opt->nd_opt_type]
346					= nd_opt;
347			}
348			break;
349		case ND_OPT_PREFIX_INFORMATION:
350			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
351				ndopts->nd_opt_array[nd_opt->nd_opt_type]
352					= nd_opt;
353			}
354			ndopts->nd_opts_pi_end =
355				(struct nd_opt_prefix_info *)nd_opt;
356			break;
357		default:
358			/*
359			 * Unknown options must be silently ignored,
360			 * to accomodate future extension to the protocol.
361			 */
362			nd6log((LOG_DEBUG,
363			    "nd6_options: unsupported option %d - "
364			    "option ignored\n", nd_opt->nd_opt_type));
365		}
366
367skip1:
368		i++;
369		if (i > nd6_maxndopt) {
370			icmp6stat.icp6s_nd_toomanyopt++;
371			nd6log((LOG_INFO, "too many loop in nd opt\n"));
372			break;
373		}
374
375		if (ndopts->nd_opts_done)
376			break;
377	}
378
379	return 0;
380}
381
382/*
383 * ND6 timer routine to handle ND6 entries
384 */
385void
386nd6_llinfo_settimer(struct llinfo_nd6 *ln, long tick)
387{
388	if (tick < 0) {
389		ln->ln_expire = 0;
390		ln->ln_ntick = 0;
391		callout_stop(&ln->ln_timer_ch);
392	} else {
393		ln->ln_expire = time_second + tick / hz;
394		if (tick > INT_MAX) {
395			ln->ln_ntick = tick - INT_MAX;
396			callout_reset(&ln->ln_timer_ch, INT_MAX,
397			    nd6_llinfo_timer, ln);
398		} else {
399			ln->ln_ntick = 0;
400			callout_reset(&ln->ln_timer_ch, tick,
401			    nd6_llinfo_timer, ln);
402		}
403	}
404}
405
406static void
407nd6_llinfo_timer(void *arg)
408{
409	struct llinfo_nd6 *ln;
410	struct rtentry *rt;
411	struct in6_addr *dst;
412	struct ifnet *ifp;
413	struct nd_ifinfo *ndi = NULL;
414
415	ln = (struct llinfo_nd6 *)arg;
416
417	if (ln->ln_ntick > 0) {
418		if (ln->ln_ntick > INT_MAX) {
419			ln->ln_ntick -= INT_MAX;
420			nd6_llinfo_settimer(ln, INT_MAX);
421		} else {
422			ln->ln_ntick = 0;
423			nd6_llinfo_settimer(ln, ln->ln_ntick);
424		}
425		return;
426	}
427
428	if ((rt = ln->ln_rt) == NULL)
429		panic("ln->ln_rt == NULL");
430	if ((ifp = rt->rt_ifp) == NULL)
431		panic("ln->ln_rt->rt_ifp == NULL");
432	ndi = ND_IFINFO(ifp);
433
434	/* sanity check */
435	if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
436		panic("rt_llinfo(%p) is not equal to ln(%p)",
437		      rt->rt_llinfo, ln);
438	if (rt_key(rt) == NULL)
439		panic("rt key is NULL in nd6_timer(ln=%p)", ln);
440
441	dst = &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
442
443	switch (ln->ln_state) {
444	case ND6_LLINFO_INCOMPLETE:
445		if (ln->ln_asked < nd6_mmaxtries) {
446			ln->ln_asked++;
447			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
448			nd6_ns_output(ifp, NULL, dst, ln, 0);
449		} else {
450			struct mbuf *m = ln->ln_hold;
451			if (m) {
452				struct mbuf *m0;
453
454				/*
455				 * assuming every packet in ln_hold has the
456				 * same IP header
457				 */
458				m0 = m->m_nextpkt;
459				m->m_nextpkt = NULL;
460				icmp6_error2(m, ICMP6_DST_UNREACH,
461				    ICMP6_DST_UNREACH_ADDR, 0, rt->rt_ifp);
462
463				ln->ln_hold = m0;
464				clear_llinfo_pqueue(ln);
465			}
466			if (rt && rt->rt_llinfo)
467				(void)nd6_free(rt, 0);
468			ln = NULL;
469		}
470		break;
471	case ND6_LLINFO_REACHABLE:
472		if (!ND6_LLINFO_PERMANENT(ln)) {
473			ln->ln_state = ND6_LLINFO_STALE;
474			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
475		}
476		break;
477
478	case ND6_LLINFO_STALE:
479		/* Garbage Collection(RFC 2461 5.3) */
480		if (!ND6_LLINFO_PERMANENT(ln)) {
481			if (rt && rt->rt_llinfo)
482				(void)nd6_free(rt, 1);
483			ln = NULL;
484		}
485		break;
486
487	case ND6_LLINFO_DELAY:
488		if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
489			/* We need NUD */
490			ln->ln_asked = 1;
491			ln->ln_state = ND6_LLINFO_PROBE;
492			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
493			nd6_ns_output(ifp, dst, dst, ln, 0);
494		} else {
495			ln->ln_state = ND6_LLINFO_STALE; /* XXX */
496			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
497		}
498		break;
499	case ND6_LLINFO_PROBE:
500		if (ln->ln_asked < nd6_umaxtries) {
501			ln->ln_asked++;
502			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
503			nd6_ns_output(ifp, dst, dst, ln, 0);
504		} else if (rt->rt_ifa != NULL &&
505		    rt->rt_ifa->ifa_addr->sa_family == AF_INET6 &&
506		    (((struct in6_ifaddr *)rt->rt_ifa)->ia_flags & IFA_ROUTE)) {
507			/*
508			 * This is an unreachable neighbor whose address is
509			 * specified as the destination of a p2p interface
510			 * (see in6_ifinit()).  We should not free the entry
511			 * since this is sort of a "static" entry generated
512			 * via interface address configuration.
513			 */
514			ln->ln_asked = 0;
515			ln->ln_expire = 0; /* make it permanent */
516			ln->ln_state = ND6_LLINFO_STALE;
517		} else {
518			if (rt && rt->rt_llinfo)
519				(void)nd6_free(rt, 0);
520			ln = NULL;
521		}
522		break;
523	}
524}
525
526
527/*
528 * ND6 timer routine to expire default route list and prefix list
529 */
530void
531nd6_timer(void *ignored_arg)
532{
533	int s;
534	struct nd_defrouter *dr;
535	struct nd_prefix *pr;
536	struct in6_ifaddr *ia6, *nia6;
537	struct in6_addrlifetime *lt6;
538
539	callout_reset(&nd6_timer_ch, nd6_prune * hz,
540	    nd6_timer, NULL);
541
542	/* expire default router list */
543	s = splnet();
544	dr = TAILQ_FIRST(&nd_defrouter);
545	while (dr) {
546		if (dr->expire && dr->expire < time_second) {
547			struct nd_defrouter *t;
548			t = TAILQ_NEXT(dr, dr_entry);
549			defrtrlist_del(dr);
550			dr = t;
551		} else {
552			dr = TAILQ_NEXT(dr, dr_entry);
553		}
554	}
555
556	/*
557	 * expire interface addresses.
558	 * in the past the loop was inside prefix expiry processing.
559	 * However, from a stricter speci-confrmance standpoint, we should
560	 * rather separate address lifetimes and prefix lifetimes.
561	 */
562  addrloop:
563	for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
564		nia6 = ia6->ia_next;
565		/* check address lifetime */
566		lt6 = &ia6->ia6_lifetime;
567		if (IFA6_IS_INVALID(ia6)) {
568			int regen = 0;
569
570			/*
571			 * If the expiring address is temporary, try
572			 * regenerating a new one.  This would be useful when
573			 * we suspended a laptop PC, then turned it on after a
574			 * period that could invalidate all temporary
575			 * addresses.  Although we may have to restart the
576			 * loop (see below), it must be after purging the
577			 * address.  Otherwise, we'd see an infinite loop of
578			 * regeneration.
579			 */
580			if (ip6_use_tempaddr &&
581			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
582				if (regen_tmpaddr(ia6) == 0)
583					regen = 1;
584			}
585
586			in6_purgeaddr(&ia6->ia_ifa);
587
588			if (regen)
589				goto addrloop; /* XXX: see below */
590		} else if (IFA6_IS_DEPRECATED(ia6)) {
591			int oldflags = ia6->ia6_flags;
592
593			ia6->ia6_flags |= IN6_IFF_DEPRECATED;
594
595			/*
596			 * If a temporary address has just become deprecated,
597			 * regenerate a new one if possible.
598			 */
599			if (ip6_use_tempaddr &&
600			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
601			    (oldflags & IN6_IFF_DEPRECATED) == 0) {
602
603				if (regen_tmpaddr(ia6) == 0) {
604					/*
605					 * A new temporary address is
606					 * generated.
