nd6.c revision 142215
1/*	$FreeBSD: head/sys/netinet6/nd6.c 142215 2005-02-22 13:04:05Z glebius $	*/
2/*	$KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $	*/
3
4/*-
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33#include "opt_inet.h"
34#include "opt_inet6.h"
35#include "opt_mac.h"
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/callout.h>
40#include <sys/mac.h>
41#include <sys/malloc.h>
42#include <sys/mbuf.h>
43#include <sys/socket.h>
44#include <sys/sockio.h>
45#include <sys/time.h>
46#include <sys/kernel.h>
47#include <sys/protosw.h>
48#include <sys/errno.h>
49#include <sys/syslog.h>
50#include <sys/queue.h>
51#include <sys/sysctl.h>
52
53#include <net/if.h>
54#include <net/if_arc.h>
55#include <net/if_dl.h>
56#include <net/if_types.h>
57#include <net/if_atm.h>
58#include <net/iso88025.h>
59#include <net/fddi.h>
60#include <net/route.h>
61
62#include <netinet/in.h>
63#include <netinet/if_ether.h>
64#include <netinet6/in6_var.h>
65#include <netinet/ip6.h>
66#include <netinet6/ip6_var.h>
67#include <netinet6/nd6.h>
68#include <netinet/icmp6.h>
69
70#include <net/net_osdep.h>
71
72#define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
73#define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
74
75#define SIN6(s) ((struct sockaddr_in6 *)s)
76#define SDL(s) ((struct sockaddr_dl *)s)
77
78/* timer values */
79int	nd6_prune	= 1;	/* walk list every 1 seconds */
80int	nd6_delay	= 5;	/* delay first probe time 5 second */
81int	nd6_umaxtries	= 3;	/* maximum unicast query */
82int	nd6_mmaxtries	= 3;	/* maximum multicast query */
83int	nd6_useloopback = 1;	/* use loopback interface for local traffic */
84int	nd6_gctimer	= (60 * 60 * 24); /* 1 day: garbage collection timer */
85
86/* preventing too many loops in ND option parsing */
87int nd6_maxndopt = 10;	/* max # of ND options allowed */
88
89int nd6_maxnudhint = 0;	/* max # of subsequent upper layer hints */
90
91#ifdef ND6_DEBUG
92int nd6_debug = 1;
93#else
94int nd6_debug = 0;
95#endif
96
97/* for debugging? */
98static int nd6_inuse, nd6_allocated;
99
100struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6};
101struct nd_drhead nd_defrouter;
102struct nd_prhead nd_prefix = { 0 };
103
104int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
105static struct sockaddr_in6 all1_sa;
106
107static int nd6_is_new_addr_neighbor __P((struct sockaddr_in6 *,
108	struct ifnet *));
109static void nd6_setmtu0 __P((struct ifnet *, struct nd_ifinfo *));
110static void nd6_slowtimo __P((void *));
111static int regen_tmpaddr __P((struct in6_ifaddr *));
112
113struct callout nd6_slowtimo_ch;
114struct callout nd6_timer_ch;
115extern struct callout in6_tmpaddrtimer_ch;
116
117void
118nd6_init()
119{
120	static int nd6_init_done = 0;
121	int i;
122
123	if (nd6_init_done) {
124		log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
125		return;
126	}
127
128	all1_sa.sin6_family = AF_INET6;
129	all1_sa.sin6_len = sizeof(struct sockaddr_in6);
130	for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
131		all1_sa.sin6_addr.s6_addr[i] = 0xff;
132
133	/* initialization of the default router list */
134	TAILQ_INIT(&nd_defrouter);
135
136	nd6_init_done = 1;
137
138	/* start timer */
139	callout_init(&nd6_slowtimo_ch, 0);
140	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
141	    nd6_slowtimo, NULL);
142}
143
144struct nd_ifinfo *
145nd6_ifattach(ifp)
146	struct ifnet *ifp;
147{
148	struct nd_ifinfo *nd;
149
150	nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK);
151	bzero(nd, sizeof(*nd));
152
153	nd->initialized = 1;
154
155	nd->chlim = IPV6_DEFHLIM;
156	nd->basereachable = REACHABLE_TIME;
157	nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
158	nd->retrans = RETRANS_TIMER;
159	/*
160	 * Note that the default value of ip6_accept_rtadv is 0, which means
161	 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV
162	 * here.
163	 */
164	nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV);
165
166	/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
167	nd6_setmtu0(ifp, nd);
168
169	return nd;
170}
171
172void
173nd6_ifdetach(nd)
174	struct nd_ifinfo *nd;
175{
176
177	free(nd, M_IP6NDP);
178}
179
180/*
181 * Reset ND level link MTU. This function is called when the physical MTU
182 * changes, which means we might have to adjust the ND level MTU.
183 */
184void
185nd6_setmtu(ifp)
186	struct ifnet *ifp;
187{
188
189	nd6_setmtu0(ifp, ND_IFINFO(ifp));
190}
191
192/* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
193void
194nd6_setmtu0(ifp, ndi)
195	struct ifnet *ifp;
196	struct nd_ifinfo *ndi;
197{
198	u_int32_t omaxmtu;
199
200	omaxmtu = ndi->maxmtu;
201
202	switch (ifp->if_type) {
203	case IFT_ARCNET:
204		ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
205		break;
206	case IFT_ETHER:
207		ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu);
208		break;
209	case IFT_FDDI:
210		ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu); /* RFC2467 */
211		break;
212	case IFT_ATM:
213		ndi->maxmtu = MIN(ATMMTU, ifp->if_mtu);
214		break;
215	case IFT_IEEE1394:	/* XXX should be IEEE1394MTU(1500) */
216		ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu);
217		break;
218#ifdef IFT_IEEE80211
219	case IFT_IEEE80211:	/* XXX should be IEEE80211MTU(1500) */
220		ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu);
221		break;
222#endif
223	 case IFT_ISO88025:
224		 ndi->maxmtu = MIN(ISO88025_MAX_MTU, ifp->if_mtu);
225		 break;
226	default:
227		ndi->maxmtu = ifp->if_mtu;
228		break;
229	}
230
231	/*
232	 * Decreasing the interface MTU under IPV6 minimum MTU may cause
233	 * undesirable situation.  We thus notify the operator of the change
234	 * explicitly.  The check for omaxmtu is necessary to restrict the
235	 * log to the case of changing the MTU, not initializing it.
236	 */
237	if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
238		log(LOG_NOTICE, "nd6_setmtu0: "
239		    "new link MTU on %s (%lu) is too small for IPv6\n",
240		    if_name(ifp), (unsigned long)ndi->maxmtu);
241	}
242
243	if (ndi->maxmtu > in6_maxmtu)
244		in6_setmaxmtu(); /* check all interfaces just in case */
245
246#undef MIN
247}
248
249void
250nd6_option_init(opt, icmp6len, ndopts)
251	void *opt;
252	int icmp6len;
253	union nd_opts *ndopts;
254{
255
256	bzero(ndopts, sizeof(*ndopts));
257	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
258	ndopts->nd_opts_last
259		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
260
261	if (icmp6len == 0) {
262		ndopts->nd_opts_done = 1;
263		ndopts->nd_opts_search = NULL;
264	}
265}
266
267/*
268 * Take one ND option.
269 */
270struct nd_opt_hdr *
271nd6_option(ndopts)
272	union nd_opts *ndopts;
273{
274	struct nd_opt_hdr *nd_opt;
275	int olen;
276
277	if (!ndopts)
278		panic("ndopts == NULL in nd6_option");
279	if (!ndopts->nd_opts_last)
280		panic("uninitialized ndopts in nd6_option");
281	if (!ndopts->nd_opts_search)
282		return NULL;
283	if (ndopts->nd_opts_done)
284		return NULL;
285
286	nd_opt = ndopts->nd_opts_search;
287
288	/* make sure nd_opt_len is inside the buffer */
289	if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
290		bzero(ndopts, sizeof(*ndopts));
291		return NULL;
292	}
293
294	olen = nd_opt->nd_opt_len << 3;
295	if (olen == 0) {
296		/*
297		 * Message validation requires that all included
298		 * options have a length that is greater than zero.
299		 */
300		bzero(ndopts, sizeof(*ndopts));
301		return NULL;
302	}
303
304	ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
305	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
306		/* option overruns the end of buffer, invalid */
307		bzero(ndopts, sizeof(*ndopts));
308		return NULL;
309	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
310		/* reached the end of options chain */
311		ndopts->nd_opts_done = 1;
312		ndopts->nd_opts_search = NULL;
313	}
314	return nd_opt;
315}
316
317/*
318 * Parse multiple ND options.
319 * This function is much easier to use, for ND routines that do not need
320 * multiple options of the same type.
321 */
322int
323nd6_options(ndopts)
324	union nd_opts *ndopts;
325{
326	struct nd_opt_hdr *nd_opt;
327	int i = 0;
328
329	if (!ndopts)
330		panic("ndopts == NULL in nd6_options");
331	if (!ndopts->nd_opts_last)
332		panic("uninitialized ndopts in nd6_options");
333	if (!ndopts->nd_opts_search)
334		return 0;
335
336	while (1) {
337		nd_opt = nd6_option(ndopts);
338		if (!nd_opt && !ndopts->nd_opts_last) {
339			/*
340			 * Message validation requires that all included
341			 * options have a length that is greater than zero.
