nd6.c revision 159390
1/*	$FreeBSD: head/sys/netinet6/nd6.c 159390 2006-06-08 00:31:17Z gnn $	*/
2/*	$KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $	*/
3
4/*-
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33#include "opt_inet.h"
34#include "opt_inet6.h"
35#include "opt_mac.h"
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/callout.h>
40#include <sys/mac.h>
41#include <sys/malloc.h>
42#include <sys/mbuf.h>
43#include <sys/socket.h>
44#include <sys/sockio.h>
45#include <sys/time.h>
46#include <sys/kernel.h>
47#include <sys/protosw.h>
48#include <sys/errno.h>
49#include <sys/syslog.h>
50#include <sys/queue.h>
51#include <sys/sysctl.h>
52
53#include <net/if.h>
54#include <net/if_arc.h>
55#include <net/if_dl.h>
56#include <net/if_types.h>
57#include <net/iso88025.h>
58#include <net/fddi.h>
59#include <net/route.h>
60
61#include <netinet/in.h>
62#include <netinet/if_ether.h>
63#include <netinet6/in6_var.h>
64#include <netinet/ip6.h>
65#include <netinet6/ip6_var.h>
66#include <netinet6/scope6_var.h>
67#include <netinet6/nd6.h>
68#include <netinet/icmp6.h>
69
70#include <sys/limits.h>
71
72#include <net/net_osdep.h>
73
74#define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
75#define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
76
77#define SIN6(s) ((struct sockaddr_in6 *)s)
78#define SDL(s) ((struct sockaddr_dl *)s)
79
80/* timer values */
81int	nd6_prune	= 1;	/* walk list every 1 seconds */
82int	nd6_delay	= 5;	/* delay first probe time 5 second */
83int	nd6_umaxtries	= 3;	/* maximum unicast query */
84int	nd6_mmaxtries	= 3;	/* maximum multicast query */
85int	nd6_useloopback = 1;	/* use loopback interface for local traffic */
86int	nd6_gctimer	= (60 * 60 * 24); /* 1 day: garbage collection timer */
87
88/* preventing too many loops in ND option parsing */
89int nd6_maxndopt = 10;	/* max # of ND options allowed */
90
91int nd6_maxnudhint = 0;	/* max # of subsequent upper layer hints */
92int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
93
94#ifdef ND6_DEBUG
95int nd6_debug = 1;
96#else
97int nd6_debug = 0;
98#endif
99
100/* for debugging? */
101static int nd6_inuse, nd6_allocated;
102
103struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6};
104struct nd_drhead nd_defrouter;
105struct nd_prhead nd_prefix = { 0 };
106
107int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
108static struct sockaddr_in6 all1_sa;
109
110static int nd6_is_new_addr_neighbor __P((struct sockaddr_in6 *,
111	struct ifnet *));
112static void nd6_setmtu0 __P((struct ifnet *, struct nd_ifinfo *));
113static void nd6_slowtimo __P((void *));
114static int regen_tmpaddr __P((struct in6_ifaddr *));
115static struct llinfo_nd6 *nd6_free __P((struct rtentry *, int));
116static void nd6_llinfo_timer __P((void *));
117static void clear_llinfo_pqueue __P((struct llinfo_nd6 *));
118
119struct callout nd6_slowtimo_ch;
120struct callout nd6_timer_ch;
121extern struct callout in6_tmpaddrtimer_ch;
122
123void
124nd6_init()
125{
126	static int nd6_init_done = 0;
127	int i;
128
129	if (nd6_init_done) {
130		log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
131		return;
132	}
133
134	all1_sa.sin6_family = AF_INET6;
135	all1_sa.sin6_len = sizeof(struct sockaddr_in6);
136	for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
137		all1_sa.sin6_addr.s6_addr[i] = 0xff;
138
139	/* initialization of the default router list */
140	TAILQ_INIT(&nd_defrouter);
141
142	nd6_init_done = 1;
143
144	/* start timer */
145	callout_init(&nd6_slowtimo_ch, 0);
146	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
147	    nd6_slowtimo, NULL);
148}
149
150struct nd_ifinfo *
151nd6_ifattach(ifp)
152	struct ifnet *ifp;
153{
154	struct nd_ifinfo *nd;
155
156	nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK);
157	bzero(nd, sizeof(*nd));
158
159	nd->initialized = 1;
160
161	nd->chlim = IPV6_DEFHLIM;
162	nd->basereachable = REACHABLE_TIME;
163	nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
164	nd->retrans = RETRANS_TIMER;
165	/*
166	 * Note that the default value of ip6_accept_rtadv is 0, which means
167	 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV
168	 * here.
169	 */
170	nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV);
171
172	/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
173	nd6_setmtu0(ifp, nd);
174
175	return nd;
176}
177
178void
179nd6_ifdetach(nd)
180	struct nd_ifinfo *nd;
181{
182
183	free(nd, M_IP6NDP);
184}
185
186/*
187 * Reset ND level link MTU. This function is called when the physical MTU
188 * changes, which means we might have to adjust the ND level MTU.
189 */
190void
191nd6_setmtu(ifp)
192	struct ifnet *ifp;
193{
194
195	nd6_setmtu0(ifp, ND_IFINFO(ifp));
196}
197
198/* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
199void
200nd6_setmtu0(ifp, ndi)
201	struct ifnet *ifp;
202	struct nd_ifinfo *ndi;
203{
204	u_int32_t omaxmtu;
205
206	omaxmtu = ndi->maxmtu;
207
208	switch (ifp->if_type) {
209	case IFT_ARCNET:
210		ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
211		break;
212	case IFT_FDDI:
213		ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */
214		break;
215	case IFT_ISO88025:
216		 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu);
217		 break;
218	default:
219		ndi->maxmtu = ifp->if_mtu;
220		break;
221	}
222
223	/*
224	 * Decreasing the interface MTU under IPV6 minimum MTU may cause
225	 * undesirable situation.  We thus notify the operator of the change
226	 * explicitly.  The check for omaxmtu is necessary to restrict the
227	 * log to the case of changing the MTU, not initializing it.
228	 */
229	if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
230		log(LOG_NOTICE, "nd6_setmtu0: "
231		    "new link MTU on %s (%lu) is too small for IPv6\n",
232		    if_name(ifp), (unsigned long)ndi->maxmtu);
233	}
234
235	if (ndi->maxmtu > in6_maxmtu)
236		in6_setmaxmtu(); /* check all interfaces just in case */
237
238#undef MIN
239}
240
241void
242nd6_option_init(opt, icmp6len, ndopts)
243	void *opt;
244	int icmp6len;
245	union nd_opts *ndopts;
246{
247
248	bzero(ndopts, sizeof(*ndopts));
249	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
250	ndopts->nd_opts_last
251		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
252
253	if (icmp6len == 0) {
254		ndopts->nd_opts_done = 1;
255		ndopts->nd_opts_search = NULL;
256	}
257}
258
259/*
260 * Take one ND option.
261 */
262struct nd_opt_hdr *
263nd6_option(ndopts)
264	union nd_opts *ndopts;
265{
266	struct nd_opt_hdr *nd_opt;
267	int olen;
268
269	if (ndopts == NULL)
270		panic("ndopts == NULL in nd6_option");
271	if (ndopts->nd_opts_last == NULL)
272		panic("uninitialized ndopts in nd6_option");
273	if (ndopts->nd_opts_search == NULL)
274		return NULL;
275	if (ndopts->nd_opts_done)
276		return NULL;
277
278	nd_opt = ndopts->nd_opts_search;
279
280	/* make sure nd_opt_len is inside the buffer */
281	if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
282		bzero(ndopts, sizeof(*ndopts));
283		return NULL;
284	}
285
286	olen = nd_opt->nd_opt_len << 3;
287	if (olen == 0) {
288		/*
289		 * Message validation requires that all included
290		 * options have a length that is greater than zero.
291		 */
292		bzero(ndopts, sizeof(*ndopts));
293		return NULL;
294	}
295
296	ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
297	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
298		/* option overruns the end of buffer, invalid */
299		bzero(ndopts, sizeof(*ndopts));
300		return NULL;
301	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
302		/* reached the end of options chain */
303		ndopts->nd_opts_done = 1;
304		ndopts->nd_opts_search = NULL;
305	}
306	return nd_opt;
307}
308
309/*
310 * Parse multiple ND options.
311 * This function is much easier to use, for ND routines that do not need
312 * multiple options of the same type.
313 */
314int
315nd6_options(ndopts)
316	union nd_opts *ndopts;
317{
318	struct nd_opt_hdr *nd_opt;
319	int i = 0;
320
321	if (ndopts == NULL)
322		panic("ndopts == NULL in nd6_options");
323	if (ndopts->nd_opts_last == NULL)
324		panic("uninitialized ndopts in nd6_options");
325	if (ndopts->nd_opts_search == NULL)
326		return 0;
327
328	while (1) {
329		nd_opt = nd6_option(ndopts);
330		if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
331			/*
332			 * Message validation requires that all included
333			 * options have a length that is greater than zero.
334			 */
335			icmp6stat.icp6s_nd_badopt++;
336			bzero(ndopts, sizeof(*ndopts));
337			return -1;
338		}
339
340		if (nd_opt == NULL)
341			goto skip1;
342
343		switch (nd_opt->nd_opt_type) {
344		case ND_OPT_SOURCE_LINKADDR:
345		case ND_OPT_TARGET_LINKADDR:
346		case ND_OPT_MTU:
347		case ND_OPT_REDIRECTED_HEADER:
348			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
349				nd6log((LOG_INFO,
350				    "duplicated ND6 option found (type=%d)\n",
351				    nd_opt->nd_opt_type));
352				/* XXX bark? */
353			} else {
354				ndopts->nd_opt_array[nd_opt->nd_opt_type]
355					= nd_opt;
356			}
357			break;
358		case ND_OPT_PREFIX_INFORMATION:
359			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
360				ndopts->nd_opt_array[nd_opt->nd_opt_type]
361					= nd_opt;
362			}
363			ndopts->nd_opts_pi_end =
364				(struct nd_opt_prefix_info *)nd_opt;
365			break;
366		default:
367			/*
368			 * Unknown options must be silently ignored,
369			 * to accomodate future extension to the protocol.