607					 * XXX: this means the address chain
608					 * has changed while we are still in
609					 * the loop.  Although the change
610					 * would not cause disaster (because
611					 * it's not a deletion, but an
612					 * addition,) we'd rather restart the
613					 * loop just for safety.  Or does this
614					 * significantly reduce performance??
615					 */
616					goto addrloop;
617				}
618			}
619		} else {
620			/*
621			 * A new RA might have made a deprecated address
622			 * preferred.
623			 */
624			ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
625		}
626	}
627
628	/* expire prefix list */
629	pr = nd_prefix.lh_first;
630	while (pr) {
631		/*
632		 * check prefix lifetime.
633		 * since pltime is just for autoconf, pltime processing for
634		 * prefix is not necessary.
635		 */
636		if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
637		    time_second - pr->ndpr_lastupdate > pr->ndpr_vltime) {
638			struct nd_prefix *t;
639			t = pr->ndpr_next;
640
641			/*
642			 * address expiration and prefix expiration are
643			 * separate.  NEVER perform in6_purgeaddr here.
644			 */
645
646			prelist_remove(pr);
647			pr = t;
648		} else
649			pr = pr->ndpr_next;
650	}
651	splx(s);
652}
653
654/*
655 * ia6 - deprecated/invalidated temporary address
656 */
657static int
658regen_tmpaddr(struct in6_ifaddr *ia6)
659{
660	struct ifaddr *ifa;
661	struct ifnet *ifp;
662	struct in6_ifaddr *public_ifa6 = NULL;
663
664	ifp = ia6->ia_ifa.ifa_ifp;
665	for (ifa = ifp->if_addrlist.tqh_first; ifa;
666	     ifa = ifa->ifa_list.tqe_next) {
667		struct in6_ifaddr *it6;
668
669		if (ifa->ifa_addr->sa_family != AF_INET6)
670			continue;
671
672		it6 = (struct in6_ifaddr *)ifa;
673
674		/* ignore no autoconf addresses. */
675		if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
676			continue;
677
678		/* ignore autoconf addresses with different prefixes. */
679		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
680			continue;
681
682		/*
683		 * Now we are looking at an autoconf address with the same
684		 * prefix as ours.  If the address is temporary and is still
685		 * preferred, do not create another one.  It would be rare, but
686		 * could happen, for example, when we resume a laptop PC after
687		 * a long period.
688		 */
689		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
690		    !IFA6_IS_DEPRECATED(it6)) {
691			public_ifa6 = NULL;
692			break;
693		}
694
695		/*
696		 * This is a public autoconf address that has the same prefix
697		 * as ours.  If it is preferred, keep it.  We can't break the
698		 * loop here, because there may be a still-preferred temporary
699		 * address with the prefix.
700		 */
701		if (!IFA6_IS_DEPRECATED(it6))
702		    public_ifa6 = it6;
703	}
704
705	if (public_ifa6 != NULL) {
706		int e;
707
708		if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
709			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
710			    " tmp addr,errno=%d\n", e);
711			return (-1);
712		}
713		return (0);
714	}
715
716	return (-1);
717}
718
719/*
720 * Nuke neighbor cache/prefix/default router management table, right before
721 * ifp goes away.
722 */
723void
724nd6_purge(struct ifnet *ifp)
725{
726	struct llinfo_nd6 *ln, *nln;
727	struct nd_defrouter *dr, *ndr;
728	struct nd_prefix *pr, *npr;
729
730	/*
731	 * Nuke default router list entries toward ifp.
732	 * We defer removal of default router list entries that is installed
733	 * in the routing table, in order to keep additional side effects as
734	 * small as possible.
735	 */
736	for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
737		ndr = TAILQ_NEXT(dr, dr_entry);
738		if (dr->installed)
739			continue;
740
741		if (dr->ifp == ifp)
742			defrtrlist_del(dr);
743	}
744
745	for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
746		ndr = TAILQ_NEXT(dr, dr_entry);
747		if (!dr->installed)
748			continue;
749
750		if (dr->ifp == ifp)
751			defrtrlist_del(dr);
752	}
753
754	/* Nuke prefix list entries toward ifp */
755	for (pr = nd_prefix.lh_first; pr; pr = npr) {
756		npr = pr->ndpr_next;
757		if (pr->ndpr_ifp == ifp) {
758			/*
759			 * Because if_detach() does *not* release prefixes
760			 * while purging addresses the reference count will
761			 * still be above zero. We therefore reset it to
762			 * make sure that the prefix really gets purged.
763			 */
764			pr->ndpr_refcnt = 0;
765
766			/*
767			 * Previously, pr->ndpr_addr is removed as well,
768			 * but I strongly believe we don't have to do it.
769			 * nd6_purge() is only called from in6_ifdetach(),
770			 * which removes all the associated interface addresses
771			 * by itself.
772			 * (jinmei@kame.net 20010129)
773			 */
774			prelist_remove(pr);
775		}
776	}
777
778	/* cancel default outgoing interface setting */
779	if (nd6_defifindex == ifp->if_index)
780		nd6_setdefaultiface(0);
781
782	if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
783		/* refresh default router list */
784		defrouter_select();
785	}
786
787	/*
788	 * Nuke neighbor cache entries for the ifp.
789	 * Note that rt->rt_ifp may not be the same as ifp,
790	 * due to KAME goto ours hack.  See RTM_RESOLVE case in
791	 * nd6_rtrequest(), and ip6_input().
792	 */
793	ln = llinfo_nd6.ln_next;
794	while (ln && ln != &llinfo_nd6) {
795		struct rtentry *rt;
796		struct sockaddr_dl *sdl;
797
798		nln = ln->ln_next;
799		rt = ln->ln_rt;
800		if (rt && rt->rt_gateway &&
801		    rt->rt_gateway->sa_family == AF_LINK) {
802			sdl = (struct sockaddr_dl *)rt->rt_gateway;
803			if (sdl->sdl_index == ifp->if_index)
804				nln = nd6_free(rt, 0);
805		}
806		ln = nln;
807	}
808}
809
810struct rtentry *
811nd6_lookup(struct in6_addr *addr6, int create, struct ifnet *ifp)
812{
813	struct rtentry *rt;
814	struct sockaddr_in6 sin6;
815	char ip6buf[INET6_ADDRSTRLEN];
816
817	bzero(&sin6, sizeof(sin6));
818	sin6.sin6_len = sizeof(struct sockaddr_in6);
819	sin6.sin6_family = AF_INET6;
820	sin6.sin6_addr = *addr6;
821	rt = rtalloc1((struct sockaddr *)&sin6, create, 0UL);
822	if (rt) {
823		if ((rt->rt_flags & RTF_LLINFO) == 0 && create) {
824			/*
825			 * This is the case for the default route.
826			 * If we want to create a neighbor cache for the
827			 * address, we should free the route for the
828			 * destination and allocate an interface route.
829			 */
830			RTFREE_LOCKED(rt);
831			rt = NULL;
832		}
833	}
834	if (rt == NULL) {
835		if (create && ifp) {
836			int e;
837
838			/*
839			 * If no route is available and create is set,
840			 * we allocate a host route for the destination
841			 * and treat it like an interface route.
842			 * This hack is necessary for a neighbor which can't
843			 * be covered by our own prefix.
844			 */
845			struct ifaddr *ifa =
846			    ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
847			if (ifa == NULL)
848				return (NULL);
849
850			/*
851			 * Create a new route.  RTF_LLINFO is necessary
852			 * to create a Neighbor Cache entry for the
853			 * destination in nd6_rtrequest which will be
854			 * called in rtrequest via ifa->ifa_rtrequest.
855			 */
856			if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6,
857			    ifa->ifa_addr, (struct sockaddr *)&all1_sa,
858			    (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
859			    ~RTF_CLONING, &rt)) != 0) {
860				log(LOG_ERR,
861				    "nd6_lookup: failed to add route for a "
862				    "neighbor(%s), errno=%d\n",
863				    ip6_sprintf(ip6buf, addr6), e);
864			}
865			if (rt == NULL)
866				return (NULL);
867			RT_LOCK(rt);
868			if (rt->rt_llinfo) {
869				struct llinfo_nd6 *ln =
870				    (struct llinfo_nd6 *)rt->rt_llinfo;
871				ln->ln_state = ND6_LLINFO_NOSTATE;
872			}
873		} else
874			return (NULL);
875	}
876	RT_LOCK_ASSERT(rt);
877	RT_REMREF(rt);
878	/*
879	 * Validation for the entry.
880	 * Note that the check for rt_llinfo is necessary because a cloned
881	 * route from a parent route that has the L flag (e.g. the default
882	 * route to a p2p interface) may have the flag, too, while the
883	 * destination is not actually a neighbor.
