nd6.c revision 155575
177422Smsmith/*	$FreeBSD: head/sys/netinet6/nd6.c 155575 2006-02-12 15:37:08Z ume $	*/
277422Smsmith/*	$KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $	*/
377422Smsmith
477422Smsmith/*-
577422Smsmith * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
677422Smsmith * All rights reserved.
7217365Sjkim *
8217365Sjkim * Redistribution and use in source and binary forms, with or without
977422Smsmith * modification, are permitted provided that the following conditions
1077422Smsmith * are met:
11217365Sjkim * 1. Redistributions of source code must retain the above copyright
12217365Sjkim *    notice, this list of conditions and the following disclaimer.
13217365Sjkim * 2. Redistributions in binary form must reproduce the above copyright
14217365Sjkim *    notice, this list of conditions and the following disclaimer in the
15217365Sjkim *    documentation and/or other materials provided with the distribution.
16217365Sjkim * 3. Neither the name of the project nor the names of its contributors
17217365Sjkim *    may be used to endorse or promote products derived from this software
18217365Sjkim *    without specific prior written permission.
19217365Sjkim *
20217365Sjkim * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21217365Sjkim * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22217365Sjkim * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23217365Sjkim * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24217365Sjkim * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
2577422Smsmith * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26217365Sjkim * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27217365Sjkim * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28217365Sjkim * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
2977422Smsmith * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30217365Sjkim * SUCH DAMAGE.
31217365Sjkim */
32217365Sjkim
33217365Sjkim#include "opt_inet.h"
34217365Sjkim#include "opt_inet6.h"
35217365Sjkim#include "opt_mac.h"
36217365Sjkim
37217365Sjkim#include <sys/param.h>
38217365Sjkim#include <sys/systm.h>
39217365Sjkim#include <sys/callout.h>
40217365Sjkim#include <sys/mac.h>
41217365Sjkim#include <sys/malloc.h>
42217365Sjkim#include <sys/mbuf.h>
4377422Smsmith#include <sys/socket.h>
4477422Smsmith#include <sys/sockio.h>
4577422Smsmith#include <sys/time.h>
4677422Smsmith#include <sys/kernel.h>
47167802Sjkim#include <sys/protosw.h>
4877422Smsmith#include <sys/errno.h>
4977422Smsmith#include <sys/syslog.h>
5077422Smsmith#include <sys/queue.h>
5177422Smsmith#include <sys/sysctl.h>
5277422Smsmith
5377422Smsmith#include <net/if.h>
5477422Smsmith#include <net/if_arc.h>
5577422Smsmith#include <net/if_dl.h>
5677422Smsmith#include <net/if_types.h>
57167802Sjkim#include <net/iso88025.h>
58167802Sjkim#include <net/fddi.h>
59167802Sjkim#include <net/route.h>
6077422Smsmith
6199679Siwasaki#include <netinet/in.h>
6299679Siwasaki#include <netinet/if_ether.h>
6377422Smsmith#include <netinet6/in6_var.h>
64167802Sjkim#include <netinet/ip6.h>
65167802Sjkim#include <netinet6/ip6_var.h>
66167802Sjkim#include <netinet6/scope6_var.h>
67167802Sjkim#include <netinet6/nd6.h>
6899679Siwasaki#include <netinet/icmp6.h>
69167802Sjkim
70167802Sjkim#include <sys/limits.h>
7177422Smsmith
72167802Sjkim#include <net/net_osdep.h>
73167802Sjkim
74167802Sjkim#define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
75167802Sjkim#define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
76167802Sjkim
77167802Sjkim#define SIN6(s) ((struct sockaddr_in6 *)s)
7877422Smsmith#define SDL(s) ((struct sockaddr_dl *)s)
7977422Smsmith
80167802Sjkim/* timer values */
81167802Sjkimint	nd6_prune	= 1;	/* walk list every 1 seconds */
82167802Sjkimint	nd6_delay	= 5;	/* delay first probe time 5 second */
83167802Sjkimint	nd6_umaxtries	= 3;	/* maximum unicast query */
84167802Sjkimint	nd6_mmaxtries	= 3;	/* maximum multicast query */
85167802Sjkimint	nd6_useloopback = 1;	/* use loopback interface for local traffic */
86167802Sjkimint	nd6_gctimer	= (60 * 60 * 24); /* 1 day: garbage collection timer */
87167802Sjkim
88167802Sjkim/* preventing too many loops in ND option parsing */
89167802Sjkimint nd6_maxndopt = 10;	/* max # of ND options allowed */
90167802Sjkim
91167802Sjkimint nd6_maxnudhint = 0;	/* max # of subsequent upper layer hints */
92167802Sjkimint nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
93167802Sjkim
94167802Sjkim#ifdef ND6_DEBUG
95167802Sjkimint nd6_debug = 1;
96167802Sjkim#else
97167802Sjkimint nd6_debug = 0;
98167802Sjkim#endif
99167802Sjkim
10077422Smsmith/* for debugging? */
101167802Sjkimstatic int nd6_inuse, nd6_allocated;
102167802Sjkim
103167802Sjkimstruct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6};
10484491Smsmithstruct nd_drhead nd_defrouter;
105167802Sjkimstruct nd_prhead nd_prefix = { 0 };
106167802Sjkim
107167802Sjkimint nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
108167802Sjkimstatic struct sockaddr_in6 all1_sa;
10977422Smsmith
110167802Sjkimstatic int nd6_is_new_addr_neighbor __P((struct sockaddr_in6 *,
111167802Sjkim	struct ifnet *));
112167802Sjkimstatic void nd6_setmtu0 __P((struct ifnet *, struct nd_ifinfo *));
113167802Sjkimstatic void nd6_slowtimo __P((void *));
114167802Sjkimstatic int regen_tmpaddr __P((struct in6_ifaddr *));
115167802Sjkimstatic struct llinfo_nd6 *nd6_free __P((struct rtentry *, int));
116167802Sjkimstatic void nd6_llinfo_timer __P((void *));
117167802Sjkim
118167802Sjkimstruct callout nd6_slowtimo_ch;
119167802Sjkimstruct callout nd6_timer_ch;
120167802Sjkimextern struct callout in6_tmpaddrtimer_ch;
121167802Sjkim
122167802Sjkimvoid
123167802Sjkimnd6_init()
124167802Sjkim{
125167802Sjkim	static int nd6_init_done = 0;
126167802Sjkim	int i;
127167802Sjkim
128167802Sjkim	if (nd6_init_done) {
129167802Sjkim		log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
130167802Sjkim		return;
131167802Sjkim	}
13277422Smsmith
13377422Smsmith	all1_sa.sin6_family = AF_INET6;
13477422Smsmith	all1_sa.sin6_len = sizeof(struct sockaddr_in6);
135209746Sjkim	for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
13677422Smsmith		all1_sa.sin6_addr.s6_addr[i] = 0xff;
13777422Smsmith
13877422Smsmith	/* initialization of the default router list */
139209746Sjkim	TAILQ_INIT(&nd_defrouter);
140209746Sjkim
141209746Sjkim	nd6_init_done = 1;
142209746Sjkim
143209746Sjkim	/* start timer */
144209746Sjkim	callout_init(&nd6_slowtimo_ch, 0);
145209746Sjkim	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
146209746Sjkim	    nd6_slowtimo, NULL);
147209746Sjkim}
148209746Sjkim
149209746Sjkimstruct nd_ifinfo *
150209746Sjkimnd6_ifattach(ifp)
151167802Sjkim	struct ifnet *ifp;
15277422Smsmith{
15377422Smsmith	struct nd_ifinfo *nd;
15477422Smsmith
15577422Smsmith	nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK);
15677422Smsmith	bzero(nd, sizeof(*nd));
15777422Smsmith
158167802Sjkim	nd->initialized = 1;
159167802Sjkim
160167802Sjkim	nd->chlim = IPV6_DEFHLIM;
16177422Smsmith	nd->basereachable = REACHABLE_TIME;
16277422Smsmith	nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
16377422Smsmith	nd->retrans = RETRANS_TIMER;
16477422Smsmith	/*
16585756Smsmith	 * Note that the default value of ip6_accept_rtadv is 0, which means
16685756Smsmith	 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV
167167802Sjkim	 * here.
16885756Smsmith	 */
16985756Smsmith	nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV);
17085756Smsmith
171167802Sjkim	/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
172167802Sjkim	nd6_setmtu0(ifp, nd);
173167802Sjkim
17485756Smsmith	return nd;
17585756Smsmith}
17685756Smsmith
17785756Smsmithvoid
17885756Smsmithnd6_ifdetach(nd)
179167802Sjkim	struct nd_ifinfo *nd;
180167802Sjkim{
181167802Sjkim
18285756Smsmith	free(nd, M_IP6NDP);
18385756Smsmith}
18485756Smsmith
18585756Smsmith/*
18685756Smsmith * Reset ND level link MTU. This function is called when the physical MTU
187167802Sjkim * changes, which means we might have to adjust the ND level MTU.
188167802Sjkim */
189167802Sjkimvoid
190167802Sjkimnd6_setmtu(ifp)
19185756Smsmith	struct ifnet *ifp;
19285756Smsmith{
19385756Smsmith
19485756Smsmith	nd6_setmtu0(ifp, ND_IFINFO(ifp));
19585756Smsmith}
19685756Smsmith
197167802Sjkim/* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
198167802Sjkimvoid
199167802Sjkimnd6_setmtu0(ifp, ndi)
200167802Sjkim	struct ifnet *ifp;
201167802Sjkim	struct nd_ifinfo *ndi;
202129684Snjl{
203167802Sjkim	u_int32_t omaxmtu;
204167802Sjkim
205167802Sjkim	omaxmtu = ndi->maxmtu;
206167802Sjkim
207167802Sjkim	switch (ifp->if_type) {
208167802Sjkim	case IFT_ARCNET:
209193267Sjkim		ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
210167802Sjkim		break;
211167802Sjkim	case IFT_FDDI:
212167802Sjkim		ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */
213129684Snjl		break;
214167802Sjkim	case IFT_ISO88025:
215129684Snjl		 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu);
216167802Sjkim		 break;
217129684Snjl	default:
218167802Sjkim		ndi->maxmtu = ifp->if_mtu;
219167802Sjkim		break;
220167802Sjkim	}
221167802Sjkim
222167802Sjkim	/*
223167802Sjkim	 * Decreasing the interface MTU under IPV6 minimum MTU may cause
224167802Sjkim	 * undesirable situation.  We thus notify the operator of the change
225167802Sjkim	 * explicitly.  The check for omaxmtu is necessary to restrict the
226167802Sjkim	 * log to the case of changing the MTU, not initializing it.
