nd6.c revision 162973
1/*	$FreeBSD: head/sys/netinet6/nd6.c 162973 2006-10-02 19:15:10Z jhay $	*/
2/*	$KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $	*/
3
4/*-
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33#include "opt_inet.h"
34#include "opt_inet6.h"
35#include "opt_mac.h"
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/callout.h>
40#include <sys/mac.h>
41#include <sys/malloc.h>
42#include <sys/mbuf.h>
43#include <sys/socket.h>
44#include <sys/sockio.h>
45#include <sys/time.h>
46#include <sys/kernel.h>
47#include <sys/protosw.h>
48#include <sys/errno.h>
49#include <sys/syslog.h>
50#include <sys/queue.h>
51#include <sys/sysctl.h>
52
53#include <net/if.h>
54#include <net/if_arc.h>
55#include <net/if_dl.h>
56#include <net/if_types.h>
57#include <net/iso88025.h>
58#include <net/fddi.h>
59#include <net/route.h>
60
61#include <netinet/in.h>
62#include <netinet/if_ether.h>
63#include <netinet6/in6_var.h>
64#include <netinet/ip6.h>
65#include <netinet6/ip6_var.h>
66#include <netinet6/scope6_var.h>
67#include <netinet6/nd6.h>
68#include <netinet/icmp6.h>
69
70#include <sys/limits.h>
71
72#define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
73#define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
74
75#define SIN6(s) ((struct sockaddr_in6 *)s)
76#define SDL(s) ((struct sockaddr_dl *)s)
77
78/* timer values */
79int	nd6_prune	= 1;	/* walk list every 1 seconds */
80int	nd6_delay	= 5;	/* delay first probe time 5 second */
81int	nd6_umaxtries	= 3;	/* maximum unicast query */
82int	nd6_mmaxtries	= 3;	/* maximum multicast query */
83int	nd6_useloopback = 1;	/* use loopback interface for local traffic */
84int	nd6_gctimer	= (60 * 60 * 24); /* 1 day: garbage collection timer */
85
86/* preventing too many loops in ND option parsing */
87int nd6_maxndopt = 10;	/* max # of ND options allowed */
88
89int nd6_maxnudhint = 0;	/* max # of subsequent upper layer hints */
90int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
91
92#ifdef ND6_DEBUG
93int nd6_debug = 1;
94#else
95int nd6_debug = 0;
96#endif
97
98/* for debugging? */
99static int nd6_inuse, nd6_allocated;
100
101struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6};
102struct nd_drhead nd_defrouter;
103struct nd_prhead nd_prefix = { 0 };
104
105int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
106static struct sockaddr_in6 all1_sa;
107
108static int nd6_is_new_addr_neighbor __P((struct sockaddr_in6 *,
109	struct ifnet *));
110static void nd6_setmtu0 __P((struct ifnet *, struct nd_ifinfo *));
111static void nd6_slowtimo __P((void *));
112static int regen_tmpaddr __P((struct in6_ifaddr *));
113static struct llinfo_nd6 *nd6_free __P((struct rtentry *, int));
114static void nd6_llinfo_timer __P((void *));
115static void clear_llinfo_pqueue __P((struct llinfo_nd6 *));
116
117struct callout nd6_slowtimo_ch;
118struct callout nd6_timer_ch;
119extern struct callout in6_tmpaddrtimer_ch;
120
121void
122nd6_init()
123{
124	static int nd6_init_done = 0;
125	int i;
126
127	if (nd6_init_done) {
128		log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
129		return;
130	}
131
132	all1_sa.sin6_family = AF_INET6;
133	all1_sa.sin6_len = sizeof(struct sockaddr_in6);
134	for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
135		all1_sa.sin6_addr.s6_addr[i] = 0xff;
136
137	/* initialization of the default router list */
138	TAILQ_INIT(&nd_defrouter);
139
140	nd6_init_done = 1;
141
142	/* start timer */
143	callout_init(&nd6_slowtimo_ch, 0);
144	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
145	    nd6_slowtimo, NULL);
146}
147
148struct nd_ifinfo *
149nd6_ifattach(ifp)
150	struct ifnet *ifp;
151{
152	struct nd_ifinfo *nd;
153
154	nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK);
155	bzero(nd, sizeof(*nd));
156
157	nd->initialized = 1;
158
159	nd->chlim = IPV6_DEFHLIM;
160	nd->basereachable = REACHABLE_TIME;
161	nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
162	nd->retrans = RETRANS_TIMER;
163	/*
164	 * Note that the default value of ip6_accept_rtadv is 0, which means
165	 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV
166	 * here.
167	 */
168	nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV);
169
170	/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
171	nd6_setmtu0(ifp, nd);
172
173	return nd;
174}
175
176void
177nd6_ifdetach(nd)
178	struct nd_ifinfo *nd;
179{
180
181	free(nd, M_IP6NDP);
182}
183
184/*
185 * Reset ND level link MTU. This function is called when the physical MTU
186 * changes, which means we might have to adjust the ND level MTU.
187 */
188void
189nd6_setmtu(ifp)
190	struct ifnet *ifp;
191{
192
193	nd6_setmtu0(ifp, ND_IFINFO(ifp));
194}
195
196/* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
197void
198nd6_setmtu0(ifp, ndi)
199	struct ifnet *ifp;
200	struct nd_ifinfo *ndi;
201{
202	u_int32_t omaxmtu;
203
204	omaxmtu = ndi->maxmtu;
205
206	switch (ifp->if_type) {
207	case IFT_ARCNET:
208		ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
209		break;
210	case IFT_FDDI:
211		ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */
212		break;
213	case IFT_ISO88025:
214		 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu);
215		 break;
216	default:
217		ndi->maxmtu = ifp->if_mtu;
218		break;
219	}
220
221	/*
222	 * Decreasing the interface MTU under IPV6 minimum MTU may cause
223	 * undesirable situation.  We thus notify the operator of the change
224	 * explicitly.  The check for omaxmtu is necessary to restrict the
225	 * log to the case of changing the MTU, not initializing it.
226	 */
227	if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
228		log(LOG_NOTICE, "nd6_setmtu0: "
229		    "new link MTU on %s (%lu) is too small for IPv6\n",
230		    if_name(ifp), (unsigned long)ndi->maxmtu);
231	}
232
233	if (ndi->maxmtu > in6_maxmtu)
234		in6_setmaxmtu(); /* check all interfaces just in case */
235
236#undef MIN
237}
238
239void
240nd6_option_init(opt, icmp6len, ndopts)
241	void *opt;
242	int icmp6len;
243	union nd_opts *ndopts;
244{
245
246	bzero(ndopts, sizeof(*ndopts));
247	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
248	ndopts->nd_opts_last
249		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
250
251	if (icmp6len == 0) {
252		ndopts->nd_opts_done = 1;
253		ndopts->nd_opts_search = NULL;
254	}
255}
256
257/*
258 * Take one ND option.
259 */
260struct nd_opt_hdr *
261nd6_option(ndopts)
262	union nd_opts *ndopts;
263{
264	struct nd_opt_hdr *nd_opt;
265	int olen;
266
267	if (ndopts == NULL)
268		panic("ndopts == NULL in nd6_option");
269	if (ndopts->nd_opts_last == NULL)
270		panic("uninitialized ndopts in nd6_option");
271	if (ndopts->nd_opts_search == NULL)
272		return NULL;
273	if (ndopts->nd_opts_done)
274		return NULL;
275
276	nd_opt = ndopts->nd_opts_search;
277
278	/* make sure nd_opt_len is inside the buffer */
279	if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
280		bzero(ndopts, sizeof(*ndopts));
281		return NULL;
282	}
283
284	olen = nd_opt->nd_opt_len << 3;
285	if (olen == 0) {
286		/*
287		 * Message validation requires that all included
288		 * options have a length that is greater than zero.
289		 */
290		bzero(ndopts, sizeof(*ndopts));
291		return NULL;
292	}
293
294	ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
295	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
296		/* option overruns the end of buffer, invalid */
297		bzero(ndopts, sizeof(*ndopts));
298		return NULL;
299	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
300		/* reached the end of options chain */
301		ndopts->nd_opts_done = 1;
302		ndopts->nd_opts_search = NULL;
303	}
304	return nd_opt;
305}
306
307/*
308 * Parse multiple ND options.
309 * This function is much easier to use, for ND routines that do not need
310 * multiple options of the same type.
311 */
312int
313nd6_options(ndopts)
314	union nd_opts *ndopts;
315{
316	struct nd_opt_hdr *nd_opt;
317	int i = 0;
318
319	if (ndopts == NULL)
320		panic("ndopts == NULL in nd6_options");
321	if (ndopts->nd_opts_last == NULL)
322		panic("uninitialized ndopts in nd6_options");
323	if (ndopts->nd_opts_search == NULL)
324		return 0;
325
326	while (1) {
327		nd_opt = nd6_option(ndopts);
328		if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
329			/*
330			 * Message validation requires that all included
331			 * options have a length that is greater than zero.
332			 */
333			icmp6stat.icp6s_nd_badopt++;
334			bzero(ndopts, sizeof(*ndopts));
335			return -1;
336		}
337
338		if (nd_opt == NULL)
339			goto skip1;
340
341		switch (nd_opt->nd_opt_type) {
342		case ND_OPT_SOURCE_LINKADDR:
343		case ND_OPT_TARGET_LINKADDR:
344		case ND_OPT_MTU:
345		case ND_OPT_REDIRECTED_HEADER:
346			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
347				nd6log((LOG_INFO,
348				    "duplicated ND6 option found (type=%d)\n",
349				    nd_opt->nd_opt_type));
350				/* XXX bark? */
351			} else {
352				ndopts->nd_opt_array[nd_opt->nd_opt_type]
353					= nd_opt;
354			}
355			break;
356		case ND_OPT_PREFIX_INFORMATION:
357			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
358				ndopts->nd_opt_array[nd_opt->nd_opt_type]
359					= nd_opt;
360			}
361			ndopts->nd_opts_pi_end =
362				(struct nd_opt_prefix_info *)nd_opt;
363			break;
364		default:
365			/*
366			 * Unknown options must be silently ignored,
367			 * to accomodate future extension to the protocol.
