nd6.c revision 173095
1/*	$FreeBSD: head/sys/netinet6/nd6.c 173095 2007-10-28 15:55:23Z rwatson $	*/
2/*	$KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $	*/
3
4/*-
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33#include "opt_inet.h"
34#include "opt_inet6.h"
35#include "opt_mac.h"
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/callout.h>
40#include <sys/malloc.h>
41#include <sys/mbuf.h>
42#include <sys/socket.h>
43#include <sys/sockio.h>
44#include <sys/time.h>
45#include <sys/kernel.h>
46#include <sys/protosw.h>
47#include <sys/errno.h>
48#include <sys/syslog.h>
49#include <sys/queue.h>
50#include <sys/sysctl.h>
51
52#include <net/if.h>
53#include <net/if_arc.h>
54#include <net/if_dl.h>
55#include <net/if_types.h>
56#include <net/iso88025.h>
57#include <net/fddi.h>
58#include <net/route.h>
59
60#include <netinet/in.h>
61#include <netinet/if_ether.h>
62#include <netinet6/in6_var.h>
63#include <netinet/ip6.h>
64#include <netinet6/ip6_var.h>
65#include <netinet6/scope6_var.h>
66#include <netinet6/nd6.h>
67#include <netinet/icmp6.h>
68
69#include <sys/limits.h>
70
71#include <security/mac/mac_framework.h>
72
73#define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
74#define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
75
76#define SIN6(s) ((struct sockaddr_in6 *)s)
77#define SDL(s) ((struct sockaddr_dl *)s)
78
79/* timer values */
80int	nd6_prune	= 1;	/* walk list every 1 seconds */
81int	nd6_delay	= 5;	/* delay first probe time 5 second */
82int	nd6_umaxtries	= 3;	/* maximum unicast query */
83int	nd6_mmaxtries	= 3;	/* maximum multicast query */
84int	nd6_useloopback = 1;	/* use loopback interface for local traffic */
85int	nd6_gctimer	= (60 * 60 * 24); /* 1 day: garbage collection timer */
86
87/* preventing too many loops in ND option parsing */
88int nd6_maxndopt = 10;	/* max # of ND options allowed */
89
90int nd6_maxnudhint = 0;	/* max # of subsequent upper layer hints */
91int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
92
93#ifdef ND6_DEBUG
94int nd6_debug = 1;
95#else
96int nd6_debug = 0;
97#endif
98
99/* for debugging? */
100static int nd6_inuse, nd6_allocated;
101
102struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6};
103struct nd_drhead nd_defrouter;
104struct nd_prhead nd_prefix = { 0 };
105
106int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
107static struct sockaddr_in6 all1_sa;
108
109static int nd6_is_new_addr_neighbor __P((struct sockaddr_in6 *,
110	struct ifnet *));
111static void nd6_setmtu0 __P((struct ifnet *, struct nd_ifinfo *));
112static void nd6_slowtimo __P((void *));
113static int regen_tmpaddr __P((struct in6_ifaddr *));
114static struct llinfo_nd6 *nd6_free __P((struct rtentry *, int));
115static void nd6_llinfo_timer __P((void *));
116static void clear_llinfo_pqueue __P((struct llinfo_nd6 *));
117
118struct callout nd6_slowtimo_ch;
119struct callout nd6_timer_ch;
120extern struct callout in6_tmpaddrtimer_ch;
121
122void
123nd6_init(void)
124{
125	static int nd6_init_done = 0;
126	int i;
127
128	if (nd6_init_done) {
129		log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
130		return;
131	}
132
133	all1_sa.sin6_family = AF_INET6;
134	all1_sa.sin6_len = sizeof(struct sockaddr_in6);
135	for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
136		all1_sa.sin6_addr.s6_addr[i] = 0xff;
137
138	/* initialization of the default router list */
139	TAILQ_INIT(&nd_defrouter);
140
141	nd6_init_done = 1;
142
143	/* start timer */
144	callout_init(&nd6_slowtimo_ch, 0);
145	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
146	    nd6_slowtimo, NULL);
147}
148
149struct nd_ifinfo *
150nd6_ifattach(struct ifnet *ifp)
151{
152	struct nd_ifinfo *nd;
153
154	nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK);
155	bzero(nd, sizeof(*nd));
156
157	nd->initialized = 1;
158
159	nd->chlim = IPV6_DEFHLIM;
160	nd->basereachable = REACHABLE_TIME;
161	nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
162	nd->retrans = RETRANS_TIMER;
163	/*
164	 * Note that the default value of ip6_accept_rtadv is 0, which means
165	 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV
166	 * here.
167	 */
168	nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV);
169
170	/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
171	nd6_setmtu0(ifp, nd);
172
173	return nd;
174}
175
176void
177nd6_ifdetach(struct nd_ifinfo *nd)
178{
179
180	free(nd, M_IP6NDP);
181}
182
183/*
184 * Reset ND level link MTU. This function is called when the physical MTU
185 * changes, which means we might have to adjust the ND level MTU.
186 */
187void
188nd6_setmtu(struct ifnet *ifp)
189{
190
191	nd6_setmtu0(ifp, ND_IFINFO(ifp));
192}
193
194/* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
195void
196nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
197{
198	u_int32_t omaxmtu;
199
200	omaxmtu = ndi->maxmtu;
201
202	switch (ifp->if_type) {
203	case IFT_ARCNET:
204		ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
205		break;
206	case IFT_FDDI:
207		ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */
208		break;
209	case IFT_ISO88025:
210		 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu);
211		 break;
212	default:
213		ndi->maxmtu = ifp->if_mtu;
214		break;
215	}
216
217	/*
218	 * Decreasing the interface MTU under IPV6 minimum MTU may cause
219	 * undesirable situation.  We thus notify the operator of the change
220	 * explicitly.  The check for omaxmtu is necessary to restrict the
221	 * log to the case of changing the MTU, not initializing it.
222	 */
223	if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
224		log(LOG_NOTICE, "nd6_setmtu0: "
225		    "new link MTU on %s (%lu) is too small for IPv6\n",
226		    if_name(ifp), (unsigned long)ndi->maxmtu);
227	}
228
229	if (ndi->maxmtu > in6_maxmtu)
230		in6_setmaxmtu(); /* check all interfaces just in case */
231
232#undef MIN
233}
234
235void
236nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
237{
238
239	bzero(ndopts, sizeof(*ndopts));
240	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
241	ndopts->nd_opts_last
242		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
243
244	if (icmp6len == 0) {
245		ndopts->nd_opts_done = 1;
246		ndopts->nd_opts_search = NULL;
247	}
248}
249
250/*
251 * Take one ND option.
252 */
253struct nd_opt_hdr *
254nd6_option(union nd_opts *ndopts)
255{
256	struct nd_opt_hdr *nd_opt;
257	int olen;
258
259	if (ndopts == NULL)
260		panic("ndopts == NULL in nd6_option");
261	if (ndopts->nd_opts_last == NULL)
262		panic("uninitialized ndopts in nd6_option");
263	if (ndopts->nd_opts_search == NULL)
264		return NULL;
265	if (ndopts->nd_opts_done)
266		return NULL;
267
268	nd_opt = ndopts->nd_opts_search;
269
270	/* make sure nd_opt_len is inside the buffer */
271	if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
272		bzero(ndopts, sizeof(*ndopts));
273		return NULL;
274	}
275
276	olen = nd_opt->nd_opt_len << 3;
277	if (olen == 0) {
278		/*
279		 * Message validation requires that all included
280		 * options have a length that is greater than zero.
281		 */
282		bzero(ndopts, sizeof(*ndopts));
283		return NULL;
284	}
285
286	ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
287	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
288		/* option overruns the end of buffer, invalid */
289		bzero(ndopts, sizeof(*ndopts));
290		return NULL;
291	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
292		/* reached the end of options chain */
293		ndopts->nd_opts_done = 1;
294		ndopts->nd_opts_search = NULL;
295	}
296	return nd_opt;
297}
298
299/*
300 * Parse multiple ND options.
301 * This function is much easier to use, for ND routines that do not need
302 * multiple options of the same type.
303 */
304int
305nd6_options(union nd_opts *ndopts)
306{
307	struct nd_opt_hdr *nd_opt;
308	int i = 0;
309
310	if (ndopts == NULL)
311		panic("ndopts == NULL in nd6_options");
312	if (ndopts->nd_opts_last == NULL)
313		panic("uninitialized ndopts in nd6_options");
314	if (ndopts->nd_opts_search == NULL)
315		return 0;
316
317	while (1) {
318		nd_opt = nd6_option(ndopts);
319		if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
320			/*
321			 * Message validation requires that all included
322			 * options have a length that is greater than zero.
323			 */
324			icmp6stat.icp6s_nd_badopt++;
325			bzero(ndopts, sizeof(*ndopts));
326			return -1;
327		}
328
329		if (nd_opt == NULL)
330			goto skip1;
331
332		switch (nd_opt->nd_opt_type) {
333		case ND_OPT_SOURCE_LINKADDR:
334		case ND_OPT_TARGET_LINKADDR:
335		case ND_OPT_MTU:
336		case ND_OPT_REDIRECTED_HEADER:
337			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
338				nd6log((LOG_INFO,
339				    "duplicated ND6 option found (type=%d)\n",
340				    nd_opt->nd_opt_type));
341				/* XXX bark? */
342			} else {
343				ndopts->nd_opt_array[nd_opt->nd_opt_type]
344					= nd_opt;
345			}
346			break;
347		case ND_OPT_PREFIX_INFORMATION:
348			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
349				ndopts->nd_opt_array[nd_opt->nd_opt_type]
350					= nd_opt;
351			}
352			ndopts->nd_opts_pi_end =
353				(struct nd_opt_prefix_info *)nd_opt;
354			break;
355		default:
356			/*
357			 * Unknown options must be silently ignored,
358			 * to accomodate future extension to the protocol.