370			 */
371			nd6log((LOG_DEBUG,
372			    "nd6_options: unsupported option %d - "
373			    "option ignored\n", nd_opt->nd_opt_type));
374		}
375
376skip1:
377		i++;
378		if (i > nd6_maxndopt) {
379			icmp6stat.icp6s_nd_toomanyopt++;
380			nd6log((LOG_INFO, "too many loop in nd opt\n"));
381			break;
382		}
383
384		if (ndopts->nd_opts_done)
385			break;
386	}
387
388	return 0;
389}
390
391/*
392 * ND6 timer routine to handle ND6 entries
393 */
394void
395nd6_llinfo_settimer(ln, tick)
396	struct llinfo_nd6 *ln;
397	long tick;
398{
399	if (tick < 0) {
400		ln->ln_expire = 0;
401		ln->ln_ntick = 0;
402		callout_stop(&ln->ln_timer_ch);
403	} else {
404		ln->ln_expire = time_second + tick / hz;
405		if (tick > INT_MAX) {
406			ln->ln_ntick = tick - INT_MAX;
407			callout_reset(&ln->ln_timer_ch, INT_MAX,
408			    nd6_llinfo_timer, ln);
409		} else {
410			ln->ln_ntick = 0;
411			callout_reset(&ln->ln_timer_ch, tick,
412			    nd6_llinfo_timer, ln);
413		}
414	}
415}
416
417static void
418nd6_llinfo_timer(arg)
419	void *arg;
420{
421	struct llinfo_nd6 *ln;
422	struct rtentry *rt;
423	struct in6_addr *dst;
424	struct ifnet *ifp;
425	struct nd_ifinfo *ndi = NULL;
426
427	ln = (struct llinfo_nd6 *)arg;
428
429	if (ln->ln_ntick > 0) {
430		if (ln->ln_ntick > INT_MAX) {
431			ln->ln_ntick -= INT_MAX;
432			nd6_llinfo_settimer(ln, INT_MAX);
433		} else {
434			ln->ln_ntick = 0;
435			nd6_llinfo_settimer(ln, ln->ln_ntick);
436		}
437		return;
438	}
439
440	if ((rt = ln->ln_rt) == NULL)
441		panic("ln->ln_rt == NULL");
442	if ((ifp = rt->rt_ifp) == NULL)
443		panic("ln->ln_rt->rt_ifp == NULL");
444	ndi = ND_IFINFO(ifp);
445
446	/* sanity check */
447	if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
448		panic("rt_llinfo(%p) is not equal to ln(%p)",
449		      rt->rt_llinfo, ln);
450	if (rt_key(rt) == NULL)
451		panic("rt key is NULL in nd6_timer(ln=%p)", ln);
452
453	dst = &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
454
455	switch (ln->ln_state) {
456	case ND6_LLINFO_INCOMPLETE:
457		if (ln->ln_asked < nd6_mmaxtries) {
458			ln->ln_asked++;
459			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
460			nd6_ns_output(ifp, NULL, dst, ln, 0);
461		} else {
462			struct mbuf *m = ln->ln_hold;
463			if (m) {
464				struct mbuf *m0;
465
466				/*
467				 * assuming every packet in ln_hold has the
468				 * same IP header
469				 */
470				m0 = m->m_nextpkt;
471				m->m_nextpkt = NULL;
472				icmp6_error2(m, ICMP6_DST_UNREACH,
473				    ICMP6_DST_UNREACH_ADDR, 0, rt->rt_ifp);
474
475				ln->ln_hold = m0;
476				clear_llinfo_pqueue(ln);
477			}
478			if (rt)
479				(void)nd6_free(rt, 0);
480			ln = NULL;
481		}
482		break;
483	case ND6_LLINFO_REACHABLE:
484		if (!ND6_LLINFO_PERMANENT(ln)) {
485			ln->ln_state = ND6_LLINFO_STALE;
486			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
487		}
488		break;
489
490	case ND6_LLINFO_STALE:
491		/* Garbage Collection(RFC 2461 5.3) */
492		if (!ND6_LLINFO_PERMANENT(ln)) {
493			(void)nd6_free(rt, 1);
494			ln = NULL;
495		}
496		break;
497
498	case ND6_LLINFO_DELAY:
499		if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
500			/* We need NUD */
501			ln->ln_asked = 1;
502			ln->ln_state = ND6_LLINFO_PROBE;
503			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
504			nd6_ns_output(ifp, dst, dst, ln, 0);
505		} else {
506			ln->ln_state = ND6_LLINFO_STALE; /* XXX */
507			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
508		}
509		break;
510	case ND6_LLINFO_PROBE:
511		if (ln->ln_asked < nd6_umaxtries) {
512			ln->ln_asked++;
513			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
514			nd6_ns_output(ifp, dst, dst, ln, 0);
515		} else if (rt->rt_ifa != NULL &&
516		    rt->rt_ifa->ifa_addr->sa_family == AF_INET6 &&
517		    (((struct in6_ifaddr *)rt->rt_ifa)->ia_flags & IFA_ROUTE)) {
518			/*
519			 * This is an unreachable neighbor whose address is
520			 * specified as the destination of a p2p interface
521			 * (see in6_ifinit()).  We should not free the entry
522			 * since this is sort of a "static" entry generated
523			 * via interface address configuration.
524			 */
525			ln->ln_asked = 0;
526			ln->ln_expire = 0; /* make it permanent */
527			ln->ln_state = ND6_LLINFO_STALE;
528		} else {
529			(void)nd6_free(rt, 0);
530			ln = NULL;
531		}
532		break;
533	}
534}
535
536
537/*
538 * ND6 timer routine to expire default route list and prefix list
539 */
540void
541nd6_timer(ignored_arg)
542	void	*ignored_arg;
543{
544	int s;
545	struct nd_defrouter *dr;
546	struct nd_prefix *pr;
547	struct in6_ifaddr *ia6, *nia6;
548	struct in6_addrlifetime *lt6;
549
550	callout_reset(&nd6_timer_ch, nd6_prune * hz,
551	    nd6_timer, NULL);
552
553	/* expire default router list */
554	s = splnet();
555	dr = TAILQ_FIRST(&nd_defrouter);
556	while (dr) {
557		if (dr->expire && dr->expire < time_second) {
558			struct nd_defrouter *t;
559			t = TAILQ_NEXT(dr, dr_entry);
560			defrtrlist_del(dr);
561			dr = t;
562		} else {
563			dr = TAILQ_NEXT(dr, dr_entry);
564		}
565	}
566
567	/*
568	 * expire interface addresses.
569	 * in the past the loop was inside prefix expiry processing.
570	 * However, from a stricter speci-confrmance standpoint, we should
571	 * rather separate address lifetimes and prefix lifetimes.
572	 */
573  addrloop:
574	for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
575		nia6 = ia6->ia_next;
576		/* check address lifetime */
577		lt6 = &ia6->ia6_lifetime;
578		if (IFA6_IS_INVALID(ia6)) {
579			int regen = 0;
580
581			/*
582			 * If the expiring address is temporary, try
583			 * regenerating a new one.  This would be useful when
584			 * we suspended a laptop PC, then turned it on after a
585			 * period that could invalidate all temporary
586			 * addresses.  Although we may have to restart the
587			 * loop (see below), it must be after purging the
588			 * address.  Otherwise, we'd see an infinite loop of
589			 * regeneration.
590			 */
591			if (ip6_use_tempaddr &&
592			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
593				if (regen_tmpaddr(ia6) == 0)
594					regen = 1;
595			}
596
597			in6_purgeaddr(&ia6->ia_ifa);
598
599			if (regen)
600				goto addrloop; /* XXX: see below */
601		} else if (IFA6_IS_DEPRECATED(ia6)) {
602			int oldflags = ia6->ia6_flags;
603
604			ia6->ia6_flags |= IN6_IFF_DEPRECATED;
605
606			/*
607			 * If a temporary address has just become deprecated,
608			 * regenerate a new one if possible.
609			 */
610			if (ip6_use_tempaddr &&
611			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
612			    (oldflags & IN6_IFF_DEPRECATED) == 0) {
613
614				if (regen_tmpaddr(ia6) == 0) {
615					/*
616					 * A new temporary address is
617					 * generated.
618					 * XXX: this means the address chain
619					 * has changed while we are still in
620					 * the loop.  Although the change
621					 * would not cause disaster (because
622					 * it's not a deletion, but an
623					 * addition,) we'd rather restart the
624					 * loop just for safety.  Or does this
625					 * significantly reduce performance??
626					 */
627					goto addrloop;
628				}
629			}
630		} else {
631			/*
632			 * A new RA might have made a deprecated address
633			 * preferred.
634			 */
635			ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
636		}
637	}
638
639	/* expire prefix list */
640	pr = nd_prefix.lh_first;
641	while (pr) {
642		/*
643		 * check prefix lifetime.
644		 * since pltime is just for autoconf, pltime processing for
645		 * prefix is not necessary.
646		 */
647		if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
648		    time_second - pr->ndpr_lastupdate > pr->ndpr_vltime) {
649			struct nd_prefix *t;
650			t = pr->ndpr_next;
651
652			/*
653			 * address expiration and prefix expiration are
654			 * separate.  NEVER perform in6_purgeaddr here.