368			 */
369			nd6log((LOG_DEBUG,
370			    "nd6_options: unsupported option %d - "
371			    "option ignored\n", nd_opt->nd_opt_type));
372		}
373
374skip1:
375		i++;
376		if (i > nd6_maxndopt) {
377			icmp6stat.icp6s_nd_toomanyopt++;
378			nd6log((LOG_INFO, "too many loop in nd opt\n"));
379			break;
380		}
381
382		if (ndopts->nd_opts_done)
383			break;
384	}
385
386	return 0;
387}
388
389/*
390 * ND6 timer routine to handle ND6 entries
391 */
392void
393nd6_llinfo_settimer(ln, tick)
394	struct llinfo_nd6 *ln;
395	long tick;
396{
397	if (tick < 0) {
398		ln->ln_expire = 0;
399		ln->ln_ntick = 0;
400		callout_stop(&ln->ln_timer_ch);
401	} else {
402		ln->ln_expire = time_second + tick / hz;
403		if (tick > INT_MAX) {
404			ln->ln_ntick = tick - INT_MAX;
405			callout_reset(&ln->ln_timer_ch, INT_MAX,
406			    nd6_llinfo_timer, ln);
407		} else {
408			ln->ln_ntick = 0;
409			callout_reset(&ln->ln_timer_ch, tick,
410			    nd6_llinfo_timer, ln);
411		}
412	}
413}
414
415static void
416nd6_llinfo_timer(arg)
417	void *arg;
418{
419	struct llinfo_nd6 *ln;
420	struct rtentry *rt;
421	struct in6_addr *dst;
422	struct ifnet *ifp;
423	struct nd_ifinfo *ndi = NULL;
424
425	ln = (struct llinfo_nd6 *)arg;
426
427	if (ln->ln_ntick > 0) {
428		if (ln->ln_ntick > INT_MAX) {
429			ln->ln_ntick -= INT_MAX;
430			nd6_llinfo_settimer(ln, INT_MAX);
431		} else {
432			ln->ln_ntick = 0;
433			nd6_llinfo_settimer(ln, ln->ln_ntick);
434		}
435		return;
436	}
437
438	if ((rt = ln->ln_rt) == NULL)
439		panic("ln->ln_rt == NULL");
440	if ((ifp = rt->rt_ifp) == NULL)
441		panic("ln->ln_rt->rt_ifp == NULL");
442	ndi = ND_IFINFO(ifp);
443
444	/* sanity check */
445	if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
446		panic("rt_llinfo(%p) is not equal to ln(%p)",
447		      rt->rt_llinfo, ln);
448	if (rt_key(rt) == NULL)
449		panic("rt key is NULL in nd6_timer(ln=%p)", ln);
450
451	dst = &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
452
453	switch (ln->ln_state) {
454	case ND6_LLINFO_INCOMPLETE:
455		if (ln->ln_asked < nd6_mmaxtries) {
456			ln->ln_asked++;
457			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
458			nd6_ns_output(ifp, NULL, dst, ln, 0);
459		} else {
460			struct mbuf *m = ln->ln_hold;
461			if (m) {
462				struct mbuf *m0;
463
464				/*
465				 * assuming every packet in ln_hold has the
466				 * same IP header
467				 */
468				m0 = m->m_nextpkt;
469				m->m_nextpkt = NULL;
470				icmp6_error2(m, ICMP6_DST_UNREACH,
471				    ICMP6_DST_UNREACH_ADDR, 0, rt->rt_ifp);
472
473				ln->ln_hold = m0;
474				clear_llinfo_pqueue(ln);
475			}
476			if (rt)
477				(void)nd6_free(rt, 0);
478			ln = NULL;
479		}
480		break;
481	case ND6_LLINFO_REACHABLE:
482		if (!ND6_LLINFO_PERMANENT(ln)) {
483			ln->ln_state = ND6_LLINFO_STALE;
484			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
485		}
486		break;
487
488	case ND6_LLINFO_STALE:
489		/* Garbage Collection(RFC 2461 5.3) */
490		if (!ND6_LLINFO_PERMANENT(ln)) {
491			(void)nd6_free(rt, 1);
492			ln = NULL;
493		}
494		break;
495
496	case ND6_LLINFO_DELAY:
497		if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
498			/* We need NUD */
499			ln->ln_asked = 1;
500			ln->ln_state = ND6_LLINFO_PROBE;
501			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
502			nd6_ns_output(ifp, dst, dst, ln, 0);
503		} else {
504			ln->ln_state = ND6_LLINFO_STALE; /* XXX */
505			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
506		}
507		break;
508	case ND6_LLINFO_PROBE:
509		if (ln->ln_asked < nd6_umaxtries) {
510			ln->ln_asked++;
511			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
512			nd6_ns_output(ifp, dst, dst, ln, 0);
513		} else if (rt->rt_ifa != NULL &&
514		    rt->rt_ifa->ifa_addr->sa_family == AF_INET6 &&
515		    (((struct in6_ifaddr *)rt->rt_ifa)->ia_flags & IFA_ROUTE)) {
516			/*
517			 * This is an unreachable neighbor whose address is
518			 * specified as the destination of a p2p interface
519			 * (see in6_ifinit()).  We should not free the entry
520			 * since this is sort of a "static" entry generated
521			 * via interface address configuration.
522			 */
523			ln->ln_asked = 0;
524			ln->ln_expire = 0; /* make it permanent */
525			ln->ln_state = ND6_LLINFO_STALE;
526		} else {
527			(void)nd6_free(rt, 0);
528			ln = NULL;
529		}
530		break;
531	}
532}
533
534
535/*
536 * ND6 timer routine to expire default route list and prefix list
537 */
538void
539nd6_timer(ignored_arg)
540	void	*ignored_arg;
541{
542	int s;
543	struct nd_defrouter *dr;
544	struct nd_prefix *pr;
545	struct in6_ifaddr *ia6, *nia6;
546	struct in6_addrlifetime *lt6;
547
548	callout_reset(&nd6_timer_ch, nd6_prune * hz,
549	    nd6_timer, NULL);
550
551	/* expire default router list */
552	s = splnet();
553	dr = TAILQ_FIRST(&nd_defrouter);
554	while (dr) {
555		if (dr->expire && dr->expire < time_second) {
556			struct nd_defrouter *t;
557			t = TAILQ_NEXT(dr, dr_entry);
558			defrtrlist_del(dr);
559			dr = t;
560		} else {
561			dr = TAILQ_NEXT(dr, dr_entry);
562		}
563	}
564
565	/*
566	 * expire interface addresses.
567	 * in the past the loop was inside prefix expiry processing.
568	 * However, from a stricter speci-confrmance standpoint, we should
569	 * rather separate address lifetimes and prefix lifetimes.
570	 */
571  addrloop:
572	for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
573		nia6 = ia6->ia_next;
574		/* check address lifetime */
575		lt6 = &ia6->ia6_lifetime;
576		if (IFA6_IS_INVALID(ia6)) {
577			int regen = 0;
578
579			/*
580			 * If the expiring address is temporary, try
581			 * regenerating a new one.  This would be useful when
582			 * we suspended a laptop PC, then turned it on after a
583			 * period that could invalidate all temporary
584			 * addresses.  Although we may have to restart the
585			 * loop (see below), it must be after purging the
586			 * address.  Otherwise, we'd see an infinite loop of
587			 * regeneration.
588			 */
589			if (ip6_use_tempaddr &&
590			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
591				if (regen_tmpaddr(ia6) == 0)
592					regen = 1;
593			}
594
595			in6_purgeaddr(&ia6->ia_ifa);
596
597			if (regen)
598				goto addrloop; /* XXX: see below */
599		} else if (IFA6_IS_DEPRECATED(ia6)) {
600			int oldflags = ia6->ia6_flags;
601
602			ia6->ia6_flags |= IN6_IFF_DEPRECATED;
603
604			/*
605			 * If a temporary address has just become deprecated,
606			 * regenerate a new one if possible.
607			 */
608			if (ip6_use_tempaddr &&
609			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
610			    (oldflags & IN6_IFF_DEPRECATED) == 0) {
611
612				if (regen_tmpaddr(ia6) == 0) {
613					/*
614					 * A new temporary address is
615					 * generated.
616					 * XXX: this means the address chain
617					 * has changed while we are still in
618					 * the loop.  Although the change
619					 * would not cause disaster (because
620					 * it's not a deletion, but an
621					 * addition,) we'd rather restart the
622					 * loop just for safety.  Or does this
623					 * significantly reduce performance??
624					 */
625					goto addrloop;
626				}
627			}
628		} else {
629			/*
630			 * A new RA might have made a deprecated address
631			 * preferred.
632			 */
633			ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
634		}
635	}
636
637	/* expire prefix list */
638	pr = nd_prefix.lh_first;
639	while (pr) {
640		/*
641		 * check prefix lifetime.
642		 * since pltime is just for autoconf, pltime processing for
643		 * prefix is not necessary.
644		 */
645		if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
646		    time_second - pr->ndpr_lastupdate > pr->ndpr_vltime) {
647			struct nd_prefix *t;
648			t = pr->ndpr_next;
649
650			/*
651			 * address expiration and prefix expiration are
652			 * separate.  NEVER perform in6_purgeaddr here.