359			 */
360			nd6log((LOG_DEBUG,
361			    "nd6_options: unsupported option %d - "
362			    "option ignored\n", nd_opt->nd_opt_type));
363		}
364
365skip1:
366		i++;
367		if (i > nd6_maxndopt) {
368			icmp6stat.icp6s_nd_toomanyopt++;
369			nd6log((LOG_INFO, "too many loop in nd opt\n"));
370			break;
371		}
372
373		if (ndopts->nd_opts_done)
374			break;
375	}
376
377	return 0;
378}
379
380/*
381 * ND6 timer routine to handle ND6 entries
382 */
383void
384nd6_llinfo_settimer(struct llinfo_nd6 *ln, long tick)
385{
386	if (tick < 0) {
387		ln->ln_expire = 0;
388		ln->ln_ntick = 0;
389		callout_stop(&ln->ln_timer_ch);
390	} else {
391		ln->ln_expire = time_second + tick / hz;
392		if (tick > INT_MAX) {
393			ln->ln_ntick = tick - INT_MAX;
394			callout_reset(&ln->ln_timer_ch, INT_MAX,
395			    nd6_llinfo_timer, ln);
396		} else {
397			ln->ln_ntick = 0;
398			callout_reset(&ln->ln_timer_ch, tick,
399			    nd6_llinfo_timer, ln);
400		}
401	}
402}
403
404static void
405nd6_llinfo_timer(void *arg)
406{
407	struct llinfo_nd6 *ln;
408	struct rtentry *rt;
409	struct in6_addr *dst;
410	struct ifnet *ifp;
411	struct nd_ifinfo *ndi = NULL;
412
413	ln = (struct llinfo_nd6 *)arg;
414
415	if (ln->ln_ntick > 0) {
416		if (ln->ln_ntick > INT_MAX) {
417			ln->ln_ntick -= INT_MAX;
418			nd6_llinfo_settimer(ln, INT_MAX);
419		} else {
420			ln->ln_ntick = 0;
421			nd6_llinfo_settimer(ln, ln->ln_ntick);
422		}
423		return;
424	}
425
426	if ((rt = ln->ln_rt) == NULL)
427		panic("ln->ln_rt == NULL");
428	if ((ifp = rt->rt_ifp) == NULL)
429		panic("ln->ln_rt->rt_ifp == NULL");
430	ndi = ND_IFINFO(ifp);
431
432	/* sanity check */
433	if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
434		panic("rt_llinfo(%p) is not equal to ln(%p)",
435		      rt->rt_llinfo, ln);
436	if (rt_key(rt) == NULL)
437		panic("rt key is NULL in nd6_timer(ln=%p)", ln);
438
439	dst = &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
440
441	switch (ln->ln_state) {
442	case ND6_LLINFO_INCOMPLETE:
443		if (ln->ln_asked < nd6_mmaxtries) {
444			ln->ln_asked++;
445			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
446			nd6_ns_output(ifp, NULL, dst, ln, 0);
447		} else {
448			struct mbuf *m = ln->ln_hold;
449			if (m) {
450				struct mbuf *m0;
451
452				/*
453				 * assuming every packet in ln_hold has the
454				 * same IP header
455				 */
456				m0 = m->m_nextpkt;
457				m->m_nextpkt = NULL;
458				icmp6_error2(m, ICMP6_DST_UNREACH,
459				    ICMP6_DST_UNREACH_ADDR, 0, rt->rt_ifp);
460
461				ln->ln_hold = m0;
462				clear_llinfo_pqueue(ln);
463			}
464			if (rt && rt->rt_llinfo)
465				(void)nd6_free(rt, 0);
466			ln = NULL;
467		}
468		break;
469	case ND6_LLINFO_REACHABLE:
470		if (!ND6_LLINFO_PERMANENT(ln)) {
471			ln->ln_state = ND6_LLINFO_STALE;
472			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
473		}
474		break;
475
476	case ND6_LLINFO_STALE:
477		/* Garbage Collection(RFC 2461 5.3) */
478		if (!ND6_LLINFO_PERMANENT(ln)) {
479			if (rt && rt->rt_llinfo)
480				(void)nd6_free(rt, 1);
481			ln = NULL;
482		}
483		break;
484
485	case ND6_LLINFO_DELAY:
486		if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
487			/* We need NUD */
488			ln->ln_asked = 1;
489			ln->ln_state = ND6_LLINFO_PROBE;
490			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
491			nd6_ns_output(ifp, dst, dst, ln, 0);
492		} else {
493			ln->ln_state = ND6_LLINFO_STALE; /* XXX */
494			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
495		}
496		break;
497	case ND6_LLINFO_PROBE:
498		if (ln->ln_asked < nd6_umaxtries) {
499			ln->ln_asked++;
500			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
501			nd6_ns_output(ifp, dst, dst, ln, 0);
502		} else if (rt->rt_ifa != NULL &&
503		    rt->rt_ifa->ifa_addr->sa_family == AF_INET6 &&
504		    (((struct in6_ifaddr *)rt->rt_ifa)->ia_flags & IFA_ROUTE)) {
505			/*
506			 * This is an unreachable neighbor whose address is
507			 * specified as the destination of a p2p interface
508			 * (see in6_ifinit()).  We should not free the entry
509			 * since this is sort of a "static" entry generated
510			 * via interface address configuration.
511			 */
512			ln->ln_asked = 0;
513			ln->ln_expire = 0; /* make it permanent */
514			ln->ln_state = ND6_LLINFO_STALE;
515		} else {
516			if (rt && rt->rt_llinfo)
517				(void)nd6_free(rt, 0);
518			ln = NULL;
519		}
520		break;
521	}
522}
523
524
525/*
526 * ND6 timer routine to expire default route list and prefix list
527 */
528void
529nd6_timer(void *ignored_arg)
530{
531	int s;
532	struct nd_defrouter *dr;
533	struct nd_prefix *pr;
534	struct in6_ifaddr *ia6, *nia6;
535	struct in6_addrlifetime *lt6;
536
537	callout_reset(&nd6_timer_ch, nd6_prune * hz,
538	    nd6_timer, NULL);
539
540	/* expire default router list */
541	s = splnet();
542	dr = TAILQ_FIRST(&nd_defrouter);
543	while (dr) {
544		if (dr->expire && dr->expire < time_second) {
545			struct nd_defrouter *t;
546			t = TAILQ_NEXT(dr, dr_entry);
547			defrtrlist_del(dr);
548			dr = t;
549		} else {
550			dr = TAILQ_NEXT(dr, dr_entry);
551		}
552	}
553
554	/*
555	 * expire interface addresses.
556	 * in the past the loop was inside prefix expiry processing.
557	 * However, from a stricter speci-confrmance standpoint, we should
558	 * rather separate address lifetimes and prefix lifetimes.
559	 */
560  addrloop:
561	for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
562		nia6 = ia6->ia_next;
563		/* check address lifetime */
564		lt6 = &ia6->ia6_lifetime;
565		if (IFA6_IS_INVALID(ia6)) {
566			int regen = 0;
567
568			/*
569			 * If the expiring address is temporary, try
570			 * regenerating a new one.  This would be useful when
571			 * we suspended a laptop PC, then turned it on after a
572			 * period that could invalidate all temporary
573			 * addresses.  Although we may have to restart the
574			 * loop (see below), it must be after purging the
575			 * address.  Otherwise, we'd see an infinite loop of
576			 * regeneration.
577			 */
578			if (ip6_use_tempaddr &&
579			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
580				if (regen_tmpaddr(ia6) == 0)
581					regen = 1;
582			}
583
584			in6_purgeaddr(&ia6->ia_ifa);
585
586			if (regen)
587				goto addrloop; /* XXX: see below */
588		} else if (IFA6_IS_DEPRECATED(ia6)) {
589			int oldflags = ia6->ia6_flags;
590
591			ia6->ia6_flags |= IN6_IFF_DEPRECATED;
592
593			/*
594			 * If a temporary address has just become deprecated,
595			 * regenerate a new one if possible.
596			 */
597			if (ip6_use_tempaddr &&
598			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
599			    (oldflags & IN6_IFF_DEPRECATED) == 0) {
600
601				if (regen_tmpaddr(ia6) == 0) {
602					/*
603					 * A new temporary address is
604					 * generated.
605					 * XXX: this means the address chain
606					 * has changed while we are still in
607					 * the loop.  Although the change
608					 * would not cause disaster (because
609					 * it's not a deletion, but an
610					 * addition,) we'd rather restart the
611					 * loop just for safety.  Or does this
612					 * significantly reduce performance??
613					 */
614					goto addrloop;
615				}
616			}
617		} else {
618			/*
619			 * A new RA might have made a deprecated address
620			 * preferred.
621			 */
622			ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
623		}
624	}
625
626	/* expire prefix list */
627	pr = nd_prefix.lh_first;
628	while (pr) {
629		/*
630		 * check prefix lifetime.
631		 * since pltime is just for autoconf, pltime processing for
632		 * prefix is not necessary.
633		 */
634		if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
635		    time_second - pr->ndpr_lastupdate > pr->ndpr_vltime) {
636			struct nd_prefix *t;
637			t = pr->ndpr_next;
638
639			/*
640			 * address expiration and prefix expiration are
641			 * separate.  NEVER perform in6_purgeaddr here.
642			 */
643
644			prelist_remove(pr);
645			pr = t;
646		} else
647			pr = pr->ndpr_next;
648	}
649	splx(s);
650}
651
652/*
653 * ia6 - deprecated/invalidated temporary address
654 */
655static int
656regen_tmpaddr(struct in6_ifaddr *ia6)
657{
658	struct ifaddr *ifa;
659	struct ifnet *ifp;
660	struct in6_ifaddr *public_ifa6 = NULL;
661
662	ifp = ia6->ia_ifa.ifa_ifp;
663	for (ifa = ifp->if_addrlist.tqh_first; ifa;
664	     ifa = ifa->ifa_list.tqe_next) {
665		struct in6_ifaddr *it6;
666
667		if (ifa->ifa_addr->sa_family != AF_INET6)
668			continue;
669
670		it6 = (struct in6_ifaddr *)ifa;
671
672		/* ignore no autoconf addresses. */
673		if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
674			continue;
675
676		/* ignore autoconf addresses with different prefixes. */
677		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
678			continue;
679
680		/*
681		 * Now we are looking at an autoconf address with the same
682		 * prefix as ours.  If the address is temporary and is still
683		 * preferred, do not create another one.  It would be rare, but
684		 * could happen, for example, when we resume a laptop PC after
685		 * a long period.