884	 * XXX: we can't use rt->rt_ifp to check for the interface, since
885	 *      it might be the loopback interface if the entry is for our
886	 *      own address on a non-loopback interface. Instead, we should
887	 *      use rt->rt_ifa->ifa_ifp, which would specify the REAL
888	 *	interface.
889	 * Note also that ifa_ifp and ifp may differ when we connect two
890	 * interfaces to a same link, install a link prefix to an interface,
891	 * and try to install a neighbor cache on an interface that does not
892	 * have a route to the prefix.
893	 */
894	if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
895	    rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
896	    (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
897		if (create) {
898			nd6log((LOG_DEBUG,
899			    "nd6_lookup: failed to lookup %s (if = %s)\n",
900			    ip6_sprintf(ip6buf, addr6),
901			    ifp ? if_name(ifp) : "unspec"));
902		}
903		RT_UNLOCK(rt);
904		return (NULL);
905	}
906	RT_UNLOCK(rt);		/* XXX not ready to return rt locked */
907	return (rt);
908}
909
910/*
911 * Test whether a given IPv6 address is a neighbor or not, ignoring
912 * the actual neighbor cache.  The neighbor cache is ignored in order
913 * to not reenter the routing code from within itself.
914 */
915static int
916nd6_is_new_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp)
917{
918	struct nd_prefix *pr;
919	struct ifaddr *dstaddr;
920
921	/*
922	 * A link-local address is always a neighbor.
923	 * XXX: a link does not necessarily specify a single interface.
924	 */
925	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
926		struct sockaddr_in6 sin6_copy;
927		u_int32_t zone;
928
929		/*
930		 * We need sin6_copy since sa6_recoverscope() may modify the
931		 * content (XXX).
932		 */
933		sin6_copy = *addr;
934		if (sa6_recoverscope(&sin6_copy))
935			return (0); /* XXX: should be impossible */
936		if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
937			return (0);
938		if (sin6_copy.sin6_scope_id == zone)
939			return (1);
940		else
941			return (0);
942	}
943
944	/*
945	 * If the address matches one of our addresses,
946	 * it should be a neighbor.
947	 * If the address matches one of our on-link prefixes, it should be a
948	 * neighbor.
949	 */
950	for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
951		if (pr->ndpr_ifp != ifp)
952			continue;
953
954		if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
955			continue;
956
957		if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
958		    &addr->sin6_addr, &pr->ndpr_mask))
959			return (1);
960	}
961
962	/*
963	 * If the address is assigned on the node of the other side of
964	 * a p2p interface, the address should be a neighbor.
965	 */
966	dstaddr = ifa_ifwithdstaddr((struct sockaddr *)addr);
967	if ((dstaddr != NULL) && (dstaddr->ifa_ifp == ifp))
968		return (1);
969
970	/*
971	 * If the default router list is empty, all addresses are regarded
972	 * as on-link, and thus, as a neighbor.
973	 * XXX: we restrict the condition to hosts, because routers usually do
974	 * not have the "default router list".
975	 */
976	if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL &&
977	    nd6_defifindex == ifp->if_index) {
978		return (1);
979	}
980
981	return (0);
982}
983
984
985/*
986 * Detect if a given IPv6 address identifies a neighbor on a given link.
987 * XXX: should take care of the destination of a p2p link?
988 */
989int
990nd6_is_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp)
991{
992
993	if (nd6_is_new_addr_neighbor(addr, ifp))
994		return (1);
995
996	/*
997	 * Even if the address matches none of our addresses, it might be
998	 * in the neighbor cache.
999	 */
1000	if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL)
1001		return (1);
1002
1003	return (0);
1004}
1005
1006/*
1007 * Free an nd6 llinfo entry.
1008 * Since the function would cause significant changes in the kernel, DO NOT
1009 * make it global, unless you have a strong reason for the change, and are sure
1010 * that the change is safe.
1011 */
1012static struct llinfo_nd6 *
1013nd6_free(struct rtentry *rt, int gc)
1014{
1015	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
1016	struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
1017	struct nd_defrouter *dr;
1018
1019	/*
1020	 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1021	 * even though it is not harmful, it was not really necessary.
1022	 */
1023
1024	/* cancel timer */
1025	nd6_llinfo_settimer(ln, -1);
1026
1027	if (!ip6_forwarding) {
1028		int s;
1029		s = splnet();
1030		dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1031		    rt->rt_ifp);
1032
1033		if (dr != NULL && dr->expire &&
1034		    ln->ln_state == ND6_LLINFO_STALE && gc) {
1035			/*
1036			 * If the reason for the deletion is just garbage
1037			 * collection, and the neighbor is an active default
1038			 * router, do not delete it.  Instead, reset the GC
1039			 * timer using the router's lifetime.
1040			 * Simply deleting the entry would affect default
1041			 * router selection, which is not necessarily a good
1042			 * thing, especially when we're using router preference
1043			 * values.
1044			 * XXX: the check for ln_state would be redundant,
1045			 *      but we intentionally keep it just in case.
1046			 */
1047			if (dr->expire > time_second)
1048				nd6_llinfo_settimer(ln,
1049				    (dr->expire - time_second) * hz);
1050			else
1051				nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1052			splx(s);
1053			return (ln->ln_next);
1054		}
1055
1056		if (ln->ln_router || dr) {
1057			/*
1058			 * rt6_flush must be called whether or not the neighbor
1059			 * is in the Default Router List.
1060			 * See a corresponding comment in nd6_na_input().
1061			 */
1062			rt6_flush(&in6, rt->rt_ifp);
1063		}
1064
1065		if (dr) {
1066			/*
1067			 * Unreachablity of a router might affect the default
1068			 * router selection and on-link detection of advertised
1069			 * prefixes.
1070			 */
1071
1072			/*
1073			 * Temporarily fake the state to choose a new default
1074			 * router and to perform on-link determination of
1075			 * prefixes correctly.
1076			 * Below the state will be set correctly,
1077			 * or the entry itself will be deleted.
1078			 */
1079			ln->ln_state = ND6_LLINFO_INCOMPLETE;
1080
1081			/*
1082			 * Since defrouter_select() does not affect the
1083			 * on-link determination and MIP6 needs the check
1084			 * before the default router selection, we perform
1085			 * the check now.
1086			 */
1087			pfxlist_onlink_check();
1088
1089			/*
1090			 * refresh default router list
1091			 */
1092			defrouter_select();
1093		}
1094		splx(s);
1095	}
1096
1097	/*
1098	 * Before deleting the entry, remember the next entry as the
1099	 * return value.  We need this because pfxlist_onlink_check() above
1100	 * might have freed other entries (particularly the old next entry) as
1101	 * a side effect (XXX).
1102	 */
1103	next = ln->ln_next;
1104
1105	/*
1106	 * Detach the route from the routing tree and the list of neighbor
1107	 * caches, and disable the route entry not to be used in already
1108	 * cached routes.
1109	 */
1110	rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0,
1111	    rt_mask(rt), 0, (struct rtentry **)0);
1112
1113	return (next);
1114}
1115
1116/*
1117 * Upper-layer reachability hint for Neighbor Unreachability Detection.
1118 *
1119 * XXX cost-effective methods?
1120 */
1121void
1122nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force)
1123{
1124	struct llinfo_nd6 *ln;
1125
1126	/*
1127	 * If the caller specified "rt", use that.  Otherwise, resolve the
1128	 * routing table by supplied "dst6".
1129	 */
1130	if (rt == NULL) {
1131		if (dst6 == NULL)
1132			return;
1133		if ((rt = nd6_lookup(dst6, 0, NULL)) == NULL)
1134			return;
1135	}
1136
1137	if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
1138	    (rt->rt_flags & RTF_LLINFO) == 0 ||
1139	    rt->rt_llinfo == NULL || rt->rt_gateway == NULL ||
1140	    rt->rt_gateway->sa_family != AF_LINK) {
1141		/* This is not a host route. */
1142		return;
1143	}
1144
1145	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1146	if (ln->ln_state < ND6_LLINFO_REACHABLE)
1147		return;
1148
1149	/*
1150	 * if we get upper-layer reachability confirmation many times,
1151	 * it is possible we have false information.
1152	 */
1153	if (!force) {
1154		ln->ln_byhint++;
1155		if (ln->ln_byhint > nd6_maxnudhint)
1156			return;
1157	}
1158
1159	ln->ln_state = ND6_LLINFO_REACHABLE;
1160	if (!ND6_LLINFO_PERMANENT(ln)) {
1161		nd6_llinfo_settimer(ln,
1162		    (long)ND_IFINFO(rt->rt_ifp)->reachable * hz);
1163	}
1164}
1165
1166/*
1167 * info - XXX unused
1168 */
1169void
1170nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info)
1171{
1172	struct sockaddr *gate = rt->rt_gateway;
1173	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1174	static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
1175	struct ifnet *ifp = rt->rt_ifp;
1176	struct ifaddr *ifa;
1177
1178	RT_LOCK_ASSERT(rt);
1179
1180	if ((rt->rt_flags & RTF_GATEWAY) != 0)
1181		return;
1182
1183	if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1184		/*
1185		 * This is probably an interface direct route for a link
1186		 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1187		 * We do not need special treatment below for such a route.