655			 */
656
657			prelist_remove(pr);
658			pr = t;
659		} else
660			pr = pr->ndpr_next;
661	}
662	splx(s);
663}
664
665static int
666regen_tmpaddr(ia6)
667	struct in6_ifaddr *ia6; /* deprecated/invalidated temporary address */
668{
669	struct ifaddr *ifa;
670	struct ifnet *ifp;
671	struct in6_ifaddr *public_ifa6 = NULL;
672
673	ifp = ia6->ia_ifa.ifa_ifp;
674	for (ifa = ifp->if_addrlist.tqh_first; ifa;
675	     ifa = ifa->ifa_list.tqe_next) {
676		struct in6_ifaddr *it6;
677
678		if (ifa->ifa_addr->sa_family != AF_INET6)
679			continue;
680
681		it6 = (struct in6_ifaddr *)ifa;
682
683		/* ignore no autoconf addresses. */
684		if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
685			continue;
686
687		/* ignore autoconf addresses with different prefixes. */
688		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
689			continue;
690
691		/*
692		 * Now we are looking at an autoconf address with the same
693		 * prefix as ours.  If the address is temporary and is still
694		 * preferred, do not create another one.  It would be rare, but
695		 * could happen, for example, when we resume a laptop PC after
696		 * a long period.
697		 */
698		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
699		    !IFA6_IS_DEPRECATED(it6)) {
700			public_ifa6 = NULL;
701			break;
702		}
703
704		/*
705		 * This is a public autoconf address that has the same prefix
706		 * as ours.  If it is preferred, keep it.  We can't break the
707		 * loop here, because there may be a still-preferred temporary
708		 * address with the prefix.
709		 */
710		if (!IFA6_IS_DEPRECATED(it6))
711		    public_ifa6 = it6;
712	}
713
714	if (public_ifa6 != NULL) {
715		int e;
716
717		if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
718			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
719			    " tmp addr,errno=%d\n", e);
720			return (-1);
721		}
722		return (0);
723	}
724
725	return (-1);
726}
727
728/*
729 * Nuke neighbor cache/prefix/default router management table, right before
730 * ifp goes away.
731 */
732void
733nd6_purge(ifp)
734	struct ifnet *ifp;
735{
736	struct llinfo_nd6 *ln, *nln;
737	struct nd_defrouter *dr, *ndr;
738	struct nd_prefix *pr, *npr;
739
740	/*
741	 * Nuke default router list entries toward ifp.
742	 * We defer removal of default router list entries that is installed
743	 * in the routing table, in order to keep additional side effects as
744	 * small as possible.
745	 */
746	for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
747		ndr = TAILQ_NEXT(dr, dr_entry);
748		if (dr->installed)
749			continue;
750
751		if (dr->ifp == ifp)
752			defrtrlist_del(dr);
753	}
754
755	for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
756		ndr = TAILQ_NEXT(dr, dr_entry);
757		if (!dr->installed)
758			continue;
759
760		if (dr->ifp == ifp)
761			defrtrlist_del(dr);
762	}
763
764	/* Nuke prefix list entries toward ifp */
765	for (pr = nd_prefix.lh_first; pr; pr = npr) {
766		npr = pr->ndpr_next;
767		if (pr->ndpr_ifp == ifp) {
768			/*
769			 * Because if_detach() does *not* release prefixes
770			 * while purging addresses the reference count will
771			 * still be above zero. We therefore reset it to
772			 * make sure that the prefix really gets purged.
773			 */
774			pr->ndpr_refcnt = 0;
775
776			/*
777			 * Previously, pr->ndpr_addr is removed as well,
778			 * but I strongly believe we don't have to do it.
779			 * nd6_purge() is only called from in6_ifdetach(),
780			 * which removes all the associated interface addresses
781			 * by itself.
782			 * (jinmei@kame.net 20010129)
783			 */
784			prelist_remove(pr);
785		}
786	}
787
788	/* cancel default outgoing interface setting */
789	if (nd6_defifindex == ifp->if_index)
790		nd6_setdefaultiface(0);
791
792	if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
793		/* refresh default router list */
794		defrouter_select();
795	}
796
797	/*
798	 * Nuke neighbor cache entries for the ifp.
799	 * Note that rt->rt_ifp may not be the same as ifp,
800	 * due to KAME goto ours hack.  See RTM_RESOLVE case in
801	 * nd6_rtrequest(), and ip6_input().
802	 */
803	ln = llinfo_nd6.ln_next;
804	while (ln && ln != &llinfo_nd6) {
805		struct rtentry *rt;
806		struct sockaddr_dl *sdl;
807
808		nln = ln->ln_next;
809		rt = ln->ln_rt;
810		if (rt && rt->rt_gateway &&
811		    rt->rt_gateway->sa_family == AF_LINK) {
812			sdl = (struct sockaddr_dl *)rt->rt_gateway;
813			if (sdl->sdl_index == ifp->if_index)
814				nln = nd6_free(rt, 0);
815		}
816		ln = nln;
817	}
818}
819
820struct rtentry *
821nd6_lookup(addr6, create, ifp)
822	struct in6_addr *addr6;
823	int create;
824	struct ifnet *ifp;
825{
826	struct rtentry *rt;
827	struct sockaddr_in6 sin6;
828
829	bzero(&sin6, sizeof(sin6));
830	sin6.sin6_len = sizeof(struct sockaddr_in6);
831	sin6.sin6_family = AF_INET6;
832	sin6.sin6_addr = *addr6;
833	rt = rtalloc1((struct sockaddr *)&sin6, create, 0UL);
834	if (rt) {
835		if ((rt->rt_flags & RTF_LLINFO) == 0 && create) {
836			/*
837			 * This is the case for the default route.
838			 * If we want to create a neighbor cache for the
839			 * address, we should free the route for the
840			 * destination and allocate an interface route.
841			 */
842			RTFREE_LOCKED(rt);
843			rt = NULL;
844		}
845	}
846	if (rt == NULL) {
847		if (create && ifp) {
848			int e;
849
850			/*
851			 * If no route is available and create is set,
852			 * we allocate a host route for the destination
853			 * and treat it like an interface route.
854			 * This hack is necessary for a neighbor which can't
855			 * be covered by our own prefix.
856			 */
857			struct ifaddr *ifa =
858			    ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
859			if (ifa == NULL)
860				return (NULL);
861
862			/*
863			 * Create a new route.  RTF_LLINFO is necessary
864			 * to create a Neighbor Cache entry for the
865			 * destination in nd6_rtrequest which will be
866			 * called in rtrequest via ifa->ifa_rtrequest.
867			 */
868			if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6,
869			    ifa->ifa_addr, (struct sockaddr *)&all1_sa,
870			    (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
871			    ~RTF_CLONING, &rt)) != 0) {
872				log(LOG_ERR,
873				    "nd6_lookup: failed to add route for a "
874				    "neighbor(%s), errno=%d\n",
875				    ip6_sprintf(addr6), e);
876			}
877			if (rt == NULL)
878				return (NULL);
879			RT_LOCK(rt);
880			if (rt->rt_llinfo) {
881				struct llinfo_nd6 *ln =
882				    (struct llinfo_nd6 *)rt->rt_llinfo;
883				ln->ln_state = ND6_LLINFO_NOSTATE;
884			}
885		} else
886			return (NULL);
887	}
888	RT_LOCK_ASSERT(rt);
889	RT_REMREF(rt);
890	/*
891	 * Validation for the entry.
892	 * Note that the check for rt_llinfo is necessary because a cloned
893	 * route from a parent route that has the L flag (e.g. the default
894	 * route to a p2p interface) may have the flag, too, while the
895	 * destination is not actually a neighbor.
896	 * XXX: we can't use rt->rt_ifp to check for the interface, since
897	 *      it might be the loopback interface if the entry is for our
898	 *      own address on a non-loopback interface. Instead, we should
899	 *      use rt->rt_ifa->ifa_ifp, which would specify the REAL
900	 *	interface.
901	 * Note also that ifa_ifp and ifp may differ when we connect two
902	 * interfaces to a same link, install a link prefix to an interface,
903	 * and try to install a neighbor cache on an interface that does not
904	 * have a route to the prefix.
905	 */
906	if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
907	    rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
908	    (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
909		if (create) {
910			nd6log((LOG_DEBUG,
911			    "nd6_lookup: failed to lookup %s (if = %s)\n",
912			    ip6_sprintf(addr6),
913			    ifp ? if_name(ifp) : "unspec"));
914		}
915		RT_UNLOCK(rt);
916		return (NULL);
917	}
918	RT_UNLOCK(rt);		/* XXX not ready to return rt locked */
919	return (rt);
920}
921
922/*
923 * Test whether a given IPv6 address is a neighbor or not, ignoring
924 * the actual neighbor cache.  The neighbor cache is ignored in order
925 * to not reenter the routing code from within itself.
926 */
927static int
928nd6_is_new_addr_neighbor(addr, ifp)
929	struct sockaddr_in6 *addr;
930	struct ifnet *ifp;
931{
932	struct nd_prefix *pr;
933	struct ifaddr *dstaddr;
934
935	/*
936	 * A link-local address is always a neighbor.
937	 * XXX: a link does not necessarily specify a single interface.
938	 */
939	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
940		struct sockaddr_in6 sin6_copy;
941		u_int32_t zone;
942
943		/*
944		 * We need sin6_copy since sa6_recoverscope() may modify the
945		 * content (XXX).
946		 */
947		sin6_copy = *addr;
948		if (sa6_recoverscope(&sin6_copy))
949			return (0); /* XXX: should be impossible */
950		if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
951			return (0);
952		if (sin6_copy.sin6_scope_id == zone)
953			return (1);
954		else
955			return (0);
956	}
957
958	/*
959	 * If the address matches one of our addresses,
960	 * it should be a neighbor.
961	 * If the address matches one of our on-link prefixes, it should be a
962	 * neighbor.
963	 */
964	for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
965		if (pr->ndpr_ifp != ifp)
966			continue;
967
968		if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
969			continue;
970
971		if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
972		    &addr->sin6_addr, &pr->ndpr_mask))
973			return (1);
974	}
975
976	/*
977	 * If the address is assigned on the node of the other side of
978	 * a p2p interface, the address should be a neighbor.