686		 */
687		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
688		    !IFA6_IS_DEPRECATED(it6)) {
689			public_ifa6 = NULL;
690			break;
691		}
692
693		/*
694		 * This is a public autoconf address that has the same prefix
695		 * as ours.  If it is preferred, keep it.  We can't break the
696		 * loop here, because there may be a still-preferred temporary
697		 * address with the prefix.
698		 */
699		if (!IFA6_IS_DEPRECATED(it6))
700		    public_ifa6 = it6;
701	}
702
703	if (public_ifa6 != NULL) {
704		int e;
705
706		if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
707			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
708			    " tmp addr,errno=%d\n", e);
709			return (-1);
710		}
711		return (0);
712	}
713
714	return (-1);
715}
716
717/*
718 * Nuke neighbor cache/prefix/default router management table, right before
719 * ifp goes away.
720 */
721void
722nd6_purge(struct ifnet *ifp)
723{
724	struct llinfo_nd6 *ln, *nln;
725	struct nd_defrouter *dr, *ndr;
726	struct nd_prefix *pr, *npr;
727
728	/*
729	 * Nuke default router list entries toward ifp.
730	 * We defer removal of default router list entries that is installed
731	 * in the routing table, in order to keep additional side effects as
732	 * small as possible.
733	 */
734	for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
735		ndr = TAILQ_NEXT(dr, dr_entry);
736		if (dr->installed)
737			continue;
738
739		if (dr->ifp == ifp)
740			defrtrlist_del(dr);
741	}
742
743	for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
744		ndr = TAILQ_NEXT(dr, dr_entry);
745		if (!dr->installed)
746			continue;
747
748		if (dr->ifp == ifp)
749			defrtrlist_del(dr);
750	}
751
752	/* Nuke prefix list entries toward ifp */
753	for (pr = nd_prefix.lh_first; pr; pr = npr) {
754		npr = pr->ndpr_next;
755		if (pr->ndpr_ifp == ifp) {
756			/*
757			 * Because if_detach() does *not* release prefixes
758			 * while purging addresses the reference count will
759			 * still be above zero. We therefore reset it to
760			 * make sure that the prefix really gets purged.
761			 */
762			pr->ndpr_refcnt = 0;
763
764			/*
765			 * Previously, pr->ndpr_addr is removed as well,
766			 * but I strongly believe we don't have to do it.
767			 * nd6_purge() is only called from in6_ifdetach(),
768			 * which removes all the associated interface addresses
769			 * by itself.
770			 * (jinmei@kame.net 20010129)
771			 */
772			prelist_remove(pr);
773		}
774	}
775
776	/* cancel default outgoing interface setting */
777	if (nd6_defifindex == ifp->if_index)
778		nd6_setdefaultiface(0);
779
780	if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
781		/* refresh default router list */
782		defrouter_select();
783	}
784
785	/*
786	 * Nuke neighbor cache entries for the ifp.
787	 * Note that rt->rt_ifp may not be the same as ifp,
788	 * due to KAME goto ours hack.  See RTM_RESOLVE case in
789	 * nd6_rtrequest(), and ip6_input().
790	 */
791	ln = llinfo_nd6.ln_next;
792	while (ln && ln != &llinfo_nd6) {
793		struct rtentry *rt;
794		struct sockaddr_dl *sdl;
795
796		nln = ln->ln_next;
797		rt = ln->ln_rt;
798		if (rt && rt->rt_gateway &&
799		    rt->rt_gateway->sa_family == AF_LINK) {
800			sdl = (struct sockaddr_dl *)rt->rt_gateway;
801			if (sdl->sdl_index == ifp->if_index)
802				nln = nd6_free(rt, 0);
803		}
804		ln = nln;
805	}
806}
807
808struct rtentry *
809nd6_lookup(struct in6_addr *addr6, int create, struct ifnet *ifp)
810{
811	struct rtentry *rt;
812	struct sockaddr_in6 sin6;
813	char ip6buf[INET6_ADDRSTRLEN];
814
815	bzero(&sin6, sizeof(sin6));
816	sin6.sin6_len = sizeof(struct sockaddr_in6);
817	sin6.sin6_family = AF_INET6;
818	sin6.sin6_addr = *addr6;
819	rt = rtalloc1((struct sockaddr *)&sin6, create, 0UL);
820	if (rt) {
821		if ((rt->rt_flags & RTF_LLINFO) == 0 && create) {
822			/*
823			 * This is the case for the default route.
824			 * If we want to create a neighbor cache for the
825			 * address, we should free the route for the
826			 * destination and allocate an interface route.
827			 */
828			RTFREE_LOCKED(rt);
829			rt = NULL;
830		}
831	}
832	if (rt == NULL) {
833		if (create && ifp) {
834			int e;
835
836			/*
837			 * If no route is available and create is set,
838			 * we allocate a host route for the destination
839			 * and treat it like an interface route.
840			 * This hack is necessary for a neighbor which can't
841			 * be covered by our own prefix.
842			 */
843			struct ifaddr *ifa =
844			    ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
845			if (ifa == NULL)
846				return (NULL);
847
848			/*
849			 * Create a new route.  RTF_LLINFO is necessary
850			 * to create a Neighbor Cache entry for the
851			 * destination in nd6_rtrequest which will be
852			 * called in rtrequest via ifa->ifa_rtrequest.
853			 */
854			if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6,
855			    ifa->ifa_addr, (struct sockaddr *)&all1_sa,
856			    (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
857			    ~RTF_CLONING, &rt)) != 0) {
858				log(LOG_ERR,
859				    "nd6_lookup: failed to add route for a "
860				    "neighbor(%s), errno=%d\n",
861				    ip6_sprintf(ip6buf, addr6), e);
862			}
863			if (rt == NULL)
864				return (NULL);
865			RT_LOCK(rt);
866			if (rt->rt_llinfo) {
867				struct llinfo_nd6 *ln =
868				    (struct llinfo_nd6 *)rt->rt_llinfo;
869				ln->ln_state = ND6_LLINFO_NOSTATE;
870			}
871		} else
872			return (NULL);
873	}
874	RT_LOCK_ASSERT(rt);
875	RT_REMREF(rt);
876	/*
877	 * Validation for the entry.
878	 * Note that the check for rt_llinfo is necessary because a cloned
879	 * route from a parent route that has the L flag (e.g. the default
880	 * route to a p2p interface) may have the flag, too, while the
881	 * destination is not actually a neighbor.
882	 * XXX: we can't use rt->rt_ifp to check for the interface, since
883	 *      it might be the loopback interface if the entry is for our
884	 *      own address on a non-loopback interface. Instead, we should
885	 *      use rt->rt_ifa->ifa_ifp, which would specify the REAL
886	 *	interface.
887	 * Note also that ifa_ifp and ifp may differ when we connect two
888	 * interfaces to a same link, install a link prefix to an interface,
889	 * and try to install a neighbor cache on an interface that does not
890	 * have a route to the prefix.
891	 */
892	if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
893	    rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
894	    (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
895		if (create) {
896			nd6log((LOG_DEBUG,
897			    "nd6_lookup: failed to lookup %s (if = %s)\n",
898			    ip6_sprintf(ip6buf, addr6),
899			    ifp ? if_name(ifp) : "unspec"));
900		}
901		RT_UNLOCK(rt);
902		return (NULL);
903	}
904	RT_UNLOCK(rt);		/* XXX not ready to return rt locked */
905	return (rt);
906}
907
908/*
909 * Test whether a given IPv6 address is a neighbor or not, ignoring
910 * the actual neighbor cache.  The neighbor cache is ignored in order
911 * to not reenter the routing code from within itself.
912 */
913static int
914nd6_is_new_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp)
915{
916	struct nd_prefix *pr;
917	struct ifaddr *dstaddr;
918
919	/*
920	 * A link-local address is always a neighbor.
921	 * XXX: a link does not necessarily specify a single interface.
922	 */
923	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
924		struct sockaddr_in6 sin6_copy;
925		u_int32_t zone;
926
927		/*
928		 * We need sin6_copy since sa6_recoverscope() may modify the
929		 * content (XXX).
930		 */
931		sin6_copy = *addr;
932		if (sa6_recoverscope(&sin6_copy))
933			return (0); /* XXX: should be impossible */
934		if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
935			return (0);
936		if (sin6_copy.sin6_scope_id == zone)
937			return (1);
938		else
939			return (0);
940	}
941
942	/*
943	 * If the address matches one of our addresses,
944	 * it should be a neighbor.
945	 * If the address matches one of our on-link prefixes, it should be a
946	 * neighbor.
947	 */
948	for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
949		if (pr->ndpr_ifp != ifp)
950			continue;
951
952		if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
953			continue;
954
955		if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
956		    &addr->sin6_addr, &pr->ndpr_mask))
957			return (1);
958	}
959
960	/*
961	 * If the address is assigned on the node of the other side of
962	 * a p2p interface, the address should be a neighbor.
963	 */
964	dstaddr = ifa_ifwithdstaddr((struct sockaddr *)addr);
965	if ((dstaddr != NULL) && (dstaddr->ifa_ifp == ifp))
966		return (1);
967
968	/*
969	 * If the default router list is empty, all addresses are regarded
970	 * as on-link, and thus, as a neighbor.
971	 * XXX: we restrict the condition to hosts, because routers usually do
972	 * not have the "default router list".