653			 */
654
655			prelist_remove(pr);
656			pr = t;
657		} else
658			pr = pr->ndpr_next;
659	}
660	splx(s);
661}
662
663static int
664regen_tmpaddr(ia6)
665	struct in6_ifaddr *ia6; /* deprecated/invalidated temporary address */
666{
667	struct ifaddr *ifa;
668	struct ifnet *ifp;
669	struct in6_ifaddr *public_ifa6 = NULL;
670
671	ifp = ia6->ia_ifa.ifa_ifp;
672	for (ifa = ifp->if_addrlist.tqh_first; ifa;
673	     ifa = ifa->ifa_list.tqe_next) {
674		struct in6_ifaddr *it6;
675
676		if (ifa->ifa_addr->sa_family != AF_INET6)
677			continue;
678
679		it6 = (struct in6_ifaddr *)ifa;
680
681		/* ignore no autoconf addresses. */
682		if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
683			continue;
684
685		/* ignore autoconf addresses with different prefixes. */
686		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
687			continue;
688
689		/*
690		 * Now we are looking at an autoconf address with the same
691		 * prefix as ours.  If the address is temporary and is still
692		 * preferred, do not create another one.  It would be rare, but
693		 * could happen, for example, when we resume a laptop PC after
694		 * a long period.
695		 */
696		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
697		    !IFA6_IS_DEPRECATED(it6)) {
698			public_ifa6 = NULL;
699			break;
700		}
701
702		/*
703		 * This is a public autoconf address that has the same prefix
704		 * as ours.  If it is preferred, keep it.  We can't break the
705		 * loop here, because there may be a still-preferred temporary
706		 * address with the prefix.
707		 */
708		if (!IFA6_IS_DEPRECATED(it6))
709		    public_ifa6 = it6;
710	}
711
712	if (public_ifa6 != NULL) {
713		int e;
714
715		if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
716			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
717			    " tmp addr,errno=%d\n", e);
718			return (-1);
719		}
720		return (0);
721	}
722
723	return (-1);
724}
725
726/*
727 * Nuke neighbor cache/prefix/default router management table, right before
728 * ifp goes away.
729 */
730void
731nd6_purge(ifp)
732	struct ifnet *ifp;
733{
734	struct llinfo_nd6 *ln, *nln;
735	struct nd_defrouter *dr, *ndr;
736	struct nd_prefix *pr, *npr;
737
738	/*
739	 * Nuke default router list entries toward ifp.
740	 * We defer removal of default router list entries that is installed
741	 * in the routing table, in order to keep additional side effects as
742	 * small as possible.
743	 */
744	for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
745		ndr = TAILQ_NEXT(dr, dr_entry);
746		if (dr->installed)
747			continue;
748
749		if (dr->ifp == ifp)
750			defrtrlist_del(dr);
751	}
752
753	for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
754		ndr = TAILQ_NEXT(dr, dr_entry);
755		if (!dr->installed)
756			continue;
757
758		if (dr->ifp == ifp)
759			defrtrlist_del(dr);
760	}
761
762	/* Nuke prefix list entries toward ifp */
763	for (pr = nd_prefix.lh_first; pr; pr = npr) {
764		npr = pr->ndpr_next;
765		if (pr->ndpr_ifp == ifp) {
766			/*
767			 * Because if_detach() does *not* release prefixes
768			 * while purging addresses the reference count will
769			 * still be above zero. We therefore reset it to
770			 * make sure that the prefix really gets purged.
771			 */
772			pr->ndpr_refcnt = 0;
773
774			/*
775			 * Previously, pr->ndpr_addr is removed as well,
776			 * but I strongly believe we don't have to do it.
777			 * nd6_purge() is only called from in6_ifdetach(),
778			 * which removes all the associated interface addresses
779			 * by itself.
780			 * (jinmei@kame.net 20010129)
781			 */
782			prelist_remove(pr);
783		}
784	}
785
786	/* cancel default outgoing interface setting */
787	if (nd6_defifindex == ifp->if_index)
788		nd6_setdefaultiface(0);
789
790	if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
791		/* refresh default router list */
792		defrouter_select();
793	}
794
795	/*
796	 * Nuke neighbor cache entries for the ifp.
797	 * Note that rt->rt_ifp may not be the same as ifp,
798	 * due to KAME goto ours hack.  See RTM_RESOLVE case in
799	 * nd6_rtrequest(), and ip6_input().
800	 */
801	ln = llinfo_nd6.ln_next;
802	while (ln && ln != &llinfo_nd6) {
803		struct rtentry *rt;
804		struct sockaddr_dl *sdl;
805
806		nln = ln->ln_next;
807		rt = ln->ln_rt;
808		if (rt && rt->rt_gateway &&
809		    rt->rt_gateway->sa_family == AF_LINK) {
810			sdl = (struct sockaddr_dl *)rt->rt_gateway;
811			if (sdl->sdl_index == ifp->if_index)
812				nln = nd6_free(rt, 0);
813		}
814		ln = nln;
815	}
816}
817
818struct rtentry *
819nd6_lookup(addr6, create, ifp)
820	struct in6_addr *addr6;
821	int create;
822	struct ifnet *ifp;
823{
824	struct rtentry *rt;
825	struct sockaddr_in6 sin6;
826
827	bzero(&sin6, sizeof(sin6));
828	sin6.sin6_len = sizeof(struct sockaddr_in6);
829	sin6.sin6_family = AF_INET6;
830	sin6.sin6_addr = *addr6;
831	rt = rtalloc1((struct sockaddr *)&sin6, create, 0UL);
832	if (rt) {
833		if ((rt->rt_flags & RTF_LLINFO) == 0 && create) {
834			/*
835			 * This is the case for the default route.
836			 * If we want to create a neighbor cache for the
837			 * address, we should free the route for the
838			 * destination and allocate an interface route.
839			 */
840			RTFREE_LOCKED(rt);
841			rt = NULL;
842		}
843	}
844	if (rt == NULL) {
845		if (create && ifp) {
846			int e;
847
848			/*
849			 * If no route is available and create is set,
850			 * we allocate a host route for the destination
851			 * and treat it like an interface route.
852			 * This hack is necessary for a neighbor which can't
853			 * be covered by our own prefix.
854			 */
855			struct ifaddr *ifa =
856			    ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
857			if (ifa == NULL)
858				return (NULL);
859
860			/*
861			 * Create a new route.  RTF_LLINFO is necessary
862			 * to create a Neighbor Cache entry for the
863			 * destination in nd6_rtrequest which will be
864			 * called in rtrequest via ifa->ifa_rtrequest.
865			 */
866			if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6,
867			    ifa->ifa_addr, (struct sockaddr *)&all1_sa,
868			    (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
869			    ~RTF_CLONING, &rt)) != 0) {
870				log(LOG_ERR,
871				    "nd6_lookup: failed to add route for a "
872				    "neighbor(%s), errno=%d\n",
873				    ip6_sprintf(addr6), e);
874			}
875			if (rt == NULL)
876				return (NULL);
877			RT_LOCK(rt);
878			if (rt->rt_llinfo) {
879				struct llinfo_nd6 *ln =
880				    (struct llinfo_nd6 *)rt->rt_llinfo;
881				ln->ln_state = ND6_LLINFO_NOSTATE;
882			}
883		} else
884			return (NULL);
885	}
886	RT_LOCK_ASSERT(rt);
887	RT_REMREF(rt);
888	/*
889	 * Validation for the entry.
890	 * Note that the check for rt_llinfo is necessary because a cloned
891	 * route from a parent route that has the L flag (e.g. the default
892	 * route to a p2p interface) may have the flag, too, while the
893	 * destination is not actually a neighbor.
894	 * XXX: we can't use rt->rt_ifp to check for the interface, since
895	 *      it might be the loopback interface if the entry is for our
896	 *      own address on a non-loopback interface. Instead, we should
897	 *      use rt->rt_ifa->ifa_ifp, which would specify the REAL
898	 *	interface.
899	 * Note also that ifa_ifp and ifp may differ when we connect two
900	 * interfaces to a same link, install a link prefix to an interface,
901	 * and try to install a neighbor cache on an interface that does not
902	 * have a route to the prefix.
903	 */
904	if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
905	    rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
906	    (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
907		if (create) {
908			nd6log((LOG_DEBUG,
909			    "nd6_lookup: failed to lookup %s (if = %s)\n",
910			    ip6_sprintf(addr6),
911			    ifp ? if_name(ifp) : "unspec"));
912		}
913		RT_UNLOCK(rt);
914		return (NULL);
915	}
916	RT_UNLOCK(rt);		/* XXX not ready to return rt locked */
917	return (rt);
918}
919
920/*
921 * Test whether a given IPv6 address is a neighbor or not, ignoring
922 * the actual neighbor cache.  The neighbor cache is ignored in order
923 * to not reenter the routing code from within itself.
924 */
925static int
926nd6_is_new_addr_neighbor(addr, ifp)
927	struct sockaddr_in6 *addr;
928	struct ifnet *ifp;
929{
930	struct nd_prefix *pr;
931	struct ifaddr *dstaddr;
932
933	/*
934	 * A link-local address is always a neighbor.
935	 * XXX: a link does not necessarily specify a single interface.
936	 */
937	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
938		struct sockaddr_in6 sin6_copy;
939		u_int32_t zone;
940
941		/*
942		 * We need sin6_copy since sa6_recoverscope() may modify the
943		 * content (XXX).
944		 */
945		sin6_copy = *addr;
946		if (sa6_recoverscope(&sin6_copy))
947			return (0); /* XXX: should be impossible */
948		if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
949			return (0);
950		if (sin6_copy.sin6_scope_id == zone)
951			return (1);
952		else
953			return (0);
954	}
955
956	/*
957	 * If the address matches one of our addresses,
958	 * it should be a neighbor.
959	 * If the address matches one of our on-link prefixes, it should be a
960	 * neighbor.
961	 */
962	for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
963		if (pr->ndpr_ifp != ifp)
964			continue;
965
966		if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
967			continue;
968
969		if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
970		    &addr->sin6_addr, &pr->ndpr_mask))
971			return (1);
972	}
973
974	/*
975	 * If the address is assigned on the node of the other side of
976	 * a p2p interface, the address should be a neighbor.