979	 */
980	dstaddr = ifa_ifwithdstaddr((struct sockaddr *)addr);
981	if ((dstaddr != NULL) && (dstaddr->ifa_ifp == ifp))
982		return (1);
983
984	/*
985	 * If the default router list is empty, all addresses are regarded
986	 * as on-link, and thus, as a neighbor.
987	 * XXX: we restrict the condition to hosts, because routers usually do
988	 * not have the "default router list".
989	 */
990	if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL &&
991	    nd6_defifindex == ifp->if_index) {
992		return (1);
993	}
994
995	return (0);
996}
997
998
999/*
1000 * Detect if a given IPv6 address identifies a neighbor on a given link.
1001 * XXX: should take care of the destination of a p2p link?
1002 */
1003int
1004nd6_is_addr_neighbor(addr, ifp)
1005	struct sockaddr_in6 *addr;
1006	struct ifnet *ifp;
1007{
1008
1009	if (nd6_is_new_addr_neighbor(addr, ifp))
1010		return (1);
1011
1012	/*
1013	 * Even if the address matches none of our addresses, it might be
1014	 * in the neighbor cache.
1015	 */
1016	if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL)
1017		return (1);
1018
1019	return (0);
1020}
1021
1022/*
1023 * Free an nd6 llinfo entry.
1024 * Since the function would cause significant changes in the kernel, DO NOT
1025 * make it global, unless you have a strong reason for the change, and are sure
1026 * that the change is safe.
1027 */
1028static struct llinfo_nd6 *
1029nd6_free(rt, gc)
1030	struct rtentry *rt;
1031	int gc;
1032{
1033	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
1034	struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
1035	struct nd_defrouter *dr;
1036
1037	/*
1038	 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1039	 * even though it is not harmful, it was not really necessary.
1040	 */
1041
1042	/* cancel timer */
1043	nd6_llinfo_settimer(ln, -1);
1044
1045	if (!ip6_forwarding) {
1046		int s;
1047		s = splnet();
1048		dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1049		    rt->rt_ifp);
1050
1051		if (dr != NULL && dr->expire &&
1052		    ln->ln_state == ND6_LLINFO_STALE && gc) {
1053			/*
1054			 * If the reason for the deletion is just garbage
1055			 * collection, and the neighbor is an active default
1056			 * router, do not delete it.  Instead, reset the GC
1057			 * timer using the router's lifetime.
1058			 * Simply deleting the entry would affect default
1059			 * router selection, which is not necessarily a good
1060			 * thing, especially when we're using router preference
1061			 * values.
1062			 * XXX: the check for ln_state would be redundant,
1063			 *      but we intentionally keep it just in case.
1064			 */
1065			if (dr->expire > time_second)
1066				nd6_llinfo_settimer(ln,
1067				    (dr->expire - time_second) * hz);
1068			else
1069				nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1070			splx(s);
1071			return (ln->ln_next);
1072		}
1073
1074		if (ln->ln_router || dr) {
1075			/*
1076			 * rt6_flush must be called whether or not the neighbor
1077			 * is in the Default Router List.
1078			 * See a corresponding comment in nd6_na_input().
1079			 */
1080			rt6_flush(&in6, rt->rt_ifp);
1081		}
1082
1083		if (dr) {
1084			/*
1085			 * Unreachablity of a router might affect the default
1086			 * router selection and on-link detection of advertised
1087			 * prefixes.
1088			 */
1089
1090			/*
1091			 * Temporarily fake the state to choose a new default
1092			 * router and to perform on-link determination of
1093			 * prefixes correctly.
1094			 * Below the state will be set correctly,
1095			 * or the entry itself will be deleted.
1096			 */
1097			ln->ln_state = ND6_LLINFO_INCOMPLETE;
1098
1099			/*
1100			 * Since defrouter_select() does not affect the
1101			 * on-link determination and MIP6 needs the check
1102			 * before the default router selection, we perform
1103			 * the check now.
1104			 */
1105			pfxlist_onlink_check();
1106
1107			/*
1108			 * refresh default router list
1109			 */
1110			defrouter_select();
1111		}
1112		splx(s);
1113	}
1114
1115	/*
1116	 * Before deleting the entry, remember the next entry as the
1117	 * return value.  We need this because pfxlist_onlink_check() above
1118	 * might have freed other entries (particularly the old next entry) as
1119	 * a side effect (XXX).
1120	 */
1121	next = ln->ln_next;
1122
1123	/*
1124	 * Detach the route from the routing tree and the list of neighbor
1125	 * caches, and disable the route entry not to be used in already
1126	 * cached routes.
1127	 */
1128	rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0,
1129	    rt_mask(rt), 0, (struct rtentry **)0);
1130
1131	return (next);
1132}
1133
1134/*
1135 * Upper-layer reachability hint for Neighbor Unreachability Detection.
1136 *
1137 * XXX cost-effective methods?
1138 */
1139void
1140nd6_nud_hint(rt, dst6, force)
1141	struct rtentry *rt;
1142	struct in6_addr *dst6;
1143	int force;
1144{
1145	struct llinfo_nd6 *ln;
1146
1147	/*
1148	 * If the caller specified "rt", use that.  Otherwise, resolve the
1149	 * routing table by supplied "dst6".
1150	 */
1151	if (rt == NULL) {
1152		if (dst6 == NULL)
1153			return;
1154		if ((rt = nd6_lookup(dst6, 0, NULL)) == NULL)
1155			return;
1156	}
1157
1158	if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
1159	    (rt->rt_flags & RTF_LLINFO) == 0 ||
1160	    rt->rt_llinfo == NULL || rt->rt_gateway == NULL ||
1161	    rt->rt_gateway->sa_family != AF_LINK) {
1162		/* This is not a host route. */
1163		return;
1164	}
1165
1166	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1167	if (ln->ln_state < ND6_LLINFO_REACHABLE)
1168		return;
1169
1170	/*
1171	 * if we get upper-layer reachability confirmation many times,
1172	 * it is possible we have false information.
1173	 */
1174	if (!force) {
1175		ln->ln_byhint++;
1176		if (ln->ln_byhint > nd6_maxnudhint)
1177			return;
1178	}
1179
1180	ln->ln_state = ND6_LLINFO_REACHABLE;
1181	if (!ND6_LLINFO_PERMANENT(ln)) {
1182		nd6_llinfo_settimer(ln,
1183		    (long)ND_IFINFO(rt->rt_ifp)->reachable * hz);
1184	}
1185}
1186
1187void
1188nd6_rtrequest(req, rt, info)
1189	int	req;
1190	struct rtentry *rt;
1191	struct rt_addrinfo *info; /* xxx unused */
1192{
1193	struct sockaddr *gate = rt->rt_gateway;
1194	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1195	static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
1196	struct ifnet *ifp = rt->rt_ifp;
1197	struct ifaddr *ifa;
1198
1199	RT_LOCK_ASSERT(rt);
1200
1201	if ((rt->rt_flags & RTF_GATEWAY) != 0)
1202		return;
1203
1204	if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1205		/*
1206		 * This is probably an interface direct route for a link
1207		 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1208		 * We do not need special treatment below for such a route.
1209		 * Moreover, the RTF_LLINFO flag which would be set below
1210		 * would annoy the ndp(8) command.
1211		 */
1212		return;
1213	}
1214
1215	if (req == RTM_RESOLVE &&
1216	    (nd6_need_cache(ifp) == 0 || /* stf case */
1217	     !nd6_is_new_addr_neighbor((struct sockaddr_in6 *)rt_key(rt),
1218	     ifp))) {
1219		/*
1220		 * FreeBSD and BSD/OS often make a cloned host route based
1221		 * on a less-specific route (e.g. the default route).
1222		 * If the less specific route does not have a "gateway"
1223		 * (this is the case when the route just goes to a p2p or an
1224		 * stf interface), we'll mistakenly make a neighbor cache for
1225		 * the host route, and will see strange neighbor solicitation
1226		 * for the corresponding destination.  In order to avoid the
1227		 * confusion, we check if the destination of the route is
1228		 * a neighbor in terms of neighbor discovery, and stop the
1229		 * process if not.  Additionally, we remove the LLINFO flag
1230		 * so that ndp(8) will not try to get the neighbor information
1231		 * of the destination.
1232		 */
1233		rt->rt_flags &= ~RTF_LLINFO;
1234		return;
1235	}
1236
1237	switch (req) {
1238	case RTM_ADD:
1239		/*
1240		 * There is no backward compatibility :)
1241		 *
1242		 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1243		 *     SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1244		 *	   rt->rt_flags |= RTF_CLONING;
1245		 */
1246		if ((rt->rt_flags & RTF_CLONING) ||
1247		    ((rt->rt_flags & RTF_LLINFO) && ln == NULL)) {
1248			/*
1249			 * Case 1: This route should come from a route to
1250			 * interface (RTF_CLONING case) or the route should be
1251			 * treated as on-link but is currently not
1252			 * (RTF_LLINFO && ln == NULL case).
1253			 */
1254			rt_setgate(rt, rt_key(rt),
1255				   (struct sockaddr *)&null_sdl);
1256			gate = rt->rt_gateway;
1257			SDL(gate)->sdl_type = ifp->if_type;
1258			SDL(gate)->sdl_index = ifp->if_index;
1259			if (ln)
1260				nd6_llinfo_settimer(ln, 0);
1261			if ((rt->rt_flags & RTF_CLONING) != 0)
1262				break;
1263		}
1264		/*
1265		 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1266		 * We don't do that here since llinfo is not ready yet.
1267		 *
1268		 * There are also couple of other things to be discussed:
1269		 * - unsolicited NA code needs improvement beforehand
1270		 * - RFC2461 says we MAY send multicast unsolicited NA
1271		 *   (7.2.6 paragraph 4), however, it also says that we
1272		 *   SHOULD provide a mechanism to prevent multicast NA storm.
1273		 *   we don't have anything like it right now.
1274		 *   note that the mechanism needs a mutual agreement
1275		 *   between proxies, which means that we need to implement
1276		 *   a new protocol, or a new kludge.