973	 */
974	if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL &&
975	    nd6_defifindex == ifp->if_index) {
976		return (1);
977	}
978
979	return (0);
980}
981
982
983/*
984 * Detect if a given IPv6 address identifies a neighbor on a given link.
985 * XXX: should take care of the destination of a p2p link?
986 */
987int
988nd6_is_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp)
989{
990
991	if (nd6_is_new_addr_neighbor(addr, ifp))
992		return (1);
993
994	/*
995	 * Even if the address matches none of our addresses, it might be
996	 * in the neighbor cache.
997	 */
998	if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL)
999		return (1);
1000
1001	return (0);
1002}
1003
1004/*
1005 * Free an nd6 llinfo entry.
1006 * Since the function would cause significant changes in the kernel, DO NOT
1007 * make it global, unless you have a strong reason for the change, and are sure
1008 * that the change is safe.
1009 */
1010static struct llinfo_nd6 *
1011nd6_free(struct rtentry *rt, int gc)
1012{
1013	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
1014	struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
1015	struct nd_defrouter *dr;
1016
1017	/*
1018	 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1019	 * even though it is not harmful, it was not really necessary.
1020	 */
1021
1022	/* cancel timer */
1023	nd6_llinfo_settimer(ln, -1);
1024
1025	if (!ip6_forwarding) {
1026		int s;
1027		s = splnet();
1028		dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1029		    rt->rt_ifp);
1030
1031		if (dr != NULL && dr->expire &&
1032		    ln->ln_state == ND6_LLINFO_STALE && gc) {
1033			/*
1034			 * If the reason for the deletion is just garbage
1035			 * collection, and the neighbor is an active default
1036			 * router, do not delete it.  Instead, reset the GC
1037			 * timer using the router's lifetime.
1038			 * Simply deleting the entry would affect default
1039			 * router selection, which is not necessarily a good
1040			 * thing, especially when we're using router preference
1041			 * values.
1042			 * XXX: the check for ln_state would be redundant,
1043			 *      but we intentionally keep it just in case.
1044			 */
1045			if (dr->expire > time_second)
1046				nd6_llinfo_settimer(ln,
1047				    (dr->expire - time_second) * hz);
1048			else
1049				nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1050			splx(s);
1051			return (ln->ln_next);
1052		}
1053
1054		if (ln->ln_router || dr) {
1055			/*
1056			 * rt6_flush must be called whether or not the neighbor
1057			 * is in the Default Router List.
1058			 * See a corresponding comment in nd6_na_input().
1059			 */
1060			rt6_flush(&in6, rt->rt_ifp);
1061		}
1062
1063		if (dr) {
1064			/*
1065			 * Unreachablity of a router might affect the default
1066			 * router selection and on-link detection of advertised
1067			 * prefixes.
1068			 */
1069
1070			/*
1071			 * Temporarily fake the state to choose a new default
1072			 * router and to perform on-link determination of
1073			 * prefixes correctly.
1074			 * Below the state will be set correctly,
1075			 * or the entry itself will be deleted.
1076			 */
1077			ln->ln_state = ND6_LLINFO_INCOMPLETE;
1078
1079			/*
1080			 * Since defrouter_select() does not affect the
1081			 * on-link determination and MIP6 needs the check
1082			 * before the default router selection, we perform
1083			 * the check now.
1084			 */
1085			pfxlist_onlink_check();
1086
1087			/*
1088			 * refresh default router list
1089			 */
1090			defrouter_select();
1091		}
1092		splx(s);
1093	}
1094
1095	/*
1096	 * Before deleting the entry, remember the next entry as the
1097	 * return value.  We need this because pfxlist_onlink_check() above
1098	 * might have freed other entries (particularly the old next entry) as
1099	 * a side effect (XXX).
1100	 */
1101	next = ln->ln_next;
1102
1103	/*
1104	 * Detach the route from the routing tree and the list of neighbor
1105	 * caches, and disable the route entry not to be used in already
1106	 * cached routes.
1107	 */
1108	rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0,
1109	    rt_mask(rt), 0, (struct rtentry **)0);
1110
1111	return (next);
1112}
1113
1114/*
1115 * Upper-layer reachability hint for Neighbor Unreachability Detection.
1116 *
1117 * XXX cost-effective methods?
1118 */
1119void
1120nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force)
1121{
1122	struct llinfo_nd6 *ln;
1123
1124	/*
1125	 * If the caller specified "rt", use that.  Otherwise, resolve the
1126	 * routing table by supplied "dst6".
1127	 */
1128	if (rt == NULL) {
1129		if (dst6 == NULL)
1130			return;
1131		if ((rt = nd6_lookup(dst6, 0, NULL)) == NULL)
1132			return;
1133	}
1134
1135	if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
1136	    (rt->rt_flags & RTF_LLINFO) == 0 ||
1137	    rt->rt_llinfo == NULL || rt->rt_gateway == NULL ||
1138	    rt->rt_gateway->sa_family != AF_LINK) {
1139		/* This is not a host route. */
1140		return;
1141	}
1142
1143	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1144	if (ln->ln_state < ND6_LLINFO_REACHABLE)
1145		return;
1146
1147	/*
1148	 * if we get upper-layer reachability confirmation many times,
1149	 * it is possible we have false information.
1150	 */
1151	if (!force) {
1152		ln->ln_byhint++;
1153		if (ln->ln_byhint > nd6_maxnudhint)
1154			return;
1155	}
1156
1157	ln->ln_state = ND6_LLINFO_REACHABLE;
1158	if (!ND6_LLINFO_PERMANENT(ln)) {
1159		nd6_llinfo_settimer(ln,
1160		    (long)ND_IFINFO(rt->rt_ifp)->reachable * hz);
1161	}
1162}
1163
1164/*
1165 * info - XXX unused
1166 */
1167void
1168nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info)
1169{
1170	struct sockaddr *gate = rt->rt_gateway;
1171	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1172	static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
1173	struct ifnet *ifp = rt->rt_ifp;
1174	struct ifaddr *ifa;
1175
1176	RT_LOCK_ASSERT(rt);
1177
1178	if ((rt->rt_flags & RTF_GATEWAY) != 0)
1179		return;
1180
1181	if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1182		/*
1183		 * This is probably an interface direct route for a link
1184		 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1185		 * We do not need special treatment below for such a route.
1186		 * Moreover, the RTF_LLINFO flag which would be set below
1187		 * would annoy the ndp(8) command.
1188		 */
1189		return;
1190	}
1191
1192	if (req == RTM_RESOLVE &&
1193	    (nd6_need_cache(ifp) == 0 || /* stf case */
1194	     !nd6_is_new_addr_neighbor((struct sockaddr_in6 *)rt_key(rt),
1195	     ifp))) {
1196		/*
1197		 * FreeBSD and BSD/OS often make a cloned host route based
1198		 * on a less-specific route (e.g. the default route).
1199		 * If the less specific route does not have a "gateway"
1200		 * (this is the case when the route just goes to a p2p or an
1201		 * stf interface), we'll mistakenly make a neighbor cache for
1202		 * the host route, and will see strange neighbor solicitation
1203		 * for the corresponding destination.  In order to avoid the
1204		 * confusion, we check if the destination of the route is
1205		 * a neighbor in terms of neighbor discovery, and stop the
1206		 * process if not.  Additionally, we remove the LLINFO flag
1207		 * so that ndp(8) will not try to get the neighbor information
1208		 * of the destination.
1209		 */
1210		rt->rt_flags &= ~RTF_LLINFO;
1211		return;
1212	}
1213
1214	switch (req) {
1215	case RTM_ADD:
1216		/*
1217		 * There is no backward compatibility :)
1218		 *
1219		 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1220		 *     SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1221		 *	   rt->rt_flags |= RTF_CLONING;
1222		 */
1223		if ((rt->rt_flags & RTF_CLONING) ||
1224		    ((rt->rt_flags & RTF_LLINFO) && ln == NULL)) {
1225			/*
1226			 * Case 1: This route should come from a route to
1227			 * interface (RTF_CLONING case) or the route should be
1228			 * treated as on-link but is currently not
1229			 * (RTF_LLINFO && ln == NULL case).
1230			 */
1231			rt_setgate(rt, rt_key(rt),
1232				   (struct sockaddr *)&null_sdl);
1233			gate = rt->rt_gateway;
1234			SDL(gate)->sdl_type = ifp->if_type;
1235			SDL(gate)->sdl_index = ifp->if_index;
1236			if (ln)
1237				nd6_llinfo_settimer(ln, 0);
1238			if ((rt->rt_flags & RTF_CLONING) != 0)
1239				break;
1240		}
1241		/*
1242		 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1243		 * We don't do that here since llinfo is not ready yet.
1244		 *
1245		 * There are also couple of other things to be discussed:
1246		 * - unsolicited NA code needs improvement beforehand
1247		 * - RFC2461 says we MAY send multicast unsolicited NA
1248		 *   (7.2.6 paragraph 4), however, it also says that we
1249		 *   SHOULD provide a mechanism to prevent multicast NA storm.
1250		 *   we don't have anything like it right now.
1251		 *   note that the mechanism needs a mutual agreement
1252		 *   between proxies, which means that we need to implement
1253		 *   a new protocol, or a new kludge.
1254		 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1255		 *   we need to check ip6forwarding before sending it.
1256		 *   (or should we allow proxy ND configuration only for
1257		 *   routers?  there's no mention about proxy ND from hosts)
1258		 */
1259		/* FALLTHROUGH */
1260	case RTM_RESOLVE:
1261		if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1262			/*
1263			 * Address resolution isn't necessary for a point to
1264			 * point link, so we can skip this test for a p2p link.