227209746Sjkim	 */
228209746Sjkim	if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
229209746Sjkim		log(LOG_NOTICE, "nd6_setmtu0: "
230167802Sjkim		    "new link MTU on %s (%lu) is too small for IPv6\n",
231167802Sjkim		    if_name(ifp), (unsigned long)ndi->maxmtu);
232167802Sjkim	}
233167802Sjkim
234167802Sjkim	if (ndi->maxmtu > in6_maxmtu)
235167802Sjkim		in6_setmaxmtu(); /* check all interfaces just in case */
236167802Sjkim
237167802Sjkim#undef MIN
238167802Sjkim}
239167802Sjkim
240167802Sjkimvoid
241167802Sjkimnd6_option_init(opt, icmp6len, ndopts)
242167802Sjkim	void *opt;
243167802Sjkim	int icmp6len;
244167802Sjkim	union nd_opts *ndopts;
245167802Sjkim{
246167802Sjkim
247167802Sjkim	bzero(ndopts, sizeof(*ndopts));
248167802Sjkim	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
249167802Sjkim	ndopts->nd_opts_last
250167802Sjkim		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
251167802Sjkim
252167802Sjkim	if (icmp6len == 0) {
253167802Sjkim		ndopts->nd_opts_done = 1;
25477422Smsmith		ndopts->nd_opts_search = NULL;
255	}
256}
257
258/*
259 * Take one ND option.
260 */
261struct nd_opt_hdr *
262nd6_option(ndopts)
263	union nd_opts *ndopts;
264{
265	struct nd_opt_hdr *nd_opt;
266	int olen;
267
268	if (ndopts == NULL)
269		panic("ndopts == NULL in nd6_option");
270	if (ndopts->nd_opts_last == NULL)
271		panic("uninitialized ndopts in nd6_option");
272	if (ndopts->nd_opts_search == NULL)
273		return NULL;
274	if (ndopts->nd_opts_done)
275		return NULL;
276
277	nd_opt = ndopts->nd_opts_search;
278
279	/* make sure nd_opt_len is inside the buffer */
280	if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
281		bzero(ndopts, sizeof(*ndopts));
282		return NULL;
283	}
284
285	olen = nd_opt->nd_opt_len << 3;
286	if (olen == 0) {
287		/*
288		 * Message validation requires that all included
289		 * options have a length that is greater than zero.
290		 */
291		bzero(ndopts, sizeof(*ndopts));
292		return NULL;
293	}
294
295	ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
296	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
297		/* option overruns the end of buffer, invalid */
298		bzero(ndopts, sizeof(*ndopts));
299		return NULL;
300	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
301		/* reached the end of options chain */
302		ndopts->nd_opts_done = 1;
303		ndopts->nd_opts_search = NULL;
304	}
305	return nd_opt;
306}
307
308/*
309 * Parse multiple ND options.
310 * This function is much easier to use, for ND routines that do not need
311 * multiple options of the same type.
312 */
313int
314nd6_options(ndopts)
315	union nd_opts *ndopts;
316{
317	struct nd_opt_hdr *nd_opt;
318	int i = 0;
319
320	if (ndopts == NULL)
321		panic("ndopts == NULL in nd6_options");
322	if (ndopts->nd_opts_last == NULL)
323		panic("uninitialized ndopts in nd6_options");
324	if (ndopts->nd_opts_search == NULL)
325		return 0;
326
327	while (1) {
328		nd_opt = nd6_option(ndopts);
329		if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
330			/*
331			 * Message validation requires that all included
332			 * options have a length that is greater than zero.
333			 */
334			icmp6stat.icp6s_nd_badopt++;
335			bzero(ndopts, sizeof(*ndopts));
336			return -1;
337		}
338
339		if (nd_opt == NULL)
340			goto skip1;
341
342		switch (nd_opt->nd_opt_type) {
343		case ND_OPT_SOURCE_LINKADDR:
344		case ND_OPT_TARGET_LINKADDR:
345		case ND_OPT_MTU:
346		case ND_OPT_REDIRECTED_HEADER:
347			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
348				nd6log((LOG_INFO,
349				    "duplicated ND6 option found (type=%d)\n",
350				    nd_opt->nd_opt_type));
351				/* XXX bark? */
352			} else {
353				ndopts->nd_opt_array[nd_opt->nd_opt_type]
354					= nd_opt;
355			}
356			break;
357		case ND_OPT_PREFIX_INFORMATION:
358			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
359				ndopts->nd_opt_array[nd_opt->nd_opt_type]
360					= nd_opt;
361			}
362			ndopts->nd_opts_pi_end =
363				(struct nd_opt_prefix_info *)nd_opt;
364			break;
365		default:
366			/*
367			 * Unknown options must be silently ignored,
368			 * to accomodate future extension to the protocol.
369			 */
370			nd6log((LOG_DEBUG,
371			    "nd6_options: unsupported option %d - "
372			    "option ignored\n", nd_opt->nd_opt_type));
373		}
374
375skip1:
376		i++;
377		if (i > nd6_maxndopt) {
378			icmp6stat.icp6s_nd_toomanyopt++;
379			nd6log((LOG_INFO, "too many loop in nd opt\n"));
380			break;
381		}
382
383		if (ndopts->nd_opts_done)
384			break;
385	}
386
387	return 0;
388}
389
390/*
391 * ND6 timer routine to handle ND6 entries
392 */
393void
394nd6_llinfo_settimer(ln, tick)
395	struct llinfo_nd6 *ln;
396	long tick;
397{
398	if (tick < 0) {
399		ln->ln_expire = 0;
400		ln->ln_ntick = 0;
401		callout_stop(&ln->ln_timer_ch);
402	} else {
403		ln->ln_expire = time_second + tick / hz;
404		if (tick > INT_MAX) {
405			ln->ln_ntick = tick - INT_MAX;
406			callout_reset(&ln->ln_timer_ch, INT_MAX,
407			    nd6_llinfo_timer, ln);
408		} else {
409			ln->ln_ntick = 0;
410			callout_reset(&ln->ln_timer_ch, tick,
411			    nd6_llinfo_timer, ln);
412		}
413	}
414}
415
416static void
417nd6_llinfo_timer(arg)
418	void *arg;
419{
420	struct llinfo_nd6 *ln;
421	struct rtentry *rt;
422	struct in6_addr *dst;
423	struct ifnet *ifp;
424	struct nd_ifinfo *ndi = NULL;
425
426	ln = (struct llinfo_nd6 *)arg;
427
428	if (ln->ln_ntick > 0) {
429		if (ln->ln_ntick > INT_MAX) {
430			ln->ln_ntick -= INT_MAX;
431			nd6_llinfo_settimer(ln, INT_MAX);
432		} else {
433			ln->ln_ntick = 0;
434			nd6_llinfo_settimer(ln, ln->ln_ntick);
435		}
436		return;
437	}
438
439	if ((rt = ln->ln_rt) == NULL)
440		panic("ln->ln_rt == NULL");
441	if ((ifp = rt->rt_ifp) == NULL)
442		panic("ln->ln_rt->rt_ifp == NULL");
443	ndi = ND_IFINFO(ifp);
444
445	/* sanity check */
446	if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
447		panic("rt_llinfo(%p) is not equal to ln(%p)",
448		      rt->rt_llinfo, ln);
449	if (rt_key(rt) == NULL)
450		panic("rt key is NULL in nd6_timer(ln=%p)", ln);
451
452	dst = &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
453
454	switch (ln->ln_state) {
455	case ND6_LLINFO_INCOMPLETE:
456		if (ln->ln_asked < nd6_mmaxtries) {
457			ln->ln_asked++;
458			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
459			nd6_ns_output(ifp, NULL, dst, ln, 0);
460		} else {
461			struct mbuf *m = ln->ln_hold;
462			if (m) {
463				/*
464				 * assuming every packet in ln_hold has the
465				 * same IP header
466				 */
467				ln->ln_hold = NULL;
468				icmp6_error2(m, ICMP6_DST_UNREACH,
469				    ICMP6_DST_UNREACH_ADDR, 0, rt->rt_ifp);
470			}
471			if (rt)
472				(void)nd6_free(rt, 0);
473			ln = NULL;
474		}
475		break;
476	case ND6_LLINFO_REACHABLE:
477		if (!ND6_LLINFO_PERMANENT(ln)) {
478			ln->ln_state = ND6_LLINFO_STALE;
479			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
480		}
481		break;
482
483	case ND6_LLINFO_STALE:
484		/* Garbage Collection(RFC 2461 5.3) */
485		if (!ND6_LLINFO_PERMANENT(ln)) {
486			(void)nd6_free(rt, 1);
487			ln = NULL;
488		}
489		break;
490
491	case ND6_LLINFO_DELAY:
492		if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
493			/* We need NUD */
494			ln->ln_asked = 1;
495			ln->ln_state = ND6_LLINFO_PROBE;
496			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
497			nd6_ns_output(ifp, dst, dst, ln, 0);
498		} else {
499			ln->ln_state = ND6_LLINFO_STALE; /* XXX */
500			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
501		}
502		break;
503	case ND6_LLINFO_PROBE:
504		if (ln->ln_asked < nd6_umaxtries) {
505			ln->ln_asked++;
506			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
507			nd6_ns_output(ifp, dst, dst, ln, 0);
508		} else {
509			(void)nd6_free(rt, 0);
510			ln = NULL;
511		}
512		break;
513	}
514}
515
516
517/*
518 * ND6 timer routine to expire default route list and prefix list
519 */
520void
521nd6_timer(ignored_arg)
522	void	*ignored_arg;
523{
524	int s;
525	struct nd_defrouter *dr;
526	struct nd_prefix *pr;
527	struct in6_ifaddr *ia6, *nia6;
528	struct in6_addrlifetime *lt6;
529
530	callout_reset(&nd6_timer_ch, nd6_prune * hz,
531	    nd6_timer, NULL);
532
533	/* expire default router list */
534	s = splnet();
535	dr = TAILQ_FIRST(&nd_defrouter);
536	while (dr) {
537		if (dr->expire && dr->expire < time_second) {
538			struct nd_defrouter *t;
539			t = TAILQ_NEXT(dr, dr_entry);
540			defrtrlist_del(dr);
541			dr = t;
542		} else {
543			dr = TAILQ_NEXT(dr, dr_entry);
544		}
545	}
546
547	/*
548	 * expire interface addresses.