342			 */
343			icmp6stat.icp6s_nd_badopt++;
344			bzero(ndopts, sizeof(*ndopts));
345			return -1;
346		}
347
348		if (!nd_opt)
349			goto skip1;
350
351		switch (nd_opt->nd_opt_type) {
352		case ND_OPT_SOURCE_LINKADDR:
353		case ND_OPT_TARGET_LINKADDR:
354		case ND_OPT_MTU:
355		case ND_OPT_REDIRECTED_HEADER:
356			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
357				nd6log((LOG_INFO,
358				    "duplicated ND6 option found (type=%d)\n",
359				    nd_opt->nd_opt_type));
360				/* XXX bark? */
361			} else {
362				ndopts->nd_opt_array[nd_opt->nd_opt_type]
363					= nd_opt;
364			}
365			break;
366		case ND_OPT_PREFIX_INFORMATION:
367			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
368				ndopts->nd_opt_array[nd_opt->nd_opt_type]
369					= nd_opt;
370			}
371			ndopts->nd_opts_pi_end =
372				(struct nd_opt_prefix_info *)nd_opt;
373			break;
374		default:
375			/*
376			 * Unknown options must be silently ignored,
377			 * to accomodate future extension to the protocol.
378			 */
379			nd6log((LOG_DEBUG,
380			    "nd6_options: unsupported option %d - "
381			    "option ignored\n", nd_opt->nd_opt_type));
382		}
383
384skip1:
385		i++;
386		if (i > nd6_maxndopt) {
387			icmp6stat.icp6s_nd_toomanyopt++;
388			nd6log((LOG_INFO, "too many loop in nd opt\n"));
389			break;
390		}
391
392		if (ndopts->nd_opts_done)
393			break;
394	}
395
396	return 0;
397}
398
399/*
400 * ND6 timer routine to expire default route list and prefix list
401 */
402void
403nd6_timer(ignored_arg)
404	void	*ignored_arg;
405{
406	int s;
407	struct llinfo_nd6 *ln;
408	struct nd_defrouter *dr;
409	struct nd_prefix *pr;
410	struct ifnet *ifp;
411	struct in6_ifaddr *ia6, *nia6;
412	struct in6_addrlifetime *lt6;
413
414	s = splnet();
415	callout_reset(&nd6_timer_ch, nd6_prune * hz,
416	    nd6_timer, NULL);
417
418	ln = llinfo_nd6.ln_next;
419	while (ln && ln != &llinfo_nd6) {
420		struct rtentry *rt;
421		struct sockaddr_in6 *dst;
422		struct llinfo_nd6 *next = ln->ln_next;
423		/* XXX: used for the DELAY case only: */
424		struct nd_ifinfo *ndi = NULL;
425
426		if ((rt = ln->ln_rt) == NULL) {
427			ln = next;
428			continue;
429		}
430		if ((ifp = rt->rt_ifp) == NULL) {
431			ln = next;
432			continue;
433		}
434		ndi = ND_IFINFO(ifp);
435		dst = (struct sockaddr_in6 *)rt_key(rt);
436
437		if (ln->ln_expire > time_second) {
438			ln = next;
439			continue;
440		}
441
442		/* sanity check */
443		if (!rt)
444			panic("rt=0 in nd6_timer(ln=%p)", ln);
445		if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
446			panic("rt_llinfo(%p) is not equal to ln(%p)",
447			      rt->rt_llinfo, ln);
448		if (!dst)
449			panic("dst=0 in nd6_timer(ln=%p)", ln);
450
451		switch (ln->ln_state) {
452		case ND6_LLINFO_INCOMPLETE:
453			if (ln->ln_asked < nd6_mmaxtries) {
454				ln->ln_asked++;
455				ln->ln_expire = time_second +
456					ND_IFINFO(ifp)->retrans / 1000;
457				nd6_ns_output(ifp, NULL, &dst->sin6_addr,
458					ln, 0);
459			} else {
460				struct mbuf *m = ln->ln_hold;
461				if (m) {
462					if (rt->rt_ifp) {
463						/*
464						 * Fake rcvif to make ICMP error
465						 * more helpful in diagnosing
466						 * for the receiver.
467						 * XXX: should we consider
468						 * older rcvif?
469						 */
470						m->m_pkthdr.rcvif = rt->rt_ifp;
471					}
472					icmp6_error(m, ICMP6_DST_UNREACH,
473						    ICMP6_DST_UNREACH_ADDR, 0);
474					ln->ln_hold = NULL;
475				}
476				next = nd6_free(rt);
477			}
478			break;
479		case ND6_LLINFO_REACHABLE:
480			if (ln->ln_expire) {
481				ln->ln_state = ND6_LLINFO_STALE;
482				ln->ln_expire = time_second + nd6_gctimer;
483			}
484			break;
485
486		case ND6_LLINFO_STALE:
487			/* Garbage Collection(RFC 2461 5.3) */
488			if (ln->ln_expire)
489				next = nd6_free(rt);
490			break;
491
492		case ND6_LLINFO_DELAY:
493			if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
494				/* We need NUD */
495				ln->ln_asked = 1;
496				ln->ln_state = ND6_LLINFO_PROBE;
497				ln->ln_expire = time_second +
498					ndi->retrans / 1000;
499				nd6_ns_output(ifp, &dst->sin6_addr,
500					      &dst->sin6_addr,
501					      ln, 0);
502			} else {
503				ln->ln_state = ND6_LLINFO_STALE; /* XXX */
504				ln->ln_expire = time_second + nd6_gctimer;
505			}
506			break;
507		case ND6_LLINFO_PROBE:
508			if (ln->ln_asked < nd6_umaxtries) {
509				ln->ln_asked++;
510				ln->ln_expire = time_second +
511					ND_IFINFO(ifp)->retrans / 1000;
512				nd6_ns_output(ifp, &dst->sin6_addr,
513					       &dst->sin6_addr, ln, 0);
514			} else {
515				next = nd6_free(rt);
516			}
517			break;
518		}
519		ln = next;
520	}
521
522	/* expire default router list */
523	dr = TAILQ_FIRST(&nd_defrouter);
524	while (dr) {
525		if (dr->expire && dr->expire < time_second) {
526			struct nd_defrouter *t;
527			t = TAILQ_NEXT(dr, dr_entry);
528			defrtrlist_del(dr);
529			dr = t;
530		} else {
531			dr = TAILQ_NEXT(dr, dr_entry);
532		}
533	}
534
535	/*
536	 * expire interface addresses.
537	 * in the past the loop was inside prefix expiry processing.
538	 * However, from a stricter speci-confrmance standpoint, we should
539	 * rather separate address lifetimes and prefix lifetimes.
540	 */
541  addrloop:
542	for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
543		nia6 = ia6->ia_next;
544		/* check address lifetime */
545		lt6 = &ia6->ia6_lifetime;
546		if (IFA6_IS_INVALID(ia6)) {
547			int regen = 0;
548
549			/*
550			 * If the expiring address is temporary, try
551			 * regenerating a new one.  This would be useful when
552			 * we suspended a laptop PC, then turned it on after a
553			 * period that could invalidate all temporary
554			 * addresses.  Although we may have to restart the
555			 * loop (see below), it must be after purging the
556			 * address.  Otherwise, we'd see an infinite loop of
557			 * regeneration.
558			 */
559			if (ip6_use_tempaddr &&
560			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
561				if (regen_tmpaddr(ia6) == 0)
562					regen = 1;
563			}
564
565			in6_purgeaddr(&ia6->ia_ifa);
566
567			if (regen)
568				goto addrloop; /* XXX: see below */
569		}
570		if (IFA6_IS_DEPRECATED(ia6)) {
571			int oldflags = ia6->ia6_flags;
572
573			ia6->ia6_flags |= IN6_IFF_DEPRECATED;
574
575			/*
576			 * If a temporary address has just become deprecated,
577			 * regenerate a new one if possible.
578			 */
579			if (ip6_use_tempaddr &&
580			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
581			    (oldflags & IN6_IFF_DEPRECATED) == 0) {
582
583				if (regen_tmpaddr(ia6) == 0) {
584					/*
585					 * A new temporary address is
586					 * generated.
587					 * XXX: this means the address chain
588					 * has changed while we are still in
589					 * the loop.  Although the change
590					 * would not cause disaster (because
591					 * it's not a deletion, but an
592					 * addition,) we'd rather restart the
593					 * loop just for safety.  Or does this
594					 * significantly reduce performance??
595					 */
596					goto addrloop;
597				}
598			}
599		} else {
600			/*
601			 * A new RA might have made a deprecated address
602			 * preferred.
603			 */
604			ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
605		}
606	}
607
608	/* expire prefix list */
609	pr = nd_prefix.lh_first;
610	while (pr) {
611		/*
612		 * check prefix lifetime.
613		 * since pltime is just for autoconf, pltime processing for
614		 * prefix is not necessary.
615		 */
616		if (pr->ndpr_expire && pr->ndpr_expire < time_second) {
617			struct nd_prefix *t;
618			t = pr->ndpr_next;
619
620			/*
621			 * address expiration and prefix expiration are
622			 * separate.  NEVER perform in6_purgeaddr here.