1265			 */
1266			if (gate->sa_family != AF_LINK ||
1267			    gate->sa_len < sizeof(null_sdl)) {
1268				log(LOG_DEBUG,
1269				    "nd6_rtrequest: bad gateway value: %s\n",
1270				    if_name(ifp));
1271				break;
1272			}
1273			SDL(gate)->sdl_type = ifp->if_type;
1274			SDL(gate)->sdl_index = ifp->if_index;
1275		}
1276		if (ln != NULL)
1277			break;	/* This happens on a route change */
1278		/*
1279		 * Case 2: This route may come from cloning, or a manual route
1280		 * add with a LL address.
1281		 */
1282		R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1283		rt->rt_llinfo = (caddr_t)ln;
1284		if (ln == NULL) {
1285			log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1286			break;
1287		}
1288		nd6_inuse++;
1289		nd6_allocated++;
1290		bzero(ln, sizeof(*ln));
1291		RT_ADDREF(rt);
1292		ln->ln_rt = rt;
1293		callout_init(&ln->ln_timer_ch, 0);
1294
1295		/* this is required for "ndp" command. - shin */
1296		if (req == RTM_ADD) {
1297		        /*
1298			 * gate should have some valid AF_LINK entry,
1299			 * and ln->ln_expire should have some lifetime
1300			 * which is specified by ndp command.
1301			 */
1302			ln->ln_state = ND6_LLINFO_REACHABLE;
1303			ln->ln_byhint = 0;
1304		} else {
1305		        /*
1306			 * When req == RTM_RESOLVE, rt is created and
1307			 * initialized in rtrequest(), so rt_expire is 0.
1308			 */
1309			ln->ln_state = ND6_LLINFO_NOSTATE;
1310			nd6_llinfo_settimer(ln, 0);
1311		}
1312		rt->rt_flags |= RTF_LLINFO;
1313		ln->ln_next = llinfo_nd6.ln_next;
1314		llinfo_nd6.ln_next = ln;
1315		ln->ln_prev = &llinfo_nd6;
1316		ln->ln_next->ln_prev = ln;
1317
1318		/*
1319		 * check if rt_key(rt) is one of my address assigned
1320		 * to the interface.
1321		 */
1322		ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
1323		    &SIN6(rt_key(rt))->sin6_addr);
1324		if (ifa) {
1325			caddr_t macp = nd6_ifptomac(ifp);
1326			nd6_llinfo_settimer(ln, -1);
1327			ln->ln_state = ND6_LLINFO_REACHABLE;
1328			ln->ln_byhint = 0;
1329			if (macp) {
1330				bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
1331				SDL(gate)->sdl_alen = ifp->if_addrlen;
1332			}
1333			if (nd6_useloopback) {
1334				rt->rt_ifp = &loif[0];	/* XXX */
1335				/*
1336				 * Make sure rt_ifa be equal to the ifaddr
1337				 * corresponding to the address.
1338				 * We need this because when we refer
1339				 * rt_ifa->ia6_flags in ip6_input, we assume
1340				 * that the rt_ifa points to the address instead
1341				 * of the loopback address.
1342				 */
1343				if (ifa != rt->rt_ifa) {
1344					IFAFREE(rt->rt_ifa);
1345					IFAREF(ifa);
1346					rt->rt_ifa = ifa;
1347				}
1348			}
1349		} else if (rt->rt_flags & RTF_ANNOUNCE) {
1350			nd6_llinfo_settimer(ln, -1);
1351			ln->ln_state = ND6_LLINFO_REACHABLE;
1352			ln->ln_byhint = 0;
1353
1354			/* join solicited node multicast for proxy ND */
1355			if (ifp->if_flags & IFF_MULTICAST) {
1356				struct in6_addr llsol;
1357				int error;
1358
1359				llsol = SIN6(rt_key(rt))->sin6_addr;
1360				llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
1361				llsol.s6_addr32[1] = 0;
1362				llsol.s6_addr32[2] = htonl(1);
1363				llsol.s6_addr8[12] = 0xff;
1364				if (in6_setscope(&llsol, ifp, NULL))
1365					break;
1366				if (in6_addmulti(&llsol, ifp,
1367				    &error, 0) == NULL) {
1368					char ip6buf[INET6_ADDRSTRLEN];
1369					nd6log((LOG_ERR, "%s: failed to join "
1370					    "%s (errno=%d)\n", if_name(ifp),
1371					    ip6_sprintf(ip6buf, &llsol),
1372					    error));
1373				}
1374			}
1375		}
1376		break;
1377
1378	case RTM_DELETE:
1379		if (ln == NULL)
1380			break;
1381		/* leave from solicited node multicast for proxy ND */
1382		if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1383		    (ifp->if_flags & IFF_MULTICAST) != 0) {
1384			struct in6_addr llsol;
1385			struct in6_multi *in6m;
1386
1387			llsol = SIN6(rt_key(rt))->sin6_addr;
1388			llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
1389			llsol.s6_addr32[1] = 0;
1390			llsol.s6_addr32[2] = htonl(1);
1391			llsol.s6_addr8[12] = 0xff;
1392			if (in6_setscope(&llsol, ifp, NULL) == 0) {
1393				IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1394				if (in6m)
1395					in6_delmulti(in6m);
1396			} else
1397				; /* XXX: should not happen. bark here? */
1398		}
1399		nd6_inuse--;
1400		ln->ln_next->ln_prev = ln->ln_prev;
1401		ln->ln_prev->ln_next = ln->ln_next;
1402		ln->ln_prev = NULL;
1403		nd6_llinfo_settimer(ln, -1);
1404		RT_REMREF(rt);
1405		rt->rt_llinfo = 0;
1406		rt->rt_flags &= ~RTF_LLINFO;
1407		clear_llinfo_pqueue(ln);
1408		Free((caddr_t)ln);
1409	}
1410}
1411
1412int
1413nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp)
1414{
1415	struct in6_drlist *drl = (struct in6_drlist *)data;
1416	struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1417	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1418	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1419	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1420	struct nd_defrouter *dr;
1421	struct nd_prefix *pr;
1422	struct rtentry *rt;
1423	int i = 0, error = 0;
1424	int s;
1425
1426	switch (cmd) {
1427	case SIOCGDRLST_IN6:
1428		/*
1429		 * obsolete API, use sysctl under net.inet6.icmp6
1430		 */
1431		bzero(drl, sizeof(*drl));
1432		s = splnet();
1433		dr = TAILQ_FIRST(&nd_defrouter);
1434		while (dr && i < DRLSTSIZ) {
1435			drl->defrouter[i].rtaddr = dr->rtaddr;
1436			in6_clearscope(&drl->defrouter[i].rtaddr);
1437
1438			drl->defrouter[i].flags = dr->flags;
1439			drl->defrouter[i].rtlifetime = dr->rtlifetime;
1440			drl->defrouter[i].expire = dr->expire;
1441			drl->defrouter[i].if_index = dr->ifp->if_index;
1442			i++;
1443			dr = TAILQ_NEXT(dr, dr_entry);
1444		}
1445		splx(s);
1446		break;
1447	case SIOCGPRLST_IN6:
1448		/*
1449		 * obsolete API, use sysctl under net.inet6.icmp6
1450		 *
1451		 * XXX the structure in6_prlist was changed in backward-
1452		 * incompatible manner.  in6_oprlist is used for SIOCGPRLST_IN6,
1453		 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1454		 */
1455		/*
1456		 * XXX meaning of fields, especialy "raflags", is very
1457		 * differnet between RA prefix list and RR/static prefix list.
1458		 * how about separating ioctls into two?
1459		 */
1460		bzero(oprl, sizeof(*oprl));
1461		s = splnet();
1462		pr = nd_prefix.lh_first;
1463		while (pr && i < PRLSTSIZ) {
1464			struct nd_pfxrouter *pfr;
1465			int j;
1466
1467			oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1468			oprl->prefix[i].raflags = pr->ndpr_raf;
1469			oprl->prefix[i].prefixlen = pr->ndpr_plen;
1470			oprl->prefix[i].vltime = pr->ndpr_vltime;
1471			oprl->prefix[i].pltime = pr->ndpr_pltime;
1472			oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1473			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
1474				oprl->prefix[i].expire = 0;
1475			else {
1476				time_t maxexpire;
1477
1478				/* XXX: we assume time_t is signed. */
1479				maxexpire = (-1) &
1480				    ~((time_t)1 <<
1481				    ((sizeof(maxexpire) * 8) - 1));
1482				if (pr->ndpr_vltime <
1483				    maxexpire - pr->ndpr_lastupdate) {
1484					oprl->prefix[i].expire =
1485					    pr->ndpr_lastupdate +
1486					    pr->ndpr_vltime;
1487				} else
1488					oprl->prefix[i].expire = maxexpire;
1489			}
1490
1491			pfr = pr->ndpr_advrtrs.lh_first;
1492			j = 0;
1493			while (pfr) {
1494				if (j < DRLSTSIZ) {
1495#define RTRADDR oprl->prefix[i].advrtr[j]
1496					RTRADDR = pfr->router->rtaddr;
1497					in6_clearscope(&RTRADDR);
1498#undef RTRADDR
1499				}
1500				j++;
1501				pfr = pfr->pfr_next;
1502			}
1503			oprl->prefix[i].advrtrs = j;
1504			oprl->prefix[i].origin = PR_ORIG_RA;
1505
1506			i++;
1507			pr = pr->ndpr_next;
1508		}
1509		splx(s);
1510
1511		break;
1512	case OSIOCGIFINFO_IN6:
1513#define ND	ndi->ndi
1514		/* XXX: old ndp(8) assumes a positive value for linkmtu. */
1515		bzero(&ND, sizeof(ND));
1516		ND.linkmtu = IN6_LINKMTU(ifp);
1517		ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1518		ND.basereachable = ND_IFINFO(ifp)->basereachable;
1519		ND.reachable = ND_IFINFO(ifp)->reachable;
1520		ND.retrans = ND_IFINFO(ifp)->retrans;
1521		ND.flags = ND_IFINFO(ifp)->flags;
1522		ND.recalctm = ND_IFINFO(ifp)->recalctm;
1523		ND.chlim = ND_IFINFO(ifp)->chlim;
1524		break;
1525	case SIOCGIFINFO_IN6:
1526		ND = *ND_IFINFO(ifp);
1527		break;
1528	case SIOCSIFINFO_IN6:
1529		/*
1530		 * used to change host variables from userland.