1188		 * Moreover, the RTF_LLINFO flag which would be set below
1189		 * would annoy the ndp(8) command.
1190		 */
1191		return;
1192	}
1193
1194	if (req == RTM_RESOLVE &&
1195	    (nd6_need_cache(ifp) == 0 || /* stf case */
1196	     !nd6_is_new_addr_neighbor((struct sockaddr_in6 *)rt_key(rt),
1197	     ifp))) {
1198		/*
1199		 * FreeBSD and BSD/OS often make a cloned host route based
1200		 * on a less-specific route (e.g. the default route).
1201		 * If the less specific route does not have a "gateway"
1202		 * (this is the case when the route just goes to a p2p or an
1203		 * stf interface), we'll mistakenly make a neighbor cache for
1204		 * the host route, and will see strange neighbor solicitation
1205		 * for the corresponding destination.  In order to avoid the
1206		 * confusion, we check if the destination of the route is
1207		 * a neighbor in terms of neighbor discovery, and stop the
1208		 * process if not.  Additionally, we remove the LLINFO flag
1209		 * so that ndp(8) will not try to get the neighbor information
1210		 * of the destination.
1211		 */
1212		rt->rt_flags &= ~RTF_LLINFO;
1213		return;
1214	}
1215
1216	switch (req) {
1217	case RTM_ADD:
1218		/*
1219		 * There is no backward compatibility :)
1220		 *
1221		 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1222		 *     SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1223		 *	   rt->rt_flags |= RTF_CLONING;
1224		 */
1225		if ((rt->rt_flags & RTF_CLONING) ||
1226		    ((rt->rt_flags & RTF_LLINFO) && ln == NULL)) {
1227			/*
1228			 * Case 1: This route should come from a route to
1229			 * interface (RTF_CLONING case) or the route should be
1230			 * treated as on-link but is currently not
1231			 * (RTF_LLINFO && ln == NULL case).
1232			 */
1233			rt_setgate(rt, rt_key(rt),
1234				   (struct sockaddr *)&null_sdl);
1235			gate = rt->rt_gateway;
1236			SDL(gate)->sdl_type = ifp->if_type;
1237			SDL(gate)->sdl_index = ifp->if_index;
1238			if (ln)
1239				nd6_llinfo_settimer(ln, 0);
1240			if ((rt->rt_flags & RTF_CLONING) != 0)
1241				break;
1242		}
1243		/*
1244		 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1245		 * We don't do that here since llinfo is not ready yet.
1246		 *
1247		 * There are also couple of other things to be discussed:
1248		 * - unsolicited NA code needs improvement beforehand
1249		 * - RFC2461 says we MAY send multicast unsolicited NA
1250		 *   (7.2.6 paragraph 4), however, it also says that we
1251		 *   SHOULD provide a mechanism to prevent multicast NA storm.
1252		 *   we don't have anything like it right now.
1253		 *   note that the mechanism needs a mutual agreement
1254		 *   between proxies, which means that we need to implement
1255		 *   a new protocol, or a new kludge.
1256		 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1257		 *   we need to check ip6forwarding before sending it.
1258		 *   (or should we allow proxy ND configuration only for
1259		 *   routers?  there's no mention about proxy ND from hosts)
1260		 */
1261		/* FALLTHROUGH */
1262	case RTM_RESOLVE:
1263		if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1264			/*
1265			 * Address resolution isn't necessary for a point to
1266			 * point link, so we can skip this test for a p2p link.
1267			 */
1268			if (gate->sa_family != AF_LINK ||
1269			    gate->sa_len < sizeof(null_sdl)) {
1270				log(LOG_DEBUG,
1271				    "nd6_rtrequest: bad gateway value: %s\n",
1272				    if_name(ifp));
1273				break;
1274			}
1275			SDL(gate)->sdl_type = ifp->if_type;
1276			SDL(gate)->sdl_index = ifp->if_index;
1277		}
1278		if (ln != NULL)
1279			break;	/* This happens on a route change */
1280		/*
1281		 * Case 2: This route may come from cloning, or a manual route
1282		 * add with a LL address.
1283		 */
1284		R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1285		rt->rt_llinfo = (caddr_t)ln;
1286		if (ln == NULL) {
1287			log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1288			break;
1289		}
1290		nd6_inuse++;
1291		nd6_allocated++;
1292		bzero(ln, sizeof(*ln));
1293		RT_ADDREF(rt);
1294		ln->ln_rt = rt;
1295		callout_init(&ln->ln_timer_ch, 0);
1296
1297		/* this is required for "ndp" command. - shin */
1298		if (req == RTM_ADD) {
1299		        /*
1300			 * gate should have some valid AF_LINK entry,
1301			 * and ln->ln_expire should have some lifetime
1302			 * which is specified by ndp command.
1303			 */
1304			ln->ln_state = ND6_LLINFO_REACHABLE;
1305			ln->ln_byhint = 0;
1306		} else {
1307		        /*
1308			 * When req == RTM_RESOLVE, rt is created and
1309			 * initialized in rtrequest(), so rt_expire is 0.
1310			 */
1311			ln->ln_state = ND6_LLINFO_NOSTATE;
1312			nd6_llinfo_settimer(ln, 0);
1313		}
1314		rt->rt_flags |= RTF_LLINFO;
1315		ln->ln_next = llinfo_nd6.ln_next;
1316		llinfo_nd6.ln_next = ln;
1317		ln->ln_prev = &llinfo_nd6;
1318		ln->ln_next->ln_prev = ln;
1319
1320		/*
1321		 * check if rt_key(rt) is one of my address assigned
1322		 * to the interface.
1323		 */
1324		ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
1325		    &SIN6(rt_key(rt))->sin6_addr);
1326		if (ifa) {
1327			caddr_t macp = nd6_ifptomac(ifp);
1328			nd6_llinfo_settimer(ln, -1);
1329			ln->ln_state = ND6_LLINFO_REACHABLE;
1330			ln->ln_byhint = 0;
1331			if (macp) {
1332				bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
1333				SDL(gate)->sdl_alen = ifp->if_addrlen;
1334			}
1335			if (nd6_useloopback) {
1336				rt->rt_ifp = &loif[0];	/* XXX */
1337				/*
1338				 * Make sure rt_ifa be equal to the ifaddr
1339				 * corresponding to the address.
1340				 * We need this because when we refer
1341				 * rt_ifa->ia6_flags in ip6_input, we assume
1342				 * that the rt_ifa points to the address instead
1343				 * of the loopback address.