623			 */
624
625			prelist_remove(pr);
626			pr = t;
627		} else
628			pr = pr->ndpr_next;
629	}
630	splx(s);
631}
632
633static int
634regen_tmpaddr(ia6)
635	struct in6_ifaddr *ia6; /* deprecated/invalidated temporary address */
636{
637	struct ifaddr *ifa;
638	struct ifnet *ifp;
639	struct in6_ifaddr *public_ifa6 = NULL;
640
641	ifp = ia6->ia_ifa.ifa_ifp;
642	for (ifa = ifp->if_addrlist.tqh_first; ifa;
643	     ifa = ifa->ifa_list.tqe_next) {
644		struct in6_ifaddr *it6;
645
646		if (ifa->ifa_addr->sa_family != AF_INET6)
647			continue;
648
649		it6 = (struct in6_ifaddr *)ifa;
650
651		/* ignore no autoconf addresses. */
652		if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
653			continue;
654
655		/* ignore autoconf addresses with different prefixes. */
656		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
657			continue;
658
659		/*
660		 * Now we are looking at an autoconf address with the same
661		 * prefix as ours.  If the address is temporary and is still
662		 * preferred, do not create another one.  It would be rare, but
663		 * could happen, for example, when we resume a laptop PC after
664		 * a long period.
665		 */
666		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
667		    !IFA6_IS_DEPRECATED(it6)) {
668			public_ifa6 = NULL;
669			break;
670		}
671
672		/*
673		 * This is a public autoconf address that has the same prefix
674		 * as ours.  If it is preferred, keep it.  We can't break the
675		 * loop here, because there may be a still-preferred temporary
676		 * address with the prefix.
677		 */
678		if (!IFA6_IS_DEPRECATED(it6))
679		    public_ifa6 = it6;
680	}
681
682	if (public_ifa6 != NULL) {
683		int e;
684
685		if ((e = in6_tmpifadd(public_ifa6, 0)) != 0) {
686			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
687			    " tmp addr,errno=%d\n", e);
688			return (-1);
689		}
690		return (0);
691	}
692
693	return (-1);
694}
695
696/*
697 * Nuke neighbor cache/prefix/default router management table, right before
698 * ifp goes away.
699 */
700void
701nd6_purge(ifp)
702	struct ifnet *ifp;
703{
704	struct llinfo_nd6 *ln, *nln;
705	struct nd_defrouter *dr, *ndr, drany;
706	struct nd_prefix *pr, *npr;
707
708	/* Nuke default router list entries toward ifp */
709	if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) {
710		/*
711		 * The first entry of the list may be stored in
712		 * the routing table, so we'll delete it later.
713		 */
714		for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = ndr) {
715			ndr = TAILQ_NEXT(dr, dr_entry);
716			if (dr->ifp == ifp)
717				defrtrlist_del(dr);
718		}
719		dr = TAILQ_FIRST(&nd_defrouter);
720		if (dr->ifp == ifp)
721			defrtrlist_del(dr);
722	}
723
724	/* Nuke prefix list entries toward ifp */
725	for (pr = nd_prefix.lh_first; pr; pr = npr) {
726		npr = pr->ndpr_next;
727		if (pr->ndpr_ifp == ifp) {
728			/*
729			 * Previously, pr->ndpr_addr is removed as well,
730			 * but I strongly believe we don't have to do it.
731			 * nd6_purge() is only called from in6_ifdetach(),
732			 * which removes all the associated interface addresses
733			 * by itself.
734			 * (jinmei@kame.net 20010129)
735			 */
736			prelist_remove(pr);
737		}
738	}
739
740	/* cancel default outgoing interface setting */
741	if (nd6_defifindex == ifp->if_index)
742		nd6_setdefaultiface(0);
743
744	if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
745		/* refresh default router list */
746		bzero(&drany, sizeof(drany));
747		defrouter_delreq(&drany, 0);
748		defrouter_select();
749	}
750
751	/*
752	 * Nuke neighbor cache entries for the ifp.
753	 * Note that rt->rt_ifp may not be the same as ifp,
754	 * due to KAME goto ours hack.  See RTM_RESOLVE case in
755	 * nd6_rtrequest(), and ip6_input().
756	 */
757	ln = llinfo_nd6.ln_next;
758	while (ln && ln != &llinfo_nd6) {
759		struct rtentry *rt;
760		struct sockaddr_dl *sdl;
761
762		nln = ln->ln_next;
763		rt = ln->ln_rt;
764		if (rt && rt->rt_gateway &&
765		    rt->rt_gateway->sa_family == AF_LINK) {
766			sdl = (struct sockaddr_dl *)rt->rt_gateway;
767			if (sdl->sdl_index == ifp->if_index)
768				nln = nd6_free(rt);
769		}
770		ln = nln;
771	}
772}
773
774struct rtentry *
775nd6_lookup(addr6, create, ifp)
776	struct in6_addr *addr6;
777	int create;
778	struct ifnet *ifp;
779{
780	struct rtentry *rt;
781	struct sockaddr_in6 sin6;
782
783	bzero(&sin6, sizeof(sin6));
784	sin6.sin6_len = sizeof(struct sockaddr_in6);
785	sin6.sin6_family = AF_INET6;
786	sin6.sin6_addr = *addr6;
787	rt = rtalloc1((struct sockaddr *)&sin6, create, 0UL);
788	if (rt) {
789		if ((rt->rt_flags & RTF_LLINFO) == 0 && create) {
790			/*
791			 * This is the case for the default route.
792			 * If we want to create a neighbor cache for the
793			 * address, we should free the route for the
794			 * destination and allocate an interface route.
795			 */
796			RTFREE_LOCKED(rt);
797			rt = 0;
798		}
799	}
800	if (!rt) {
801		if (create && ifp) {
802			int e;
803
804			/*
805			 * If no route is available and create is set,
806			 * we allocate a host route for the destination
807			 * and treat it like an interface route.
808			 * This hack is necessary for a neighbor which can't
809			 * be covered by our own prefix.
810			 */
811			struct ifaddr *ifa =
812			    ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
813			if (ifa == NULL)
814				return (NULL);
815
816			/*
817			 * Create a new route.  RTF_LLINFO is necessary
818			 * to create a Neighbor Cache entry for the
819			 * destination in nd6_rtrequest which will be
820			 * called in rtrequest via ifa->ifa_rtrequest.
821			 */
822			if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6,
823			    ifa->ifa_addr, (struct sockaddr *)&all1_sa,
824			    (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
825			    ~RTF_CLONING, &rt)) != 0) {
826				log(LOG_ERR,
827				    "nd6_lookup: failed to add route for a "
828				    "neighbor(%s), errno=%d\n",
829				    ip6_sprintf(addr6), e);
830			}
831			if (rt == NULL)
832				return (NULL);
833			RT_LOCK(rt);
834			if (rt->rt_llinfo) {
835				struct llinfo_nd6 *ln =
836				    (struct llinfo_nd6 *)rt->rt_llinfo;
837				ln->ln_state = ND6_LLINFO_NOSTATE;
838			}
839		} else
840			return (NULL);
841	}
842	RT_LOCK_ASSERT(rt);
843	RT_REMREF(rt);
844	/*
845	 * Validation for the entry.
846	 * Note that the check for rt_llinfo is necessary because a cloned
847	 * route from a parent route that has the L flag (e.g. the default
848	 * route to a p2p interface) may have the flag, too, while the
849	 * destination is not actually a neighbor.
850	 * XXX: we can't use rt->rt_ifp to check for the interface, since
851	 *      it might be the loopback interface if the entry is for our
852	 *      own address on a non-loopback interface. Instead, we should
853	 *      use rt->rt_ifa->ifa_ifp, which would specify the REAL
854	 *	interface.
855	 */
856	if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
857	    rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
858	    (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
859		if (create) {
860			log(LOG_DEBUG,
861			    "nd6_lookup: failed to lookup %s (if = %s)\n",
862			    ip6_sprintf(addr6),
863			    ifp ? if_name(ifp) : "unspec");
864			/* xxx more logs... kazu */
865		}
866		RT_UNLOCK(rt);
867		return (NULL);
868	}
869	RT_UNLOCK(rt);		/* XXX not ready to return rt locked */
870	return (rt);
871}
872
873/*
874 * Test whether a given IPv6 address is a neighbor or not, ignoring
875 * the actual neighbor cache.  The neighbor cache is ignored in order
876 * to not reenter the routing code from within itself.
877 */
878static int
879nd6_is_new_addr_neighbor(addr, ifp)
880	struct sockaddr_in6 *addr;
881	struct ifnet *ifp;
882{
883	struct nd_prefix *pr;
884
885	/*
886	 * A link-local address is always a neighbor.
887	 * XXX: we should use the sin6_scope_id field rather than the embedded
888	 * interface index.
889	 * XXX: a link does not necessarily specify a single interface.
890	 */
891	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr) &&
892	    ntohs(*(u_int16_t *)&addr->sin6_addr.s6_addr[2]) == ifp->if_index)
893		return (1);
894
895	/*
896	 * If the address matches one of our addresses,
897	 * it should be a neighbor.
898	 * If the address matches one of our on-link prefixes, it should be a
899	 * neighbor.
900	 */
901	for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
902		if (pr->ndpr_ifp != ifp)
903			continue;
904
905		if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
906			continue;
907
908		if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
909		    &addr->sin6_addr, &pr->ndpr_mask))
910			return (1);
911	}
912
913	/*
914	 * If the default router list is empty, all addresses are regarded
915	 * as on-link, and thus, as a neighbor.