1531		 * intented for a use on router to reflect RA configurations.
1532		 */
1533		/* 0 means 'unspecified' */
1534		if (ND.linkmtu != 0) {
1535			if (ND.linkmtu < IPV6_MMTU ||
1536			    ND.linkmtu > IN6_LINKMTU(ifp)) {
1537				error = EINVAL;
1538				break;
1539			}
1540			ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1541		}
1542
1543		if (ND.basereachable != 0) {
1544			int obasereachable = ND_IFINFO(ifp)->basereachable;
1545
1546			ND_IFINFO(ifp)->basereachable = ND.basereachable;
1547			if (ND.basereachable != obasereachable)
1548				ND_IFINFO(ifp)->reachable =
1549				    ND_COMPUTE_RTIME(ND.basereachable);
1550		}
1551		if (ND.retrans != 0)
1552			ND_IFINFO(ifp)->retrans = ND.retrans;
1553		if (ND.chlim != 0)
1554			ND_IFINFO(ifp)->chlim = ND.chlim;
1555		/* FALLTHROUGH */
1556	case SIOCSIFINFO_FLAGS:
1557		ND_IFINFO(ifp)->flags = ND.flags;
1558		break;
1559#undef ND
1560	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
1561		/* sync kernel routing table with the default router list */
1562		defrouter_reset();
1563		defrouter_select();
1564		break;
1565	case SIOCSPFXFLUSH_IN6:
1566	{
1567		/* flush all the prefix advertised by routers */
1568		struct nd_prefix *pr, *next;
1569
1570		s = splnet();
1571		for (pr = nd_prefix.lh_first; pr; pr = next) {
1572			struct in6_ifaddr *ia, *ia_next;
1573
1574			next = pr->ndpr_next;
1575
1576			if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1577				continue; /* XXX */
1578
1579			/* do we really have to remove addresses as well? */
1580			for (ia = in6_ifaddr; ia; ia = ia_next) {
1581				/* ia might be removed.  keep the next ptr. */
1582				ia_next = ia->ia_next;
1583
1584				if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1585					continue;
1586
1587				if (ia->ia6_ndpr == pr)
1588					in6_purgeaddr(&ia->ia_ifa);
1589			}
1590			prelist_remove(pr);
1591		}
1592		splx(s);
1593		break;
1594	}
1595	case SIOCSRTRFLUSH_IN6:
1596	{
1597		/* flush all the default routers */
1598		struct nd_defrouter *dr, *next;
1599
1600		s = splnet();
1601		defrouter_reset();
1602		for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = next) {
1603			next = TAILQ_NEXT(dr, dr_entry);
1604			defrtrlist_del(dr);
1605		}
1606		defrouter_select();
1607		splx(s);
1608		break;
1609	}
1610	case SIOCGNBRINFO_IN6:
1611	{
1612		struct llinfo_nd6 *ln;
1613		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1614
1615		if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1616			return (error);
1617
1618		s = splnet();
1619		if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) {
1620			error = EINVAL;
1621			splx(s);
1622			break;
1623		}
1624		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1625		nbi->state = ln->ln_state;
1626		nbi->asked = ln->ln_asked;
1627		nbi->isrouter = ln->ln_router;
1628		nbi->expire = ln->ln_expire;
1629		splx(s);
1630
1631		break;
1632	}
1633	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1634		ndif->ifindex = nd6_defifindex;
1635		break;
1636	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1637		return (nd6_setdefaultiface(ndif->ifindex));
1638	}
1639	return (error);
1640}
1641
1642/*
1643 * Create neighbor cache entry and cache link-layer address,
1644 * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
1645 *
1646 * type - ICMP6 type
1647 * code - type dependent information
1648 */
1649struct rtentry *
1650nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr,
1651    int lladdrlen, int type, int code)
1652{
1653	struct rtentry *rt = NULL;
1654	struct llinfo_nd6 *ln = NULL;
1655	int is_newentry;
1656	struct sockaddr_dl *sdl = NULL;
1657	int do_update;
1658	int olladdr;
1659	int llchange;
1660	int newstate = 0;
1661
1662	if (ifp == NULL)
1663		panic("ifp == NULL in nd6_cache_lladdr");
1664	if (from == NULL)
1665		panic("from == NULL in nd6_cache_lladdr");
1666
1667	/* nothing must be updated for unspecified address */
1668	if (IN6_IS_ADDR_UNSPECIFIED(from))
1669		return NULL;
1670
1671	/*
1672	 * Validation about ifp->if_addrlen and lladdrlen must be done in
1673	 * the caller.
1674	 *
1675	 * XXX If the link does not have link-layer adderss, what should
1676	 * we do? (ifp->if_addrlen == 0)
1677	 * Spec says nothing in sections for RA, RS and NA.  There's small
1678	 * description on it in NS section (RFC 2461 7.2.3).
1679	 */
1680
1681	rt = nd6_lookup(from, 0, ifp);
1682	if (rt == NULL) {
1683		rt = nd6_lookup(from, 1, ifp);
1684		is_newentry = 1;
1685	} else {
1686		/* do nothing if static ndp is set */
1687		if (rt->rt_flags & RTF_STATIC)
1688			return NULL;
1689		is_newentry = 0;
1690	}
1691
1692	if (rt == NULL)
1693		return NULL;
1694	if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1695fail:
1696		(void)nd6_free(rt, 0);
1697		return NULL;
1698	}
1699	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1700	if (ln == NULL)
1701		goto fail;
1702	if (rt->rt_gateway == NULL)
1703		goto fail;
1704	if (rt->rt_gateway->sa_family != AF_LINK)
1705		goto fail;
1706	sdl = SDL(rt->rt_gateway);
1707
1708	olladdr = (sdl->sdl_alen) ? 1 : 0;
1709	if (olladdr && lladdr) {
1710		if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen))
1711			llchange = 1;
1712		else
1713			llchange = 0;
1714	} else
1715		llchange = 0;
1716
1717	/*
1718	 * newentry olladdr  lladdr  llchange	(*=record)
1719	 *	0	n	n	--	(1)
1720	 *	0	y	n	--	(2)
1721	 *	0	n	y	--	(3) * STALE
1722	 *	0	y	y	n	(4) *
1723	 *	0	y	y	y	(5) * STALE
1724	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
1725	 *	1	--	y	--	(7) * STALE
1726	 */
1727
1728	if (lladdr) {		/* (3-5) and (7) */
1729		/*
1730		 * Record source link-layer address
1731		 * XXX is it dependent to ifp->if_type?
1732		 */
1733		sdl->sdl_alen = ifp->if_addrlen;
1734		bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
1735	}
1736
1737	if (!is_newentry) {
1738		if ((!olladdr && lladdr != NULL) ||	/* (3) */
1739		    (olladdr && lladdr != NULL && llchange)) {	/* (5) */
1740			do_update = 1;
1741			newstate = ND6_LLINFO_STALE;
1742		} else					/* (1-2,4) */
1743			do_update = 0;
1744	} else {
1745		do_update = 1;
1746		if (lladdr == NULL)			/* (6) */
1747			newstate = ND6_LLINFO_NOSTATE;
1748		else					/* (7) */
1749			newstate = ND6_LLINFO_STALE;
1750	}
1751
1752	if (do_update) {
1753		/*
1754		 * Update the state of the neighbor cache.
1755		 */
1756		ln->ln_state = newstate;
1757
1758		if (ln->ln_state == ND6_LLINFO_STALE) {
1759			/*
1760			 * XXX: since nd6_output() below will cause
1761			 * state tansition to DELAY and reset the timer,
1762			 * we must set the timer now, although it is actually
1763			 * meaningless.
1764			 */
1765			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1766
1767			if (ln->ln_hold) {
1768				struct mbuf *m_hold, *m_hold_next;
1769
1770				/*
1771				 * reset the ln_hold in advance, to explicitly
1772				 * prevent a ln_hold lookup in nd6_output()
1773				 * (wouldn't happen, though...)
1774				 */
1775				for (m_hold = ln->ln_hold, ln->ln_hold = NULL;
1776				    m_hold; m_hold = m_hold_next) {
1777					m_hold_next = m_hold->m_nextpkt;
1778					m_hold->m_nextpkt = NULL;
1779
1780					/*
1781					 * we assume ifp is not a p2p here, so
1782					 * just set the 2nd argument as the
1783					 * 1st one.
1784					 */
1785					nd6_output(ifp, ifp, m_hold,
1786					     (struct sockaddr_in6 *)rt_key(rt),
1787					     rt);
1788				}
1789			}
1790		} else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1791			/* probe right away */
1792			nd6_llinfo_settimer((void *)ln, 0);
1793		}
1794	}
1795
1796	/*
1797	 * ICMP6 type dependent behavior.
1798	 *
1799	 * NS: clear IsRouter if new entry
1800	 * RS: clear IsRouter
1801	 * RA: set IsRouter if there's lladdr
1802	 * redir: clear IsRouter if new entry
1803	 *
1804	 * RA case, (1):
1805	 * The spec says that we must set IsRouter in the following cases:
1806	 * - If lladdr exist, set IsRouter.  This means (1-5).
1807	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
1808	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1809	 * A quetion arises for (1) case.  (1) case has no lladdr in the
1810	 * neighbor cache, this is similar to (6).
1811	 * This case is rare but we figured that we MUST NOT set IsRouter.