977	 */
978	dstaddr = ifa_ifwithdstaddr((struct sockaddr *)addr);
979	if ((dstaddr != NULL) && (dstaddr->ifa_ifp == ifp))
980		return (1);
981
982	/*
983	 * If the default router list is empty, all addresses are regarded
984	 * as on-link, and thus, as a neighbor.
985	 * XXX: we restrict the condition to hosts, because routers usually do
986	 * not have the "default router list".
987	 */
988	if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL &&
989	    nd6_defifindex == ifp->if_index) {
990		return (1);
991	}
992
993	return (0);
994}
995
996
997/*
998 * Detect if a given IPv6 address identifies a neighbor on a given link.
999 * XXX: should take care of the destination of a p2p link?
1000 */
1001int
1002nd6_is_addr_neighbor(addr, ifp)
1003	struct sockaddr_in6 *addr;
1004	struct ifnet *ifp;
1005{
1006
1007	if (nd6_is_new_addr_neighbor(addr, ifp))
1008		return (1);
1009
1010	/*
1011	 * Even if the address matches none of our addresses, it might be
1012	 * in the neighbor cache.
1013	 */
1014	if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL)
1015		return (1);
1016
1017	return (0);
1018}
1019
1020/*
1021 * Free an nd6 llinfo entry.
1022 * Since the function would cause significant changes in the kernel, DO NOT
1023 * make it global, unless you have a strong reason for the change, and are sure
1024 * that the change is safe.
1025 */
1026static struct llinfo_nd6 *
1027nd6_free(rt, gc)
1028	struct rtentry *rt;
1029	int gc;
1030{
1031	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
1032	struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
1033	struct nd_defrouter *dr;
1034
1035	/*
1036	 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1037	 * even though it is not harmful, it was not really necessary.
1038	 */
1039
1040	/* cancel timer */
1041	nd6_llinfo_settimer(ln, -1);
1042
1043	if (!ip6_forwarding) {
1044		int s;
1045		s = splnet();
1046		dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1047		    rt->rt_ifp);
1048
1049		if (dr != NULL && dr->expire &&
1050		    ln->ln_state == ND6_LLINFO_STALE && gc) {
1051			/*
1052			 * If the reason for the deletion is just garbage
1053			 * collection, and the neighbor is an active default
1054			 * router, do not delete it.  Instead, reset the GC
1055			 * timer using the router's lifetime.
1056			 * Simply deleting the entry would affect default
1057			 * router selection, which is not necessarily a good
1058			 * thing, especially when we're using router preference
1059			 * values.
1060			 * XXX: the check for ln_state would be redundant,
1061			 *      but we intentionally keep it just in case.
1062			 */
1063			if (dr->expire > time_second)
1064				nd6_llinfo_settimer(ln,
1065				    (dr->expire - time_second) * hz);
1066			else
1067				nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1068			splx(s);
1069			return (ln->ln_next);
1070		}
1071
1072		if (ln->ln_router || dr) {
1073			/*
1074			 * rt6_flush must be called whether or not the neighbor
1075			 * is in the Default Router List.
1076			 * See a corresponding comment in nd6_na_input().
1077			 */
1078			rt6_flush(&in6, rt->rt_ifp);
1079		}
1080
1081		if (dr) {
1082			/*
1083			 * Unreachablity of a router might affect the default
1084			 * router selection and on-link detection of advertised
1085			 * prefixes.
1086			 */
1087
1088			/*
1089			 * Temporarily fake the state to choose a new default
1090			 * router and to perform on-link determination of
1091			 * prefixes correctly.
1092			 * Below the state will be set correctly,
1093			 * or the entry itself will be deleted.
1094			 */
1095			ln->ln_state = ND6_LLINFO_INCOMPLETE;
1096
1097			/*
1098			 * Since defrouter_select() does not affect the
1099			 * on-link determination and MIP6 needs the check
1100			 * before the default router selection, we perform
1101			 * the check now.
1102			 */
1103			pfxlist_onlink_check();
1104
1105			/*
1106			 * refresh default router list
1107			 */
1108			defrouter_select();
1109		}
1110		splx(s);
1111	}
1112
1113	/*
1114	 * Before deleting the entry, remember the next entry as the
1115	 * return value.  We need this because pfxlist_onlink_check() above
1116	 * might have freed other entries (particularly the old next entry) as
1117	 * a side effect (XXX).
1118	 */
1119	next = ln->ln_next;
1120
1121	/*
1122	 * Detach the route from the routing tree and the list of neighbor
1123	 * caches, and disable the route entry not to be used in already
1124	 * cached routes.
1125	 */
1126	rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0,
1127	    rt_mask(rt), 0, (struct rtentry **)0);
1128
1129	return (next);
1130}
1131
1132/*
1133 * Upper-layer reachability hint for Neighbor Unreachability Detection.
1134 *
1135 * XXX cost-effective methods?
1136 */
1137void
1138nd6_nud_hint(rt, dst6, force)
1139	struct rtentry *rt;
1140	struct in6_addr *dst6;
1141	int force;
1142{
1143	struct llinfo_nd6 *ln;
1144
1145	/*
1146	 * If the caller specified "rt", use that.  Otherwise, resolve the
1147	 * routing table by supplied "dst6".
1148	 */
1149	if (rt == NULL) {
1150		if (dst6 == NULL)
1151			return;
1152		if ((rt = nd6_lookup(dst6, 0, NULL)) == NULL)
1153			return;
1154	}
1155
1156	if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
1157	    (rt->rt_flags & RTF_LLINFO) == 0 ||
1158	    rt->rt_llinfo == NULL || rt->rt_gateway == NULL ||
1159	    rt->rt_gateway->sa_family != AF_LINK) {
1160		/* This is not a host route. */
1161		return;
1162	}
1163
1164	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1165	if (ln->ln_state < ND6_LLINFO_REACHABLE)
1166		return;
1167
1168	/*
1169	 * if we get upper-layer reachability confirmation many times,
1170	 * it is possible we have false information.
1171	 */
1172	if (!force) {
1173		ln->ln_byhint++;
1174		if (ln->ln_byhint > nd6_maxnudhint)
1175			return;
1176	}
1177
1178	ln->ln_state = ND6_LLINFO_REACHABLE;
1179	if (!ND6_LLINFO_PERMANENT(ln)) {
1180		nd6_llinfo_settimer(ln,
1181		    (long)ND_IFINFO(rt->rt_ifp)->reachable * hz);
1182	}
1183}
1184
1185void
1186nd6_rtrequest(req, rt, info)
1187	int	req;
1188	struct rtentry *rt;
1189	struct rt_addrinfo *info; /* xxx unused */
1190{
1191	struct sockaddr *gate = rt->rt_gateway;
1192	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1193	static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
1194	struct ifnet *ifp = rt->rt_ifp;
1195	struct ifaddr *ifa;
1196
1197	RT_LOCK_ASSERT(rt);
1198
1199	if ((rt->rt_flags & RTF_GATEWAY) != 0)
1200		return;
1201
1202	if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1203		/*
1204		 * This is probably an interface direct route for a link
1205		 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1206		 * We do not need special treatment below for such a route.
1207		 * Moreover, the RTF_LLINFO flag which would be set below
1208		 * would annoy the ndp(8) command.
1209		 */
1210		return;
1211	}
1212
1213	if (req == RTM_RESOLVE &&
1214	    (nd6_need_cache(ifp) == 0 || /* stf case */
1215	     !nd6_is_new_addr_neighbor((struct sockaddr_in6 *)rt_key(rt),
1216	     ifp))) {
1217		/*
1218		 * FreeBSD and BSD/OS often make a cloned host route based
1219		 * on a less-specific route (e.g. the default route).
1220		 * If the less specific route does not have a "gateway"
1221		 * (this is the case when the route just goes to a p2p or an
1222		 * stf interface), we'll mistakenly make a neighbor cache for
1223		 * the host route, and will see strange neighbor solicitation
1224		 * for the corresponding destination.  In order to avoid the
1225		 * confusion, we check if the destination of the route is
1226		 * a neighbor in terms of neighbor discovery, and stop the
1227		 * process if not.  Additionally, we remove the LLINFO flag
1228		 * so that ndp(8) will not try to get the neighbor information
1229		 * of the destination.
1230		 */
1231		rt->rt_flags &= ~RTF_LLINFO;
1232		return;
1233	}
1234
1235	switch (req) {
1236	case RTM_ADD:
1237		/*
1238		 * There is no backward compatibility :)
1239		 *
1240		 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1241		 *     SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1242		 *	   rt->rt_flags |= RTF_CLONING;
1243		 */
1244		if ((rt->rt_flags & RTF_CLONING) ||
1245		    ((rt->rt_flags & RTF_LLINFO) && ln == NULL)) {
1246			/*
1247			 * Case 1: This route should come from a route to
1248			 * interface (RTF_CLONING case) or the route should be
1249			 * treated as on-link but is currently not
1250			 * (RTF_LLINFO && ln == NULL case).
1251			 */
1252			rt_setgate(rt, rt_key(rt),
1253				   (struct sockaddr *)&null_sdl);
1254			gate = rt->rt_gateway;
1255			SDL(gate)->sdl_type = ifp->if_type;
1256			SDL(gate)->sdl_index = ifp->if_index;
1257			if (ln)
1258				nd6_llinfo_settimer(ln, 0);
1259			if ((rt->rt_flags & RTF_CLONING) != 0)
1260				break;
1261		}
1262		/*
1263		 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1264		 * We don't do that here since llinfo is not ready yet.
1265		 *
1266		 * There are also couple of other things to be discussed:
1267		 * - unsolicited NA code needs improvement beforehand
1268		 * - RFC2461 says we MAY send multicast unsolicited NA
1269		 *   (7.2.6 paragraph 4), however, it also says that we
1270		 *   SHOULD provide a mechanism to prevent multicast NA storm.
1271		 *   we don't have anything like it right now.
1272		 *   note that the mechanism needs a mutual agreement
1273		 *   between proxies, which means that we need to implement
1274		 *   a new protocol, or a new kludge.