916	 * XXX: we restrict the condition to hosts, because routers usually do
917	 * not have the "default router list".
918	 */
919	if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL &&
920	    nd6_defifindex == ifp->if_index) {
921		return (1);
922	}
923
924	return (0);
925}
926
927
928/*
929 * Detect if a given IPv6 address identifies a neighbor on a given link.
930 * XXX: should take care of the destination of a p2p link?
931 */
932int
933nd6_is_addr_neighbor(addr, ifp)
934	struct sockaddr_in6 *addr;
935	struct ifnet *ifp;
936{
937
938	if (nd6_is_new_addr_neighbor(addr, ifp))
939		return (1);
940
941	/*
942	 * Even if the address matches none of our addresses, it might be
943	 * in the neighbor cache.
944	 */
945	if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL)
946		return (1);
947
948	return (0);
949}
950
951/*
952 * Free an nd6 llinfo entry.
953 */
954struct llinfo_nd6 *
955nd6_free(rt)
956	struct rtentry *rt;
957{
958	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
959	struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
960	struct nd_defrouter *dr;
961
962	/*
963	 * we used to have pfctlinput(PRC_HOSTDEAD) here.
964	 * even though it is not harmful, it was not really necessary.
965	 */
966
967	if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
968		int s;
969		s = splnet();
970		dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
971		    rt->rt_ifp);
972
973		if (ln->ln_router || dr) {
974			/*
975			 * rt6_flush must be called whether or not the neighbor
976			 * is in the Default Router List.
977			 * See a corresponding comment in nd6_na_input().
978			 */
979			rt6_flush(&in6, rt->rt_ifp);
980		}
981
982		if (dr) {
983			/*
984			 * Unreachablity of a router might affect the default
985			 * router selection and on-link detection of advertised
986			 * prefixes.
987			 */
988
989			/*
990			 * Temporarily fake the state to choose a new default
991			 * router and to perform on-link determination of
992			 * prefixes correctly.
993			 * Below the state will be set correctly,
994			 * or the entry itself will be deleted.
995			 */
996			ln->ln_state = ND6_LLINFO_INCOMPLETE;
997
998			/*
999			 * Since defrouter_select() does not affect the
1000			 * on-link determination and MIP6 needs the check
1001			 * before the default router selection, we perform
1002			 * the check now.
1003			 */
1004			pfxlist_onlink_check();
1005
1006			if (dr == TAILQ_FIRST(&nd_defrouter)) {
1007				/*
1008				 * It is used as the current default router,
1009				 * so we have to move it to the end of the
1010				 * list and choose a new one.
1011				 * XXX: it is not very efficient if this is
1012				 *      the only router.
1013				 */
1014				TAILQ_REMOVE(&nd_defrouter, dr, dr_entry);
1015				TAILQ_INSERT_TAIL(&nd_defrouter, dr, dr_entry);
1016
1017				defrouter_select();
1018			}
1019		}
1020		splx(s);
1021	}
1022
1023	/*
1024	 * Before deleting the entry, remember the next entry as the
1025	 * return value.  We need this because pfxlist_onlink_check() above
1026	 * might have freed other entries (particularly the old next entry) as
1027	 * a side effect (XXX).
1028	 */
1029	next = ln->ln_next;
1030
1031	/*
1032	 * Detach the route from the routing tree and the list of neighbor
1033	 * caches, and disable the route entry not to be used in already
1034	 * cached routes.
1035	 */
1036	rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0,
1037	    rt_mask(rt), 0, (struct rtentry **)0);
1038
1039	return (next);
1040}
1041
1042/*
1043 * Upper-layer reachability hint for Neighbor Unreachability Detection.
1044 *
1045 * XXX cost-effective metods?
1046 */
1047void
1048nd6_nud_hint(rt, dst6, force)
1049	struct rtentry *rt;
1050	struct in6_addr *dst6;
1051	int force;
1052{
1053	struct llinfo_nd6 *ln;
1054
1055	/*
1056	 * If the caller specified "rt", use that.  Otherwise, resolve the
1057	 * routing table by supplied "dst6".
1058	 */
1059	if (!rt) {
1060		if (!dst6)
1061			return;
1062		if (!(rt = nd6_lookup(dst6, 0, NULL)))
1063			return;
1064	}
1065
1066	if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
1067	    (rt->rt_flags & RTF_LLINFO) == 0 ||
1068	    !rt->rt_llinfo || !rt->rt_gateway ||
1069	    rt->rt_gateway->sa_family != AF_LINK) {
1070		/* This is not a host route. */
1071		return;
1072	}
1073
1074	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1075	if (ln->ln_state < ND6_LLINFO_REACHABLE)
1076		return;
1077
1078	/*
1079	 * if we get upper-layer reachability confirmation many times,
1080	 * it is possible we have false information.
1081	 */
1082	if (!force) {
1083		ln->ln_byhint++;
1084		if (ln->ln_byhint > nd6_maxnudhint)
1085			return;
1086	}
1087
1088	ln->ln_state = ND6_LLINFO_REACHABLE;
1089	if (ln->ln_expire)
1090		ln->ln_expire = time_second +
1091			ND_IFINFO(rt->rt_ifp)->reachable;
1092}
1093
1094void
1095nd6_rtrequest(req, rt, info)
1096	int	req;
1097	struct rtentry *rt;
1098	struct rt_addrinfo *info; /* xxx unused */
1099{
1100	struct sockaddr *gate = rt->rt_gateway;
1101	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1102	static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
1103	struct ifnet *ifp = rt->rt_ifp;
1104	struct ifaddr *ifa;
1105
1106	RT_LOCK_ASSERT(rt);
1107
1108	if ((rt->rt_flags & RTF_GATEWAY) != 0)
1109		return;
1110
1111	if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1112		/*
1113		 * This is probably an interface direct route for a link
1114		 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1115		 * We do not need special treatment below for such a route.
1116		 * Moreover, the RTF_LLINFO flag which would be set below
1117		 * would annoy the ndp(8) command.
1118		 */
1119		return;
1120	}
1121
1122	if (req == RTM_RESOLVE &&
1123	    (nd6_need_cache(ifp) == 0 || /* stf case */
1124	     !nd6_is_new_addr_neighbor((struct sockaddr_in6 *)rt_key(rt),
1125	     ifp))) {
1126		/*
1127		 * FreeBSD and BSD/OS often make a cloned host route based
1128		 * on a less-specific route (e.g. the default route).
1129		 * If the less specific route does not have a "gateway"
1130		 * (this is the case when the route just goes to a p2p or an
1131		 * stf interface), we'll mistakenly make a neighbor cache for
1132		 * the host route, and will see strange neighbor solicitation
1133		 * for the corresponding destination.  In order to avoid the
1134		 * confusion, we check if the destination of the route is
1135		 * a neighbor in terms of neighbor discovery, and stop the
1136		 * process if not.  Additionally, we remove the LLINFO flag
1137		 * so that ndp(8) will not try to get the neighbor information
1138		 * of the destination.
1139		 */
1140		rt->rt_flags &= ~RTF_LLINFO;
1141		return;
1142	}
1143
1144	switch (req) {
1145	case RTM_ADD:
1146		/*
1147		 * There is no backward compatibility :)
1148		 *
1149		 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1150		 *     SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1151		 *	   rt->rt_flags |= RTF_CLONING;
1152		 */
1153		if (rt->rt_flags & (RTF_CLONING | RTF_LLINFO)) {
1154			/*
1155			 * Case 1: This route should come from
1156			 * a route to interface.  RTF_LLINFO flag is set
1157			 * for a host route whose destination should be
1158			 * treated as on-link.
1159			 */
1160			rt_setgate(rt, rt_key(rt),
1161				   (struct sockaddr *)&null_sdl);
1162			gate = rt->rt_gateway;
1163			SDL(gate)->sdl_type = ifp->if_type;
1164			SDL(gate)->sdl_index = ifp->if_index;
1165			if (ln)
1166				ln->ln_expire = time_second;
1167			if (ln && ln->ln_expire == 0) {
1168				/* kludge for desktops */
1169				ln->ln_expire = 1;
1170			}
1171			if ((rt->rt_flags & RTF_CLONING) != 0)
1172				break;
1173		}
1174		/*
1175		 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1176		 * We don't do that here since llinfo is not ready yet.
1177		 *
1178		 * There are also couple of other things to be discussed:
1179		 * - unsolicited NA code needs improvement beforehand
1180		 * - RFC2461 says we MAY send multicast unsolicited NA
1181		 *   (7.2.6 paragraph 4), however, it also says that we
1182		 *   SHOULD provide a mechanism to prevent multicast NA storm.
1183		 *   we don't have anything like it right now.
1184		 *   note that the mechanism needs a mutual agreement
1185		 *   between proxies, which means that we need to implement
1186		 *   a new protocol, or a new kludge.
1187		 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1188		 *   we need to check ip6forwarding before sending it.