1812	 *
1813	 * newentry olladdr  lladdr  llchange	    NS  RS  RA	redir
1814	 *							D R
1815	 *	0	n	n	--	(1)	c   ?     s
1816	 *	0	y	n	--	(2)	c   s     s
1817	 *	0	n	y	--	(3)	c   s     s
1818	 *	0	y	y	n	(4)	c   s     s
1819	 *	0	y	y	y	(5)	c   s     s
1820	 *	1	--	n	--	(6) c	c	c s
1821	 *	1	--	y	--	(7) c	c   s	c s
1822	 *
1823	 *					(c=clear s=set)
1824	 */
1825	switch (type & 0xff) {
1826	case ND_NEIGHBOR_SOLICIT:
1827		/*
1828		 * New entry must have is_router flag cleared.
1829		 */
1830		if (is_newentry)	/* (6-7) */
1831			ln->ln_router = 0;
1832		break;
1833	case ND_REDIRECT:
1834		/*
1835		 * If the icmp is a redirect to a better router, always set the
1836		 * is_router flag.  Otherwise, if the entry is newly created,
1837		 * clear the flag.  [RFC 2461, sec 8.3]
1838		 */
1839		if (code == ND_REDIRECT_ROUTER)
1840			ln->ln_router = 1;
1841		else if (is_newentry) /* (6-7) */
1842			ln->ln_router = 0;
1843		break;
1844	case ND_ROUTER_SOLICIT:
1845		/*
1846		 * is_router flag must always be cleared.
1847		 */
1848		ln->ln_router = 0;
1849		break;
1850	case ND_ROUTER_ADVERT:
1851		/*
1852		 * Mark an entry with lladdr as a router.
1853		 */
1854		if ((!is_newentry && (olladdr || lladdr)) ||	/* (2-5) */
1855		    (is_newentry && lladdr)) {			/* (7) */
1856			ln->ln_router = 1;
1857		}
1858		break;
1859	}
1860
1861	/*
1862	 * When the link-layer address of a router changes, select the
1863	 * best router again.  In particular, when the neighbor entry is newly
1864	 * created, it might affect the selection policy.
1865	 * Question: can we restrict the first condition to the "is_newentry"
1866	 * case?
1867	 * XXX: when we hear an RA from a new router with the link-layer
1868	 * address option, defrouter_select() is called twice, since
1869	 * defrtrlist_update called the function as well.  However, I believe
1870	 * we can compromise the overhead, since it only happens the first
1871	 * time.
1872	 * XXX: although defrouter_select() should not have a bad effect
1873	 * for those are not autoconfigured hosts, we explicitly avoid such
1874	 * cases for safety.
1875	 */
1876	if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv)
1877		defrouter_select();
1878
1879	return rt;
1880}
1881
1882static void
1883nd6_slowtimo(void *ignored_arg)
1884{
1885	struct nd_ifinfo *nd6if;
1886	struct ifnet *ifp;
1887
1888	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1889	    nd6_slowtimo, NULL);
1890	IFNET_RLOCK();
1891	for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) {
1892		nd6if = ND_IFINFO(ifp);
1893		if (nd6if->basereachable && /* already initialized */
1894		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1895			/*
1896			 * Since reachable time rarely changes by router
1897			 * advertisements, we SHOULD insure that a new random
1898			 * value gets recomputed at least once every few hours.
1899			 * (RFC 2461, 6.3.4)
1900			 */
1901			nd6if->recalctm = nd6_recalc_reachtm_interval;
1902			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1903		}
1904	}
1905	IFNET_RUNLOCK();
1906}
1907
1908#define senderr(e) { error = (e); goto bad;}
1909int
1910nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0,
1911    struct sockaddr_in6 *dst, struct rtentry *rt0)
1912{
1913	struct mbuf *m = m0;
1914	struct rtentry *rt = rt0;
1915	struct sockaddr_in6 *gw6 = NULL;
1916	struct llinfo_nd6 *ln = NULL;
1917	int error = 0;
1918
1919	if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1920		goto sendpkt;
1921
1922	if (nd6_need_cache(ifp) == 0)
1923		goto sendpkt;
1924
1925	/*
1926	 * next hop determination.  This routine is derived from ether_output.
1927	 */
1928	/* NB: the locking here is tortuous... */
1929	if (rt != NULL)
1930		RT_LOCK(rt);
1931again:
1932	if (rt != NULL) {
1933		if ((rt->rt_flags & RTF_UP) == 0) {
1934			RT_UNLOCK(rt);
1935			rt0 = rt = rtalloc1((struct sockaddr *)dst, 1, 0UL);
1936			if (rt != NULL) {
1937				RT_REMREF(rt);
1938				if (rt->rt_ifp != ifp)
1939					/*
1940					 * XXX maybe we should update ifp too,
1941					 * but the original code didn't and I
1942					 * don't know what is correct here.
1943					 */
1944					goto again;
1945			} else
1946				senderr(EHOSTUNREACH);
1947		}
1948
1949		if (rt->rt_flags & RTF_GATEWAY) {
1950			gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
1951
1952			/*
1953			 * We skip link-layer address resolution and NUD
1954			 * if the gateway is not a neighbor from ND point
1955			 * of view, regardless of the value of nd_ifinfo.flags.
1956			 * The second condition is a bit tricky; we skip
1957			 * if the gateway is our own address, which is
1958			 * sometimes used to install a route to a p2p link.
1959			 */
1960			if (!nd6_is_addr_neighbor(gw6, ifp) ||
1961			    in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
1962				RT_UNLOCK(rt);
1963				/*
1964				 * We allow this kind of tricky route only
1965				 * when the outgoing interface is p2p.
1966				 * XXX: we may need a more generic rule here.
1967				 */
1968				if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1969					senderr(EHOSTUNREACH);
1970
1971				goto sendpkt;
1972			}
1973
1974			if (rt->rt_gwroute == NULL)
1975				goto lookup;
1976			rt = rt->rt_gwroute;
1977			RT_LOCK(rt);		/* NB: gwroute */
1978			if ((rt->rt_flags & RTF_UP) == 0) {
1979				RTFREE_LOCKED(rt);	/* unlock gwroute */
1980				rt = rt0;
1981				rt0->rt_gwroute = NULL;
1982			lookup:
1983				RT_UNLOCK(rt0);
1984				rt = rtalloc1(rt->rt_gateway, 1, 0UL);
1985				if (rt == rt0) {
1986					RT_REMREF(rt0);
1987					RT_UNLOCK(rt0);
1988					senderr(EHOSTUNREACH);
1989				}
1990				RT_LOCK(rt0);
1991				if (rt0->rt_gwroute != NULL)
1992					RTFREE(rt0->rt_gwroute);
1993				rt0->rt_gwroute = rt;
1994				if (rt == NULL) {
1995					RT_UNLOCK(rt0);
1996					senderr(EHOSTUNREACH);
1997				}
1998			}
1999			RT_UNLOCK(rt0);
2000		}
2001		RT_UNLOCK(rt);
2002	}
2003
2004	/*
2005	 * Address resolution or Neighbor Unreachability Detection
2006	 * for the next hop.
2007	 * At this point, the destination of the packet must be a unicast
2008	 * or an anycast address(i.e. not a multicast).
2009	 */
2010
2011	/* Look up the neighbor cache for the nexthop */
2012	if (rt && (rt->rt_flags & RTF_LLINFO) != 0)
2013		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2014	else {
2015		/*
2016		 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2017		 * the condition below is not very efficient.  But we believe
2018		 * it is tolerable, because this should be a rare case.
2019		 */
2020		if (nd6_is_addr_neighbor(dst, ifp) &&
2021		    (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
2022			ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2023	}
2024	if (ln == NULL || rt == NULL) {
2025		if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
2026		    !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
2027			char ip6buf[INET6_ADDRSTRLEN];
2028			log(LOG_DEBUG,
2029			    "nd6_output: can't allocate llinfo for %s "
2030			    "(ln=%p, rt=%p)\n",
2031			    ip6_sprintf(ip6buf, &dst->sin6_addr), ln, rt);
2032			senderr(EIO);	/* XXX: good error? */
2033		}
2034
2035		goto sendpkt;	/* send anyway */
2036	}
2037
2038	/* We don't have to do link-layer address resolution on a p2p link. */
2039	if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
2040	    ln->ln_state < ND6_LLINFO_REACHABLE) {
2041		ln->ln_state = ND6_LLINFO_STALE;
2042		nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
2043	}
2044
2045	/*
2046	 * The first time we send a packet to a neighbor whose entry is
2047	 * STALE, we have to change the state to DELAY and a sets a timer to
2048	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2049	 * neighbor unreachability detection on expiration.
2050	 * (RFC 2461 7.3.3)
2051	 */
2052	if (ln->ln_state == ND6_LLINFO_STALE) {
2053		ln->ln_asked = 0;
2054		ln->ln_state = ND6_LLINFO_DELAY;
2055		nd6_llinfo_settimer(ln, (long)nd6_delay * hz);
2056	}
2057
2058	/*
2059	 * If the neighbor cache entry has a state other than INCOMPLETE
2060	 * (i.e. its link-layer address is already resolved), just
2061	 * send the packet.
2062	 */
2063	if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
2064		goto sendpkt;
2065
2066	/*
2067	 * There is a neighbor cache entry, but no ethernet address
2068	 * response yet.  Append this latest packet to the end of the
2069	 * packet queue in the mbuf, unless the number of the packet
2070	 * does not exceed nd6_maxqueuelen.  When it exceeds nd6_maxqueuelen,
2071	 * the oldest packet in the queue will be removed.
2072	 */
2073	if (ln->ln_state == ND6_LLINFO_NOSTATE)
2074		ln->ln_state = ND6_LLINFO_INCOMPLETE;
2075	if (ln->ln_hold) {
2076		struct mbuf *m_hold;
2077		int i;
2078
2079		i = 0;
2080		for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) {
2081			i++;
2082			if (m_hold->m_nextpkt == NULL) {
2083				m_hold->m_nextpkt = m;
2084				break;
2085			}
2086		}
2087		while (i >= nd6_maxqueuelen) {
2088			m_hold = ln->ln_hold;
2089			ln->ln_hold = ln->ln_hold->m_nextpkt;
2090			m_freem(m_hold);
2091			i--;
2092		}
2093	} else {
2094		ln->ln_hold = m;
2095	}
2096
2097	/*
2098	 * If there has been no NS for the neighbor after entering the
2099	 * INCOMPLETE state, send the first solicitation.