1277		 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1278		 *   we need to check ip6forwarding before sending it.
1279		 *   (or should we allow proxy ND configuration only for
1280		 *   routers?  there's no mention about proxy ND from hosts)
1281		 */
1282		/* FALLTHROUGH */
1283	case RTM_RESOLVE:
1284		if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1285			/*
1286			 * Address resolution isn't necessary for a point to
1287			 * point link, so we can skip this test for a p2p link.
1288			 */
1289			if (gate->sa_family != AF_LINK ||
1290			    gate->sa_len < sizeof(null_sdl)) {
1291				log(LOG_DEBUG,
1292				    "nd6_rtrequest: bad gateway value: %s\n",
1293				    if_name(ifp));
1294				break;
1295			}
1296			SDL(gate)->sdl_type = ifp->if_type;
1297			SDL(gate)->sdl_index = ifp->if_index;
1298		}
1299		if (ln != NULL)
1300			break;	/* This happens on a route change */
1301		/*
1302		 * Case 2: This route may come from cloning, or a manual route
1303		 * add with a LL address.
1304		 */
1305		R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1306		rt->rt_llinfo = (caddr_t)ln;
1307		if (ln == NULL) {
1308			log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1309			break;
1310		}
1311		nd6_inuse++;
1312		nd6_allocated++;
1313		bzero(ln, sizeof(*ln));
1314		ln->ln_rt = rt;
1315		callout_init(&ln->ln_timer_ch, 0);
1316
1317		/* this is required for "ndp" command. - shin */
1318		if (req == RTM_ADD) {
1319		        /*
1320			 * gate should have some valid AF_LINK entry,
1321			 * and ln->ln_expire should have some lifetime
1322			 * which is specified by ndp command.
1323			 */
1324			ln->ln_state = ND6_LLINFO_REACHABLE;
1325			ln->ln_byhint = 0;
1326		} else {
1327		        /*
1328			 * When req == RTM_RESOLVE, rt is created and
1329			 * initialized in rtrequest(), so rt_expire is 0.
1330			 */
1331			ln->ln_state = ND6_LLINFO_NOSTATE;
1332			nd6_llinfo_settimer(ln, 0);
1333		}
1334		rt->rt_flags |= RTF_LLINFO;
1335		ln->ln_next = llinfo_nd6.ln_next;
1336		llinfo_nd6.ln_next = ln;
1337		ln->ln_prev = &llinfo_nd6;
1338		ln->ln_next->ln_prev = ln;
1339
1340		/*
1341		 * check if rt_key(rt) is one of my address assigned
1342		 * to the interface.
1343		 */
1344		ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
1345		    &SIN6(rt_key(rt))->sin6_addr);
1346		if (ifa) {
1347			caddr_t macp = nd6_ifptomac(ifp);
1348			nd6_llinfo_settimer(ln, -1);
1349			ln->ln_state = ND6_LLINFO_REACHABLE;
1350			ln->ln_byhint = 0;
1351			if (macp) {
1352				bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
1353				SDL(gate)->sdl_alen = ifp->if_addrlen;
1354			}
1355			if (nd6_useloopback) {
1356				rt->rt_ifp = &loif[0];	/* XXX */
1357				/*
1358				 * Make sure rt_ifa be equal to the ifaddr
1359				 * corresponding to the address.
1360				 * We need this because when we refer
1361				 * rt_ifa->ia6_flags in ip6_input, we assume
1362				 * that the rt_ifa points to the address instead
1363				 * of the loopback address.
1364				 */
1365				if (ifa != rt->rt_ifa) {
1366					IFAFREE(rt->rt_ifa);
1367					IFAREF(ifa);
1368					rt->rt_ifa = ifa;
1369				}
1370			}
1371		} else if (rt->rt_flags & RTF_ANNOUNCE) {
1372			nd6_llinfo_settimer(ln, -1);
1373			ln->ln_state = ND6_LLINFO_REACHABLE;
1374			ln->ln_byhint = 0;
1375
1376			/* join solicited node multicast for proxy ND */
1377			if (ifp->if_flags & IFF_MULTICAST) {
1378				struct in6_addr llsol;
1379				int error;
1380
1381				llsol = SIN6(rt_key(rt))->sin6_addr;
1382				llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
1383				llsol.s6_addr32[1] = 0;
1384				llsol.s6_addr32[2] = htonl(1);
1385				llsol.s6_addr8[12] = 0xff;
1386				if (in6_setscope(&llsol, ifp, NULL))
1387					break;
1388				if (in6_addmulti(&llsol, ifp,
1389				    &error, 0) == NULL) {
1390					nd6log((LOG_ERR, "%s: failed to join "
1391					    "%s (errno=%d)\n", if_name(ifp),
1392					    ip6_sprintf(&llsol), error));
1393				}
1394			}
1395		}
1396		break;
1397
1398	case RTM_DELETE:
1399		if (ln == NULL)
1400			break;
1401		/* leave from solicited node multicast for proxy ND */
1402		if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1403		    (ifp->if_flags & IFF_MULTICAST) != 0) {
1404			struct in6_addr llsol;
1405			struct in6_multi *in6m;
1406
1407			llsol = SIN6(rt_key(rt))->sin6_addr;
1408			llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
1409			llsol.s6_addr32[1] = 0;
1410			llsol.s6_addr32[2] = htonl(1);
1411			llsol.s6_addr8[12] = 0xff;
1412			if (in6_setscope(&llsol, ifp, NULL) == 0) {
1413				IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1414				if (in6m)
1415					in6_delmulti(in6m);
1416			} else
1417				; /* XXX: should not happen. bark here? */
1418		}
1419		nd6_inuse--;
1420		ln->ln_next->ln_prev = ln->ln_prev;
1421		ln->ln_prev->ln_next = ln->ln_next;
1422		ln->ln_prev = NULL;
1423		nd6_llinfo_settimer(ln, -1);
1424		rt->rt_llinfo = 0;
1425		rt->rt_flags &= ~RTF_LLINFO;
1426		clear_llinfo_pqueue(ln);
1427		Free((caddr_t)ln);
1428	}
1429}
1430
1431int
1432nd6_ioctl(cmd, data, ifp)
1433	u_long cmd;
1434	caddr_t	data;
1435	struct ifnet *ifp;
1436{
1437	struct in6_drlist *drl = (struct in6_drlist *)data;
1438	struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1439	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1440	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1441	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1442	struct nd_defrouter *dr;
1443	struct nd_prefix *pr;
1444	struct rtentry *rt;
1445	int i = 0, error = 0;
1446	int s;
1447
1448	switch (cmd) {
1449	case SIOCGDRLST_IN6:
1450		/*
1451		 * obsolete API, use sysctl under net.inet6.icmp6
1452		 */
1453		bzero(drl, sizeof(*drl));
1454		s = splnet();
1455		dr = TAILQ_FIRST(&nd_defrouter);
1456		while (dr && i < DRLSTSIZ) {
1457			drl->defrouter[i].rtaddr = dr->rtaddr;
1458			in6_clearscope(&drl->defrouter[i].rtaddr);
1459
1460			drl->defrouter[i].flags = dr->flags;
1461			drl->defrouter[i].rtlifetime = dr->rtlifetime;
1462			drl->defrouter[i].expire = dr->expire;
1463			drl->defrouter[i].if_index = dr->ifp->if_index;
1464			i++;
1465			dr = TAILQ_NEXT(dr, dr_entry);
1466		}
1467		splx(s);
1468		break;
1469	case SIOCGPRLST_IN6:
1470		/*
1471		 * obsolete API, use sysctl under net.inet6.icmp6
1472		 *
1473		 * XXX the structure in6_prlist was changed in backward-
1474		 * incompatible manner.  in6_oprlist is used for SIOCGPRLST_IN6,
1475		 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1476		 */
1477		/*
1478		 * XXX meaning of fields, especialy "raflags", is very
1479		 * differnet between RA prefix list and RR/static prefix list.
1480		 * how about separating ioctls into two?
1481		 */
1482		bzero(oprl, sizeof(*oprl));
1483		s = splnet();
1484		pr = nd_prefix.lh_first;
1485		while (pr && i < PRLSTSIZ) {
1486			struct nd_pfxrouter *pfr;
1487			int j;
1488
1489			oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1490			oprl->prefix[i].raflags = pr->ndpr_raf;
1491			oprl->prefix[i].prefixlen = pr->ndpr_plen;
1492			oprl->prefix[i].vltime = pr->ndpr_vltime;
1493			oprl->prefix[i].pltime = pr->ndpr_pltime;
1494			oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1495			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
1496				oprl->prefix[i].expire = 0;
1497			else {
1498				time_t maxexpire;
1499
1500				/* XXX: we assume time_t is signed. */
1501				maxexpire = (-1) &
1502				    ~((time_t)1 <<
1503				    ((sizeof(maxexpire) * 8) - 1));
1504				if (pr->ndpr_vltime <
1505				    maxexpire - pr->ndpr_lastupdate) {
1506					oprl->prefix[i].expire =
1507					    pr->ndpr_lastupdate +
1508					    pr->ndpr_vltime;
1509				} else
1510					oprl->prefix[i].expire = maxexpire;
1511			}
1512
1513			pfr = pr->ndpr_advrtrs.lh_first;
1514			j = 0;
1515			while (pfr) {
1516				if (j < DRLSTSIZ) {
1517#define RTRADDR oprl->prefix[i].advrtr[j]
1518					RTRADDR = pfr->router->rtaddr;
1519					in6_clearscope(&RTRADDR);
1520#undef RTRADDR
1521				}
1522				j++;
1523				pfr = pfr->pfr_next;
1524			}
1525			oprl->prefix[i].advrtrs = j;
1526			oprl->prefix[i].origin = PR_ORIG_RA;
1527
1528			i++;
1529			pr = pr->ndpr_next;
1530		}
1531		splx(s);
1532
1533		break;
1534	case OSIOCGIFINFO_IN6:
1535#define ND	ndi->ndi
1536		/* XXX: old ndp(8) assumes a positive value for linkmtu. */
1537		bzero(&ND, sizeof(ND));
1538		ND.linkmtu = IN6_LINKMTU(ifp);
1539		ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1540		ND.basereachable = ND_IFINFO(ifp)->basereachable;
1541		ND.reachable = ND_IFINFO(ifp)->reachable;
1542		ND.retrans = ND_IFINFO(ifp)->retrans;
1543		ND.flags = ND_IFINFO(ifp)->flags;
1544		ND.recalctm = ND_IFINFO(ifp)->recalctm;
1545		ND.chlim = ND_IFINFO(ifp)->chlim;
1546		break;
1547	case SIOCGIFINFO_IN6:
1548		ND = *ND_IFINFO(ifp);
1549		break;
1550	case SIOCSIFINFO_IN6:
1551		/*
1552		 * used to change host variables from userland.