1189		 *   (or should we allow proxy ND configuration only for
1190		 *   routers?  there's no mention about proxy ND from hosts)
1191		 */
1192#if 0
1193		/* XXX it does not work */
1194		if (rt->rt_flags & RTF_ANNOUNCE)
1195			nd6_na_output(ifp,
1196			      &SIN6(rt_key(rt))->sin6_addr,
1197			      &SIN6(rt_key(rt))->sin6_addr,
1198			      ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1199			      1, NULL);
1200#endif
1201		/* FALLTHROUGH */
1202	case RTM_RESOLVE:
1203		if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1204			/*
1205			 * Address resolution isn't necessary for a point to
1206			 * point link, so we can skip this test for a p2p link.
1207			 */
1208			if (gate->sa_family != AF_LINK ||
1209			    gate->sa_len < sizeof(null_sdl)) {
1210				log(LOG_DEBUG,
1211				    "nd6_rtrequest: bad gateway value: %s\n",
1212				    if_name(ifp));
1213				break;
1214			}
1215			SDL(gate)->sdl_type = ifp->if_type;
1216			SDL(gate)->sdl_index = ifp->if_index;
1217		}
1218		if (ln != NULL)
1219			break;	/* This happens on a route change */
1220		/*
1221		 * Case 2: This route may come from cloning, or a manual route
1222		 * add with a LL address.
1223		 */
1224		R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1225		rt->rt_llinfo = (caddr_t)ln;
1226		if (!ln) {
1227			log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1228			break;
1229		}
1230		nd6_inuse++;
1231		nd6_allocated++;
1232		bzero(ln, sizeof(*ln));
1233		ln->ln_rt = rt;
1234		/* this is required for "ndp" command. - shin */
1235		if (req == RTM_ADD) {
1236		        /*
1237			 * gate should have some valid AF_LINK entry,
1238			 * and ln->ln_expire should have some lifetime
1239			 * which is specified by ndp command.
1240			 */
1241			ln->ln_state = ND6_LLINFO_REACHABLE;
1242			ln->ln_byhint = 0;
1243		} else {
1244		        /*
1245			 * When req == RTM_RESOLVE, rt is created and
1246			 * initialized in rtrequest(), so rt_expire is 0.
1247			 */
1248			ln->ln_state = ND6_LLINFO_NOSTATE;
1249			ln->ln_expire = time_second;
1250		}
1251		rt->rt_flags |= RTF_LLINFO;
1252		ln->ln_next = llinfo_nd6.ln_next;
1253		llinfo_nd6.ln_next = ln;
1254		ln->ln_prev = &llinfo_nd6;
1255		ln->ln_next->ln_prev = ln;
1256
1257		/*
1258		 * check if rt_key(rt) is one of my address assigned
1259		 * to the interface.
1260		 */
1261		ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
1262		    &SIN6(rt_key(rt))->sin6_addr);
1263		if (ifa) {
1264			caddr_t macp = nd6_ifptomac(ifp);
1265			ln->ln_expire = 0;
1266			ln->ln_state = ND6_LLINFO_REACHABLE;
1267			ln->ln_byhint = 0;
1268			if (macp) {
1269				bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
1270				SDL(gate)->sdl_alen = ifp->if_addrlen;
1271			}
1272			if (nd6_useloopback) {
1273				rt->rt_ifp = &loif[0];	/* XXX */
1274				/*
1275				 * Make sure rt_ifa be equal to the ifaddr
1276				 * corresponding to the address.
1277				 * We need this because when we refer
1278				 * rt_ifa->ia6_flags in ip6_input, we assume
1279				 * that the rt_ifa points to the address instead
1280				 * of the loopback address.
1281				 */
1282				if (ifa != rt->rt_ifa) {
1283					IFAFREE(rt->rt_ifa);
1284					IFAREF(ifa);
1285					rt->rt_ifa = ifa;
1286				}
1287			}
1288		} else if (rt->rt_flags & RTF_ANNOUNCE) {
1289			ln->ln_expire = 0;
1290			ln->ln_state = ND6_LLINFO_REACHABLE;
1291			ln->ln_byhint = 0;
1292
1293			/* join solicited node multicast for proxy ND */
1294			if (ifp->if_flags & IFF_MULTICAST) {
1295				struct in6_addr llsol;
1296				int error;
1297
1298				llsol = SIN6(rt_key(rt))->sin6_addr;
1299				llsol.s6_addr16[0] = htons(0xff02);
1300				llsol.s6_addr16[1] = htons(ifp->if_index);
1301				llsol.s6_addr32[1] = 0;
1302				llsol.s6_addr32[2] = htonl(1);
1303				llsol.s6_addr8[12] = 0xff;
1304
1305				if (!in6_addmulti(&llsol, ifp, &error)) {
1306					nd6log((LOG_ERR, "%s: failed to join "
1307					    "%s (errno=%d)\n", if_name(ifp),
1308					    ip6_sprintf(&llsol), error));
1309				}
1310			}
1311		}
1312		break;
1313
1314	case RTM_DELETE:
1315		if (!ln)
1316			break;
1317		/* leave from solicited node multicast for proxy ND */
1318		if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1319		    (ifp->if_flags & IFF_MULTICAST) != 0) {
1320			struct in6_addr llsol;
1321			struct in6_multi *in6m;
1322
1323			llsol = SIN6(rt_key(rt))->sin6_addr;
1324			llsol.s6_addr16[0] = htons(0xff02);
1325			llsol.s6_addr16[1] = htons(ifp->if_index);
1326			llsol.s6_addr32[1] = 0;
1327			llsol.s6_addr32[2] = htonl(1);
1328			llsol.s6_addr8[12] = 0xff;
1329
1330			IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1331			if (in6m)
1332				in6_delmulti(in6m);
1333		}
1334		nd6_inuse--;
1335		ln->ln_next->ln_prev = ln->ln_prev;
1336		ln->ln_prev->ln_next = ln->ln_next;
1337		ln->ln_prev = NULL;
1338		rt->rt_llinfo = 0;
1339		rt->rt_flags &= ~RTF_LLINFO;
1340		if (ln->ln_hold)
1341			m_freem(ln->ln_hold);
1342		Free((caddr_t)ln);
1343	}
1344}
1345
1346int
1347nd6_ioctl(cmd, data, ifp)
1348	u_long cmd;
1349	caddr_t	data;
1350	struct ifnet *ifp;
1351{
1352	struct in6_drlist *drl = (struct in6_drlist *)data;
1353	struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1354	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1355	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1356	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1357	struct nd_defrouter *dr, any;
1358	struct nd_prefix *pr;
1359	struct rtentry *rt;
1360	int i = 0, error = 0;
1361	int s;
1362
1363	switch (cmd) {
1364	case SIOCGDRLST_IN6:
1365		/*
1366		 * obsolete API, use sysctl under net.inet6.icmp6
1367		 */
1368		bzero(drl, sizeof(*drl));
1369		s = splnet();
1370		dr = TAILQ_FIRST(&nd_defrouter);
1371		while (dr && i < DRLSTSIZ) {
1372			drl->defrouter[i].rtaddr = dr->rtaddr;
1373			in6_clearscope(&drl->defrouter[i].rtaddr);
1374
1375			drl->defrouter[i].flags = dr->flags;
1376			drl->defrouter[i].rtlifetime = dr->rtlifetime;
1377			drl->defrouter[i].expire = dr->expire;
1378			drl->defrouter[i].if_index = dr->ifp->if_index;
1379			i++;
1380			dr = TAILQ_NEXT(dr, dr_entry);
1381		}
1382		splx(s);
1383		break;
1384	case SIOCGPRLST_IN6:
1385		/*
1386		 * obsolete API, use sysctl under net.inet6.icmp6
1387		 *
1388		 * XXX the structure in6_prlist was changed in backward-
1389		 * incompatible manner.  in6_oprlist is used for SIOCGPRLST_IN6,
1390		 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1391		 */
1392		/*
1393		 * XXX meaning of fields, especialy "raflags", is very
1394		 * differnet between RA prefix list and RR/static prefix list.
1395		 * how about separating ioctls into two?