549	 * in the past the loop was inside prefix expiry processing.
550	 * However, from a stricter speci-confrmance standpoint, we should
551	 * rather separate address lifetimes and prefix lifetimes.
552	 */
553  addrloop:
554	for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
555		nia6 = ia6->ia_next;
556		/* check address lifetime */
557		lt6 = &ia6->ia6_lifetime;
558		if (IFA6_IS_INVALID(ia6)) {
559			int regen = 0;
560
561			/*
562			 * If the expiring address is temporary, try
563			 * regenerating a new one.  This would be useful when
564			 * we suspended a laptop PC, then turned it on after a
565			 * period that could invalidate all temporary
566			 * addresses.  Although we may have to restart the
567			 * loop (see below), it must be after purging the
568			 * address.  Otherwise, we'd see an infinite loop of
569			 * regeneration.
570			 */
571			if (ip6_use_tempaddr &&
572			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
573				if (regen_tmpaddr(ia6) == 0)
574					regen = 1;
575			}
576
577			in6_purgeaddr(&ia6->ia_ifa);
578
579			if (regen)
580				goto addrloop; /* XXX: see below */
581		} else if (IFA6_IS_DEPRECATED(ia6)) {
582			int oldflags = ia6->ia6_flags;
583
584			ia6->ia6_flags |= IN6_IFF_DEPRECATED;
585
586			/*
587			 * If a temporary address has just become deprecated,
588			 * regenerate a new one if possible.
589			 */
590			if (ip6_use_tempaddr &&
591			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
592			    (oldflags & IN6_IFF_DEPRECATED) == 0) {
593
594				if (regen_tmpaddr(ia6) == 0) {
595					/*
596					 * A new temporary address is
597					 * generated.
598					 * XXX: this means the address chain
599					 * has changed while we are still in
600					 * the loop.  Although the change
601					 * would not cause disaster (because
602					 * it's not a deletion, but an
603					 * addition,) we'd rather restart the
604					 * loop just for safety.  Or does this
605					 * significantly reduce performance??
606					 */
607					goto addrloop;
608				}
609			}
610		} else {
611			/*
612			 * A new RA might have made a deprecated address
613			 * preferred.
614			 */
615			ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
616		}
617	}
618
619	/* expire prefix list */
620	pr = nd_prefix.lh_first;
621	while (pr) {
622		/*
623		 * check prefix lifetime.
624		 * since pltime is just for autoconf, pltime processing for
625		 * prefix is not necessary.
626		 */
627		if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
628		    time_second - pr->ndpr_lastupdate > pr->ndpr_vltime) {
629			struct nd_prefix *t;
630			t = pr->ndpr_next;
631
632			/*
633			 * address expiration and prefix expiration are
634			 * separate.  NEVER perform in6_purgeaddr here.
635			 */
636
637			prelist_remove(pr);
638			pr = t;
639		} else
640			pr = pr->ndpr_next;
641	}
642	splx(s);
643}
644
645static int
646regen_tmpaddr(ia6)
647	struct in6_ifaddr *ia6; /* deprecated/invalidated temporary address */
648{
649	struct ifaddr *ifa;
650	struct ifnet *ifp;
651	struct in6_ifaddr *public_ifa6 = NULL;
652
653	ifp = ia6->ia_ifa.ifa_ifp;
654	for (ifa = ifp->if_addrlist.tqh_first; ifa;
655	     ifa = ifa->ifa_list.tqe_next) {
656		struct in6_ifaddr *it6;
657
658		if (ifa->ifa_addr->sa_family != AF_INET6)
659			continue;
660
661		it6 = (struct in6_ifaddr *)ifa;
662
663		/* ignore no autoconf addresses. */
664		if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
665			continue;
666
667		/* ignore autoconf addresses with different prefixes. */
668		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
669			continue;
670
671		/*
672		 * Now we are looking at an autoconf address with the same
673		 * prefix as ours.  If the address is temporary and is still
674		 * preferred, do not create another one.  It would be rare, but
675		 * could happen, for example, when we resume a laptop PC after
676		 * a long period.
677		 */
678		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
679		    !IFA6_IS_DEPRECATED(it6)) {
680			public_ifa6 = NULL;
681			break;
682		}
683
684		/*
685		 * This is a public autoconf address that has the same prefix
686		 * as ours.  If it is preferred, keep it.  We can't break the
687		 * loop here, because there may be a still-preferred temporary
688		 * address with the prefix.
689		 */
690		if (!IFA6_IS_DEPRECATED(it6))
691		    public_ifa6 = it6;
692	}
693
694	if (public_ifa6 != NULL) {
695		int e;
696
697		if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
698			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
699			    " tmp addr,errno=%d\n", e);
700			return (-1);
701		}
702		return (0);
703	}
704
705	return (-1);
706}
707
708/*
709 * Nuke neighbor cache/prefix/default router management table, right before
710 * ifp goes away.
711 */
712void
713nd6_purge(ifp)
714	struct ifnet *ifp;
715{
716	struct llinfo_nd6 *ln, *nln;
717	struct nd_defrouter *dr, *ndr;
718	struct nd_prefix *pr, *npr;
719
720	/*
721	 * Nuke default router list entries toward ifp.
722	 * We defer removal of default router list entries that is installed
723	 * in the routing table, in order to keep additional side effects as
724	 * small as possible.
725	 */
726	for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
727		ndr = TAILQ_NEXT(dr, dr_entry);
728		if (dr->installed)
729			continue;
730
731		if (dr->ifp == ifp)
732			defrtrlist_del(dr);
733	}
734
735	for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
736		ndr = TAILQ_NEXT(dr, dr_entry);
737		if (!dr->installed)
738			continue;
739
740		if (dr->ifp == ifp)
741			defrtrlist_del(dr);
742	}
743
744	/* Nuke prefix list entries toward ifp */
745	for (pr = nd_prefix.lh_first; pr; pr = npr) {
746		npr = pr->ndpr_next;
747		if (pr->ndpr_ifp == ifp) {
748			/*
749			 * Because if_detach() does *not* release prefixes
750			 * while purging addresses the reference count will
751			 * still be above zero. We therefore reset it to
752			 * make sure that the prefix really gets purged.
753			 */
754			pr->ndpr_refcnt = 0;
755
756			/*
757			 * Previously, pr->ndpr_addr is removed as well,
758			 * but I strongly believe we don't have to do it.
759			 * nd6_purge() is only called from in6_ifdetach(),
760			 * which removes all the associated interface addresses
761			 * by itself.
762			 * (jinmei@kame.net 20010129)
763			 */
764			prelist_remove(pr);
765		}
766	}
767
768	/* cancel default outgoing interface setting */
769	if (nd6_defifindex == ifp->if_index)
770		nd6_setdefaultiface(0);
771
772	if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
773		/* refresh default router list */
774		defrouter_select();
775	}
776
777	/*
778	 * Nuke neighbor cache entries for the ifp.
779	 * Note that rt->rt_ifp may not be the same as ifp,
780	 * due to KAME goto ours hack.  See RTM_RESOLVE case in
781	 * nd6_rtrequest(), and ip6_input().
782	 */
783	ln = llinfo_nd6.ln_next;
784	while (ln && ln != &llinfo_nd6) {
785		struct rtentry *rt;
786		struct sockaddr_dl *sdl;
787
788		nln = ln->ln_next;
789		rt = ln->ln_rt;
790		if (rt && rt->rt_gateway &&
791		    rt->rt_gateway->sa_family == AF_LINK) {
792			sdl = (struct sockaddr_dl *)rt->rt_gateway;
793			if (sdl->sdl_index == ifp->if_index)
794				nln = nd6_free(rt, 0);
795		}
796		ln = nln;
797	}
798}
799
800struct rtentry *
801nd6_lookup(addr6, create, ifp)
802	struct in6_addr *addr6;
803	int create;
804	struct ifnet *ifp;
805{
806	struct rtentry *rt;
807	struct sockaddr_in6 sin6;
808
809	bzero(&sin6, sizeof(sin6));
810	sin6.sin6_len = sizeof(struct sockaddr_in6);
811	sin6.sin6_family = AF_INET6;
812	sin6.sin6_addr = *addr6;
813	rt = rtalloc1((struct sockaddr *)&sin6, create, 0UL);
814	if (rt) {
815		if ((rt->rt_flags & RTF_LLINFO) == 0 && create) {
816			/*
817			 * This is the case for the default route.
818			 * If we want to create a neighbor cache for the
819			 * address, we should free the route for the
820			 * destination and allocate an interface route.
821			 */
822			RTFREE_LOCKED(rt);
823			rt = NULL;
824		}
825	}
826	if (rt == NULL) {
827		if (create && ifp) {
828			int e;
829
830			/*
831			 * If no route is available and create is set,
832			 * we allocate a host route for the destination
833			 * and treat it like an interface route.
834			 * This hack is necessary for a neighbor which can't
835			 * be covered by our own prefix.
836			 */
837			struct ifaddr *ifa =
838			    ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
839			if (ifa == NULL)
840				return (NULL);
841
842			/*
843			 * Create a new route.  RTF_LLINFO is necessary
844			 * to create a Neighbor Cache entry for the
845			 * destination in nd6_rtrequest which will be
846			 * called in rtrequest via ifa->ifa_rtrequest.
847			 */
848			if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6,
849			    ifa->ifa_addr, (struct sockaddr *)&all1_sa,
850			    (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
851			    ~RTF_CLONING, &rt)) != 0) {
852				log(LOG_ERR,
853				    "nd6_lookup: failed to add route for a "
854				    "neighbor(%s), errno=%d\n",
855				    ip6_sprintf(addr6), e);
856			}
857			if (rt == NULL)
858				return (NULL);
859			RT_LOCK(rt);
860			if (rt->rt_llinfo) {
861				struct llinfo_nd6 *ln =
862				    (struct llinfo_nd6 *)rt->rt_llinfo;
863				ln->ln_state = ND6_LLINFO_NOSTATE;
864			}
865		} else
866			return (NULL);
867	}
868	RT_LOCK_ASSERT(rt);
869	RT_REMREF(rt);
870	/*
871	 * Validation for the entry.