1344				 */
1345				if (ifa != rt->rt_ifa) {
1346					IFAFREE(rt->rt_ifa);
1347					IFAREF(ifa);
1348					rt->rt_ifa = ifa;
1349				}
1350			}
1351		} else if (rt->rt_flags & RTF_ANNOUNCE) {
1352			nd6_llinfo_settimer(ln, -1);
1353			ln->ln_state = ND6_LLINFO_REACHABLE;
1354			ln->ln_byhint = 0;
1355
1356			/* join solicited node multicast for proxy ND */
1357			if (ifp->if_flags & IFF_MULTICAST) {
1358				struct in6_addr llsol;
1359				int error;
1360
1361				llsol = SIN6(rt_key(rt))->sin6_addr;
1362				llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
1363				llsol.s6_addr32[1] = 0;
1364				llsol.s6_addr32[2] = htonl(1);
1365				llsol.s6_addr8[12] = 0xff;
1366				if (in6_setscope(&llsol, ifp, NULL))
1367					break;
1368				if (in6_addmulti(&llsol, ifp,
1369				    &error, 0) == NULL) {
1370					char ip6buf[INET6_ADDRSTRLEN];
1371					nd6log((LOG_ERR, "%s: failed to join "
1372					    "%s (errno=%d)\n", if_name(ifp),
1373					    ip6_sprintf(ip6buf, &llsol),
1374					    error));
1375				}
1376			}
1377		}
1378		break;
1379
1380	case RTM_DELETE:
1381		if (ln == NULL)
1382			break;
1383		/* leave from solicited node multicast for proxy ND */
1384		if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1385		    (ifp->if_flags & IFF_MULTICAST) != 0) {
1386			struct in6_addr llsol;
1387			struct in6_multi *in6m;
1388
1389			llsol = SIN6(rt_key(rt))->sin6_addr;
1390			llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
1391			llsol.s6_addr32[1] = 0;
1392			llsol.s6_addr32[2] = htonl(1);
1393			llsol.s6_addr8[12] = 0xff;
1394			if (in6_setscope(&llsol, ifp, NULL) == 0) {
1395				IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1396				if (in6m)
1397					in6_delmulti(in6m);
1398			} else
1399				; /* XXX: should not happen. bark here? */
1400		}
1401		nd6_inuse--;
1402		ln->ln_next->ln_prev = ln->ln_prev;
1403		ln->ln_prev->ln_next = ln->ln_next;
1404		ln->ln_prev = NULL;
1405		nd6_llinfo_settimer(ln, -1);
1406		RT_REMREF(rt);
1407		rt->rt_llinfo = 0;
1408		rt->rt_flags &= ~RTF_LLINFO;
1409		clear_llinfo_pqueue(ln);
1410		Free((caddr_t)ln);
1411	}
1412}
1413
1414int
1415nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp)
1416{
1417	struct in6_drlist *drl = (struct in6_drlist *)data;
1418	struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1419	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1420	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1421	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1422	struct nd_defrouter *dr;
1423	struct nd_prefix *pr;
1424	struct rtentry *rt;
1425	int i = 0, error = 0;
1426	int s;
1427
1428	switch (cmd) {
1429	case SIOCGDRLST_IN6:
1430		/*
1431		 * obsolete API, use sysctl under net.inet6.icmp6
1432		 */
1433		bzero(drl, sizeof(*drl));
1434		s = splnet();
1435		dr = TAILQ_FIRST(&nd_defrouter);
1436		while (dr && i < DRLSTSIZ) {
1437			drl->defrouter[i].rtaddr = dr->rtaddr;
1438			in6_clearscope(&drl->defrouter[i].rtaddr);
1439
1440			drl->defrouter[i].flags = dr->flags;
1441			drl->defrouter[i].rtlifetime = dr->rtlifetime;
1442			drl->defrouter[i].expire = dr->expire;
1443			drl->defrouter[i].if_index = dr->ifp->if_index;
1444			i++;
1445			dr = TAILQ_NEXT(dr, dr_entry);
1446		}
1447		splx(s);
1448		break;
1449	case SIOCGPRLST_IN6:
1450		/*
1451		 * obsolete API, use sysctl under net.inet6.icmp6
1452		 *
1453		 * XXX the structure in6_prlist was changed in backward-
1454		 * incompatible manner.  in6_oprlist is used for SIOCGPRLST_IN6,
1455		 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1456		 */
1457		/*
1458		 * XXX meaning of fields, especialy "raflags", is very
1459		 * differnet between RA prefix list and RR/static prefix list.
1460		 * how about separating ioctls into two?
1461		 */
1462		bzero(oprl, sizeof(*oprl));
1463		s = splnet();
1464		pr = nd_prefix.lh_first;
1465		while (pr && i < PRLSTSIZ) {
1466			struct nd_pfxrouter *pfr;
1467			int j;
1468
1469			oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1470			oprl->prefix[i].raflags = pr->ndpr_raf;
1471			oprl->prefix[i].prefixlen = pr->ndpr_plen;
1472			oprl->prefix[i].vltime = pr->ndpr_vltime;
1473			oprl->prefix[i].pltime = pr->ndpr_pltime;
1474			oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1475			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
1476				oprl->prefix[i].expire = 0;
1477			else {
1478				time_t maxexpire;
1479
1480				/* XXX: we assume time_t is signed. */
1481				maxexpire = (-1) &
1482				    ~((time_t)1 <<
1483				    ((sizeof(maxexpire) * 8) - 1));
1484				if (pr->ndpr_vltime <
1485				    maxexpire - pr->ndpr_lastupdate) {
1486					oprl->prefix[i].expire =
1487					    pr->ndpr_lastupdate +
1488					    pr->ndpr_vltime;
1489				} else
1490					oprl->prefix[i].expire = maxexpire;
1491			}
1492
1493			pfr = pr->ndpr_advrtrs.lh_first;
1494			j = 0;
1495			while (pfr) {
1496				if (j < DRLSTSIZ) {
1497#define RTRADDR oprl->prefix[i].advrtr[j]
1498					RTRADDR = pfr->router->rtaddr;
1499					in6_clearscope(&RTRADDR);
1500#undef RTRADDR
1501				}
1502				j++;
1503				pfr = pfr->pfr_next;
1504			}
1505			oprl->prefix[i].advrtrs = j;
1506			oprl->prefix[i].origin = PR_ORIG_RA;
1507
1508			i++;
1509			pr = pr->ndpr_next;
1510		}
1511		splx(s);
1512
1513		break;
1514	case OSIOCGIFINFO_IN6:
1515#define ND	ndi->ndi
1516		/* XXX: old ndp(8) assumes a positive value for linkmtu. */
1517		bzero(&ND, sizeof(ND));
1518		ND.linkmtu = IN6_LINKMTU(ifp);
1519		ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1520		ND.basereachable = ND_IFINFO(ifp)->basereachable;
1521		ND.reachable = ND_IFINFO(ifp)->reachable;
1522		ND.retrans = ND_IFINFO(ifp)->retrans;
1523		ND.flags = ND_IFINFO(ifp)->flags;
1524		ND.recalctm = ND_IFINFO(ifp)->recalctm;
1525		ND.chlim = ND_IFINFO(ifp)->chlim;
1526		break;
1527	case SIOCGIFINFO_IN6:
1528		ND = *ND_IFINFO(ifp);
1529		break;
1530	case SIOCSIFINFO_IN6:
1531		/*
1532		 * used to change host variables from userland.
1533		 * intented for a use on router to reflect RA configurations.
1534		 */
1535		/* 0 means 'unspecified' */
1536		if (ND.linkmtu != 0) {
1537			if (ND.linkmtu < IPV6_MMTU ||
1538			    ND.linkmtu > IN6_LINKMTU(ifp)) {
1539				error = EINVAL;
1540				break;
1541			}
1542			ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1543		}
1544
1545		if (ND.basereachable != 0) {
1546			int obasereachable = ND_IFINFO(ifp)->basereachable;
1547
1548			ND_IFINFO(ifp)->basereachable = ND.basereachable;
1549			if (ND.basereachable != obasereachable)
1550				ND_IFINFO(ifp)->reachable =
1551				    ND_COMPUTE_RTIME(ND.basereachable);
1552		}
1553		if (ND.retrans != 0)
1554			ND_IFINFO(ifp)->retrans = ND.retrans;
1555		if (ND.chlim != 0)
1556			ND_IFINFO(ifp)->chlim = ND.chlim;
1557		/* FALLTHROUGH */
1558	case SIOCSIFINFO_FLAGS:
1559		ND_IFINFO(ifp)->flags = ND.flags;
1560		break;
1561#undef ND
1562	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
1563		/* sync kernel routing table with the default router list */
1564		defrouter_reset();
1565		defrouter_select();
1566		break;
1567	case SIOCSPFXFLUSH_IN6:
1568	{
1569		/* flush all the prefix advertised by routers */
1570		struct nd_prefix *pr, *next;
1571
1572		s = splnet();
1573		for (pr = nd_prefix.lh_first; pr; pr = next) {
1574			struct in6_ifaddr *ia, *ia_next;
1575
1576			next = pr->ndpr_next;
1577
1578			if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1579				continue; /* XXX */
1580
1581			/* do we really have to remove addresses as well? */
1582			for (ia = in6_ifaddr; ia; ia = ia_next) {
1583				/* ia might be removed.  keep the next ptr. */
1584				ia_next = ia->ia_next;
1585
1586				if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1587					continue;
1588
1589				if (ia->ia6_ndpr == pr)
1590					in6_purgeaddr(&ia->ia_ifa);
1591			}
1592			prelist_remove(pr);
1593		}
1594		splx(s);
1595		break;
1596	}
1597	case SIOCSRTRFLUSH_IN6:
1598	{
1599		/* flush all the default routers */
1600		struct nd_defrouter *dr, *next;
1601
1602		s = splnet();
1603		defrouter_reset();
1604		for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = next) {
1605			next = TAILQ_NEXT(dr, dr_entry);
1606			defrtrlist_del(dr);
1607		}
1608		defrouter_select();
1609		splx(s);
1610		break;
1611	}
1612	case SIOCGNBRINFO_IN6:
1613	{
1614		struct llinfo_nd6 *ln;
1615		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1616
1617		if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1618			return (error);
1619
1620		s = splnet();
1621		if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) {
1622			error = EINVAL;
1623			splx(s);
1624			break;
1625		}
1626		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1627		nbi->state = ln->ln_state;
1628		nbi->asked = ln->ln_asked;
1629		nbi->isrouter = ln->ln_router;
1630		nbi->expire = ln->ln_expire;
1631		splx(s);
1632
1633		break;
1634	}
1635	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1636		ndif->ifindex = nd6_defifindex;
1637		break;
1638	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1639		return (nd6_setdefaultiface(ndif->ifindex));
1640	}
1641	return (error);
1642}
1643
1644/*
1645 * Create neighbor cache entry and cache link-layer address,
1646 * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
1647 *
1648 * type - ICMP6 type
1649 * code - type dependent information
1650 */
1651struct rtentry *
1652nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr,
1653    int lladdrlen, int type, int code)
1654{
1655	struct rtentry *rt = NULL;
1656	struct llinfo_nd6 *ln = NULL;
1657	int is_newentry;
1658	struct sockaddr_dl *sdl = NULL;
1659	int do_update;
1660	int olladdr;
1661	int llchange;
1662	int newstate = 0;
1663
1664	if (ifp == NULL)
1665		panic("ifp == NULL in nd6_cache_lladdr");
1666	if (from == NULL)
1667		panic("from == NULL in nd6_cache_lladdr");
1668
1669	/* nothing must be updated for unspecified address */
1670	if (IN6_IS_ADDR_UNSPECIFIED(from))
1671		return NULL;
1672
1673	/*
1674	 * Validation about ifp->if_addrlen and lladdrlen must be done in
1675	 * the caller.