1396		 */
1397		bzero(oprl, sizeof(*oprl));
1398		s = splnet();
1399		pr = nd_prefix.lh_first;
1400		while (pr && i < PRLSTSIZ) {
1401			struct nd_pfxrouter *pfr;
1402			int j;
1403
1404			(void)in6_embedscope(&oprl->prefix[i].prefix,
1405			    &pr->ndpr_prefix, NULL, NULL);
1406			oprl->prefix[i].raflags = pr->ndpr_raf;
1407			oprl->prefix[i].prefixlen = pr->ndpr_plen;
1408			oprl->prefix[i].vltime = pr->ndpr_vltime;
1409			oprl->prefix[i].pltime = pr->ndpr_pltime;
1410			oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1411			oprl->prefix[i].expire = pr->ndpr_expire;
1412
1413			pfr = pr->ndpr_advrtrs.lh_first;
1414			j = 0;
1415			while (pfr) {
1416				if (j < DRLSTSIZ) {
1417#define RTRADDR oprl->prefix[i].advrtr[j]
1418					RTRADDR = pfr->router->rtaddr;
1419					in6_clearscope(&RTRADDR);
1420#undef RTRADDR
1421				}
1422				j++;
1423				pfr = pfr->pfr_next;
1424			}
1425			oprl->prefix[i].advrtrs = j;
1426			oprl->prefix[i].origin = PR_ORIG_RA;
1427
1428			i++;
1429			pr = pr->ndpr_next;
1430		}
1431		splx(s);
1432
1433		break;
1434	case OSIOCGIFINFO_IN6:
1435		/* XXX: old ndp(8) assumes a positive value for linkmtu. */
1436		bzero(&ndi->ndi, sizeof(ndi->ndi));
1437		ndi->ndi.linkmtu = IN6_LINKMTU(ifp);
1438		ndi->ndi.maxmtu = ND_IFINFO(ifp)->maxmtu;
1439		ndi->ndi.basereachable = ND_IFINFO(ifp)->basereachable;
1440		ndi->ndi.reachable = ND_IFINFO(ifp)->reachable;
1441		ndi->ndi.retrans = ND_IFINFO(ifp)->retrans;
1442		ndi->ndi.flags = ND_IFINFO(ifp)->flags;
1443		ndi->ndi.recalctm = ND_IFINFO(ifp)->recalctm;
1444		ndi->ndi.chlim = ND_IFINFO(ifp)->chlim;
1445		break;
1446	case SIOCGIFINFO_IN6:
1447		ndi->ndi = *ND_IFINFO(ifp);
1448		ndi->ndi.linkmtu = IN6_LINKMTU(ifp);
1449		break;
1450	case SIOCSIFINFO_FLAGS:
1451		ND_IFINFO(ifp)->flags = ndi->ndi.flags;
1452		break;
1453	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
1454		/* flush default router list */
1455		/*
1456		 * xxx sumikawa: should not delete route if default
1457		 * route equals to the top of default router list
1458		 */
1459		bzero(&any, sizeof(any));
1460		defrouter_delreq(&any, 0);
1461		defrouter_select();
1462		/* xxx sumikawa: flush prefix list */
1463		break;
1464	case SIOCSPFXFLUSH_IN6:
1465	{
1466		/* flush all the prefix advertised by routers */
1467		struct nd_prefix *pr, *next;
1468
1469		s = splnet();
1470		for (pr = nd_prefix.lh_first; pr; pr = next) {
1471			struct in6_ifaddr *ia, *ia_next;
1472
1473			next = pr->ndpr_next;
1474
1475			if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1476				continue; /* XXX */
1477
1478			/* do we really have to remove addresses as well? */
1479			for (ia = in6_ifaddr; ia; ia = ia_next) {
1480				/* ia might be removed.  keep the next ptr. */
1481				ia_next = ia->ia_next;
1482
1483				if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1484					continue;
1485
1486				if (ia->ia6_ndpr == pr)
1487					in6_purgeaddr(&ia->ia_ifa);
1488			}
1489			prelist_remove(pr);
1490		}
1491		splx(s);
1492		break;
1493	}
1494	case SIOCSRTRFLUSH_IN6:
1495	{
1496		/* flush all the default routers */
1497		struct nd_defrouter *dr, *next;
1498
1499		s = splnet();
1500		if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) {
1501			/*
1502			 * The first entry of the list may be stored in
1503			 * the routing table, so we'll delete it later.
1504			 */
1505			for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = next) {
1506				next = TAILQ_NEXT(dr, dr_entry);
1507				defrtrlist_del(dr);
1508			}
1509			defrtrlist_del(TAILQ_FIRST(&nd_defrouter));
1510		}
1511		splx(s);
1512		break;
1513	}
1514	case SIOCGNBRINFO_IN6:
1515	{
1516		struct llinfo_nd6 *ln;
1517		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1518
1519		/*
1520		 * XXX: KAME specific hack for scoped addresses
1521		 *      XXXX: for other scopes than link-local?
1522		 */
1523		if (IN6_IS_ADDR_LINKLOCAL(&nbi->addr) ||
1524		    IN6_IS_ADDR_MC_LINKLOCAL(&nbi->addr)) {
1525			u_int16_t *idp = (u_int16_t *)&nb_addr.s6_addr[2];
1526
1527			if (*idp == 0)
1528				*idp = htons(ifp->if_index);
1529		}
1530
1531		s = splnet();
1532		if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) {
1533			error = EINVAL;
1534			splx(s);
1535			break;
1536		}
1537		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1538		nbi->state = ln->ln_state;
1539		nbi->asked = ln->ln_asked;
1540		nbi->isrouter = ln->ln_router;
1541		nbi->expire = ln->ln_expire;
1542		splx(s);
1543
1544		break;
1545	}
1546	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1547		ndif->ifindex = nd6_defifindex;
1548		break;
1549	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1550		return (nd6_setdefaultiface(ndif->ifindex));
1551	}
1552	return (error);
1553}
1554
1555/*
1556 * Create neighbor cache entry and cache link-layer address,
1557 * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
1558 */
1559struct rtentry *
1560nd6_cache_lladdr(ifp, from, lladdr, lladdrlen, type, code)
1561	struct ifnet *ifp;
1562	struct in6_addr *from;
1563	char *lladdr;
1564	int lladdrlen;
1565	int type;	/* ICMP6 type */
1566	int code;	/* type dependent information */
1567{
1568	struct rtentry *rt = NULL;
1569	struct llinfo_nd6 *ln = NULL;
1570	int is_newentry;
1571	struct sockaddr_dl *sdl = NULL;
1572	int do_update;
1573	int olladdr;
1574	int llchange;
1575	int newstate = 0;
1576
1577	if (!ifp)
1578		panic("ifp == NULL in nd6_cache_lladdr");
1579	if (!from)
1580		panic("from == NULL in nd6_cache_lladdr");
1581
1582	/* nothing must be updated for unspecified address */
1583	if (IN6_IS_ADDR_UNSPECIFIED(from))
1584		return NULL;
1585
1586	/*
1587	 * Validation about ifp->if_addrlen and lladdrlen must be done in
1588	 * the caller.
1589	 *
1590	 * XXX If the link does not have link-layer adderss, what should
1591	 * we do? (ifp->if_addrlen == 0)
1592	 * Spec says nothing in sections for RA, RS and NA.  There's small
1593	 * description on it in NS section (RFC 2461 7.2.3).
1594	 */
1595
1596	rt = nd6_lookup(from, 0, ifp);
1597	if (!rt) {
1598#if 0
1599		/* nothing must be done if there's no lladdr */
1600		if (!lladdr || !lladdrlen)
1601			return NULL;
1602#endif
1603
1604		rt = nd6_lookup(from, 1, ifp);
1605		is_newentry = 1;
1606	} else {
1607		/* do nothing if static ndp is set */
1608		if (rt->rt_flags & RTF_STATIC)
1609			return NULL;
1610		is_newentry = 0;
1611	}
1612
1613	if (!rt)
1614		return NULL;
1615	if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1616fail:
1617		(void)nd6_free(rt);
1618		return NULL;
1619	}
1620	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1621	if (!ln)
1622		goto fail;
1623	if (!rt->rt_gateway)
1624		goto fail;
1625	if (rt->rt_gateway->sa_family != AF_LINK)
1626		goto fail;
1627	sdl = SDL(rt->rt_gateway);
1628
1629	olladdr = (sdl->sdl_alen) ? 1 : 0;
1630	if (olladdr && lladdr) {
1631		if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen))
1632			llchange = 1;
1633		else
1634			llchange = 0;
1635	} else
1636		llchange = 0;
1637
1638	/*
1639	 * newentry olladdr  lladdr  llchange	(*=record)
1640	 *	0	n	n	--	(1)
1641	 *	0	y	n	--	(2)
1642	 *	0	n	y	--	(3) * STALE
1643	 *	0	y	y	n	(4) *
1644	 *	0	y	y	y	(5) * STALE
1645	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
1646	 *	1	--	y	--	(7) * STALE
1647	 */
1648
1649	if (lladdr) {		/* (3-5) and (7) */
1650		/*
1651		 * Record source link-layer address
1652		 * XXX is it dependent to ifp->if_type?
1653		 */
1654		sdl->sdl_alen = ifp->if_addrlen;
1655		bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
1656	}
1657
1658	if (!is_newentry) {
1659		if ((!olladdr && lladdr) ||		/* (3) */
1660		    (olladdr && lladdr && llchange)) {	/* (5) */
1661			do_update = 1;
1662			newstate = ND6_LLINFO_STALE;
1663		} else					/* (1-2,4) */
1664			do_update = 0;
1665	} else {
1666		do_update = 1;
1667		if (!lladdr)				/* (6) */
1668			newstate = ND6_LLINFO_NOSTATE;
1669		else					/* (7) */
1670			newstate = ND6_LLINFO_STALE;
1671	}
1672
1673	if (do_update) {
1674		/*
1675		 * Update the state of the neighbor cache.
1676		 */
1677		ln->ln_state = newstate;
1678
1679		if (ln->ln_state == ND6_LLINFO_STALE) {
1680			/*
1681			 * XXX: since nd6_output() below will cause
1682			 * state tansition to DELAY and reset the timer,
1683			 * we must set the timer now, although it is actually
1684			 * meaningless.
1685			 */
1686			ln->ln_expire = time_second + nd6_gctimer;
1687
1688			if (ln->ln_hold) {
1689				/*
1690				 * we assume ifp is not a p2p here, so just
1691				 * set the 2nd argument as the 1st one.
1692				 */
1693				nd6_output(ifp, ifp, ln->ln_hold,
1694				    (struct sockaddr_in6 *)rt_key(rt), rt);
1695				ln->ln_hold = NULL;
1696			}
1697		} else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1698			/* probe right away */
1699			ln->ln_expire = time_second;
1700		}
1701	}
1702
1703	/*
1704	 * ICMP6 type dependent behavior.