872	 * Note that the check for rt_llinfo is necessary because a cloned
873	 * route from a parent route that has the L flag (e.g. the default
874	 * route to a p2p interface) may have the flag, too, while the
875	 * destination is not actually a neighbor.
876	 * XXX: we can't use rt->rt_ifp to check for the interface, since
877	 *      it might be the loopback interface if the entry is for our
878	 *      own address on a non-loopback interface. Instead, we should
879	 *      use rt->rt_ifa->ifa_ifp, which would specify the REAL
880	 *	interface.
881	 * Note also that ifa_ifp and ifp may differ when we connect two
882	 * interfaces to a same link, install a link prefix to an interface,
883	 * and try to install a neighbor cache on an interface that does not
884	 * have a route to the prefix.
885	 */
886	if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
887	    rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
888	    (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
889		if (create) {
890			nd6log((LOG_DEBUG,
891			    "nd6_lookup: failed to lookup %s (if = %s)\n",
892			    ip6_sprintf(addr6),
893			    ifp ? if_name(ifp) : "unspec"));
894		}
895		RT_UNLOCK(rt);
896		return (NULL);
897	}
898	RT_UNLOCK(rt);		/* XXX not ready to return rt locked */
899	return (rt);
900}
901
902/*
903 * Test whether a given IPv6 address is a neighbor or not, ignoring
904 * the actual neighbor cache.  The neighbor cache is ignored in order
905 * to not reenter the routing code from within itself.
906 */
907static int
908nd6_is_new_addr_neighbor(addr, ifp)
909	struct sockaddr_in6 *addr;
910	struct ifnet *ifp;
911{
912	struct nd_prefix *pr;
913	struct ifaddr *dstaddr;
914
915	/*
916	 * A link-local address is always a neighbor.
917	 * XXX: a link does not necessarily specify a single interface.
918	 */
919	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
920		struct sockaddr_in6 sin6_copy;
921		u_int32_t zone;
922
923		/*
924		 * We need sin6_copy since sa6_recoverscope() may modify the
925		 * content (XXX).
926		 */
927		sin6_copy = *addr;
928		if (sa6_recoverscope(&sin6_copy))
929			return (0); /* XXX: should be impossible */
930		if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
931			return (0);
932		if (sin6_copy.sin6_scope_id == zone)
933			return (1);
934		else
935			return (0);
936	}
937
938	/*
939	 * If the address matches one of our addresses,
940	 * it should be a neighbor.
941	 * If the address matches one of our on-link prefixes, it should be a
942	 * neighbor.
943	 */
944	for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
945		if (pr->ndpr_ifp != ifp)
946			continue;
947
948		if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
949			continue;
950
951		if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
952		    &addr->sin6_addr, &pr->ndpr_mask))
953			return (1);
954	}
955
956	/*
957	 * If the address is assigned on the node of the other side of
958	 * a p2p interface, the address should be a neighbor.
959	 */
960	dstaddr = ifa_ifwithdstaddr((struct sockaddr *)addr);
961	if ((dstaddr != NULL) && (dstaddr->ifa_ifp == ifp))
962		return (1);
963
964	/*
965	 * If the default router list is empty, all addresses are regarded
966	 * as on-link, and thus, as a neighbor.
967	 * XXX: we restrict the condition to hosts, because routers usually do
968	 * not have the "default router list".
969	 */
970	if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL &&
971	    nd6_defifindex == ifp->if_index) {
972		return (1);
973	}
974
975	return (0);
976}
977
978
979/*
980 * Detect if a given IPv6 address identifies a neighbor on a given link.
981 * XXX: should take care of the destination of a p2p link?
982 */
983int
984nd6_is_addr_neighbor(addr, ifp)
985	struct sockaddr_in6 *addr;
986	struct ifnet *ifp;
987{
988
989	if (nd6_is_new_addr_neighbor(addr, ifp))
990		return (1);
991
992	/*
993	 * Even if the address matches none of our addresses, it might be
994	 * in the neighbor cache.
995	 */
996	if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL)
997		return (1);
998
999	return (0);
1000}
1001
1002/*
1003 * Free an nd6 llinfo entry.
1004 * Since the function would cause significant changes in the kernel, DO NOT
1005 * make it global, unless you have a strong reason for the change, and are sure
1006 * that the change is safe.
1007 */
1008static struct llinfo_nd6 *
1009nd6_free(rt, gc)
1010	struct rtentry *rt;
1011	int gc;
1012{
1013	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
1014	struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
1015	struct nd_defrouter *dr;
1016
1017	/*
1018	 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1019	 * even though it is not harmful, it was not really necessary.
1020	 */
1021
1022	/* cancel timer */
1023	nd6_llinfo_settimer(ln, -1);
1024
1025	if (!ip6_forwarding) {
1026		int s;
1027		s = splnet();
1028		dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1029		    rt->rt_ifp);
1030
1031		if (dr != NULL && dr->expire &&
1032		    ln->ln_state == ND6_LLINFO_STALE && gc) {
1033			/*
1034			 * If the reason for the deletion is just garbage
1035			 * collection, and the neighbor is an active default
1036			 * router, do not delete it.  Instead, reset the GC
1037			 * timer using the router's lifetime.
1038			 * Simply deleting the entry would affect default
1039			 * router selection, which is not necessarily a good
1040			 * thing, especially when we're using router preference
1041			 * values.
1042			 * XXX: the check for ln_state would be redundant,
1043			 *      but we intentionally keep it just in case.
1044			 */
1045			if (dr->expire > time_second)
1046				nd6_llinfo_settimer(ln,
1047				    (dr->expire - time_second) * hz);
1048			else
1049				nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1050			splx(s);
1051			return (ln->ln_next);
1052		}
1053
1054		if (ln->ln_router || dr) {
1055			/*
1056			 * rt6_flush must be called whether or not the neighbor
1057			 * is in the Default Router List.
1058			 * See a corresponding comment in nd6_na_input().
1059			 */
1060			rt6_flush(&in6, rt->rt_ifp);
1061		}
1062
1063		if (dr) {
1064			/*
1065			 * Unreachablity of a router might affect the default
1066			 * router selection and on-link detection of advertised
1067			 * prefixes.
1068			 */
1069
1070			/*
1071			 * Temporarily fake the state to choose a new default
1072			 * router and to perform on-link determination of
1073			 * prefixes correctly.
1074			 * Below the state will be set correctly,
1075			 * or the entry itself will be deleted.
1076			 */
1077			ln->ln_state = ND6_LLINFO_INCOMPLETE;
1078
1079			/*
1080			 * Since defrouter_select() does not affect the
1081			 * on-link determination and MIP6 needs the check
1082			 * before the default router selection, we perform
1083			 * the check now.
1084			 */
1085			pfxlist_onlink_check();
1086
1087			/*
1088			 * refresh default router list
1089			 */
1090			defrouter_select();
1091		}
1092		splx(s);
1093	}
1094
1095	/*
1096	 * Before deleting the entry, remember the next entry as the
1097	 * return value.  We need this because pfxlist_onlink_check() above
1098	 * might have freed other entries (particularly the old next entry) as
1099	 * a side effect (XXX).
1100	 */
1101	next = ln->ln_next;
1102
1103	/*
1104	 * Detach the route from the routing tree and the list of neighbor
1105	 * caches, and disable the route entry not to be used in already
1106	 * cached routes.
1107	 */
1108	rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0,
1109	    rt_mask(rt), 0, (struct rtentry **)0);
1110
1111	return (next);
1112}
1113
1114/*
1115 * Upper-layer reachability hint for Neighbor Unreachability Detection.
1116 *
1117 * XXX cost-effective methods?
1118 */
1119void
1120nd6_nud_hint(rt, dst6, force)
1121	struct rtentry *rt;
1122	struct in6_addr *dst6;
1123	int force;
1124{
1125	struct llinfo_nd6 *ln;
1126
1127	/*
1128	 * If the caller specified "rt", use that.  Otherwise, resolve the
1129	 * routing table by supplied "dst6".
1130	 */
1131	if (rt == NULL) {
1132		if (dst6 == NULL)
1133			return;
1134		if ((rt = nd6_lookup(dst6, 0, NULL)) == NULL)
1135			return;
1136	}
1137
1138	if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
1139	    (rt->rt_flags & RTF_LLINFO) == 0 ||
1140	    rt->rt_llinfo == NULL || rt->rt_gateway == NULL ||
1141	    rt->rt_gateway->sa_family != AF_LINK) {
1142		/* This is not a host route. */
1143		return;
1144	}
1145
1146	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1147	if (ln->ln_state < ND6_LLINFO_REACHABLE)
1148		return;
1149
1150	/*
1151	 * if we get upper-layer reachability confirmation many times,
1152	 * it is possible we have false information.
1153	 */
1154	if (!force) {
1155		ln->ln_byhint++;
1156		if (ln->ln_byhint > nd6_maxnudhint)
1157			return;
1158	}
1159
1160	ln->ln_state = ND6_LLINFO_REACHABLE;
1161	if (!ND6_LLINFO_PERMANENT(ln)) {
1162		nd6_llinfo_settimer(ln,
1163		    (long)ND_IFINFO(rt->rt_ifp)->reachable * hz);
1164	}
1165}
1166
1167void
1168nd6_rtrequest(req, rt, info)
1169	int	req;
1170	struct rtentry *rt;
1171	struct rt_addrinfo *info; /* xxx unused */
1172{
1173	struct sockaddr *gate = rt->rt_gateway;
1174	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1175	static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
1176	struct ifnet *ifp = rt->rt_ifp;
1177	struct ifaddr *ifa;
1178
1179	RT_LOCK_ASSERT(rt);
1180
1181	if ((rt->rt_flags & RTF_GATEWAY) != 0)
1182		return;
1183
1184	if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1185		/*
1186		 * This is probably an interface direct route for a link
1187		 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1188		 * We do not need special treatment below for such a route.
1189		 * Moreover, the RTF_LLINFO flag which would be set below
1190		 * would annoy the ndp(8) command.
1191		 */
1192		return;
1193	}
1194
1195	if (req == RTM_RESOLVE &&
1196	    (nd6_need_cache(ifp) == 0 || /* stf case */
1197	     !nd6_is_new_addr_neighbor((struct sockaddr_in6 *)rt_key(rt),
1198	     ifp))) {
1199		/*
1200		 * FreeBSD and BSD/OS often make a cloned host route based
1201		 * on a less-specific route (e.g. the default route).