1553		 * intented for a use on router to reflect RA configurations.
1554		 */
1555		/* 0 means 'unspecified' */
1556		if (ND.linkmtu != 0) {
1557			if (ND.linkmtu < IPV6_MMTU ||
1558			    ND.linkmtu > IN6_LINKMTU(ifp)) {
1559				error = EINVAL;
1560				break;
1561			}
1562			ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1563		}
1564
1565		if (ND.basereachable != 0) {
1566			int obasereachable = ND_IFINFO(ifp)->basereachable;
1567
1568			ND_IFINFO(ifp)->basereachable = ND.basereachable;
1569			if (ND.basereachable != obasereachable)
1570				ND_IFINFO(ifp)->reachable =
1571				    ND_COMPUTE_RTIME(ND.basereachable);
1572		}
1573		if (ND.retrans != 0)
1574			ND_IFINFO(ifp)->retrans = ND.retrans;
1575		if (ND.chlim != 0)
1576			ND_IFINFO(ifp)->chlim = ND.chlim;
1577		/* FALLTHROUGH */
1578	case SIOCSIFINFO_FLAGS:
1579		ND_IFINFO(ifp)->flags = ND.flags;
1580		break;
1581#undef ND
1582	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
1583		/* sync kernel routing table with the default router list */
1584		defrouter_reset();
1585		defrouter_select();
1586		break;
1587	case SIOCSPFXFLUSH_IN6:
1588	{
1589		/* flush all the prefix advertised by routers */
1590		struct nd_prefix *pr, *next;
1591
1592		s = splnet();
1593		for (pr = nd_prefix.lh_first; pr; pr = next) {
1594			struct in6_ifaddr *ia, *ia_next;
1595
1596			next = pr->ndpr_next;
1597
1598			if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1599				continue; /* XXX */
1600
1601			/* do we really have to remove addresses as well? */
1602			for (ia = in6_ifaddr; ia; ia = ia_next) {
1603				/* ia might be removed.  keep the next ptr. */
1604				ia_next = ia->ia_next;
1605
1606				if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1607					continue;
1608
1609				if (ia->ia6_ndpr == pr)
1610					in6_purgeaddr(&ia->ia_ifa);
1611			}
1612			prelist_remove(pr);
1613		}
1614		splx(s);
1615		break;
1616	}
1617	case SIOCSRTRFLUSH_IN6:
1618	{
1619		/* flush all the default routers */
1620		struct nd_defrouter *dr, *next;
1621
1622		s = splnet();
1623		defrouter_reset();
1624		for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = next) {
1625			next = TAILQ_NEXT(dr, dr_entry);
1626			defrtrlist_del(dr);
1627		}
1628		defrouter_select();
1629		splx(s);
1630		break;
1631	}
1632	case SIOCGNBRINFO_IN6:
1633	{
1634		struct llinfo_nd6 *ln;
1635		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1636
1637		if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1638			return (error);
1639
1640		s = splnet();
1641		if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) {
1642			error = EINVAL;
1643			splx(s);
1644			break;
1645		}
1646		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1647		nbi->state = ln->ln_state;
1648		nbi->asked = ln->ln_asked;
1649		nbi->isrouter = ln->ln_router;
1650		nbi->expire = ln->ln_expire;
1651		splx(s);
1652
1653		break;
1654	}
1655	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1656		ndif->ifindex = nd6_defifindex;
1657		break;
1658	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1659		return (nd6_setdefaultiface(ndif->ifindex));
1660	}
1661	return (error);
1662}
1663
1664/*
1665 * Create neighbor cache entry and cache link-layer address,
1666 * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
1667 */
1668struct rtentry *
1669nd6_cache_lladdr(ifp, from, lladdr, lladdrlen, type, code)
1670	struct ifnet *ifp;
1671	struct in6_addr *from;
1672	char *lladdr;
1673	int lladdrlen;
1674	int type;	/* ICMP6 type */
1675	int code;	/* type dependent information */
1676{
1677	struct rtentry *rt = NULL;
1678	struct llinfo_nd6 *ln = NULL;
1679	int is_newentry;
1680	struct sockaddr_dl *sdl = NULL;
1681	int do_update;
1682	int olladdr;
1683	int llchange;
1684	int newstate = 0;
1685
1686	if (ifp == NULL)
1687		panic("ifp == NULL in nd6_cache_lladdr");
1688	if (from == NULL)
1689		panic("from == NULL in nd6_cache_lladdr");
1690
1691	/* nothing must be updated for unspecified address */
1692	if (IN6_IS_ADDR_UNSPECIFIED(from))
1693		return NULL;
1694
1695	/*
1696	 * Validation about ifp->if_addrlen and lladdrlen must be done in
1697	 * the caller.
1698	 *
1699	 * XXX If the link does not have link-layer adderss, what should
1700	 * we do? (ifp->if_addrlen == 0)
1701	 * Spec says nothing in sections for RA, RS and NA.  There's small
1702	 * description on it in NS section (RFC 2461 7.2.3).
1703	 */
1704
1705	rt = nd6_lookup(from, 0, ifp);
1706	if (rt == NULL) {
1707		rt = nd6_lookup(from, 1, ifp);
1708		is_newentry = 1;
1709	} else {
1710		/* do nothing if static ndp is set */
1711		if (rt->rt_flags & RTF_STATIC)
1712			return NULL;
1713		is_newentry = 0;
1714	}
1715
1716	if (rt == NULL)
1717		return NULL;
1718	if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1719fail:
1720		(void)nd6_free(rt, 0);
1721		return NULL;
1722	}
1723	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1724	if (ln == NULL)
1725		goto fail;
1726	if (rt->rt_gateway == NULL)
1727		goto fail;
1728	if (rt->rt_gateway->sa_family != AF_LINK)
1729		goto fail;
1730	sdl = SDL(rt->rt_gateway);
1731
1732	olladdr = (sdl->sdl_alen) ? 1 : 0;
1733	if (olladdr && lladdr) {
1734		if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen))
1735			llchange = 1;
1736		else
1737			llchange = 0;
1738	} else
1739		llchange = 0;
1740
1741	/*
1742	 * newentry olladdr  lladdr  llchange	(*=record)
1743	 *	0	n	n	--	(1)
1744	 *	0	y	n	--	(2)
1745	 *	0	n	y	--	(3) * STALE
1746	 *	0	y	y	n	(4) *
1747	 *	0	y	y	y	(5) * STALE
1748	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
1749	 *	1	--	y	--	(7) * STALE
1750	 */
1751
1752	if (lladdr) {		/* (3-5) and (7) */
1753		/*
1754		 * Record source link-layer address
1755		 * XXX is it dependent to ifp->if_type?
1756		 */
1757		sdl->sdl_alen = ifp->if_addrlen;
1758		bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
1759	}
1760
1761	if (!is_newentry) {
1762		if ((!olladdr && lladdr != NULL) ||	/* (3) */
1763		    (olladdr && lladdr != NULL && llchange)) {	/* (5) */
1764			do_update = 1;
1765			newstate = ND6_LLINFO_STALE;
1766		} else					/* (1-2,4) */
1767			do_update = 0;
1768	} else {
1769		do_update = 1;
1770		if (lladdr == NULL)			/* (6) */
1771			newstate = ND6_LLINFO_NOSTATE;
1772		else					/* (7) */
1773			newstate = ND6_LLINFO_STALE;
1774	}
1775
1776	if (do_update) {
1777		/*
1778		 * Update the state of the neighbor cache.
1779		 */
1780		ln->ln_state = newstate;
1781
1782		if (ln->ln_state == ND6_LLINFO_STALE) {
1783			/*
1784			 * XXX: since nd6_output() below will cause
1785			 * state tansition to DELAY and reset the timer,
1786			 * we must set the timer now, although it is actually
1787			 * meaningless.
1788			 */
1789			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1790
1791			if (ln->ln_hold) {
1792				struct mbuf *m_hold, *m_hold_next;
1793				for (m_hold = ln->ln_hold; m_hold;
1794				     m_hold = m_hold_next) {
1795					struct mbuf *mpkt = NULL;
1796
1797					m_hold_next = m_hold->m_nextpkt;
1798					mpkt = m_copym(m_hold, 0, M_COPYALL, M_DONTWAIT);
1799					if (mpkt == NULL) {
1800						m_freem(m_hold);
1801						break;
1802					}
1803					mpkt->m_nextpkt = NULL;
1804
1805					/*
1806					 * we assume ifp is not a p2p here, so
1807					 * just set the 2nd argument as the
1808					 * 1st one.
1809					 */
1810					nd6_output(ifp, ifp, mpkt,
1811					     (struct sockaddr_in6 *)rt_key(rt),
1812					     rt);
1813				}
1814				ln->ln_hold = NULL;
1815			}
1816		} else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1817			/* probe right away */
1818			nd6_llinfo_settimer((void *)ln, 0);
1819		}
1820	}
1821
1822	/*
1823	 * ICMP6 type dependent behavior.