1676	 *
1677	 * XXX If the link does not have link-layer adderss, what should
1678	 * we do? (ifp->if_addrlen == 0)
1679	 * Spec says nothing in sections for RA, RS and NA.  There's small
1680	 * description on it in NS section (RFC 2461 7.2.3).
1681	 */
1682
1683	rt = nd6_lookup(from, 0, ifp);
1684	if (rt == NULL) {
1685		rt = nd6_lookup(from, 1, ifp);
1686		is_newentry = 1;
1687	} else {
1688		/* do nothing if static ndp is set */
1689		if (rt->rt_flags & RTF_STATIC)
1690			return NULL;
1691		is_newentry = 0;
1692	}
1693
1694	if (rt == NULL)
1695		return NULL;
1696	if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1697fail:
1698		(void)nd6_free(rt, 0);
1699		return NULL;
1700	}
1701	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1702	if (ln == NULL)
1703		goto fail;
1704	if (rt->rt_gateway == NULL)
1705		goto fail;
1706	if (rt->rt_gateway->sa_family != AF_LINK)
1707		goto fail;
1708	sdl = SDL(rt->rt_gateway);
1709
1710	olladdr = (sdl->sdl_alen) ? 1 : 0;
1711	if (olladdr && lladdr) {
1712		if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen))
1713			llchange = 1;
1714		else
1715			llchange = 0;
1716	} else
1717		llchange = 0;
1718
1719	/*
1720	 * newentry olladdr  lladdr  llchange	(*=record)
1721	 *	0	n	n	--	(1)
1722	 *	0	y	n	--	(2)
1723	 *	0	n	y	--	(3) * STALE
1724	 *	0	y	y	n	(4) *
1725	 *	0	y	y	y	(5) * STALE
1726	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
1727	 *	1	--	y	--	(7) * STALE
1728	 */
1729
1730	if (lladdr) {		/* (3-5) and (7) */
1731		/*
1732		 * Record source link-layer address
1733		 * XXX is it dependent to ifp->if_type?
1734		 */
1735		sdl->sdl_alen = ifp->if_addrlen;
1736		bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
1737	}
1738
1739	if (!is_newentry) {
1740		if ((!olladdr && lladdr != NULL) ||	/* (3) */
1741		    (olladdr && lladdr != NULL && llchange)) {	/* (5) */
1742			do_update = 1;
1743			newstate = ND6_LLINFO_STALE;
1744		} else					/* (1-2,4) */
1745			do_update = 0;
1746	} else {
1747		do_update = 1;
1748		if (lladdr == NULL)			/* (6) */
1749			newstate = ND6_LLINFO_NOSTATE;
1750		else					/* (7) */
1751			newstate = ND6_LLINFO_STALE;
1752	}
1753
1754	if (do_update) {
1755		/*
1756		 * Update the state of the neighbor cache.
1757		 */
1758		ln->ln_state = newstate;
1759
1760		if (ln->ln_state == ND6_LLINFO_STALE) {
1761			/*
1762			 * XXX: since nd6_output() below will cause
1763			 * state tansition to DELAY and reset the timer,
1764			 * we must set the timer now, although it is actually
1765			 * meaningless.
1766			 */
1767			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1768
1769			if (ln->ln_hold) {
1770				struct mbuf *m_hold, *m_hold_next;
1771
1772				/*
1773				 * reset the ln_hold in advance, to explicitly
1774				 * prevent a ln_hold lookup in nd6_output()
1775				 * (wouldn't happen, though...)
1776				 */
1777				for (m_hold = ln->ln_hold, ln->ln_hold = NULL;
1778				    m_hold; m_hold = m_hold_next) {
1779					m_hold_next = m_hold->m_nextpkt;
1780					m_hold->m_nextpkt = NULL;
1781
1782					/*
1783					 * we assume ifp is not a p2p here, so
1784					 * just set the 2nd argument as the
1785					 * 1st one.
1786					 */
1787					nd6_output(ifp, ifp, m_hold,
1788					     (struct sockaddr_in6 *)rt_key(rt),
1789					     rt);
1790				}
1791			}
1792		} else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1793			/* probe right away */
1794			nd6_llinfo_settimer((void *)ln, 0);
1795		}
1796	}
1797
1798	/*
1799	 * ICMP6 type dependent behavior.
1800	 *
1801	 * NS: clear IsRouter if new entry
1802	 * RS: clear IsRouter
1803	 * RA: set IsRouter if there's lladdr
1804	 * redir: clear IsRouter if new entry
1805	 *
1806	 * RA case, (1):
1807	 * The spec says that we must set IsRouter in the following cases:
1808	 * - If lladdr exist, set IsRouter.  This means (1-5).
1809	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
1810	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1811	 * A quetion arises for (1) case.  (1) case has no lladdr in the
1812	 * neighbor cache, this is similar to (6).
1813	 * This case is rare but we figured that we MUST NOT set IsRouter.
1814	 *
1815	 * newentry olladdr  lladdr  llchange	    NS  RS  RA	redir
1816	 *							D R
1817	 *	0	n	n	--	(1)	c   ?     s
1818	 *	0	y	n	--	(2)	c   s     s
1819	 *	0	n	y	--	(3)	c   s     s
1820	 *	0	y	y	n	(4)	c   s     s
1821	 *	0	y	y	y	(5)	c   s     s
1822	 *	1	--	n	--	(6) c	c	c s
1823	 *	1	--	y	--	(7) c	c   s	c s
1824	 *
1825	 *					(c=clear s=set)
1826	 */
1827	switch (type & 0xff) {
1828	case ND_NEIGHBOR_SOLICIT:
1829		/*
1830		 * New entry must have is_router flag cleared.
1831		 */
1832		if (is_newentry)	/* (6-7) */
1833			ln->ln_router = 0;
1834		break;
1835	case ND_REDIRECT:
1836		/*
1837		 * If the icmp is a redirect to a better router, always set the
1838		 * is_router flag.  Otherwise, if the entry is newly created,
1839		 * clear the flag.  [RFC 2461, sec 8.3]
1840		 */
1841		if (code == ND_REDIRECT_ROUTER)
1842			ln->ln_router = 1;
1843		else if (is_newentry) /* (6-7) */
1844			ln->ln_router = 0;
1845		break;
1846	case ND_ROUTER_SOLICIT:
1847		/*
1848		 * is_router flag must always be cleared.
1849		 */
1850		ln->ln_router = 0;
1851		break;
1852	case ND_ROUTER_ADVERT:
1853		/*
1854		 * Mark an entry with lladdr as a router.
1855		 */
1856		if ((!is_newentry && (olladdr || lladdr)) ||	/* (2-5) */
1857		    (is_newentry && lladdr)) {			/* (7) */
1858			ln->ln_router = 1;
1859		}
1860		break;
1861	}
1862
1863	/*
1864	 * When the link-layer address of a router changes, select the
1865	 * best router again.  In particular, when the neighbor entry is newly
1866	 * created, it might affect the selection policy.
1867	 * Question: can we restrict the first condition to the "is_newentry"
1868	 * case?
1869	 * XXX: when we hear an RA from a new router with the link-layer
1870	 * address option, defrouter_select() is called twice, since
1871	 * defrtrlist_update called the function as well.  However, I believe
1872	 * we can compromise the overhead, since it only happens the first
1873	 * time.
1874	 * XXX: although defrouter_select() should not have a bad effect
1875	 * for those are not autoconfigured hosts, we explicitly avoid such
1876	 * cases for safety.