1202		 * If the less specific route does not have a "gateway"
1203		 * (this is the case when the route just goes to a p2p or an
1204		 * stf interface), we'll mistakenly make a neighbor cache for
1205		 * the host route, and will see strange neighbor solicitation
1206		 * for the corresponding destination.  In order to avoid the
1207		 * confusion, we check if the destination of the route is
1208		 * a neighbor in terms of neighbor discovery, and stop the
1209		 * process if not.  Additionally, we remove the LLINFO flag
1210		 * so that ndp(8) will not try to get the neighbor information
1211		 * of the destination.
1212		 */
1213		rt->rt_flags &= ~RTF_LLINFO;
1214		return;
1215	}
1216
1217	switch (req) {
1218	case RTM_ADD:
1219		/*
1220		 * There is no backward compatibility :)
1221		 *
1222		 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1223		 *     SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1224		 *	   rt->rt_flags |= RTF_CLONING;
1225		 */
1226		if ((rt->rt_flags & RTF_CLONING) ||
1227		    ((rt->rt_flags & RTF_LLINFO) && ln == NULL)) {
1228			/*
1229			 * Case 1: This route should come from a route to
1230			 * interface (RTF_CLONING case) or the route should be
1231			 * treated as on-link but is currently not
1232			 * (RTF_LLINFO && ln == NULL case).
1233			 */
1234			rt_setgate(rt, rt_key(rt),
1235				   (struct sockaddr *)&null_sdl);
1236			gate = rt->rt_gateway;
1237			SDL(gate)->sdl_type = ifp->if_type;
1238			SDL(gate)->sdl_index = ifp->if_index;
1239			if (ln)
1240				nd6_llinfo_settimer(ln, 0);
1241			if ((rt->rt_flags & RTF_CLONING) != 0)
1242				break;
1243		}
1244		/*
1245		 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1246		 * We don't do that here since llinfo is not ready yet.
1247		 *
1248		 * There are also couple of other things to be discussed:
1249		 * - unsolicited NA code needs improvement beforehand
1250		 * - RFC2461 says we MAY send multicast unsolicited NA
1251		 *   (7.2.6 paragraph 4), however, it also says that we
1252		 *   SHOULD provide a mechanism to prevent multicast NA storm.
1253		 *   we don't have anything like it right now.
1254		 *   note that the mechanism needs a mutual agreement
1255		 *   between proxies, which means that we need to implement
1256		 *   a new protocol, or a new kludge.
1257		 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1258		 *   we need to check ip6forwarding before sending it.
1259		 *   (or should we allow proxy ND configuration only for
1260		 *   routers?  there's no mention about proxy ND from hosts)
1261		 */
1262		/* FALLTHROUGH */
1263	case RTM_RESOLVE:
1264		if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1265			/*
1266			 * Address resolution isn't necessary for a point to
1267			 * point link, so we can skip this test for a p2p link.
1268			 */
1269			if (gate->sa_family != AF_LINK ||
1270			    gate->sa_len < sizeof(null_sdl)) {
1271				log(LOG_DEBUG,
1272				    "nd6_rtrequest: bad gateway value: %s\n",
1273				    if_name(ifp));
1274				break;
1275			}
1276			SDL(gate)->sdl_type = ifp->if_type;
1277			SDL(gate)->sdl_index = ifp->if_index;
1278		}
1279		if (ln != NULL)
1280			break;	/* This happens on a route change */
1281		/*
1282		 * Case 2: This route may come from cloning, or a manual route
1283		 * add with a LL address.
1284		 */
1285		R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1286		rt->rt_llinfo = (caddr_t)ln;
1287		if (ln == NULL) {
1288			log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1289			break;
1290		}
1291		nd6_inuse++;
1292		nd6_allocated++;
1293		bzero(ln, sizeof(*ln));
1294		ln->ln_rt = rt;
1295		callout_init(&ln->ln_timer_ch, 0);
1296
1297		/* this is required for "ndp" command. - shin */
1298		if (req == RTM_ADD) {
1299		        /*
1300			 * gate should have some valid AF_LINK entry,
1301			 * and ln->ln_expire should have some lifetime
1302			 * which is specified by ndp command.
1303			 */
1304			ln->ln_state = ND6_LLINFO_REACHABLE;
1305			ln->ln_byhint = 0;
1306		} else {
1307		        /*
1308			 * When req == RTM_RESOLVE, rt is created and
1309			 * initialized in rtrequest(), so rt_expire is 0.
1310			 */
1311			ln->ln_state = ND6_LLINFO_NOSTATE;
1312			nd6_llinfo_settimer(ln, 0);
1313		}
1314		rt->rt_flags |= RTF_LLINFO;
1315		ln->ln_next = llinfo_nd6.ln_next;
1316		llinfo_nd6.ln_next = ln;
1317		ln->ln_prev = &llinfo_nd6;
1318		ln->ln_next->ln_prev = ln;
1319
1320		/*
1321		 * check if rt_key(rt) is one of my address assigned
1322		 * to the interface.
1323		 */
1324		ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
1325		    &SIN6(rt_key(rt))->sin6_addr);
1326		if (ifa) {
1327			caddr_t macp = nd6_ifptomac(ifp);
1328			nd6_llinfo_settimer(ln, -1);
1329			ln->ln_state = ND6_LLINFO_REACHABLE;
1330			ln->ln_byhint = 0;
1331			if (macp) {
1332				bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
1333				SDL(gate)->sdl_alen = ifp->if_addrlen;
1334			}
1335			if (nd6_useloopback) {
1336				rt->rt_ifp = &loif[0];	/* XXX */
1337				/*
1338				 * Make sure rt_ifa be equal to the ifaddr
1339				 * corresponding to the address.
1340				 * We need this because when we refer
1341				 * rt_ifa->ia6_flags in ip6_input, we assume
1342				 * that the rt_ifa points to the address instead
1343				 * of the loopback address.
1344				 */
1345				if (ifa != rt->rt_ifa) {
1346					IFAFREE(rt->rt_ifa);
1347					IFAREF(ifa);
1348					rt->rt_ifa = ifa;
1349				}
1350			}
1351		} else if (rt->rt_flags & RTF_ANNOUNCE) {
1352			nd6_llinfo_settimer(ln, -1);
1353			ln->ln_state = ND6_LLINFO_REACHABLE;
1354			ln->ln_byhint = 0;
1355
1356			/* join solicited node multicast for proxy ND */
1357			if (ifp->if_flags & IFF_MULTICAST) {
1358				struct in6_addr llsol;
1359				int error;
1360
1361				llsol = SIN6(rt_key(rt))->sin6_addr;
1362				llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
1363				llsol.s6_addr32[1] = 0;
1364				llsol.s6_addr32[2] = htonl(1);
1365				llsol.s6_addr8[12] = 0xff;
1366				if (in6_setscope(&llsol, ifp, NULL))
1367					break;
1368				if (in6_addmulti(&llsol, ifp,
1369				    &error, 0) == NULL) {
1370					nd6log((LOG_ERR, "%s: failed to join "
1371					    "%s (errno=%d)\n", if_name(ifp),
1372					    ip6_sprintf(&llsol), error));
1373				}
1374			}
1375		}
1376		break;
1377
1378	case RTM_DELETE:
1379		if (ln == NULL)
1380			break;
1381		/* leave from solicited node multicast for proxy ND */
1382		if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1383		    (ifp->if_flags & IFF_MULTICAST) != 0) {
1384			struct in6_addr llsol;
1385			struct in6_multi *in6m;
1386
1387			llsol = SIN6(rt_key(rt))->sin6_addr;
1388			llsol.s6_addr32[0] = IPV6_ADDR_INT32_MLL;
1389			llsol.s6_addr32[1] = 0;
1390			llsol.s6_addr32[2] = htonl(1);
1391			llsol.s6_addr8[12] = 0xff;
1392			if (in6_setscope(&llsol, ifp, NULL) == 0) {
1393				IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1394				if (in6m)
1395					in6_delmulti(in6m);
1396			} else
1397				; /* XXX: should not happen. bark here? */
1398		}
1399		nd6_inuse--;
1400		ln->ln_next->ln_prev = ln->ln_prev;
1401		ln->ln_prev->ln_next = ln->ln_next;
1402		ln->ln_prev = NULL;
1403		nd6_llinfo_settimer(ln, -1);
1404		rt->rt_llinfo = 0;
1405		rt->rt_flags &= ~RTF_LLINFO;
1406		if (ln->ln_hold)
1407			m_freem(ln->ln_hold);
1408		Free((caddr_t)ln);
1409	}
1410}
1411
1412int
1413nd6_ioctl(cmd, data, ifp)
1414	u_long cmd;
1415	caddr_t	data;
1416	struct ifnet *ifp;
1417{
1418	struct in6_drlist *drl = (struct in6_drlist *)data;
1419	struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1420	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1421	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1422	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1423	struct nd_defrouter *dr;
1424	struct nd_prefix *pr;
1425	struct rtentry *rt;
1426	int i = 0, error = 0;
1427	int s;
1428
1429	switch (cmd) {
1430	case SIOCGDRLST_IN6:
1431		/*
1432		 * obsolete API, use sysctl under net.inet6.icmp6
1433		 */
1434		bzero(drl, sizeof(*drl));
1435		s = splnet();
1436		dr = TAILQ_FIRST(&nd_defrouter);
1437		while (dr && i < DRLSTSIZ) {
1438			drl->defrouter[i].rtaddr = dr->rtaddr;
1439			in6_clearscope(&drl->defrouter[i].rtaddr);
1440
1441			drl->defrouter[i].flags = dr->flags;
1442			drl->defrouter[i].rtlifetime = dr->rtlifetime;
1443			drl->defrouter[i].expire = dr->expire;
1444			drl->defrouter[i].if_index = dr->ifp->if_index;
1445			i++;
1446			dr = TAILQ_NEXT(dr, dr_entry);
1447		}
1448		splx(s);
1449		break;
1450	case SIOCGPRLST_IN6:
1451		/*
1452		 * obsolete API, use sysctl under net.inet6.icmp6
1453		 *
1454		 * XXX the structure in6_prlist was changed in backward-
1455		 * incompatible manner.  in6_oprlist is used for SIOCGPRLST_IN6,
1456		 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1457		 */
1458		/*
1459		 * XXX meaning of fields, especialy "raflags", is very
1460		 * differnet between RA prefix list and RR/static prefix list.
1461		 * how about separating ioctls into two?