1275		 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1276		 *   we need to check ip6forwarding before sending it.
1277		 *   (or should we allow proxy ND configuration only for
1278		 *   routers?  there's no mention about proxy ND from hosts)
1279		 */
1280		/* FALLTHROUGH */
1281	case RTM_RESOLVE:
1282		if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1283			/*
1284			 * Address resolution isn't necessary for a point to
1285			 * point link, so we can skip this test for a p2p link.
1286			 */
1287			if (gate->sa_family != AF_LINK ||
1288			    gate->sa_len < sizeof(null_sdl)) {
1289				log(LOG_DEBUG,
1290				    "nd6_rtrequest: bad gateway value: %s\n",
1291				    if_name(ifp));
1292				break;
1293			}
1294			SDL(gate)->sdl_type = ifp->if_type;
1295			SDL(gate)->sdl_index = ifp->if_index;
1296		}
1297		if (ln != NULL)
1298			break;	/* This happens on a route change */
1299		/*
1300		 * Case 2: This route may come from cloning, or a manual route
1301		 * add with a LL address.
1302		 */
1303		R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1304		rt->rt_llinfo = (caddr_t)ln;
1305		if (ln == NULL) {
1306			log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1307			break;
1308		}
1309		nd6_inuse++;
1310		nd6_allocated++;
1311		bzero(ln, sizeof(*ln));
1312		ln->ln_rt = rt;
1313		callout_init(&ln->ln_timer_ch, 0);
1314
1315		/* this is required for "ndp" command. - shin */
1316		if (req == RTM_ADD && (rt->rt_flags & RTF_STATIC)) {
1317		        /*
1318			 * gate should have some valid AF_LINK entry,
1319			 * and ln->ln_expire should have some lifetime
1320			 * which is specified by ndp command.
1321			 */
1322			ln->ln_state = ND6_LLINFO_REACHABLE;
1323			ln->ln_byhint = 0;
1324		} else {
1325		        /*
1326			 * When req == RTM_RESOLVE, rt is created and
1327			 * initialized in rtrequest(), so rt_expire is 0.
1328			 */
1329			ln->ln_state = ND6_LLINFO_NOSTATE;
1330			nd6_llinfo_settimer(ln, 0);
1331		}
1332		rt->rt_flags |= RTF_LLINFO;
1333		ln->ln_next = llinfo_nd6.ln_next;
1334		llinfo_nd6.ln_next = ln;
1335		ln->ln_prev = &llinfo_nd6;
1336		ln->ln_next->ln_prev = ln;
1337
1338		/*
1339		 * check if rt_key(rt) is one of my address assigned
1340		 * to the interface.
1341		 */
1342		ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
1343		    &SIN6(rt_key(rt))->sin6_addr);
1344		if (ifa) {
1345			caddr_t macp = nd6_ifptomac(ifp);
1346			nd6_llinfo_settimer(ln, -1);
1347			ln->ln_state = ND6_LLINFO_REACHABLE;
1348			ln->ln_byhint = 0;
1349			if (macp) {
1350				bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
1351				SDL(gate)->sdl_alen = ifp->if_addrlen;
1352			}
1353			if (nd6_useloopback) {
1354				rt->rt_ifp = &loif[0];	/* XXX */
1355				/*
1356				 * Make sure rt_ifa be equal to the ifaddr
1357				 * corresponding to the address.
1358				 * We need this because when we refer
1359				 * rt_ifa->ia6_flags in ip6_input, we assume
1360				 * that the rt_ifa points to the address instead
1361				 * of the loopback address.
1362				 */
1363				if (ifa != rt->rt_ifa) {
1364					IFAFREE(rt->rt_ifa);
1365					IFAREF(ifa);
1366					rt->rt_ifa = ifa;
1367				}
1368			}
1369		} else if (rt->rt_flags & RTF_ANNOUNCE) {
1370			nd6_llinfo_settimer(ln, -1);
1371			ln->ln_state = ND6_LLINFO_REACHABLE;
1372			ln->ln_byhint = 0;
1373
1374			/* join solicited node multicast for proxy ND */
1375			if (ifp->if_flags & IFF_MULTICAST) {
1376				struct in6_addr llsol;
1377				int error;
1378
1379				llsol = SIN6(rt_key(rt))->sin6_addr;
1380				llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
1381				llsol.s6_addr32[1] = 0;
1382				llsol.s6_addr32[2] = htonl(1);
1383				llsol.s6_addr8[12] = 0xff;
1384				if (in6_setscope(&llsol, ifp, NULL))
1385					break;
1386				if (in6_addmulti(&llsol, ifp,
1387				    &error, 0) == NULL) {
1388					nd6log((LOG_ERR, "%s: failed to join "
1389					    "%s (errno=%d)\n", if_name(ifp),
1390					    ip6_sprintf(&llsol), error));
1391				}
1392			}
1393		}
1394		break;
1395
1396	case RTM_DELETE:
1397		if (ln == NULL)
1398			break;
1399		/* leave from solicited node multicast for proxy ND */
1400		if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1401		    (ifp->if_flags & IFF_MULTICAST) != 0) {
1402			struct in6_addr llsol;
1403			struct in6_multi *in6m;
1404
1405			llsol = SIN6(rt_key(rt))->sin6_addr;
1406			llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
1407			llsol.s6_addr32[1] = 0;
1408			llsol.s6_addr32[2] = htonl(1);
1409			llsol.s6_addr8[12] = 0xff;
1410			if (in6_setscope(&llsol, ifp, NULL) == 0) {
1411				IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1412				if (in6m)
1413					in6_delmulti(in6m);
1414			} else
1415				; /* XXX: should not happen. bark here? */
1416		}
1417		nd6_inuse--;
1418		ln->ln_next->ln_prev = ln->ln_prev;
1419		ln->ln_prev->ln_next = ln->ln_next;
1420		ln->ln_prev = NULL;
1421		nd6_llinfo_settimer(ln, -1);
1422		rt->rt_llinfo = 0;
1423		rt->rt_flags &= ~RTF_LLINFO;
1424		clear_llinfo_pqueue(ln);
1425		Free((caddr_t)ln);
1426	}
1427}
1428
1429int
1430nd6_ioctl(cmd, data, ifp)
1431	u_long cmd;
1432	caddr_t	data;
1433	struct ifnet *ifp;
1434{
1435	struct in6_drlist *drl = (struct in6_drlist *)data;
1436	struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1437	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1438	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1439	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1440	struct nd_defrouter *dr;
1441	struct nd_prefix *pr;
1442	struct rtentry *rt;
1443	int i = 0, error = 0;
1444	int s;
1445
1446	switch (cmd) {
1447	case SIOCGDRLST_IN6:
1448		/*
1449		 * obsolete API, use sysctl under net.inet6.icmp6
1450		 */
1451		bzero(drl, sizeof(*drl));
1452		s = splnet();
1453		dr = TAILQ_FIRST(&nd_defrouter);
1454		while (dr && i < DRLSTSIZ) {
1455			drl->defrouter[i].rtaddr = dr->rtaddr;
1456			in6_clearscope(&drl->defrouter[i].rtaddr);
1457
1458			drl->defrouter[i].flags = dr->flags;
1459			drl->defrouter[i].rtlifetime = dr->rtlifetime;
1460			drl->defrouter[i].expire = dr->expire;
1461			drl->defrouter[i].if_index = dr->ifp->if_index;
1462			i++;
1463			dr = TAILQ_NEXT(dr, dr_entry);
1464		}
1465		splx(s);
1466		break;
1467	case SIOCGPRLST_IN6:
1468		/*
1469		 * obsolete API, use sysctl under net.inet6.icmp6
1470		 *
1471		 * XXX the structure in6_prlist was changed in backward-
1472		 * incompatible manner.  in6_oprlist is used for SIOCGPRLST_IN6,
1473		 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1474		 */
1475		/*
1476		 * XXX meaning of fields, especialy "raflags", is very
1477		 * differnet between RA prefix list and RR/static prefix list.
1478		 * how about separating ioctls into two?
1479		 */
1480		bzero(oprl, sizeof(*oprl));
1481		s = splnet();
1482		pr = nd_prefix.lh_first;
1483		while (pr && i < PRLSTSIZ) {
1484			struct nd_pfxrouter *pfr;
1485			int j;
1486
1487			oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1488			oprl->prefix[i].raflags = pr->ndpr_raf;
1489			oprl->prefix[i].prefixlen = pr->ndpr_plen;
1490			oprl->prefix[i].vltime = pr->ndpr_vltime;
1491			oprl->prefix[i].pltime = pr->ndpr_pltime;
1492			oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1493			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
1494				oprl->prefix[i].expire = 0;
1495			else {
1496				time_t maxexpire;
1497
1498				/* XXX: we assume time_t is signed. */
1499				maxexpire = (-1) &
1500				    ~((time_t)1 <<
1501				    ((sizeof(maxexpire) * 8) - 1));
1502				if (pr->ndpr_vltime <
1503				    maxexpire - pr->ndpr_lastupdate) {
1504					oprl->prefix[i].expire =
1505					    pr->ndpr_lastupdate +
1506					    pr->ndpr_vltime;
1507				} else
1508					oprl->prefix[i].expire = maxexpire;
1509			}
1510
1511			pfr = pr->ndpr_advrtrs.lh_first;
1512			j = 0;
1513			while (pfr) {
1514				if (j < DRLSTSIZ) {
1515#define RTRADDR oprl->prefix[i].advrtr[j]
1516					RTRADDR = pfr->router->rtaddr;
1517					in6_clearscope(&RTRADDR);
1518#undef RTRADDR
1519				}
1520				j++;
1521				pfr = pfr->pfr_next;
1522			}
1523			oprl->prefix[i].advrtrs = j;
1524			oprl->prefix[i].origin = PR_ORIG_RA;
1525
1526			i++;
1527			pr = pr->ndpr_next;
1528		}
1529		splx(s);
1530
1531		break;
1532	case OSIOCGIFINFO_IN6:
1533#define ND	ndi->ndi
1534		/* XXX: old ndp(8) assumes a positive value for linkmtu. */
1535		bzero(&ND, sizeof(ND));
1536		ND.linkmtu = IN6_LINKMTU(ifp);
1537		ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1538		ND.basereachable = ND_IFINFO(ifp)->basereachable;
1539		ND.reachable = ND_IFINFO(ifp)->reachable;
1540		ND.retrans = ND_IFINFO(ifp)->retrans;
1541		ND.flags = ND_IFINFO(ifp)->flags;
1542		ND.recalctm = ND_IFINFO(ifp)->recalctm;
1543		ND.chlim = ND_IFINFO(ifp)->chlim;
1544		break;
1545	case SIOCGIFINFO_IN6:
1546		ND = *ND_IFINFO(ifp);
1547		break;
1548	case SIOCSIFINFO_IN6:
1549		/*
1550		 * used to change host variables from userland.