1705	 *
1706	 * NS: clear IsRouter if new entry
1707	 * RS: clear IsRouter
1708	 * RA: set IsRouter if there's lladdr
1709	 * redir: clear IsRouter if new entry
1710	 *
1711	 * RA case, (1):
1712	 * The spec says that we must set IsRouter in the following cases:
1713	 * - If lladdr exist, set IsRouter.  This means (1-5).
1714	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
1715	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1716	 * A quetion arises for (1) case.  (1) case has no lladdr in the
1717	 * neighbor cache, this is similar to (6).
1718	 * This case is rare but we figured that we MUST NOT set IsRouter.
1719	 *
1720	 * newentry olladdr  lladdr  llchange	    NS  RS  RA	redir
1721	 *							D R
1722	 *	0	n	n	--	(1)	c   ?     s
1723	 *	0	y	n	--	(2)	c   s     s
1724	 *	0	n	y	--	(3)	c   s     s
1725	 *	0	y	y	n	(4)	c   s     s
1726	 *	0	y	y	y	(5)	c   s     s
1727	 *	1	--	n	--	(6) c	c 	c s
1728	 *	1	--	y	--	(7) c	c   s	c s
1729	 *
1730	 *					(c=clear s=set)
1731	 */
1732	switch (type & 0xff) {
1733	case ND_NEIGHBOR_SOLICIT:
1734		/*
1735		 * New entry must have is_router flag cleared.
1736		 */
1737		if (is_newentry)	/* (6-7) */
1738			ln->ln_router = 0;
1739		break;
1740	case ND_REDIRECT:
1741		/*
1742		 * If the icmp is a redirect to a better router, always set the
1743		 * is_router flag.  Otherwise, if the entry is newly created,
1744		 * clear the flag.  [RFC 2461, sec 8.3]
1745		 */
1746		if (code == ND_REDIRECT_ROUTER)
1747			ln->ln_router = 1;
1748		else if (is_newentry) /* (6-7) */
1749			ln->ln_router = 0;
1750		break;
1751	case ND_ROUTER_SOLICIT:
1752		/*
1753		 * is_router flag must always be cleared.
1754		 */
1755		ln->ln_router = 0;
1756		break;
1757	case ND_ROUTER_ADVERT:
1758		/*
1759		 * Mark an entry with lladdr as a router.
1760		 */
1761		if ((!is_newentry && (olladdr || lladdr)) ||	/* (2-5) */
1762		    (is_newentry && lladdr)) {			/* (7) */
1763			ln->ln_router = 1;
1764		}
1765		break;
1766	}
1767
1768	/*
1769	 * When the link-layer address of a router changes, select the
1770	 * best router again.  In particular, when the neighbor entry is newly
1771	 * created, it might affect the selection policy.
1772	 * Question: can we restrict the first condition to the "is_newentry"
1773	 * case?
1774	 * XXX: when we hear an RA from a new router with the link-layer
1775	 * address option, defrouter_select() is called twice, since
1776	 * defrtrlist_update called the function as well.  However, I believe
1777	 * we can compromise the overhead, since it only happens the first
1778	 * time.
1779	 * XXX: although defrouter_select() should not have a bad effect
1780	 * for those are not autoconfigured hosts, we explicitly avoid such
1781	 * cases for safety.
1782	 */
1783	if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv)
1784		defrouter_select();
1785
1786	return rt;
1787}
1788
1789static void
1790nd6_slowtimo(ignored_arg)
1791    void *ignored_arg;
1792{
1793	int s = splnet();
1794	struct nd_ifinfo *nd6if;
1795	struct ifnet *ifp;
1796
1797	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1798	    nd6_slowtimo, NULL);
1799	IFNET_RLOCK();
1800	for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) {
1801		nd6if = ND_IFINFO(ifp);
1802		if (nd6if->basereachable && /* already initialized */
1803		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1804			/*
1805			 * Since reachable time rarely changes by router
1806			 * advertisements, we SHOULD insure that a new random
1807			 * value gets recomputed at least once every few hours.
1808			 * (RFC 2461, 6.3.4)
1809			 */
1810			nd6if->recalctm = nd6_recalc_reachtm_interval;
1811			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1812		}
1813	}
1814	IFNET_RUNLOCK();
1815	splx(s);
1816}
1817
1818#define senderr(e) { error = (e); goto bad;}
1819int
1820nd6_output(ifp, origifp, m0, dst, rt0)
1821	struct ifnet *ifp;
1822	struct ifnet *origifp;
1823	struct mbuf *m0;
1824	struct sockaddr_in6 *dst;
1825	struct rtentry *rt0;
1826{
1827	struct mbuf *m = m0;
1828	struct rtentry *rt = rt0;
1829	struct sockaddr_in6 *gw6 = NULL;
1830	struct llinfo_nd6 *ln = NULL;
1831	int error = 0;
1832
1833	if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1834		goto sendpkt;
1835
1836	if (nd6_need_cache(ifp) == 0)
1837		goto sendpkt;
1838
1839	/*
1840	 * next hop determination.  This routine is derived from ether_outpout.
1841	 */
1842again:
1843	if (rt) {
1844		if ((rt->rt_flags & RTF_UP) == 0) {
1845			rt0 = rt = rtalloc1((struct sockaddr *)dst, 1, 0UL);
1846			if (rt != NULL) {
1847				RT_REMREF(rt);
1848				RT_UNLOCK(rt);
1849				if (rt->rt_ifp != ifp)
1850					/*
1851					 * XXX maybe we should update ifp too,
1852					 * but the original code didn't and I
1853					 * don't know what is correct here.
1854					 */
1855					goto again;
1856			} else
1857				senderr(EHOSTUNREACH);
1858		}
1859
1860		if (rt->rt_flags & RTF_GATEWAY) {
1861			gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
1862
1863			/*
1864			 * We skip link-layer address resolution and NUD
1865			 * if the gateway is not a neighbor from ND point
1866			 * of view, regardless of the value of nd_ifinfo.flags.
1867			 * The second condition is a bit tricky; we skip
1868			 * if the gateway is our own address, which is
1869			 * sometimes used to install a route to a p2p link.
1870			 */
1871			if (!nd6_is_addr_neighbor(gw6, ifp) ||
1872			    in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
1873				/*
1874				 * We allow this kind of tricky route only
1875				 * when the outgoing interface is p2p.
1876				 * XXX: we may need a more generic rule here.
1877				 */
1878				if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1879					senderr(EHOSTUNREACH);
1880
1881				goto sendpkt;
1882			}
1883
1884			if (rt->rt_gwroute == 0)
1885				goto lookup;
1886			if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) {
1887				RT_LOCK(rt);
1888				rtfree(rt); rt = rt0;
1889			lookup:
1890				rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1, 0UL);
1891				if ((rt = rt->rt_gwroute) == 0)
1892					senderr(EHOSTUNREACH);
1893				RT_UNLOCK(rt);
1894			}
1895		}
1896	}
1897
1898	/*
1899	 * Address resolution or Neighbor Unreachability Detection
1900	 * for the next hop.
1901	 * At this point, the destination of the packet must be a unicast
1902	 * or an anycast address(i.e. not a multicast).
1903	 */
1904
1905	/* Look up the neighbor cache for the nexthop */
1906	if (rt && (rt->rt_flags & RTF_LLINFO) != 0)
1907		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1908	else {
1909		/*
1910		 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
1911		 * the condition below is not very efficient.  But we believe
1912		 * it is tolerable, because this should be a rare case.
1913		 */
1914		if (nd6_is_addr_neighbor(dst, ifp) &&
1915		    (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
1916			ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1917	}
1918	if (!ln || !rt) {
1919		if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
1920		    !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
1921			log(LOG_DEBUG,
1922			    "nd6_output: can't allocate llinfo for %s "
1923			    "(ln=%p, rt=%p)\n",
1924			    ip6_sprintf(&dst->sin6_addr), ln, rt);
1925			senderr(EIO);	/* XXX: good error? */
1926		}
1927
1928		goto sendpkt;	/* send anyway */
1929	}
1930
1931	/* We don't have to do link-layer address resolution on a p2p link. */
1932	if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
1933	    ln->ln_state < ND6_LLINFO_REACHABLE) {
1934		ln->ln_state = ND6_LLINFO_STALE;
1935		ln->ln_expire = time_second + nd6_gctimer;
1936	}
1937
1938	/*
1939	 * The first time we send a packet to a neighbor whose entry is
1940	 * STALE, we have to change the state to DELAY and a sets a timer to
1941	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
1942	 * neighbor unreachability detection on expiration.
1943	 * (RFC 2461 7.3.3)
1944	 */
1945	if (ln->ln_state == ND6_LLINFO_STALE) {
1946		ln->ln_asked = 0;
1947		ln->ln_state = ND6_LLINFO_DELAY;
1948		ln->ln_expire = time_second + nd6_delay;
1949	}
1950
1951	/*
1952	 * If the neighbor cache entry has a state other than INCOMPLETE
1953	 * (i.e. its link-layer address is already resolved), just
1954	 * send the packet.