1462		 */
1463		bzero(oprl, sizeof(*oprl));
1464		s = splnet();
1465		pr = nd_prefix.lh_first;
1466		while (pr && i < PRLSTSIZ) {
1467			struct nd_pfxrouter *pfr;
1468			int j;
1469
1470			oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1471			oprl->prefix[i].raflags = pr->ndpr_raf;
1472			oprl->prefix[i].prefixlen = pr->ndpr_plen;
1473			oprl->prefix[i].vltime = pr->ndpr_vltime;
1474			oprl->prefix[i].pltime = pr->ndpr_pltime;
1475			oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1476			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
1477				oprl->prefix[i].expire = 0;
1478			else {
1479				time_t maxexpire;
1480
1481				/* XXX: we assume time_t is signed. */
1482				maxexpire = (-1) &
1483				    ~((time_t)1 <<
1484				    ((sizeof(maxexpire) * 8) - 1));
1485				if (pr->ndpr_vltime <
1486				    maxexpire - pr->ndpr_lastupdate) {
1487					oprl->prefix[i].expire =
1488					    pr->ndpr_lastupdate +
1489					    pr->ndpr_vltime;
1490				} else
1491					oprl->prefix[i].expire = maxexpire;
1492			}
1493
1494			pfr = pr->ndpr_advrtrs.lh_first;
1495			j = 0;
1496			while (pfr) {
1497				if (j < DRLSTSIZ) {
1498#define RTRADDR oprl->prefix[i].advrtr[j]
1499					RTRADDR = pfr->router->rtaddr;
1500					in6_clearscope(&RTRADDR);
1501#undef RTRADDR
1502				}
1503				j++;
1504				pfr = pfr->pfr_next;
1505			}
1506			oprl->prefix[i].advrtrs = j;
1507			oprl->prefix[i].origin = PR_ORIG_RA;
1508
1509			i++;
1510			pr = pr->ndpr_next;
1511		}
1512		splx(s);
1513
1514		break;
1515	case OSIOCGIFINFO_IN6:
1516#define ND	ndi->ndi
1517		/* XXX: old ndp(8) assumes a positive value for linkmtu. */
1518		bzero(&ND, sizeof(ND));
1519		ND.linkmtu = IN6_LINKMTU(ifp);
1520		ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1521		ND.basereachable = ND_IFINFO(ifp)->basereachable;
1522		ND.reachable = ND_IFINFO(ifp)->reachable;
1523		ND.retrans = ND_IFINFO(ifp)->retrans;
1524		ND.flags = ND_IFINFO(ifp)->flags;
1525		ND.recalctm = ND_IFINFO(ifp)->recalctm;
1526		ND.chlim = ND_IFINFO(ifp)->chlim;
1527		break;
1528	case SIOCGIFINFO_IN6:
1529		ND = *ND_IFINFO(ifp);
1530		break;
1531	case SIOCSIFINFO_IN6:
1532		/*
1533		 * used to change host variables from userland.
1534		 * intented for a use on router to reflect RA configurations.
1535		 */
1536		/* 0 means 'unspecified' */
1537		if (ND.linkmtu != 0) {
1538			if (ND.linkmtu < IPV6_MMTU ||
1539			    ND.linkmtu > IN6_LINKMTU(ifp)) {
1540				error = EINVAL;
1541				break;
1542			}
1543			ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1544		}
1545
1546		if (ND.basereachable != 0) {
1547			int obasereachable = ND_IFINFO(ifp)->basereachable;
1548
1549			ND_IFINFO(ifp)->basereachable = ND.basereachable;
1550			if (ND.basereachable != obasereachable)
1551				ND_IFINFO(ifp)->reachable =
1552				    ND_COMPUTE_RTIME(ND.basereachable);
1553		}
1554		if (ND.retrans != 0)
1555			ND_IFINFO(ifp)->retrans = ND.retrans;
1556		if (ND.chlim != 0)
1557			ND_IFINFO(ifp)->chlim = ND.chlim;
1558		/* FALLTHROUGH */
1559	case SIOCSIFINFO_FLAGS:
1560		ND_IFINFO(ifp)->flags = ND.flags;
1561		break;
1562#undef ND
1563	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
1564		/* sync kernel routing table with the default router list */
1565		defrouter_reset();
1566		defrouter_select();
1567		break;
1568	case SIOCSPFXFLUSH_IN6:
1569	{
1570		/* flush all the prefix advertised by routers */
1571		struct nd_prefix *pr, *next;
1572
1573		s = splnet();
1574		for (pr = nd_prefix.lh_first; pr; pr = next) {
1575			struct in6_ifaddr *ia, *ia_next;
1576
1577			next = pr->ndpr_next;
1578
1579			if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1580				continue; /* XXX */
1581
1582			/* do we really have to remove addresses as well? */
1583			for (ia = in6_ifaddr; ia; ia = ia_next) {
1584				/* ia might be removed.  keep the next ptr. */
1585				ia_next = ia->ia_next;
1586
1587				if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1588					continue;
1589
1590				if (ia->ia6_ndpr == pr)
1591					in6_purgeaddr(&ia->ia_ifa);
1592			}
1593			prelist_remove(pr);
1594		}
1595		splx(s);
1596		break;
1597	}
1598	case SIOCSRTRFLUSH_IN6:
1599	{
1600		/* flush all the default routers */
1601		struct nd_defrouter *dr, *next;
1602
1603		s = splnet();
1604		defrouter_reset();
1605		for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = next) {
1606			next = TAILQ_NEXT(dr, dr_entry);
1607			defrtrlist_del(dr);
1608		}
1609		defrouter_select();
1610		splx(s);
1611		break;
1612	}
1613	case SIOCGNBRINFO_IN6:
1614	{
1615		struct llinfo_nd6 *ln;
1616		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1617
1618		if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1619			return (error);
1620
1621		s = splnet();
1622		if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) {
1623			error = EINVAL;
1624			splx(s);
1625			break;
1626		}
1627		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1628		nbi->state = ln->ln_state;
1629		nbi->asked = ln->ln_asked;
1630		nbi->isrouter = ln->ln_router;
1631		nbi->expire = ln->ln_expire;
1632		splx(s);
1633
1634		break;
1635	}
1636	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1637		ndif->ifindex = nd6_defifindex;
1638		break;
1639	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1640		return (nd6_setdefaultiface(ndif->ifindex));
1641	}
1642	return (error);
1643}
1644
1645/*
1646 * Create neighbor cache entry and cache link-layer address,
1647 * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
1648 */
1649struct rtentry *
1650nd6_cache_lladdr(ifp, from, lladdr, lladdrlen, type, code)
1651	struct ifnet *ifp;
1652	struct in6_addr *from;
1653	char *lladdr;
1654	int lladdrlen;
1655	int type;	/* ICMP6 type */
1656	int code;	/* type dependent information */
1657{
1658	struct rtentry *rt = NULL;
1659	struct llinfo_nd6 *ln = NULL;
1660	int is_newentry;
1661	struct sockaddr_dl *sdl = NULL;
1662	int do_update;
1663	int olladdr;
1664	int llchange;
1665	int newstate = 0;
1666
1667	if (ifp == NULL)
1668		panic("ifp == NULL in nd6_cache_lladdr");
1669	if (from == NULL)
1670		panic("from == NULL in nd6_cache_lladdr");
1671
1672	/* nothing must be updated for unspecified address */
1673	if (IN6_IS_ADDR_UNSPECIFIED(from))
1674		return NULL;
1675
1676	/*
1677	 * Validation about ifp->if_addrlen and lladdrlen must be done in
1678	 * the caller.
1679	 *
1680	 * XXX If the link does not have link-layer adderss, what should
1681	 * we do? (ifp->if_addrlen == 0)
1682	 * Spec says nothing in sections for RA, RS and NA.  There's small
1683	 * description on it in NS section (RFC 2461 7.2.3).
1684	 */
1685
1686	rt = nd6_lookup(from, 0, ifp);
1687	if (rt == NULL) {
1688		rt = nd6_lookup(from, 1, ifp);
1689		is_newentry = 1;
1690	} else {
1691		/* do nothing if static ndp is set */
1692		if (rt->rt_flags & RTF_STATIC)
1693			return NULL;
1694		is_newentry = 0;
1695	}
1696
1697	if (rt == NULL)
1698		return NULL;
1699	if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1700fail:
1701		(void)nd6_free(rt, 0);
1702		return NULL;
1703	}
1704	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1705	if (ln == NULL)
1706		goto fail;
1707	if (rt->rt_gateway == NULL)
1708		goto fail;
1709	if (rt->rt_gateway->sa_family != AF_LINK)
1710		goto fail;
1711	sdl = SDL(rt->rt_gateway);
1712
1713	olladdr = (sdl->sdl_alen) ? 1 : 0;
1714	if (olladdr && lladdr) {
1715		if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen))
1716			llchange = 1;
1717		else
1718			llchange = 0;
1719	} else
1720		llchange = 0;
1721
1722	/*
1723	 * newentry olladdr  lladdr  llchange	(*=record)
1724	 *	0	n	n	--	(1)
1725	 *	0	y	n	--	(2)
1726	 *	0	n	y	--	(3) * STALE
1727	 *	0	y	y	n	(4) *
1728	 *	0	y	y	y	(5) * STALE
1729	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
1730	 *	1	--	y	--	(7) * STALE
1731	 */
1732
1733	if (lladdr) {		/* (3-5) and (7) */
1734		/*
1735		 * Record source link-layer address
1736		 * XXX is it dependent to ifp->if_type?
1737		 */
1738		sdl->sdl_alen = ifp->if_addrlen;
1739		bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
1740	}
1741
1742	if (!is_newentry) {
1743		if ((!olladdr && lladdr != NULL) ||	/* (3) */
1744		    (olladdr && lladdr != NULL && llchange)) {	/* (5) */
1745			do_update = 1;
1746			newstate = ND6_LLINFO_STALE;
1747		} else					/* (1-2,4) */
1748			do_update = 0;
1749	} else {
1750		do_update = 1;
1751		if (lladdr == NULL)			/* (6) */
1752			newstate = ND6_LLINFO_NOSTATE;
1753		else					/* (7) */
1754			newstate = ND6_LLINFO_STALE;
1755	}
1756
1757	if (do_update) {
1758		/*
1759		 * Update the state of the neighbor cache.
1760		 */
1761		ln->ln_state = newstate;
1762
1763		if (ln->ln_state == ND6_LLINFO_STALE) {
1764			/*
1765			 * XXX: since nd6_output() below will cause
1766			 * state tansition to DELAY and reset the timer,
1767			 * we must set the timer now, although it is actually
1768			 * meaningless.