1551		 * intented for a use on router to reflect RA configurations.
1552		 */
1553		/* 0 means 'unspecified' */
1554		if (ND.linkmtu != 0) {
1555			if (ND.linkmtu < IPV6_MMTU ||
1556			    ND.linkmtu > IN6_LINKMTU(ifp)) {
1557				error = EINVAL;
1558				break;
1559			}
1560			ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1561		}
1562
1563		if (ND.basereachable != 0) {
1564			int obasereachable = ND_IFINFO(ifp)->basereachable;
1565
1566			ND_IFINFO(ifp)->basereachable = ND.basereachable;
1567			if (ND.basereachable != obasereachable)
1568				ND_IFINFO(ifp)->reachable =
1569				    ND_COMPUTE_RTIME(ND.basereachable);
1570		}
1571		if (ND.retrans != 0)
1572			ND_IFINFO(ifp)->retrans = ND.retrans;
1573		if (ND.chlim != 0)
1574			ND_IFINFO(ifp)->chlim = ND.chlim;
1575		/* FALLTHROUGH */
1576	case SIOCSIFINFO_FLAGS:
1577		ND_IFINFO(ifp)->flags = ND.flags;
1578		break;
1579#undef ND
1580	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
1581		/* sync kernel routing table with the default router list */
1582		defrouter_reset();
1583		defrouter_select();
1584		break;
1585	case SIOCSPFXFLUSH_IN6:
1586	{
1587		/* flush all the prefix advertised by routers */
1588		struct nd_prefix *pr, *next;
1589
1590		s = splnet();
1591		for (pr = nd_prefix.lh_first; pr; pr = next) {
1592			struct in6_ifaddr *ia, *ia_next;
1593
1594			next = pr->ndpr_next;
1595
1596			if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1597				continue; /* XXX */
1598
1599			/* do we really have to remove addresses as well? */
1600			for (ia = in6_ifaddr; ia; ia = ia_next) {
1601				/* ia might be removed.  keep the next ptr. */
1602				ia_next = ia->ia_next;
1603
1604				if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1605					continue;
1606
1607				if (ia->ia6_ndpr == pr)
1608					in6_purgeaddr(&ia->ia_ifa);
1609			}
1610			prelist_remove(pr);
1611		}
1612		splx(s);
1613		break;
1614	}
1615	case SIOCSRTRFLUSH_IN6:
1616	{
1617		/* flush all the default routers */
1618		struct nd_defrouter *dr, *next;
1619
1620		s = splnet();
1621		defrouter_reset();
1622		for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = next) {
1623			next = TAILQ_NEXT(dr, dr_entry);
1624			defrtrlist_del(dr);
1625		}
1626		defrouter_select();
1627		splx(s);
1628		break;
1629	}
1630	case SIOCGNBRINFO_IN6:
1631	{
1632		struct llinfo_nd6 *ln;
1633		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1634
1635		if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1636			return (error);
1637
1638		s = splnet();
1639		if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) {
1640			error = EINVAL;
1641			splx(s);
1642			break;
1643		}
1644		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1645		nbi->state = ln->ln_state;
1646		nbi->asked = ln->ln_asked;
1647		nbi->isrouter = ln->ln_router;
1648		nbi->expire = ln->ln_expire;
1649		splx(s);
1650
1651		break;
1652	}
1653	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1654		ndif->ifindex = nd6_defifindex;
1655		break;
1656	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1657		return (nd6_setdefaultiface(ndif->ifindex));
1658	}
1659	return (error);
1660}
1661
1662/*
1663 * Create neighbor cache entry and cache link-layer address,
1664 * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
1665 */
1666struct rtentry *
1667nd6_cache_lladdr(ifp, from, lladdr, lladdrlen, type, code)
1668	struct ifnet *ifp;
1669	struct in6_addr *from;
1670	char *lladdr;
1671	int lladdrlen;
1672	int type;	/* ICMP6 type */
1673	int code;	/* type dependent information */
1674{
1675	struct rtentry *rt = NULL;
1676	struct llinfo_nd6 *ln = NULL;
1677	int is_newentry;
1678	struct sockaddr_dl *sdl = NULL;
1679	int do_update;
1680	int olladdr;
1681	int llchange;
1682	int newstate = 0;
1683
1684	if (ifp == NULL)
1685		panic("ifp == NULL in nd6_cache_lladdr");
1686	if (from == NULL)
1687		panic("from == NULL in nd6_cache_lladdr");
1688
1689	/* nothing must be updated for unspecified address */
1690	if (IN6_IS_ADDR_UNSPECIFIED(from))
1691		return NULL;
1692
1693	/*
1694	 * Validation about ifp->if_addrlen and lladdrlen must be done in
1695	 * the caller.
1696	 *
1697	 * XXX If the link does not have link-layer adderss, what should
1698	 * we do? (ifp->if_addrlen == 0)
1699	 * Spec says nothing in sections for RA, RS and NA.  There's small
1700	 * description on it in NS section (RFC 2461 7.2.3).
1701	 */
1702
1703	rt = nd6_lookup(from, 0, ifp);
1704	if (rt == NULL) {
1705		rt = nd6_lookup(from, 1, ifp);
1706		is_newentry = 1;
1707	} else {
1708		/* do nothing if static ndp is set */
1709		if (rt->rt_flags & RTF_STATIC)
1710			return NULL;
1711		is_newentry = 0;
1712	}
1713
1714	if (rt == NULL)
1715		return NULL;
1716	if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1717fail:
1718		(void)nd6_free(rt, 0);
1719		return NULL;
1720	}
1721	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1722	if (ln == NULL)
1723		goto fail;
1724	if (rt->rt_gateway == NULL)
1725		goto fail;
1726	if (rt->rt_gateway->sa_family != AF_LINK)
1727		goto fail;
1728	sdl = SDL(rt->rt_gateway);
1729
1730	olladdr = (sdl->sdl_alen) ? 1 : 0;
1731	if (olladdr && lladdr) {
1732		if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen))
1733			llchange = 1;
1734		else
1735			llchange = 0;
1736	} else
1737		llchange = 0;
1738
1739	/*
1740	 * newentry olladdr  lladdr  llchange	(*=record)
1741	 *	0	n	n	--	(1)
1742	 *	0	y	n	--	(2)
1743	 *	0	n	y	--	(3) * STALE
1744	 *	0	y	y	n	(4) *
1745	 *	0	y	y	y	(5) * STALE
1746	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
1747	 *	1	--	y	--	(7) * STALE
1748	 */
1749
1750	if (lladdr) {		/* (3-5) and (7) */
1751		/*
1752		 * Record source link-layer address
1753		 * XXX is it dependent to ifp->if_type?
1754		 */
1755		sdl->sdl_alen = ifp->if_addrlen;
1756		bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
1757	}
1758
1759	if (!is_newentry) {
1760		if ((!olladdr && lladdr != NULL) ||	/* (3) */
1761		    (olladdr && lladdr != NULL && llchange)) {	/* (5) */
1762			do_update = 1;
1763			newstate = ND6_LLINFO_STALE;
1764		} else					/* (1-2,4) */
1765			do_update = 0;
1766	} else {
1767		do_update = 1;
1768		if (lladdr == NULL)			/* (6) */
1769			newstate = ND6_LLINFO_NOSTATE;
1770		else					/* (7) */
1771			newstate = ND6_LLINFO_STALE;
1772	}
1773
1774	if (do_update) {
1775		/*
1776		 * Update the state of the neighbor cache.
1777		 */
1778		ln->ln_state = newstate;
1779
1780		if (ln->ln_state == ND6_LLINFO_STALE) {
1781			/*
1782			 * XXX: since nd6_output() below will cause
1783			 * state tansition to DELAY and reset the timer,
1784			 * we must set the timer now, although it is actually
1785			 * meaningless.
1786			 */
1787			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1788
1789			if (ln->ln_hold) {
1790				struct mbuf *m_hold, *m_hold_next;
1791				for (m_hold = ln->ln_hold; m_hold;
1792				     m_hold = m_hold_next) {
1793					struct mbuf *mpkt = NULL;
1794
1795					m_hold_next = m_hold->m_nextpkt;
1796					mpkt = m_copym(m_hold, 0, M_COPYALL, M_DONTWAIT);
1797					if (mpkt == NULL) {
1798						m_freem(m_hold);
1799						break;
1800					}
1801					mpkt->m_nextpkt = NULL;
1802
1803					/*
1804					 * we assume ifp is not a p2p here, so
1805					 * just set the 2nd argument as the
1806					 * 1st one.
1807					 */
1808					nd6_output(ifp, ifp, mpkt,
1809					     (struct sockaddr_in6 *)rt_key(rt),
1810					     rt);
1811				}
1812				ln->ln_hold = NULL;
1813			}
1814		} else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1815			/* probe right away */
1816			nd6_llinfo_settimer((void *)ln, 0);
1817		}
1818	}
1819
1820	/*
1821	 * ICMP6 type dependent behavior.