2100	 */
2101	if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
2102		ln->ln_asked++;
2103		nd6_llinfo_settimer(ln,
2104		    (long)ND_IFINFO(ifp)->retrans * hz / 1000);
2105		nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
2106	}
2107	return (0);
2108
2109  sendpkt:
2110	/* discard the packet if IPv6 operation is disabled on the interface */
2111	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2112		error = ENETDOWN; /* better error? */
2113		goto bad;
2114	}
2115
2116#ifdef MAC
2117	mac_netinet6_nd6_send(ifp, m);
2118#endif
2119	if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
2120		return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst,
2121		    rt));
2122	}
2123	return ((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt));
2124
2125  bad:
2126	if (m)
2127		m_freem(m);
2128	return (error);
2129}
2130#undef senderr
2131
2132int
2133nd6_need_cache(struct ifnet *ifp)
2134{
2135	/*
2136	 * XXX: we currently do not make neighbor cache on any interface
2137	 * other than ARCnet, Ethernet, FDDI and GIF.
2138	 *
2139	 * RFC2893 says:
2140	 * - unidirectional tunnels needs no ND
2141	 */
2142	switch (ifp->if_type) {
2143	case IFT_ARCNET:
2144	case IFT_ETHER:
2145	case IFT_FDDI:
2146	case IFT_IEEE1394:
2147#ifdef IFT_L2VLAN
2148	case IFT_L2VLAN:
2149#endif
2150#ifdef IFT_IEEE80211
2151	case IFT_IEEE80211:
2152#endif
2153#ifdef IFT_CARP
2154	case IFT_CARP:
2155#endif
2156	case IFT_GIF:		/* XXX need more cases? */
2157	case IFT_PPP:
2158	case IFT_TUNNEL:
2159	case IFT_BRIDGE:
2160	case IFT_PROPVIRTUAL:
2161		return (1);
2162	default:
2163		return (0);
2164	}
2165}
2166
2167int
2168nd6_storelladdr(struct ifnet *ifp, struct rtentry *rt0, struct mbuf *m,
2169    struct sockaddr *dst, u_char *desten)
2170{
2171	struct sockaddr_dl *sdl;
2172	struct rtentry *rt;
2173	int error;
2174
2175	if (m->m_flags & M_MCAST) {
2176		int i;
2177
2178		switch (ifp->if_type) {
2179		case IFT_ETHER:
2180		case IFT_FDDI:
2181#ifdef IFT_L2VLAN
2182		case IFT_L2VLAN:
2183#endif
2184#ifdef IFT_IEEE80211
2185		case IFT_IEEE80211:
2186#endif
2187		case IFT_BRIDGE:
2188		case IFT_ISO88025:
2189			ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
2190						 desten);
2191			return (0);
2192		case IFT_IEEE1394:
2193			/*
2194			 * netbsd can use if_broadcastaddr, but we don't do so
2195			 * to reduce # of ifdef.
2196			 */
2197			for (i = 0; i < ifp->if_addrlen; i++)
2198				desten[i] = ~0;
2199			return (0);
2200		case IFT_ARCNET:
2201			*desten = 0;
2202			return (0);
2203		default:
2204			m_freem(m);
2205			return (EAFNOSUPPORT);
2206		}
2207	}
2208
2209	if (rt0 == NULL) {
2210		/* this could happen, if we could not allocate memory */
2211		m_freem(m);
2212		return (ENOMEM);
2213	}
2214
2215	error = rt_check(&rt, &rt0, dst);
2216	if (error) {
2217		m_freem(m);
2218		return (error);
2219	}
2220	RT_UNLOCK(rt);
2221
2222	if (rt->rt_gateway->sa_family != AF_LINK) {
2223		printf("nd6_storelladdr: something odd happens\n");
2224		m_freem(m);
2225		return (EINVAL);
2226	}
2227	sdl = SDL(rt->rt_gateway);
2228	if (sdl->sdl_alen == 0) {
2229		/* this should be impossible, but we bark here for debugging */
2230		printf("nd6_storelladdr: sdl_alen == 0\n");
2231		m_freem(m);
2232		return (EINVAL);
2233	}
2234
2235	bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
2236	return (0);
2237}
2238
2239static void
2240clear_llinfo_pqueue(struct llinfo_nd6 *ln)
2241{
2242	struct mbuf *m_hold, *m_hold_next;
2243
2244	for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) {
2245		m_hold_next = m_hold->m_nextpkt;
2246		m_hold->m_nextpkt = NULL;
2247		m_freem(m_hold);
2248	}
2249
2250	ln->ln_hold = NULL;
2251	return;
2252}
2253
2254static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS);
2255static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS);
2256#ifdef SYSCTL_DECL
2257SYSCTL_DECL(_net_inet6_icmp6);
2258#endif
2259SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
2260	CTLFLAG_RD, nd6_sysctl_drlist, "");
2261SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
2262	CTLFLAG_RD, nd6_sysctl_prlist, "");
2263SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen,
2264	CTLFLAG_RW, &nd6_maxqueuelen, 1, "");
2265
2266static int
2267nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS)
2268{
2269	int error;
2270	char buf[1024] __aligned(4);
2271	struct in6_defrouter *d, *de;
2272	struct nd_defrouter *dr;
2273
2274	if (req->newptr)
2275		return EPERM;
2276	error = 0;
2277
2278	for (dr = TAILQ_FIRST(&nd_defrouter); dr;
2279	     dr = TAILQ_NEXT(dr, dr_entry)) {
2280		d = (struct in6_defrouter *)buf;
2281		de = (struct in6_defrouter *)(buf + sizeof(buf));
2282
2283		if (d + 1 <= de) {
2284			bzero(d, sizeof(*d));
2285			d->rtaddr.sin6_family = AF_INET6;
2286			d->rtaddr.sin6_len = sizeof(d->rtaddr);
2287			d->rtaddr.sin6_addr = dr->rtaddr;
2288			error = sa6_recoverscope(&d->rtaddr);
2289			if (error != 0)
2290				return (error);
2291			d->flags = dr->flags;
2292			d->rtlifetime = dr->rtlifetime;
2293			d->expire = dr->expire;
2294			d->if_index = dr->ifp->if_index;
2295		} else
2296			panic("buffer too short");
2297
2298		error = SYSCTL_OUT(req, buf, sizeof(*d));
2299		if (error)
2300			break;
2301	}
2302
2303	return (error);
2304}
2305
2306static int
2307nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
2308{
2309	int error;
2310	char buf[1024] __aligned(4);
2311	struct in6_prefix *p, *pe;
2312	struct nd_prefix *pr;
2313	char ip6buf[INET6_ADDRSTRLEN];
2314
2315	if (req->newptr)
2316		return EPERM;
2317	error = 0;
2318
2319	for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
2320		u_short advrtrs;
2321		size_t advance;
2322		struct sockaddr_in6 *sin6, *s6;
2323		struct nd_pfxrouter *pfr;
2324
2325		p = (struct in6_prefix *)buf;
2326		pe = (struct in6_prefix *)(buf + sizeof(buf));
2327
2328		if (p + 1 <= pe) {
2329			bzero(p, sizeof(*p));
2330			sin6 = (struct sockaddr_in6 *)(p + 1);
2331
2332			p->prefix = pr->ndpr_prefix;
2333			if (sa6_recoverscope(&p->prefix)) {
2334				log(LOG_ERR,
2335				    "scope error in prefix list (%s)\n",
2336				    ip6_sprintf(ip6buf, &p->prefix.sin6_addr));
2337				/* XXX: press on... */
2338			}
2339			p->raflags = pr->ndpr_raf;
2340			p->prefixlen = pr->ndpr_plen;
2341			p->vltime = pr->ndpr_vltime;
2342			p->pltime = pr->ndpr_pltime;
2343			p->if_index = pr->ndpr_ifp->if_index;
2344			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2345				p->expire = 0;
2346			else {
2347				time_t maxexpire;
2348
2349				/* XXX: we assume time_t is signed. */
2350				maxexpire = (-1) &
2351				    ~((time_t)1 <<
2352				    ((sizeof(maxexpire) * 8) - 1));
2353				if (pr->ndpr_vltime <
2354				    maxexpire - pr->ndpr_lastupdate) {
2355				    p->expire = pr->ndpr_lastupdate +
2356				        pr->ndpr_vltime;
2357				} else
2358					p->expire = maxexpire;
2359			}
2360			p->refcnt = pr->ndpr_refcnt;
2361			p->flags = pr->ndpr_stateflags;
2362			p->origin = PR_ORIG_RA;
2363			advrtrs = 0;
2364			for (pfr = pr->ndpr_advrtrs.lh_first; pfr;
2365			     pfr = pfr->pfr_next) {
2366				if ((void *)&sin6[advrtrs + 1] > (void *)pe) {
2367					advrtrs++;
2368					continue;
2369				}
2370				s6 = &sin6[advrtrs];
2371				bzero(s6, sizeof(*s6));
2372				s6->sin6_family = AF_INET6;
2373				s6->sin6_len = sizeof(*sin6);
2374				s6->sin6_addr = pfr->router->rtaddr;
2375				if (sa6_recoverscope(s6)) {
2376					log(LOG_ERR,
2377					    "scope error in "
2378					    "prefix list (%s)\n",
2379					    ip6_sprintf(ip6buf,
2380						    &pfr->router->rtaddr));
2381				}
2382				advrtrs++;
2383			}
2384			p->advrtrs = advrtrs;
2385		} else
2386			panic("buffer too short");
2387
2388		advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
2389		error = SYSCTL_OUT(req, buf, advance);
2390		if (error)
2391			break;
2392	}
2393
2394	return (error);
2395}
2396