1824	 *
1825	 * NS: clear IsRouter if new entry
1826	 * RS: clear IsRouter
1827	 * RA: set IsRouter if there's lladdr
1828	 * redir: clear IsRouter if new entry
1829	 *
1830	 * RA case, (1):
1831	 * The spec says that we must set IsRouter in the following cases:
1832	 * - If lladdr exist, set IsRouter.  This means (1-5).
1833	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
1834	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1835	 * A quetion arises for (1) case.  (1) case has no lladdr in the
1836	 * neighbor cache, this is similar to (6).
1837	 * This case is rare but we figured that we MUST NOT set IsRouter.
1838	 *
1839	 * newentry olladdr  lladdr  llchange	    NS  RS  RA	redir
1840	 *							D R
1841	 *	0	n	n	--	(1)	c   ?     s
1842	 *	0	y	n	--	(2)	c   s     s
1843	 *	0	n	y	--	(3)	c   s     s
1844	 *	0	y	y	n	(4)	c   s     s
1845	 *	0	y	y	y	(5)	c   s     s
1846	 *	1	--	n	--	(6) c	c 	c s
1847	 *	1	--	y	--	(7) c	c   s	c s
1848	 *
1849	 *					(c=clear s=set)
1850	 */
1851	switch (type & 0xff) {
1852	case ND_NEIGHBOR_SOLICIT:
1853		/*
1854		 * New entry must have is_router flag cleared.
1855		 */
1856		if (is_newentry)	/* (6-7) */
1857			ln->ln_router = 0;
1858		break;
1859	case ND_REDIRECT:
1860		/*
1861		 * If the icmp is a redirect to a better router, always set the
1862		 * is_router flag.  Otherwise, if the entry is newly created,
1863		 * clear the flag.  [RFC 2461, sec 8.3]
1864		 */
1865		if (code == ND_REDIRECT_ROUTER)
1866			ln->ln_router = 1;
1867		else if (is_newentry) /* (6-7) */
1868			ln->ln_router = 0;
1869		break;
1870	case ND_ROUTER_SOLICIT:
1871		/*
1872		 * is_router flag must always be cleared.
1873		 */
1874		ln->ln_router = 0;
1875		break;
1876	case ND_ROUTER_ADVERT:
1877		/*
1878		 * Mark an entry with lladdr as a router.
1879		 */
1880		if ((!is_newentry && (olladdr || lladdr)) ||	/* (2-5) */
1881		    (is_newentry && lladdr)) {			/* (7) */
1882			ln->ln_router = 1;
1883		}
1884		break;
1885	}
1886
1887	/*
1888	 * When the link-layer address of a router changes, select the
1889	 * best router again.  In particular, when the neighbor entry is newly
1890	 * created, it might affect the selection policy.
1891	 * Question: can we restrict the first condition to the "is_newentry"
1892	 * case?
1893	 * XXX: when we hear an RA from a new router with the link-layer
1894	 * address option, defrouter_select() is called twice, since
1895	 * defrtrlist_update called the function as well.  However, I believe
1896	 * we can compromise the overhead, since it only happens the first
1897	 * time.
1898	 * XXX: although defrouter_select() should not have a bad effect
1899	 * for those are not autoconfigured hosts, we explicitly avoid such
1900	 * cases for safety.
1901	 */
1902	if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv)
1903		defrouter_select();
1904
1905	return rt;
1906}
1907
1908static void
1909nd6_slowtimo(ignored_arg)
1910    void *ignored_arg;
1911{
1912	struct nd_ifinfo *nd6if;
1913	struct ifnet *ifp;
1914
1915	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1916	    nd6_slowtimo, NULL);
1917	IFNET_RLOCK();
1918	for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) {
1919		nd6if = ND_IFINFO(ifp);
1920		if (nd6if->basereachable && /* already initialized */
1921		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1922			/*
1923			 * Since reachable time rarely changes by router
1924			 * advertisements, we SHOULD insure that a new random
1925			 * value gets recomputed at least once every few hours.
1926			 * (RFC 2461, 6.3.4)
1927			 */
1928			nd6if->recalctm = nd6_recalc_reachtm_interval;
1929			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1930		}
1931	}
1932	IFNET_RUNLOCK();
1933}
1934
1935#define senderr(e) { error = (e); goto bad;}
1936int
1937nd6_output(ifp, origifp, m0, dst, rt0)
1938	struct ifnet *ifp;
1939	struct ifnet *origifp;
1940	struct mbuf *m0;
1941	struct sockaddr_in6 *dst;
1942	struct rtentry *rt0;
1943{
1944	struct mbuf *m = m0;
1945	struct rtentry *rt = rt0;
1946	struct sockaddr_in6 *gw6 = NULL;
1947	struct llinfo_nd6 *ln = NULL;
1948	int error = 0;
1949
1950	if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1951		goto sendpkt;
1952
1953	if (nd6_need_cache(ifp) == 0)
1954		goto sendpkt;
1955
1956	/*
1957	 * next hop determination.  This routine is derived from ether_output.
1958	 */
1959again:
1960	if (rt) {
1961		if ((rt->rt_flags & RTF_UP) == 0) {
1962			rt0 = rt = rtalloc1((struct sockaddr *)dst, 1, 0UL);
1963			if (rt != NULL) {
1964				RT_REMREF(rt);
1965				RT_UNLOCK(rt);
1966				if (rt->rt_ifp != ifp)
1967					/*
1968					 * XXX maybe we should update ifp too,
1969					 * but the original code didn't and I
1970					 * don't know what is correct here.
1971					 */
1972					goto again;
1973			} else
1974				senderr(EHOSTUNREACH);
1975		}
1976
1977		if (rt->rt_flags & RTF_GATEWAY) {
1978			gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
1979
1980			/*
1981			 * We skip link-layer address resolution and NUD
1982			 * if the gateway is not a neighbor from ND point
1983			 * of view, regardless of the value of nd_ifinfo.flags.
1984			 * The second condition is a bit tricky; we skip
1985			 * if the gateway is our own address, which is
1986			 * sometimes used to install a route to a p2p link.
1987			 */
1988			if (!nd6_is_addr_neighbor(gw6, ifp) ||
1989			    in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
1990				/*
1991				 * We allow this kind of tricky route only
1992				 * when the outgoing interface is p2p.
1993				 * XXX: we may need a more generic rule here.
1994				 */
1995				if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1996					senderr(EHOSTUNREACH);
1997
1998				goto sendpkt;
1999			}
2000
2001			if (rt->rt_gwroute == 0)
2002				goto lookup;
2003			if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) {
2004				RT_LOCK(rt);
2005				rtfree(rt); rt = rt0;
2006			lookup:
2007				rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1, 0UL);
2008				if ((rt = rt->rt_gwroute) == 0)
2009					senderr(EHOSTUNREACH);
2010				RT_UNLOCK(rt);
2011			}
2012		}
2013	}
2014
2015	/*
2016	 * Address resolution or Neighbor Unreachability Detection
2017	 * for the next hop.
2018	 * At this point, the destination of the packet must be a unicast
2019	 * or an anycast address(i.e. not a multicast).
2020	 */
2021
2022	/* Look up the neighbor cache for the nexthop */
2023	if (rt && (rt->rt_flags & RTF_LLINFO) != 0)
2024		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2025	else {
2026		/*
2027		 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2028		 * the condition below is not very efficient.  But we believe
2029		 * it is tolerable, because this should be a rare case.
2030		 */
2031		if (nd6_is_addr_neighbor(dst, ifp) &&
2032		    (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
2033			ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2034	}
2035	if (ln == NULL || rt == NULL) {
2036		if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
2037		    !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
2038			log(LOG_DEBUG,
2039			    "nd6_output: can't allocate llinfo for %s "
2040			    "(ln=%p, rt=%p)\n",
2041			    ip6_sprintf(&dst->sin6_addr), ln, rt);
2042			senderr(EIO);	/* XXX: good error? */
2043		}
2044
2045		goto sendpkt;	/* send anyway */
2046	}
2047
2048	/* We don't have to do link-layer address resolution on a p2p link. */
2049	if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
2050	    ln->ln_state < ND6_LLINFO_REACHABLE) {
2051		ln->ln_state = ND6_LLINFO_STALE;
2052		nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
2053	}
2054
2055	/*
2056	 * The first time we send a packet to a neighbor whose entry is
2057	 * STALE, we have to change the state to DELAY and a sets a timer to
2058	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2059	 * neighbor unreachability detection on expiration.
2060	 * (RFC 2461 7.3.3)
2061	 */
2062	if (ln->ln_state == ND6_LLINFO_STALE) {
2063		ln->ln_asked = 0;
2064		ln->ln_state = ND6_LLINFO_DELAY;
2065		nd6_llinfo_settimer(ln, (long)nd6_delay * hz);
2066	}
2067
2068	/*
2069	 * If the neighbor cache entry has a state other than INCOMPLETE
2070	 * (i.e. its link-layer address is already resolved), just
2071	 * send the packet.
2072	 */
2073	if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
2074		goto sendpkt;
2075
2076	/*
2077	 * There is a neighbor cache entry, but no ethernet address
2078	 * response yet.  Append this latest packet to the end of the
2079	 * packet queue in the mbuf, unless the number of the packet
2080	 * does not exceed nd6_maxqueuelen.  When it exceeds nd6_maxqueuelen,
2081	 * the oldest packet in the queue will be removed.
2082	 */
2083	if (ln->ln_state == ND6_LLINFO_NOSTATE)
2084		ln->ln_state = ND6_LLINFO_INCOMPLETE;
2085	if (ln->ln_hold) {
2086		struct mbuf *m_hold;
2087		int i;
2088
2089		i = 0;
2090		for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) {
2091			i++;
2092			if (m_hold->m_nextpkt == NULL) {
2093				m_hold->m_nextpkt = m;
2094				break;
2095			}
2096		}
2097		while (i >= nd6_maxqueuelen) {
2098			m_hold = ln->ln_hold;
2099			ln->ln_hold = ln->ln_hold->m_nextpkt;
2100			m_freem(m_hold);
2101			i--;
2102		}
2103	} else {
2104		ln->ln_hold = m;
2105	}
2106
2107	/*
2108	 * If there has been no NS for the neighbor after entering the
2109	 * INCOMPLETE state, send the first solicitation.