1769			 */
1770			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1771
1772			if (ln->ln_hold) {
1773				struct mbuf *m_hold, *m_hold_next;
1774				for (m_hold = ln->ln_hold; m_hold;
1775				     m_hold = m_hold_next) {
1776					struct mbuf *mpkt = NULL;
1777
1778					m_hold_next = m_hold->m_nextpkt;
1779					mpkt = m_copym(m_hold, 0, M_COPYALL, M_DONTWAIT);
1780					if (mpkt == NULL) {
1781						m_freem(m_hold);
1782						break;
1783					}
1784					mpkt->m_nextpkt = NULL;
1785
1786					/*
1787					 * we assume ifp is not a p2p here, so
1788					 * just set the 2nd argument as the
1789					 * 1st one.
1790					 */
1791					nd6_output(ifp, ifp, mpkt,
1792					     (struct sockaddr_in6 *)rt_key(rt),
1793					     rt);
1794				}
1795				ln->ln_hold = NULL;
1796			}
1797		} else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1798			/* probe right away */
1799			nd6_llinfo_settimer((void *)ln, 0);
1800		}
1801	}
1802
1803	/*
1804	 * ICMP6 type dependent behavior.
1805	 *
1806	 * NS: clear IsRouter if new entry
1807	 * RS: clear IsRouter
1808	 * RA: set IsRouter if there's lladdr
1809	 * redir: clear IsRouter if new entry
1810	 *
1811	 * RA case, (1):
1812	 * The spec says that we must set IsRouter in the following cases:
1813	 * - If lladdr exist, set IsRouter.  This means (1-5).
1814	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
1815	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1816	 * A quetion arises for (1) case.  (1) case has no lladdr in the
1817	 * neighbor cache, this is similar to (6).
1818	 * This case is rare but we figured that we MUST NOT set IsRouter.
1819	 *
1820	 * newentry olladdr  lladdr  llchange	    NS  RS  RA	redir
1821	 *							D R
1822	 *	0	n	n	--	(1)	c   ?     s
1823	 *	0	y	n	--	(2)	c   s     s
1824	 *	0	n	y	--	(3)	c   s     s
1825	 *	0	y	y	n	(4)	c   s     s
1826	 *	0	y	y	y	(5)	c   s     s
1827	 *	1	--	n	--	(6) c	c 	c s
1828	 *	1	--	y	--	(7) c	c   s	c s
1829	 *
1830	 *					(c=clear s=set)
1831	 */
1832	switch (type & 0xff) {
1833	case ND_NEIGHBOR_SOLICIT:
1834		/*
1835		 * New entry must have is_router flag cleared.
1836		 */
1837		if (is_newentry)	/* (6-7) */
1838			ln->ln_router = 0;
1839		break;
1840	case ND_REDIRECT:
1841		/*
1842		 * If the icmp is a redirect to a better router, always set the
1843		 * is_router flag.  Otherwise, if the entry is newly created,
1844		 * clear the flag.  [RFC 2461, sec 8.3]
1845		 */
1846		if (code == ND_REDIRECT_ROUTER)
1847			ln->ln_router = 1;
1848		else if (is_newentry) /* (6-7) */
1849			ln->ln_router = 0;
1850		break;
1851	case ND_ROUTER_SOLICIT:
1852		/*
1853		 * is_router flag must always be cleared.
1854		 */
1855		ln->ln_router = 0;
1856		break;
1857	case ND_ROUTER_ADVERT:
1858		/*
1859		 * Mark an entry with lladdr as a router.
1860		 */
1861		if ((!is_newentry && (olladdr || lladdr)) ||	/* (2-5) */
1862		    (is_newentry && lladdr)) {			/* (7) */
1863			ln->ln_router = 1;
1864		}
1865		break;
1866	}
1867
1868	/*
1869	 * When the link-layer address of a router changes, select the
1870	 * best router again.  In particular, when the neighbor entry is newly
1871	 * created, it might affect the selection policy.
1872	 * Question: can we restrict the first condition to the "is_newentry"
1873	 * case?
1874	 * XXX: when we hear an RA from a new router with the link-layer
1875	 * address option, defrouter_select() is called twice, since
1876	 * defrtrlist_update called the function as well.  However, I believe
1877	 * we can compromise the overhead, since it only happens the first
1878	 * time.
1879	 * XXX: although defrouter_select() should not have a bad effect
1880	 * for those are not autoconfigured hosts, we explicitly avoid such
1881	 * cases for safety.
1882	 */
1883	if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv)
1884		defrouter_select();
1885
1886	return rt;
1887}
1888
1889static void
1890nd6_slowtimo(ignored_arg)
1891    void *ignored_arg;
1892{
1893	struct nd_ifinfo *nd6if;
1894	struct ifnet *ifp;
1895
1896	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1897	    nd6_slowtimo, NULL);
1898	IFNET_RLOCK();
1899	for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) {
1900		nd6if = ND_IFINFO(ifp);
1901		if (nd6if->basereachable && /* already initialized */
1902		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1903			/*
1904			 * Since reachable time rarely changes by router
1905			 * advertisements, we SHOULD insure that a new random
1906			 * value gets recomputed at least once every few hours.
1907			 * (RFC 2461, 6.3.4)
1908			 */
1909			nd6if->recalctm = nd6_recalc_reachtm_interval;
1910			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1911		}
1912	}
1913	IFNET_RUNLOCK();
1914}
1915
1916#define senderr(e) { error = (e); goto bad;}
1917int
1918nd6_output(ifp, origifp, m0, dst, rt0)
1919	struct ifnet *ifp;
1920	struct ifnet *origifp;
1921	struct mbuf *m0;
1922	struct sockaddr_in6 *dst;
1923	struct rtentry *rt0;
1924{
1925	struct mbuf *m = m0;
1926	struct rtentry *rt = rt0;
1927	struct sockaddr_in6 *gw6 = NULL;
1928	struct llinfo_nd6 *ln = NULL;
1929	int error = 0;
1930
1931	if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1932		goto sendpkt;
1933
1934	if (nd6_need_cache(ifp) == 0)
1935		goto sendpkt;
1936
1937	/*
1938	 * next hop determination.  This routine is derived from ether_output.
1939	 */
1940again:
1941	if (rt) {
1942		if ((rt->rt_flags & RTF_UP) == 0) {
1943			rt0 = rt = rtalloc1((struct sockaddr *)dst, 1, 0UL);
1944			if (rt != NULL) {
1945				RT_REMREF(rt);
1946				RT_UNLOCK(rt);
1947				if (rt->rt_ifp != ifp)
1948					/*
1949					 * XXX maybe we should update ifp too,
1950					 * but the original code didn't and I
1951					 * don't know what is correct here.
1952					 */
1953					goto again;
1954			} else
1955				senderr(EHOSTUNREACH);
1956		}
1957
1958		if (rt->rt_flags & RTF_GATEWAY) {
1959			gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
1960
1961			/*
1962			 * We skip link-layer address resolution and NUD
1963			 * if the gateway is not a neighbor from ND point
1964			 * of view, regardless of the value of nd_ifinfo.flags.
1965			 * The second condition is a bit tricky; we skip
1966			 * if the gateway is our own address, which is
1967			 * sometimes used to install a route to a p2p link.
1968			 */
1969			if (!nd6_is_addr_neighbor(gw6, ifp) ||
1970			    in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
1971				/*
1972				 * We allow this kind of tricky route only
1973				 * when the outgoing interface is p2p.
1974				 * XXX: we may need a more generic rule here.
1975				 */
1976				if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1977					senderr(EHOSTUNREACH);
1978
1979				goto sendpkt;
1980			}
1981
1982			if (rt->rt_gwroute == 0)
1983				goto lookup;
1984			if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) {
1985				RT_LOCK(rt);
1986				rtfree(rt); rt = rt0;
1987			lookup:
1988				rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1, 0UL);
1989				if ((rt = rt->rt_gwroute) == 0)
1990					senderr(EHOSTUNREACH);
1991				RT_UNLOCK(rt);
1992			}
1993		}
1994	}
1995
1996	/*
1997	 * Address resolution or Neighbor Unreachability Detection
1998	 * for the next hop.
1999	 * At this point, the destination of the packet must be a unicast
2000	 * or an anycast address(i.e. not a multicast).
2001	 */
2002
2003	/* Look up the neighbor cache for the nexthop */
2004	if (rt && (rt->rt_flags & RTF_LLINFO) != 0)
2005		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2006	else {
2007		/*
2008		 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2009		 * the condition below is not very efficient.  But we believe
2010		 * it is tolerable, because this should be a rare case.
2011		 */
2012		if (nd6_is_addr_neighbor(dst, ifp) &&
2013		    (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
2014			ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2015	}
2016	if (ln == NULL || rt == NULL) {
2017		if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
2018		    !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
2019			log(LOG_DEBUG,
2020			    "nd6_output: can't allocate llinfo for %s "
2021			    "(ln=%p, rt=%p)\n",
2022			    ip6_sprintf(&dst->sin6_addr), ln, rt);
2023			senderr(EIO);	/* XXX: good error? */
2024		}
2025
2026		goto sendpkt;	/* send anyway */
2027	}
2028
2029	/* We don't have to do link-layer address resolution on a p2p link. */
2030	if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
2031	    ln->ln_state < ND6_LLINFO_REACHABLE) {
2032		ln->ln_state = ND6_LLINFO_STALE;
2033		nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
2034	}
2035
2036	/*
2037	 * The first time we send a packet to a neighbor whose entry is
2038	 * STALE, we have to change the state to DELAY and a sets a timer to
2039	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2040	 * neighbor unreachability detection on expiration.
2041	 * (RFC 2461 7.3.3)
2042	 */
2043	if (ln->ln_state == ND6_LLINFO_STALE) {
2044		ln->ln_asked = 0;
2045		ln->ln_state = ND6_LLINFO_DELAY;
2046		nd6_llinfo_settimer(ln, (long)nd6_delay * hz);
2047	}
2048
2049	/*
2050	 * If the neighbor cache entry has a state other than INCOMPLETE
2051	 * (i.e. its link-layer address is already resolved), just
2052	 * send the packet.