1877	 */
1878	if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv)
1879		defrouter_select();
1880
1881	return rt;
1882}
1883
1884static void
1885nd6_slowtimo(void *ignored_arg)
1886{
1887	struct nd_ifinfo *nd6if;
1888	struct ifnet *ifp;
1889
1890	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1891	    nd6_slowtimo, NULL);
1892	IFNET_RLOCK();
1893	for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) {
1894		nd6if = ND_IFINFO(ifp);
1895		if (nd6if->basereachable && /* already initialized */
1896		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1897			/*
1898			 * Since reachable time rarely changes by router
1899			 * advertisements, we SHOULD insure that a new random
1900			 * value gets recomputed at least once every few hours.
1901			 * (RFC 2461, 6.3.4)
1902			 */
1903			nd6if->recalctm = nd6_recalc_reachtm_interval;
1904			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1905		}
1906	}
1907	IFNET_RUNLOCK();
1908}
1909
1910#define senderr(e) { error = (e); goto bad;}
1911int
1912nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0,
1913    struct sockaddr_in6 *dst, struct rtentry *rt0)
1914{
1915	struct mbuf *m = m0;
1916	struct rtentry *rt = rt0;
1917	struct sockaddr_in6 *gw6 = NULL;
1918	struct llinfo_nd6 *ln = NULL;
1919	int error = 0;
1920
1921	if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1922		goto sendpkt;
1923
1924	if (nd6_need_cache(ifp) == 0)
1925		goto sendpkt;
1926
1927	/*
1928	 * next hop determination.  This routine is derived from ether_output.
1929	 */
1930	/* NB: the locking here is tortuous... */
1931	if (rt != NULL)
1932		RT_LOCK(rt);
1933again:
1934	if (rt != NULL) {
1935		if ((rt->rt_flags & RTF_UP) == 0) {
1936			RT_UNLOCK(rt);
1937			rt0 = rt = rtalloc1((struct sockaddr *)dst, 1, 0UL);
1938			if (rt != NULL) {
1939				RT_REMREF(rt);
1940				if (rt->rt_ifp != ifp)
1941					/*
1942					 * XXX maybe we should update ifp too,
1943					 * but the original code didn't and I
1944					 * don't know what is correct here.
1945					 */
1946					goto again;
1947			} else
1948				senderr(EHOSTUNREACH);
1949		}
1950
1951		if (rt->rt_flags & RTF_GATEWAY) {
1952			gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
1953
1954			/*
1955			 * We skip link-layer address resolution and NUD
1956			 * if the gateway is not a neighbor from ND point
1957			 * of view, regardless of the value of nd_ifinfo.flags.
1958			 * The second condition is a bit tricky; we skip
1959			 * if the gateway is our own address, which is
1960			 * sometimes used to install a route to a p2p link.
1961			 */
1962			if (!nd6_is_addr_neighbor(gw6, ifp) ||
1963			    in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
1964				RT_UNLOCK(rt);
1965				/*
1966				 * We allow this kind of tricky route only
1967				 * when the outgoing interface is p2p.
1968				 * XXX: we may need a more generic rule here.
1969				 */
1970				if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1971					senderr(EHOSTUNREACH);
1972
1973				goto sendpkt;
1974			}
1975
1976			if (rt->rt_gwroute == NULL)
1977				goto lookup;
1978			rt = rt->rt_gwroute;
1979			RT_LOCK(rt);		/* NB: gwroute */
1980			if ((rt->rt_flags & RTF_UP) == 0) {
1981				RTFREE_LOCKED(rt);	/* unlock gwroute */
1982				rt = rt0;
1983				rt0->rt_gwroute = NULL;
1984			lookup:
1985				RT_UNLOCK(rt0);
1986				rt = rtalloc1(rt->rt_gateway, 1, 0UL);
1987				if (rt == rt0) {
1988					RT_REMREF(rt0);
1989					RT_UNLOCK(rt0);
1990					senderr(EHOSTUNREACH);
1991				}
1992				RT_LOCK(rt0);
1993				if (rt0->rt_gwroute != NULL)
1994					RTFREE(rt0->rt_gwroute);
1995				rt0->rt_gwroute = rt;
1996				if (rt == NULL) {
1997					RT_UNLOCK(rt0);
1998					senderr(EHOSTUNREACH);
1999				}
2000			}
2001			RT_UNLOCK(rt0);
2002		}
2003		RT_UNLOCK(rt);
2004	}
2005
2006	/*
2007	 * Address resolution or Neighbor Unreachability Detection
2008	 * for the next hop.
2009	 * At this point, the destination of the packet must be a unicast
2010	 * or an anycast address(i.e. not a multicast).
2011	 */
2012
2013	/* Look up the neighbor cache for the nexthop */
2014	if (rt && (rt->rt_flags & RTF_LLINFO) != 0)
2015		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2016	else {
2017		/*
2018		 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2019		 * the condition below is not very efficient.  But we believe
2020		 * it is tolerable, because this should be a rare case.
2021		 */
2022		if (nd6_is_addr_neighbor(dst, ifp) &&
2023		    (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
2024			ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2025	}
2026	if (ln == NULL || rt == NULL) {
2027		if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
2028		    !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
2029			char ip6buf[INET6_ADDRSTRLEN];
2030			log(LOG_DEBUG,
2031			    "nd6_output: can't allocate llinfo for %s "
2032			    "(ln=%p, rt=%p)\n",
2033			    ip6_sprintf(ip6buf, &dst->sin6_addr), ln, rt);
2034			senderr(EIO);	/* XXX: good error? */
2035		}
2036
2037		goto sendpkt;	/* send anyway */
2038	}
2039
2040	/* We don't have to do link-layer address resolution on a p2p link. */
2041	if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
2042	    ln->ln_state < ND6_LLINFO_REACHABLE) {
2043		ln->ln_state = ND6_LLINFO_STALE;
2044		nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
2045	}
2046
2047	/*
2048	 * The first time we send a packet to a neighbor whose entry is
2049	 * STALE, we have to change the state to DELAY and a sets a timer to
2050	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2051	 * neighbor unreachability detection on expiration.
2052	 * (RFC 2461 7.3.3)
2053	 */
2054	if (ln->ln_state == ND6_LLINFO_STALE) {
2055		ln->ln_asked = 0;
2056		ln->ln_state = ND6_LLINFO_DELAY;
2057		nd6_llinfo_settimer(ln, (long)nd6_delay * hz);
2058	}
2059
2060	/*
2061	 * If the neighbor cache entry has a state other than INCOMPLETE
2062	 * (i.e. its link-layer address is already resolved), just
2063	 * send the packet.
2064	 */
2065	if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
2066		goto sendpkt;
2067
2068	/*
2069	 * There is a neighbor cache entry, but no ethernet address
2070	 * response yet.  Append this latest packet to the end of the
2071	 * packet queue in the mbuf, unless the number of the packet
2072	 * does not exceed nd6_maxqueuelen.  When it exceeds nd6_maxqueuelen,
2073	 * the oldest packet in the queue will be removed.
2074	 */
2075	if (ln->ln_state == ND6_LLINFO_NOSTATE)
2076		ln->ln_state = ND6_LLINFO_INCOMPLETE;
2077	if (ln->ln_hold) {
2078		struct mbuf *m_hold;
2079		int i;
2080
2081		i = 0;
2082		for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) {
2083			i++;
2084			if (m_hold->m_nextpkt == NULL) {
2085				m_hold->m_nextpkt = m;
2086				break;
2087			}
2088		}
2089		while (i >= nd6_maxqueuelen) {
2090			m_hold = ln->ln_hold;
2091			ln->ln_hold = ln->ln_hold->m_nextpkt;
2092			m_freem(m_hold);
2093			i--;
2094		}
2095	} else {
2096		ln->ln_hold = m;
2097	}
2098
2099	/*
2100	 * If there has been no NS for the neighbor after entering the
2101	 * INCOMPLETE state, send the first solicitation.
2102	 */
2103	if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
2104		ln->ln_asked++;
2105		nd6_llinfo_settimer(ln,
2106		    (long)ND_IFINFO(ifp)->retrans * hz / 1000);
2107		nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
2108	}
2109	return (0);
2110
2111  sendpkt:
2112	/* discard the packet if IPv6 operation is disabled on the interface */
2113	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2114		error = ENETDOWN; /* better error? */
2115		goto bad;
2116	}
2117
2118#ifdef MAC
2119	mac_netinet6_nd6_send(ifp, m);
2120#endif
2121	if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
2122		return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst,
2123		    rt));
2124	}
2125	return ((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt));
2126
2127  bad:
2128	if (m)
2129		m_freem(m);
2130	return (error);
2131}
2132#undef senderr
2133
2134int
2135nd6_need_cache(struct ifnet *ifp)
2136{
2137	/*
2138	 * XXX: we currently do not make neighbor cache on any interface
2139	 * other than ARCnet, Ethernet, FDDI and GIF.