2110	 */
2111	if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
2112		ln->ln_asked++;
2113		nd6_llinfo_settimer(ln,
2114		    (long)ND_IFINFO(ifp)->retrans * hz / 1000);
2115		nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
2116	}
2117	return (0);
2118
2119  sendpkt:
2120	/* discard the packet if IPv6 operation is disabled on the interface */
2121	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2122		error = ENETDOWN; /* better error? */
2123		goto bad;
2124	}
2125
2126#ifdef IPSEC
2127	/* clean ipsec history once it goes out of the node */
2128	ipsec_delaux(m);
2129#endif
2130
2131#ifdef MAC
2132	mac_create_mbuf_linklayer(ifp, m);
2133#endif
2134	if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
2135		return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst,
2136		    rt));
2137	}
2138	return ((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt));
2139
2140  bad:
2141	if (m)
2142		m_freem(m);
2143	return (error);
2144}
2145#undef senderr
2146
2147int
2148nd6_need_cache(ifp)
2149	struct ifnet *ifp;
2150{
2151	/*
2152	 * XXX: we currently do not make neighbor cache on any interface
2153	 * other than ARCnet, Ethernet, FDDI and GIF.
2154	 *
2155	 * RFC2893 says:
2156	 * - unidirectional tunnels needs no ND
2157	 */
2158	switch (ifp->if_type) {
2159	case IFT_ARCNET:
2160	case IFT_ETHER:
2161	case IFT_FDDI:
2162	case IFT_IEEE1394:
2163#ifdef IFT_L2VLAN
2164	case IFT_L2VLAN:
2165#endif
2166#ifdef IFT_IEEE80211
2167	case IFT_IEEE80211:
2168#endif
2169#ifdef IFT_CARP
2170	case IFT_CARP:
2171#endif
2172	case IFT_GIF:		/* XXX need more cases? */
2173	case IFT_PPP:
2174	case IFT_TUNNEL:
2175	case IFT_BRIDGE:
2176		return (1);
2177	default:
2178		return (0);
2179	}
2180}
2181
2182int
2183nd6_storelladdr(ifp, rt0, m, dst, desten)
2184	struct ifnet *ifp;
2185	struct rtentry *rt0;
2186	struct mbuf *m;
2187	struct sockaddr *dst;
2188	u_char *desten;
2189{
2190	struct sockaddr_dl *sdl;
2191	struct rtentry *rt;
2192	int error;
2193
2194	if (m->m_flags & M_MCAST) {
2195		int i;
2196
2197		switch (ifp->if_type) {
2198		case IFT_ETHER:
2199		case IFT_FDDI:
2200#ifdef IFT_L2VLAN
2201		case IFT_L2VLAN:
2202#endif
2203#ifdef IFT_IEEE80211
2204		case IFT_IEEE80211:
2205#endif
2206		case IFT_BRIDGE:
2207		case IFT_ISO88025:
2208			ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
2209						 desten);
2210			return (0);
2211		case IFT_IEEE1394:
2212			/*
2213			 * netbsd can use if_broadcastaddr, but we don't do so
2214			 * to reduce # of ifdef.
2215			 */
2216			for (i = 0; i < ifp->if_addrlen; i++)
2217				desten[i] = ~0;
2218			return (0);
2219		case IFT_ARCNET:
2220			*desten = 0;
2221			return (0);
2222		default:
2223			m_freem(m);
2224			return (EAFNOSUPPORT);
2225		}
2226	}
2227
2228	if (rt0 == NULL) {
2229		/* this could happen, if we could not allocate memory */
2230		m_freem(m);
2231		return (ENOMEM);
2232	}
2233
2234	error = rt_check(&rt, &rt0, dst);
2235	if (error) {
2236		m_freem(m);
2237		return (error);
2238	}
2239	RT_UNLOCK(rt);
2240
2241	if (rt->rt_gateway->sa_family != AF_LINK) {
2242		printf("nd6_storelladdr: something odd happens\n");
2243		m_freem(m);
2244		return (EINVAL);
2245	}
2246	sdl = SDL(rt->rt_gateway);
2247	if (sdl->sdl_alen == 0) {
2248		/* this should be impossible, but we bark here for debugging */
2249		printf("nd6_storelladdr: sdl_alen == 0\n");
2250		m_freem(m);
2251		return (EINVAL);
2252	}
2253
2254	bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
2255	return (0);
2256}
2257
2258static void
2259clear_llinfo_pqueue(ln)
2260	struct llinfo_nd6 *ln;
2261{
2262	struct mbuf *m_hold, *m_hold_next;
2263
2264	for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) {
2265		m_hold_next = m_hold->m_nextpkt;
2266		m_hold->m_nextpkt = NULL;
2267		m_freem(m_hold);
2268	}
2269
2270	ln->ln_hold = NULL;
2271	return;
2272}
2273
2274static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS);
2275static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS);
2276#ifdef SYSCTL_DECL
2277SYSCTL_DECL(_net_inet6_icmp6);
2278#endif
2279SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
2280	CTLFLAG_RD, nd6_sysctl_drlist, "");
2281SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
2282	CTLFLAG_RD, nd6_sysctl_prlist, "");
2283SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen,
2284	CTLFLAG_RW, &nd6_maxqueuelen, 1, "");
2285
2286static int
2287nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS)
2288{
2289	int error;
2290	char buf[1024];
2291	struct in6_defrouter *d, *de;
2292	struct nd_defrouter *dr;
2293
2294	if (req->newptr)
2295		return EPERM;
2296	error = 0;
2297
2298	for (dr = TAILQ_FIRST(&nd_defrouter); dr;
2299	     dr = TAILQ_NEXT(dr, dr_entry)) {
2300		d = (struct in6_defrouter *)buf;
2301		de = (struct in6_defrouter *)(buf + sizeof(buf));
2302
2303		if (d + 1 <= de) {
2304			bzero(d, sizeof(*d));
2305			d->rtaddr.sin6_family = AF_INET6;
2306			d->rtaddr.sin6_len = sizeof(d->rtaddr);
2307			d->rtaddr.sin6_addr = dr->rtaddr;
2308			sa6_recoverscope(&d->rtaddr);
2309			d->flags = dr->flags;
2310			d->rtlifetime = dr->rtlifetime;
2311			d->expire = dr->expire;
2312			d->if_index = dr->ifp->if_index;
2313		} else
2314			panic("buffer too short");
2315
2316		error = SYSCTL_OUT(req, buf, sizeof(*d));
2317		if (error)
2318			break;
2319	}
2320
2321	return (error);
2322}
2323
2324static int
2325nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
2326{
2327	int error;
2328	char buf[1024];
2329	struct in6_prefix *p, *pe;
2330	struct nd_prefix *pr;
2331
2332	if (req->newptr)
2333		return EPERM;
2334	error = 0;
2335
2336	for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
2337		u_short advrtrs;
2338		size_t advance;
2339		struct sockaddr_in6 *sin6, *s6;
2340		struct nd_pfxrouter *pfr;
2341
2342		p = (struct in6_prefix *)buf;
2343		pe = (struct in6_prefix *)(buf + sizeof(buf));
2344
2345		if (p + 1 <= pe) {
2346			bzero(p, sizeof(*p));
2347			sin6 = (struct sockaddr_in6 *)(p + 1);
2348
2349			p->prefix = pr->ndpr_prefix;
2350			if (sa6_recoverscope(&p->prefix)) {
2351				log(LOG_ERR,
2352				    "scope error in prefix list (%s)\n",
2353				    ip6_sprintf(&p->prefix.sin6_addr));
2354				/* XXX: press on... */
2355			}
2356			p->raflags = pr->ndpr_raf;
2357			p->prefixlen = pr->ndpr_plen;
2358			p->vltime = pr->ndpr_vltime;
2359			p->pltime = pr->ndpr_pltime;
2360			p->if_index = pr->ndpr_ifp->if_index;
2361			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2362				p->expire = 0;
2363			else {
2364				time_t maxexpire;
2365
2366				/* XXX: we assume time_t is signed. */
2367				maxexpire = (-1) &
2368				    ~((time_t)1 <<
2369				    ((sizeof(maxexpire) * 8) - 1));
2370				if (pr->ndpr_vltime <
2371				    maxexpire - pr->ndpr_lastupdate) {
2372				    p->expire = pr->ndpr_lastupdate +
2373				        pr->ndpr_vltime;
2374				} else
2375					p->expire = maxexpire;
2376			}
2377			p->refcnt = pr->ndpr_refcnt;
2378			p->flags = pr->ndpr_stateflags;
2379			p->origin = PR_ORIG_RA;
2380			advrtrs = 0;
2381			for (pfr = pr->ndpr_advrtrs.lh_first; pfr;
2382			     pfr = pfr->pfr_next) {
2383				if ((void *)&sin6[advrtrs + 1] > (void *)pe) {
2384					advrtrs++;
2385					continue;
2386				}
2387				s6 = &sin6[advrtrs];
2388				bzero(s6, sizeof(*s6));
2389				s6->sin6_family = AF_INET6;
2390				s6->sin6_len = sizeof(*sin6);
2391				s6->sin6_addr = pfr->router->rtaddr;
2392				if (sa6_recoverscope(s6)) {
2393					log(LOG_ERR,
2394					    "scope error in "
2395					    "prefix list (%s)\n",
2396					    ip6_sprintf(&pfr->router->rtaddr));
2397				}
2398				advrtrs++;
2399			}
2400			p->advrtrs = advrtrs;
2401		} else
2402			panic("buffer too short");
2403
2404		advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
2405		error = SYSCTL_OUT(req, buf, advance);
2406		if (error)
2407			break;
2408	}
2409
2410	return (error);
2411}
2412