1955	 */
1956	if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
1957		goto sendpkt;
1958
1959	/*
1960	 * There is a neighbor cache entry, but no ethernet address
1961	 * response yet.  Replace the held mbuf (if any) with this
1962	 * latest one.
1963	 *
1964	 * This code conforms to the rate-limiting rule described in Section
1965	 * 7.2.2 of RFC 2461, because the timer is set correctly after sending
1966	 * an NS below.
1967	 */
1968	if (ln->ln_state == ND6_LLINFO_NOSTATE)
1969		ln->ln_state = ND6_LLINFO_INCOMPLETE;
1970	if (ln->ln_hold)
1971		m_freem(ln->ln_hold);
1972	ln->ln_hold = m;
1973	if (ln->ln_expire) {
1974		if (ln->ln_asked < nd6_mmaxtries &&
1975		    ln->ln_expire < time_second) {
1976			ln->ln_asked++;
1977			ln->ln_expire = time_second +
1978				ND_IFINFO(ifp)->retrans / 1000;
1979			nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
1980		}
1981	}
1982	return (0);
1983
1984  sendpkt:
1985#ifdef IPSEC
1986	/* clean ipsec history once it goes out of the node */
1987	ipsec_delaux(m);
1988#endif
1989
1990#ifdef MAC
1991	mac_create_mbuf_linklayer(ifp, m);
1992#endif
1993	if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
1994		return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst,
1995		    rt));
1996	}
1997	return ((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt));
1998
1999  bad:
2000	if (m)
2001		m_freem(m);
2002	return (error);
2003}
2004#undef senderr
2005
2006int
2007nd6_need_cache(ifp)
2008	struct ifnet *ifp;
2009{
2010	/*
2011	 * XXX: we currently do not make neighbor cache on any interface
2012	 * other than ARCnet, Ethernet, FDDI and GIF.
2013	 *
2014	 * RFC2893 says:
2015	 * - unidirectional tunnels needs no ND
2016	 */
2017	switch (ifp->if_type) {
2018	case IFT_ARCNET:
2019	case IFT_ETHER:
2020	case IFT_FDDI:
2021	case IFT_IEEE1394:
2022#ifdef IFT_L2VLAN
2023	case IFT_L2VLAN:
2024#endif
2025#ifdef IFT_IEEE80211
2026	case IFT_IEEE80211:
2027#endif
2028#ifdef IFT_CARP
2029	case IFT_CARP:
2030#endif
2031	case IFT_GIF:		/* XXX need more cases? */
2032		return (1);
2033	default:
2034		return (0);
2035	}
2036}
2037
2038int
2039nd6_storelladdr(ifp, rt0, m, dst, desten)
2040	struct ifnet *ifp;
2041	struct rtentry *rt0;
2042	struct mbuf *m;
2043	struct sockaddr *dst;
2044	u_char *desten;
2045{
2046	int i;
2047	struct sockaddr_dl *sdl;
2048	struct rtentry *rt;
2049
2050	if (m->m_flags & M_MCAST) {
2051		switch (ifp->if_type) {
2052		case IFT_ETHER:
2053		case IFT_FDDI:
2054#ifdef IFT_L2VLAN
2055		case IFT_L2VLAN:
2056#endif
2057#ifdef IFT_IEEE80211
2058		case IFT_IEEE80211:
2059#endif
2060		case IFT_ISO88025:
2061			ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
2062						 desten);
2063			return (0);
2064		case IFT_IEEE1394:
2065			/*
2066			 * netbsd can use if_broadcastaddr, but we don't do so
2067			 * to reduce # of ifdef.
2068			 */
2069			for (i = 0; i < ifp->if_addrlen; i++)
2070				desten[i] = ~0;
2071			return (0);
2072		case IFT_ARCNET:
2073			*desten = 0;
2074			return (0);
2075		default:
2076			m_freem(m);
2077			return (EAFNOSUPPORT);
2078		}
2079	}
2080
2081	i = rt_check(&rt, &rt0, dst);
2082	if (i) {
2083		m_freem(m);
2084		return i;
2085	}
2086
2087	if (rt == NULL) {
2088		/* this could happen, if we could not allocate memory */
2089		m_freem(m);
2090		return (ENOMEM);
2091	}
2092	if (rt->rt_gateway->sa_family != AF_LINK) {
2093		printf("nd6_storelladdr: something odd happens\n");
2094		m_freem(m);
2095		return (EINVAL);
2096	}
2097	sdl = SDL(rt->rt_gateway);
2098	if (sdl->sdl_alen == 0) {
2099		/* this should be impossible, but we bark here for debugging */
2100		printf("nd6_storelladdr: sdl_alen == 0\n");
2101		m_freem(m);
2102		return (EINVAL);
2103	}
2104
2105	bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
2106	return (0);
2107}
2108
2109static int nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS);
2110static int nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS);
2111#ifdef SYSCTL_DECL
2112SYSCTL_DECL(_net_inet6_icmp6);
2113#endif
2114SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_DRLIST, nd6_drlist,
2115	CTLFLAG_RD, nd6_sysctl_drlist, "");
2116SYSCTL_NODE(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
2117	CTLFLAG_RD, nd6_sysctl_prlist, "");
2118
2119static int
2120nd6_sysctl_drlist(SYSCTL_HANDLER_ARGS)
2121{
2122	int error;
2123	char buf[1024];
2124	struct in6_defrouter *d, *de;
2125	struct nd_defrouter *dr;
2126
2127	if (req->newptr)
2128		return EPERM;
2129	error = 0;
2130
2131	for (dr = TAILQ_FIRST(&nd_defrouter); dr;
2132	     dr = TAILQ_NEXT(dr, dr_entry)) {
2133		d = (struct in6_defrouter *)buf;
2134		de = (struct in6_defrouter *)(buf + sizeof(buf));
2135
2136		if (d + 1 <= de) {
2137			bzero(d, sizeof(*d));
2138			d->rtaddr.sin6_family = AF_INET6;
2139			d->rtaddr.sin6_len = sizeof(d->rtaddr);
2140			if (in6_recoverscope(&d->rtaddr, &dr->rtaddr,
2141			    dr->ifp) != 0)
2142				log(LOG_ERR,
2143				    "scope error in "
2144				    "default router list (%s)\n",
2145				    ip6_sprintf(&dr->rtaddr));
2146			d->flags = dr->flags;
2147			d->rtlifetime = dr->rtlifetime;
2148			d->expire = dr->expire;
2149			d->if_index = dr->ifp->if_index;
2150		} else
2151			panic("buffer too short");
2152
2153		error = SYSCTL_OUT(req, buf, sizeof(*d));
2154		if (error)
2155			break;
2156	}
2157
2158	return (error);
2159}
2160
2161static int
2162nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
2163{
2164	int error;
2165	char buf[1024];
2166	struct in6_prefix *p, *pe;
2167	struct nd_prefix *pr;
2168
2169	if (req->newptr)
2170		return EPERM;
2171	error = 0;
2172
2173	for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
2174		u_short advrtrs;
2175		size_t advance;
2176		struct sockaddr_in6 *sin6, *s6;
2177		struct nd_pfxrouter *pfr;
2178
2179		p = (struct in6_prefix *)buf;
2180		pe = (struct in6_prefix *)(buf + sizeof(buf));
2181
2182		if (p + 1 <= pe) {
2183			bzero(p, sizeof(*p));
2184			sin6 = (struct sockaddr_in6 *)(p + 1);
2185
2186			p->prefix = pr->ndpr_prefix;
2187			if (in6_recoverscope(&p->prefix,
2188			    &p->prefix.sin6_addr, pr->ndpr_ifp) != 0)
2189				log(LOG_ERR,
2190				    "scope error in prefix list (%s)\n",
2191				    ip6_sprintf(&p->prefix.sin6_addr));
2192			p->raflags = pr->ndpr_raf;
2193			p->prefixlen = pr->ndpr_plen;
2194			p->vltime = pr->ndpr_vltime;
2195			p->pltime = pr->ndpr_pltime;
2196			p->if_index = pr->ndpr_ifp->if_index;
2197			p->expire = pr->ndpr_expire;
2198			p->refcnt = pr->ndpr_refcnt;
2199			p->flags = pr->ndpr_stateflags;
2200			p->origin = PR_ORIG_RA;
2201			advrtrs = 0;
2202			for (pfr = pr->ndpr_advrtrs.lh_first; pfr;
2203			     pfr = pfr->pfr_next) {
2204				if ((void *)&sin6[advrtrs + 1] > (void *)pe) {
2205					advrtrs++;
2206					continue;
2207				}
2208				s6 = &sin6[advrtrs];
2209				bzero(s6, sizeof(*s6));
2210				s6->sin6_family = AF_INET6;
2211				s6->sin6_len = sizeof(*sin6);
2212				if (in6_recoverscope(s6, &pfr->router->rtaddr,
2213				    pfr->router->ifp) != 0)
2214					log(LOG_ERR,
2215					    "scope error in "
2216					    "prefix list (%s)\n",
2217					    ip6_sprintf(&pfr->router->rtaddr));
2218				advrtrs++;
2219			}
2220			p->advrtrs = advrtrs;
2221		} else
2222			panic("buffer too short");
2223
2224		advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
2225		error = SYSCTL_OUT(req, buf, advance);
2226		if (error)
2227			break;
2228	}
2229
2230	return (error);
2231}
2232