1822	 *
1823	 * NS: clear IsRouter if new entry
1824	 * RS: clear IsRouter
1825	 * RA: set IsRouter if there's lladdr
1826	 * redir: clear IsRouter if new entry
1827	 *
1828	 * RA case, (1):
1829	 * The spec says that we must set IsRouter in the following cases:
1830	 * - If lladdr exist, set IsRouter.  This means (1-5).
1831	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
1832	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1833	 * A quetion arises for (1) case.  (1) case has no lladdr in the
1834	 * neighbor cache, this is similar to (6).
1835	 * This case is rare but we figured that we MUST NOT set IsRouter.
1836	 *
1837	 * newentry olladdr  lladdr  llchange	    NS  RS  RA	redir
1838	 *							D R
1839	 *	0	n	n	--	(1)	c   ?     s
1840	 *	0	y	n	--	(2)	c   s     s
1841	 *	0	n	y	--	(3)	c   s     s
1842	 *	0	y	y	n	(4)	c   s     s
1843	 *	0	y	y	y	(5)	c   s     s
1844	 *	1	--	n	--	(6) c	c 	c s
1845	 *	1	--	y	--	(7) c	c   s	c s
1846	 *
1847	 *					(c=clear s=set)
1848	 */
1849	switch (type & 0xff) {
1850	case ND_NEIGHBOR_SOLICIT:
1851		/*
1852		 * New entry must have is_router flag cleared.
1853		 */
1854		if (is_newentry)	/* (6-7) */
1855			ln->ln_router = 0;
1856		break;
1857	case ND_REDIRECT:
1858		/*
1859		 * If the icmp is a redirect to a better router, always set the
1860		 * is_router flag.  Otherwise, if the entry is newly created,
1861		 * clear the flag.  [RFC 2461, sec 8.3]
1862		 */
1863		if (code == ND_REDIRECT_ROUTER)
1864			ln->ln_router = 1;
1865		else if (is_newentry) /* (6-7) */
1866			ln->ln_router = 0;
1867		break;
1868	case ND_ROUTER_SOLICIT:
1869		/*
1870		 * is_router flag must always be cleared.
1871		 */
1872		ln->ln_router = 0;
1873		break;
1874	case ND_ROUTER_ADVERT:
1875		/*
1876		 * Mark an entry with lladdr as a router.
1877		 */
1878		if ((!is_newentry && (olladdr || lladdr)) ||	/* (2-5) */
1879		    (is_newentry && lladdr)) {			/* (7) */
1880			ln->ln_router = 1;
1881		}
1882		break;
1883	}
1884
1885	/*
1886	 * When the link-layer address of a router changes, select the
1887	 * best router again.  In particular, when the neighbor entry is newly
1888	 * created, it might affect the selection policy.
1889	 * Question: can we restrict the first condition to the "is_newentry"
1890	 * case?
1891	 * XXX: when we hear an RA from a new router with the link-layer
1892	 * address option, defrouter_select() is called twice, since
1893	 * defrtrlist_update called the function as well.  However, I believe
1894	 * we can compromise the overhead, since it only happens the first
1895	 * time.
1896	 * XXX: although defrouter_select() should not have a bad effect
1897	 * for those are not autoconfigured hosts, we explicitly avoid such
1898	 * cases for safety.
1899	 */
1900	if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv)
1901		defrouter_select();
1902
1903	return rt;
1904}
1905
1906static void
1907nd6_slowtimo(ignored_arg)
1908    void *ignored_arg;
1909{
1910	struct nd_ifinfo *nd6if;
1911	struct ifnet *ifp;
1912
1913	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1914	    nd6_slowtimo, NULL);
1915	IFNET_RLOCK();
1916	for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) {
1917		nd6if = ND_IFINFO(ifp);
1918		if (nd6if->basereachable && /* already initialized */
1919		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1920			/*
1921			 * Since reachable time rarely changes by router
1922			 * advertisements, we SHOULD insure that a new random
1923			 * value gets recomputed at least once every few hours.
1924			 * (RFC 2461, 6.3.4)
1925			 */
1926			nd6if->recalctm = nd6_recalc_reachtm_interval;
1927			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1928		}
1929	}
1930	IFNET_RUNLOCK();
1931}
1932
1933#define senderr(e) { error = (e); goto bad;}
1934int
1935nd6_output(ifp, origifp, m0, dst, rt0)
1936	struct ifnet *ifp;
1937	struct ifnet *origifp;
1938	struct mbuf *m0;
1939	struct sockaddr_in6 *dst;
1940	struct rtentry *rt0;
1941{
1942	struct mbuf *m = m0;
1943	struct rtentry *rt = rt0;
1944	struct sockaddr_in6 *gw6 = NULL;
1945	struct llinfo_nd6 *ln = NULL;
1946	int error = 0;
1947
1948	if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1949		goto sendpkt;
1950
1951	if (nd6_need_cache(ifp) == 0)
1952		goto sendpkt;
1953
1954	/*
1955	 * next hop determination.  This routine is derived from ether_output.
1956	 */
1957again:
1958	if (rt) {
1959		if ((rt->rt_flags & RTF_UP) == 0) {
1960			rt0 = rt = rtalloc1((struct sockaddr *)dst, 1, 0UL);
1961			if (rt != NULL) {
1962				RT_REMREF(rt);
1963				RT_UNLOCK(rt);
1964				if (rt->rt_ifp != ifp)
1965					/*
1966					 * XXX maybe we should update ifp too,
1967					 * but the original code didn't and I
1968					 * don't know what is correct here.
1969					 */
1970					goto again;
1971			} else
1972				senderr(EHOSTUNREACH);
1973		}
1974
1975		if (rt->rt_flags & RTF_GATEWAY) {
1976			gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
1977
1978			/*
1979			 * We skip link-layer address resolution and NUD
1980			 * if the gateway is not a neighbor from ND point
1981			 * of view, regardless of the value of nd_ifinfo.flags.
1982			 * The second condition is a bit tricky; we skip
1983			 * if the gateway is our own address, which is
1984			 * sometimes used to install a route to a p2p link.
1985			 */
1986			if (!nd6_is_addr_neighbor(gw6, ifp) ||
1987			    in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
1988				/*
1989				 * We allow this kind of tricky route only
1990				 * when the outgoing interface is p2p.
1991				 * XXX: we may need a more generic rule here.
1992				 */
1993				if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1994					senderr(EHOSTUNREACH);
1995
1996				goto sendpkt;
1997			}
1998
1999			if (rt->rt_gwroute == 0)
2000				goto lookup;
2001			if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) {
2002				RT_LOCK(rt);
2003				rtfree(rt); rt = rt0;
2004			lookup:
2005				rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1, 0UL);
2006				if ((rt = rt->rt_gwroute) == 0)
2007					senderr(EHOSTUNREACH);
2008				RT_UNLOCK(rt);
2009			}
2010		}
2011	}
2012
2013	/*
2014	 * Address resolution or Neighbor Unreachability Detection
2015	 * for the next hop.
2016	 * At this point, the destination of the packet must be a unicast
2017	 * or an anycast address(i.e. not a multicast).
2018	 */
2019
2020	/* Look up the neighbor cache for the nexthop */
2021	if (rt && (rt->rt_flags & RTF_LLINFO) != 0)
2022		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2023	else {
2024		/*
2025		 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2026		 * the condition below is not very efficient.  But we believe
2027		 * it is tolerable, because this should be a rare case.
2028		 */
2029		if (nd6_is_addr_neighbor(dst, ifp) &&
2030		    (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
2031			ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2032	}
2033	if (ln == NULL || rt == NULL) {
2034		if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
2035		    !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
2036			log(LOG_DEBUG,
2037			    "nd6_output: can't allocate llinfo for %s "
2038			    "(ln=%p, rt=%p)\n",
2039			    ip6_sprintf(&dst->sin6_addr), ln, rt);
2040			senderr(EIO);	/* XXX: good error? */
2041		}
2042
2043		goto sendpkt;	/* send anyway */
2044	}
2045
2046	/* We don't have to do link-layer address resolution on a p2p link. */
2047	if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
2048	    ln->ln_state < ND6_LLINFO_REACHABLE) {
2049		ln->ln_state = ND6_LLINFO_STALE;
2050		nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
2051	}
2052
2053	/*
2054	 * The first time we send a packet to a neighbor whose entry is
2055	 * STALE, we have to change the state to DELAY and a sets a timer to
2056	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2057	 * neighbor unreachability detection on expiration.
2058	 * (RFC 2461 7.3.3)
2059	 */
2060	if (ln->ln_state == ND6_LLINFO_STALE) {
2061		ln->ln_asked = 0;
2062		ln->ln_state = ND6_LLINFO_DELAY;
2063		nd6_llinfo_settimer(ln, (long)nd6_delay * hz);
2064	}
2065
2066	/*
2067	 * If the neighbor cache entry has a state other than INCOMPLETE
2068	 * (i.e. its link-layer address is already resolved), just
2069	 * send the packet.
2070	 */
2071	if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
2072		goto sendpkt;
2073
2074	/*
2075	 * There is a neighbor cache entry, but no ethernet address
2076	 * response yet.  Append this latest packet to the end of the
2077	 * packet queue in the mbuf, unless the number of the packet
2078	 * does not exceed nd6_maxqueuelen.  When it exceeds nd6_maxqueuelen,
2079	 * the oldest packet in the queue will be removed.
2080	 */
2081	if (ln->ln_state == ND6_LLINFO_NOSTATE)
2082		ln->ln_state = ND6_LLINFO_INCOMPLETE;
2083	if (ln->ln_hold) {
2084		struct mbuf *m_hold;
2085		int i;
2086
2087		i = 0;
2088		for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) {
2089			i++;
2090			if (m_hold->m_nextpkt == NULL) {
2091				m_hold->m_nextpkt = m;
2092				break;
2093			}
2094		}
2095		while (i >= nd6_maxqueuelen) {
2096			m_hold = ln->ln_hold;
2097			ln->ln_hold = ln->ln_hold->m_nextpkt;
2098			m_freem(m_hold);
2099			i--;
2100		}
2101	} else {
2102		ln->ln_hold = m;
2103	}
2104
2105	/*
2106	 * If there has been no NS for the neighbor after entering the
2107	 * INCOMPLETE state, send the first solicitation.