2053	 */
2054	if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
2055		goto sendpkt;
2056
2057	/*
2058	 * There is a neighbor cache entry, but no ethernet address
2059	 * response yet.  Append this latest packet to the end of the
2060	 * packet queue in the mbuf, unless the number of the packet
2061	 * does not exceed nd6_maxqueuelen.  When it exceeds nd6_maxqueuelen,
2062	 * the oldest packet in the queue will be removed.
2063	 */
2064	if (ln->ln_state == ND6_LLINFO_NOSTATE)
2065		ln->ln_state = ND6_LLINFO_INCOMPLETE;
2066	if (ln->ln_hold) {
2067		struct mbuf *m_hold;
2068		int i;
2069
2070		i = 0;
2071		for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) {
2072			i++;
2073			if (m_hold->m_nextpkt == NULL) {
2074				m_hold->m_nextpkt = m;
2075				break;
2076			}
2077		}
2078		while (i >= nd6_maxqueuelen) {
2079			m_hold = ln->ln_hold;
2080			ln->ln_hold = ln->ln_hold->m_nextpkt;
2081			m_free(m_hold);
2082			i--;
2083		}
2084	} else {
2085		ln->ln_hold = m;
2086	}
2087
2088	/*
2089	 * If there has been no NS for the neighbor after entering the
2090	 * INCOMPLETE state, send the first solicitation.
2091	 */
2092	if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
2093		ln->ln_asked++;
2094		nd6_llinfo_settimer(ln,
2095		    (long)ND_IFINFO(ifp)->retrans * hz / 1000);
2096		nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
2097	}
2098	return (0);
2099
2100  sendpkt:
2101	/* discard the packet if IPv6 operation is disabled on the interface */
2102	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2103		error = ENETDOWN; /* better error? */
2104		goto bad;
2105	}
2106
2107#ifdef IPSEC
2108	/* clean ipsec history once it goes out of the node */
2109	ipsec_delaux(m);
2110#endif
2111
2112#ifdef MAC
2113	mac_create_mbuf_linklayer(ifp, m);
2114#endif
2115	if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
2116		return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst,
2117		    rt));
2118	}
2119	return ((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt));
2120
2121  bad:
2122	if (m)
2123		m_freem(m);
2124	return (error);
2125}
2126#undef senderr
2127
2128int
2129nd6_need_cache(ifp)
2130	struct ifnet *ifp;
2131{
2132	/*
2133	 * XXX: we currently do not make neighbor cache on any interface
2134	 * other than ARCnet, Ethernet, FDDI and GIF.
2135	 *
2136	 * RFC2893 says:
2137	 * - unidirectional tunnels needs no ND
2138	 */
2139	switch (ifp->if_type) {
2140	case IFT_ARCNET:
2141	case IFT_ETHER:
2142	case IFT_FDDI:
2143	case IFT_IEEE1394:
2144#ifdef IFT_L2VLAN
2145	case IFT_L2VLAN:
2146#endif
2147#ifdef IFT_IEEE80211
2148	case IFT_IEEE80211:
2149#endif
2150#ifdef IFT_CARP
2151	case IFT_CARP:
2152#endif
2153	case IFT_GIF:		/* XXX need more cases? */
2154	case IFT_PPP:
2155	case IFT_TUNNEL:
2156	case IFT_BRIDGE:
2157		return (1);
2158	default:
2159		return (0);
2160	}
2161}
2162
2163int
2164nd6_storelladdr(ifp, rt0, m, dst, desten)
2165	struct ifnet *ifp;
2166	struct rtentry *rt0;
2167	struct mbuf *m;
2168	struct sockaddr *dst;
2169	u_char *desten;
2170{
2171	struct sockaddr_dl *sdl;
2172	struct rtentry *rt;
2173	int error;
2174
2175	if (m->m_flags & M_MCAST) {
2176		int i;
2177
2178		switch (ifp->if_type) {
2179		case IFT_ETHER:
2180		case IFT_FDDI:
2181#ifdef IFT_L2VLAN
2182		case IFT_L2VLAN:
2183#endif
2184#ifdef IFT_IEEE80211
2185		case IFT_IEEE80211:
2186#endif
2187		case IFT_BRIDGE:
2188		case IFT_ISO88025:
2189			ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
2190						 desten);
2191			return (0);
2192		case IFT_IEEE1394:
2193			/*
2194			 * netbsd can use if_broadcastaddr, but we don't do so
2195			 * to reduce # of ifdef.
2196			 */
2197			for (i = 0; i < ifp->if_addrlen; i++)
2198				desten[i] = ~0;
2199			return (0);
2200		case IFT_ARCNET:
2201			*desten = 0;
2202			return (0);
2203		default:
2204			m_freem(m);
2205			return (EAFNOSUPPORT);
2206		}
2207	}
2208
2209	if (rt0 == NULL) {
2210		/* this could happen, if we could not allocate memory */
2211		m_freem(m);
2212		return (ENOMEM);
2213	}
2214
2215	error = rt_check(&rt, &rt0, dst);
2216	if (error) {
2217		m_freem(m);
2218		return (error);
2219	}
2220	RT_UNLOCK(rt);
2221
2222	if (rt->rt_gateway->sa_family != AF_LINK) {
2223		printf("nd6_storelladdr: something odd happens\n");
2224		m_freem(m);
2225		return (EINVAL);
2226	}
2227	sdl = SDL(rt->rt_gateway);
2228	if (sdl->sdl_alen == 0) {
2229		/* this should be impossible, but we bark here for debugging */
2230		printf("nd6_storelladdr: sdl_alen == 0\n");
2231		m_freem(m);
2232		return (EINVAL);
2233	}
2234
2235	bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
2236	return (0);
2237}
2238
2239static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS);
2240static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS);
2241#ifdef SYSCTL_DECL
2242SYSCTL_DECL(_net_inet6_icmp6);
2243#endif
2244SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
2245	CTLFLAG_RD, nd6_sysctl_drlist, "");
2246SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
2247	CTLFLAG_RD, nd6_sysctl_prlist, "");
2248SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen,
2249	CTLFLAG_RW, &nd6_maxqueuelen, 1, "");
2250
2251static int
2252nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS)
2253{
2254	int error;
2255	char buf[1024];
2256	struct in6_defrouter *d, *de;
2257	struct nd_defrouter *dr;
2258
2259	if (req->newptr)
2260		return EPERM;
2261	error = 0;
2262
2263	for (dr = TAILQ_FIRST(&nd_defrouter); dr;
2264	     dr = TAILQ_NEXT(dr, dr_entry)) {
2265		d = (struct in6_defrouter *)buf;
2266		de = (struct in6_defrouter *)(buf + sizeof(buf));
2267
2268		if (d + 1 <= de) {
2269			bzero(d, sizeof(*d));
2270			d->rtaddr.sin6_family = AF_INET6;
2271			d->rtaddr.sin6_len = sizeof(d->rtaddr);
2272			d->rtaddr.sin6_addr = dr->rtaddr;
2273			sa6_recoverscope(&d->rtaddr);
2274			d->flags = dr->flags;
2275			d->rtlifetime = dr->rtlifetime;
2276			d->expire = dr->expire;
2277			d->if_index = dr->ifp->if_index;
2278		} else
2279			panic("buffer too short");
2280
2281		error = SYSCTL_OUT(req, buf, sizeof(*d));
2282		if (error)
2283			break;
2284	}
2285
2286	return (error);
2287}
2288
2289static int
2290nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
2291{
2292	int error;
2293	char buf[1024];
2294	struct in6_prefix *p, *pe;
2295	struct nd_prefix *pr;
2296
2297	if (req->newptr)
2298		return EPERM;
2299	error = 0;
2300
2301	for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
2302		u_short advrtrs;
2303		size_t advance;
2304		struct sockaddr_in6 *sin6, *s6;
2305		struct nd_pfxrouter *pfr;
2306
2307		p = (struct in6_prefix *)buf;
2308		pe = (struct in6_prefix *)(buf + sizeof(buf));
2309
2310		if (p + 1 <= pe) {
2311			bzero(p, sizeof(*p));
2312			sin6 = (struct sockaddr_in6 *)(p + 1);
2313
2314			p->prefix = pr->ndpr_prefix;
2315			if (sa6_recoverscope(&p->prefix)) {
2316				log(LOG_ERR,
2317				    "scope error in prefix list (%s)\n",
2318				    ip6_sprintf(&p->prefix.sin6_addr));
2319				/* XXX: press on... */
2320			}
2321			p->raflags = pr->ndpr_raf;
2322			p->prefixlen = pr->ndpr_plen;
2323			p->vltime = pr->ndpr_vltime;
2324			p->pltime = pr->ndpr_pltime;
2325			p->if_index = pr->ndpr_ifp->if_index;
2326			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2327				p->expire = 0;
2328			else {
2329				time_t maxexpire;
2330
2331				/* XXX: we assume time_t is signed. */
2332				maxexpire = (-1) &
2333				    ~((time_t)1 <<
2334				    ((sizeof(maxexpire) * 8) - 1));
2335				if (pr->ndpr_vltime <
2336				    maxexpire - pr->ndpr_lastupdate) {
2337				    p->expire = pr->ndpr_lastupdate +
2338				        pr->ndpr_vltime;
2339				} else
2340					p->expire = maxexpire;
2341			}
2342			p->refcnt = pr->ndpr_refcnt;
2343			p->flags = pr->ndpr_stateflags;
2344			p->origin = PR_ORIG_RA;
2345			advrtrs = 0;
2346			for (pfr = pr->ndpr_advrtrs.lh_first; pfr;
2347			     pfr = pfr->pfr_next) {
2348				if ((void *)&sin6[advrtrs + 1] > (void *)pe) {
2349					advrtrs++;
2350					continue;
2351				}
2352				s6 = &sin6[advrtrs];
2353				bzero(s6, sizeof(*s6));
2354				s6->sin6_family = AF_INET6;
2355				s6->sin6_len = sizeof(*sin6);
2356				s6->sin6_addr = pfr->router->rtaddr;
2357				if (sa6_recoverscope(s6)) {
2358					log(LOG_ERR,
2359					    "scope error in "
2360					    "prefix list (%s)\n",
2361					    ip6_sprintf(&pfr->router->rtaddr));
2362				}
2363				advrtrs++;
2364			}
2365			p->advrtrs = advrtrs;
2366		} else
2367			panic("buffer too short");
2368
2369		advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
2370		error = SYSCTL_OUT(req, buf, advance);
2371		if (error)
2372			break;
2373	}
2374
2375	return (error);
2376}
2377