2140	 *
2141	 * RFC2893 says:
2142	 * - unidirectional tunnels needs no ND
2143	 */
2144	switch (ifp->if_type) {
2145	case IFT_ARCNET:
2146	case IFT_ETHER:
2147	case IFT_FDDI:
2148	case IFT_IEEE1394:
2149#ifdef IFT_L2VLAN
2150	case IFT_L2VLAN:
2151#endif
2152#ifdef IFT_IEEE80211
2153	case IFT_IEEE80211:
2154#endif
2155#ifdef IFT_CARP
2156	case IFT_CARP:
2157#endif
2158	case IFT_GIF:		/* XXX need more cases? */
2159	case IFT_PPP:
2160	case IFT_TUNNEL:
2161	case IFT_BRIDGE:
2162	case IFT_PROPVIRTUAL:
2163		return (1);
2164	default:
2165		return (0);
2166	}
2167}
2168
2169int
2170nd6_storelladdr(struct ifnet *ifp, struct rtentry *rt0, struct mbuf *m,
2171    struct sockaddr *dst, u_char *desten)
2172{
2173	struct sockaddr_dl *sdl;
2174	struct rtentry *rt;
2175	int error;
2176
2177	if (m->m_flags & M_MCAST) {
2178		int i;
2179
2180		switch (ifp->if_type) {
2181		case IFT_ETHER:
2182		case IFT_FDDI:
2183#ifdef IFT_L2VLAN
2184		case IFT_L2VLAN:
2185#endif
2186#ifdef IFT_IEEE80211
2187		case IFT_IEEE80211:
2188#endif
2189		case IFT_BRIDGE:
2190		case IFT_ISO88025:
2191			ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
2192						 desten);
2193			return (0);
2194		case IFT_IEEE1394:
2195			/*
2196			 * netbsd can use if_broadcastaddr, but we don't do so
2197			 * to reduce # of ifdef.
2198			 */
2199			for (i = 0; i < ifp->if_addrlen; i++)
2200				desten[i] = ~0;
2201			return (0);
2202		case IFT_ARCNET:
2203			*desten = 0;
2204			return (0);
2205		default:
2206			m_freem(m);
2207			return (EAFNOSUPPORT);
2208		}
2209	}
2210
2211	if (rt0 == NULL) {
2212		/* this could happen, if we could not allocate memory */
2213		m_freem(m);
2214		return (ENOMEM);
2215	}
2216
2217	error = rt_check(&rt, &rt0, dst);
2218	if (error) {
2219		m_freem(m);
2220		return (error);
2221	}
2222	RT_UNLOCK(rt);
2223
2224	if (rt->rt_gateway->sa_family != AF_LINK) {
2225		printf("nd6_storelladdr: something odd happens\n");
2226		m_freem(m);
2227		return (EINVAL);
2228	}
2229	sdl = SDL(rt->rt_gateway);
2230	if (sdl->sdl_alen == 0) {
2231		/* this should be impossible, but we bark here for debugging */
2232		printf("nd6_storelladdr: sdl_alen == 0\n");
2233		m_freem(m);
2234		return (EINVAL);
2235	}
2236
2237	bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
2238	return (0);
2239}
2240
2241static void
2242clear_llinfo_pqueue(struct llinfo_nd6 *ln)
2243{
2244	struct mbuf *m_hold, *m_hold_next;
2245
2246	for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) {
2247		m_hold_next = m_hold->m_nextpkt;
2248		m_hold->m_nextpkt = NULL;
2249		m_freem(m_hold);
2250	}
2251
2252	ln->ln_hold = NULL;
2253	return;
2254}
2255
2256static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS);
2257static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS);
2258#ifdef SYSCTL_DECL
2259SYSCTL_DECL(_net_inet6_icmp6);
2260#endif
2261SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
2262	CTLFLAG_RD, nd6_sysctl_drlist, "");
2263SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
2264	CTLFLAG_RD, nd6_sysctl_prlist, "");
2265SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen,
2266	CTLFLAG_RW, &nd6_maxqueuelen, 1, "");
2267
2268static int
2269nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS)
2270{
2271	int error;
2272	char buf[1024] __aligned(4);
2273	struct in6_defrouter *d, *de;
2274	struct nd_defrouter *dr;
2275
2276	if (req->newptr)
2277		return EPERM;
2278	error = 0;
2279
2280	for (dr = TAILQ_FIRST(&nd_defrouter); dr;
2281	     dr = TAILQ_NEXT(dr, dr_entry)) {
2282		d = (struct in6_defrouter *)buf;
2283		de = (struct in6_defrouter *)(buf + sizeof(buf));
2284
2285		if (d + 1 <= de) {
2286			bzero(d, sizeof(*d));
2287			d->rtaddr.sin6_family = AF_INET6;
2288			d->rtaddr.sin6_len = sizeof(d->rtaddr);
2289			d->rtaddr.sin6_addr = dr->rtaddr;
2290			error = sa6_recoverscope(&d->rtaddr);
2291			if (error != 0)
2292				return (error);
2293			d->flags = dr->flags;
2294			d->rtlifetime = dr->rtlifetime;
2295			d->expire = dr->expire;
2296			d->if_index = dr->ifp->if_index;
2297		} else
2298			panic("buffer too short");
2299
2300		error = SYSCTL_OUT(req, buf, sizeof(*d));
2301		if (error)
2302			break;
2303	}
2304
2305	return (error);
2306}
2307
2308static int
2309nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
2310{
2311	int error;
2312	char buf[1024] __aligned(4);
2313	struct in6_prefix *p, *pe;
2314	struct nd_prefix *pr;
2315	char ip6buf[INET6_ADDRSTRLEN];
2316
2317	if (req->newptr)
2318		return EPERM;
2319	error = 0;
2320
2321	for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
2322		u_short advrtrs;
2323		size_t advance;
2324		struct sockaddr_in6 *sin6, *s6;
2325		struct nd_pfxrouter *pfr;
2326
2327		p = (struct in6_prefix *)buf;
2328		pe = (struct in6_prefix *)(buf + sizeof(buf));
2329
2330		if (p + 1 <= pe) {
2331			bzero(p, sizeof(*p));
2332			sin6 = (struct sockaddr_in6 *)(p + 1);
2333
2334			p->prefix = pr->ndpr_prefix;
2335			if (sa6_recoverscope(&p->prefix)) {
2336				log(LOG_ERR,
2337				    "scope error in prefix list (%s)\n",
2338				    ip6_sprintf(ip6buf, &p->prefix.sin6_addr));
2339				/* XXX: press on... */
2340			}
2341			p->raflags = pr->ndpr_raf;
2342			p->prefixlen = pr->ndpr_plen;
2343			p->vltime = pr->ndpr_vltime;
2344			p->pltime = pr->ndpr_pltime;
2345			p->if_index = pr->ndpr_ifp->if_index;
2346			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2347				p->expire = 0;
2348			else {
2349				time_t maxexpire;
2350
2351				/* XXX: we assume time_t is signed. */
2352				maxexpire = (-1) &
2353				    ~((time_t)1 <<
2354				    ((sizeof(maxexpire) * 8) - 1));
2355				if (pr->ndpr_vltime <
2356				    maxexpire - pr->ndpr_lastupdate) {
2357				    p->expire = pr->ndpr_lastupdate +
2358				        pr->ndpr_vltime;
2359				} else
2360					p->expire = maxexpire;
2361			}
2362			p->refcnt = pr->ndpr_refcnt;
2363			p->flags = pr->ndpr_stateflags;
2364			p->origin = PR_ORIG_RA;
2365			advrtrs = 0;
2366			for (pfr = pr->ndpr_advrtrs.lh_first; pfr;
2367			     pfr = pfr->pfr_next) {
2368				if ((void *)&sin6[advrtrs + 1] > (void *)pe) {
2369					advrtrs++;
2370					continue;
2371				}
2372				s6 = &sin6[advrtrs];
2373				bzero(s6, sizeof(*s6));
2374				s6->sin6_family = AF_INET6;
2375				s6->sin6_len = sizeof(*sin6);
2376				s6->sin6_addr = pfr->router->rtaddr;
2377				if (sa6_recoverscope(s6)) {
2378					log(LOG_ERR,
2379					    "scope error in "
2380					    "prefix list (%s)\n",
2381					    ip6_sprintf(ip6buf,
2382						    &pfr->router->rtaddr));
2383				}
2384				advrtrs++;
2385			}
2386			p->advrtrs = advrtrs;
2387		} else
2388			panic("buffer too short");
2389
2390		advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
2391		error = SYSCTL_OUT(req, buf, advance);
2392		if (error)
2393			break;
2394	}
2395
2396	return (error);
2397}
2398