2108	 */
2109	if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
2110		ln->ln_asked++;
2111		nd6_llinfo_settimer(ln,
2112		    (long)ND_IFINFO(ifp)->retrans * hz / 1000);
2113		nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
2114	}
2115	return (0);
2116
2117  sendpkt:
2118	/* discard the packet if IPv6 operation is disabled on the interface */
2119	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2120		error = ENETDOWN; /* better error? */
2121		goto bad;
2122	}
2123
2124#ifdef IPSEC
2125	/* clean ipsec history once it goes out of the node */
2126	ipsec_delaux(m);
2127#endif
2128
2129#ifdef MAC
2130	mac_create_mbuf_linklayer(ifp, m);
2131#endif
2132	if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
2133		return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst,
2134		    rt));
2135	}
2136	return ((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt));
2137
2138  bad:
2139	if (m)
2140		m_freem(m);
2141	return (error);
2142}
2143#undef senderr
2144
2145int
2146nd6_need_cache(ifp)
2147	struct ifnet *ifp;
2148{
2149	/*
2150	 * XXX: we currently do not make neighbor cache on any interface
2151	 * other than ARCnet, Ethernet, FDDI and GIF.
2152	 *
2153	 * RFC2893 says:
2154	 * - unidirectional tunnels needs no ND
2155	 */
2156	switch (ifp->if_type) {
2157	case IFT_ARCNET:
2158	case IFT_ETHER:
2159	case IFT_FDDI:
2160	case IFT_IEEE1394:
2161#ifdef IFT_L2VLAN
2162	case IFT_L2VLAN:
2163#endif
2164#ifdef IFT_IEEE80211
2165	case IFT_IEEE80211:
2166#endif
2167#ifdef IFT_CARP
2168	case IFT_CARP:
2169#endif
2170	case IFT_GIF:		/* XXX need more cases? */
2171	case IFT_PPP:
2172	case IFT_TUNNEL:
2173	case IFT_BRIDGE:
2174		return (1);
2175	default:
2176		return (0);
2177	}
2178}
2179
2180int
2181nd6_storelladdr(ifp, rt0, m, dst, desten)
2182	struct ifnet *ifp;
2183	struct rtentry *rt0;
2184	struct mbuf *m;
2185	struct sockaddr *dst;
2186	u_char *desten;
2187{
2188	struct sockaddr_dl *sdl;
2189	struct rtentry *rt;
2190	int error;
2191
2192	if (m->m_flags & M_MCAST) {
2193		int i;
2194
2195		switch (ifp->if_type) {
2196		case IFT_ETHER:
2197		case IFT_FDDI:
2198#ifdef IFT_L2VLAN
2199		case IFT_L2VLAN:
2200#endif
2201#ifdef IFT_IEEE80211
2202		case IFT_IEEE80211:
2203#endif
2204		case IFT_BRIDGE:
2205		case IFT_ISO88025:
2206			ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
2207						 desten);
2208			return (0);
2209		case IFT_IEEE1394:
2210			/*
2211			 * netbsd can use if_broadcastaddr, but we don't do so
2212			 * to reduce # of ifdef.
2213			 */
2214			for (i = 0; i < ifp->if_addrlen; i++)
2215				desten[i] = ~0;
2216			return (0);
2217		case IFT_ARCNET:
2218			*desten = 0;
2219			return (0);
2220		default:
2221			m_freem(m);
2222			return (EAFNOSUPPORT);
2223		}
2224	}
2225
2226	if (rt0 == NULL) {
2227		/* this could happen, if we could not allocate memory */
2228		m_freem(m);
2229		return (ENOMEM);
2230	}
2231
2232	error = rt_check(&rt, &rt0, dst);
2233	if (error) {
2234		m_freem(m);
2235		return (error);
2236	}
2237	RT_UNLOCK(rt);
2238
2239	if (rt->rt_gateway->sa_family != AF_LINK) {
2240		printf("nd6_storelladdr: something odd happens\n");
2241		m_freem(m);
2242		return (EINVAL);
2243	}
2244	sdl = SDL(rt->rt_gateway);
2245	if (sdl->sdl_alen == 0) {
2246		/* this should be impossible, but we bark here for debugging */
2247		printf("nd6_storelladdr: sdl_alen == 0\n");
2248		m_freem(m);
2249		return (EINVAL);
2250	}
2251
2252	bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
2253	return (0);
2254}
2255
2256static void
2257clear_llinfo_pqueue(ln)
2258	struct llinfo_nd6 *ln;
2259{
2260	struct mbuf *m_hold, *m_hold_next;
2261
2262	for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) {
2263		m_hold_next = m_hold->m_nextpkt;
2264		m_hold->m_nextpkt = NULL;
2265		m_freem(m_hold);
2266	}
2267
2268	ln->ln_hold = NULL;
2269	return;
2270}
2271
2272static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS);
2273static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS);
2274#ifdef SYSCTL_DECL
2275SYSCTL_DECL(_net_inet6_icmp6);
2276#endif
2277SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
2278	CTLFLAG_RD, nd6_sysctl_drlist, "");
2279SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
2280	CTLFLAG_RD, nd6_sysctl_prlist, "");
2281SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen,
2282	CTLFLAG_RW, &nd6_maxqueuelen, 1, "");
2283
2284static int
2285nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS)
2286{
2287	int error;
2288	char buf[1024];
2289	struct in6_defrouter *d, *de;
2290	struct nd_defrouter *dr;
2291
2292	if (req->newptr)
2293		return EPERM;
2294	error = 0;
2295
2296	for (dr = TAILQ_FIRST(&nd_defrouter); dr;
2297	     dr = TAILQ_NEXT(dr, dr_entry)) {
2298		d = (struct in6_defrouter *)buf;
2299		de = (struct in6_defrouter *)(buf + sizeof(buf));
2300
2301		if (d + 1 <= de) {
2302			bzero(d, sizeof(*d));
2303			d->rtaddr.sin6_family = AF_INET6;
2304			d->rtaddr.sin6_len = sizeof(d->rtaddr);
2305			d->rtaddr.sin6_addr = dr->rtaddr;
2306			sa6_recoverscope(&d->rtaddr);
2307			d->flags = dr->flags;
2308			d->rtlifetime = dr->rtlifetime;
2309			d->expire = dr->expire;
2310			d->if_index = dr->ifp->if_index;
2311		} else
2312			panic("buffer too short");
2313
2314		error = SYSCTL_OUT(req, buf, sizeof(*d));
2315		if (error)
2316			break;
2317	}
2318
2319	return (error);
2320}
2321
2322static int
2323nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
2324{
2325	int error;
2326	char buf[1024];
2327	struct in6_prefix *p, *pe;
2328	struct nd_prefix *pr;
2329
2330	if (req->newptr)
2331		return EPERM;
2332	error = 0;
2333
2334	for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
2335		u_short advrtrs;
2336		size_t advance;
2337		struct sockaddr_in6 *sin6, *s6;
2338		struct nd_pfxrouter *pfr;
2339
2340		p = (struct in6_prefix *)buf;
2341		pe = (struct in6_prefix *)(buf + sizeof(buf));
2342
2343		if (p + 1 <= pe) {
2344			bzero(p, sizeof(*p));
2345			sin6 = (struct sockaddr_in6 *)(p + 1);
2346
2347			p->prefix = pr->ndpr_prefix;
2348			if (sa6_recoverscope(&p->prefix)) {
2349				log(LOG_ERR,
2350				    "scope error in prefix list (%s)\n",
2351				    ip6_sprintf(&p->prefix.sin6_addr));
2352				/* XXX: press on... */
2353			}
2354			p->raflags = pr->ndpr_raf;
2355			p->prefixlen = pr->ndpr_plen;
2356			p->vltime = pr->ndpr_vltime;
2357			p->pltime = pr->ndpr_pltime;
2358			p->if_index = pr->ndpr_ifp->if_index;
2359			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2360				p->expire = 0;
2361			else {
2362				time_t maxexpire;
2363
2364				/* XXX: we assume time_t is signed. */
2365				maxexpire = (-1) &
2366				    ~((time_t)1 <<
2367				    ((sizeof(maxexpire) * 8) - 1));
2368				if (pr->ndpr_vltime <
2369				    maxexpire - pr->ndpr_lastupdate) {
2370				    p->expire = pr->ndpr_lastupdate +
2371				        pr->ndpr_vltime;
2372				} else
2373					p->expire = maxexpire;
2374			}
2375			p->refcnt = pr->ndpr_refcnt;
2376			p->flags = pr->ndpr_stateflags;
2377			p->origin = PR_ORIG_RA;
2378			advrtrs = 0;
2379			for (pfr = pr->ndpr_advrtrs.lh_first; pfr;
2380			     pfr = pfr->pfr_next) {
2381				if ((void *)&sin6[advrtrs + 1] > (void *)pe) {
2382					advrtrs++;
2383					continue;
2384				}
2385				s6 = &sin6[advrtrs];
2386				bzero(s6, sizeof(*s6));
2387				s6->sin6_family = AF_INET6;
2388				s6->sin6_len = sizeof(*sin6);
2389				s6->sin6_addr = pfr->router->rtaddr;
2390				if (sa6_recoverscope(s6)) {
2391					log(LOG_ERR,
2392					    "scope error in "
2393					    "prefix list (%s)\n",
2394					    ip6_sprintf(&pfr->router->rtaddr));
2395				}
2396				advrtrs++;
2397			}
2398			p->advrtrs = advrtrs;
2399		} else
2400			panic("buffer too short");
2401
2402		advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
2403		error = SYSCTL_OUT(req, buf, advance);
2404		if (error)
2405			break;
2406	}
2407
2408	return (error);
2409}
2410