mld6.c revision 229621
1/*-
2 * Copyright (c) 2009 Bruce Simpson.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 * 3. The name of the author may not be used to endorse or promote
13 *    products derived from this software without specific prior written
14 *    permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 *	$KAME: mld6.c,v 1.27 2001/04/04 05:17:30 itojun Exp $
29 */
30
31/*-
32 * Copyright (c) 1988 Stephen Deering.
33 * Copyright (c) 1992, 1993
34 *	The Regents of the University of California.  All rights reserved.
35 *
36 * This code is derived from software contributed to Berkeley by
37 * Stephen Deering of Stanford University.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 *    notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 *    notice, this list of conditions and the following disclaimer in the
46 *    documentation and/or other materials provided with the distribution.
47 * 4. Neither the name of the University nor the names of its contributors
48 *    may be used to endorse or promote products derived from this software
49 *    without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 *
63 *	@(#)igmp.c	8.1 (Berkeley) 7/19/93
64 */
65
66#include <sys/cdefs.h>
67__FBSDID("$FreeBSD: head/sys/netinet6/mld6.c 229621 2012-01-05 19:00:36Z jhb $");
68
69#include "opt_inet.h"
70#include "opt_inet6.h"
71
72#include <sys/param.h>
73#include <sys/systm.h>
74#include <sys/mbuf.h>
75#include <sys/socket.h>
76#include <sys/protosw.h>
77#include <sys/sysctl.h>
78#include <sys/kernel.h>
79#include <sys/callout.h>
80#include <sys/malloc.h>
81#include <sys/module.h>
82#include <sys/ktr.h>
83
84#include <net/if.h>
85#include <net/route.h>
86#include <net/vnet.h>
87
88#include <netinet/in.h>
89#include <netinet/in_var.h>
90#include <netinet6/in6_var.h>
91#include <netinet/ip6.h>
92#include <netinet6/ip6_var.h>
93#include <netinet6/scope6_var.h>
94#include <netinet/icmp6.h>
95#include <netinet6/mld6.h>
96#include <netinet6/mld6_var.h>
97
98#include <security/mac/mac_framework.h>
99
100#ifndef KTR_MLD
101#define KTR_MLD KTR_INET6
102#endif
103
104static struct mld_ifinfo *
105		mli_alloc_locked(struct ifnet *);
106static void	mli_delete_locked(const struct ifnet *);
107static void	mld_dispatch_packet(struct mbuf *);
108static void	mld_dispatch_queue(struct ifqueue *, int);
109static void	mld_final_leave(struct in6_multi *, struct mld_ifinfo *);
110static void	mld_fasttimo_vnet(void);
111static int	mld_handle_state_change(struct in6_multi *,
112		    struct mld_ifinfo *);
113static int	mld_initial_join(struct in6_multi *, struct mld_ifinfo *,
114		    const int);
115#ifdef KTR
116static char *	mld_rec_type_to_str(const int);
117#endif
118static void	mld_set_version(struct mld_ifinfo *, const int);
119static void	mld_slowtimo_vnet(void);
120static int	mld_v1_input_query(struct ifnet *, const struct ip6_hdr *,
121		    /*const*/ struct mld_hdr *);
122static int	mld_v1_input_report(struct ifnet *, const struct ip6_hdr *,
123		    /*const*/ struct mld_hdr *);
124static void	mld_v1_process_group_timer(struct mld_ifinfo *,
125		    struct in6_multi *);
126static void	mld_v1_process_querier_timers(struct mld_ifinfo *);
127static int	mld_v1_transmit_report(struct in6_multi *, const int);
128static void	mld_v1_update_group(struct in6_multi *, const int);
129static void	mld_v2_cancel_link_timers(struct mld_ifinfo *);
130static void	mld_v2_dispatch_general_query(struct mld_ifinfo *);
131static struct mbuf *
132		mld_v2_encap_report(struct ifnet *, struct mbuf *);
133static int	mld_v2_enqueue_filter_change(struct ifqueue *,
134		    struct in6_multi *);
135static int	mld_v2_enqueue_group_record(struct ifqueue *,
136		    struct in6_multi *, const int, const int, const int,
137		    const int);
138static int	mld_v2_input_query(struct ifnet *, const struct ip6_hdr *,
139		    struct mbuf *, const int, const int);
140static int	mld_v2_merge_state_changes(struct in6_multi *,
141		    struct ifqueue *);
142static void	mld_v2_process_group_timers(struct mld_ifinfo *,
143		    struct ifqueue *, struct ifqueue *,
144		    struct in6_multi *, const int);
145static int	mld_v2_process_group_query(struct in6_multi *,
146		    struct mld_ifinfo *mli, int, struct mbuf *, const int);
147static int	sysctl_mld_gsr(SYSCTL_HANDLER_ARGS);
148static int	sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS);
149
150/*
151 * Normative references: RFC 2710, RFC 3590, RFC 3810.
152 *
153 * Locking:
154 *  * The MLD subsystem lock ends up being system-wide for the moment,
155 *    but could be per-VIMAGE later on.
156 *  * The permitted lock order is: IN6_MULTI_LOCK, MLD_LOCK, IF_ADDR_LOCK.
157 *    Any may be taken independently; if any are held at the same
158 *    time, the above lock order must be followed.
159 *  * IN6_MULTI_LOCK covers in_multi.
160 *  * MLD_LOCK covers per-link state and any global variables in this file.
161 *  * IF_ADDR_LOCK covers if_multiaddrs, which is used for a variety of
162 *    per-link state iterators.
163 *
164 *  XXX LOR PREVENTION
165 *  A special case for IPv6 is the in6_setscope() routine. ip6_output()
166 *  will not accept an ifp; it wants an embedded scope ID, unlike
167 *  ip_output(), which happily takes the ifp given to it. The embedded
168 *  scope ID is only used by MLD to select the outgoing interface.
169 *
170 *  During interface attach and detach, MLD will take MLD_LOCK *after*
171 *  the IF_AFDATA_LOCK.
172 *  As in6_setscope() takes IF_AFDATA_LOCK then SCOPE_LOCK, we can't call
173 *  it with MLD_LOCK held without triggering an LOR. A netisr with indirect
174 *  dispatch could work around this, but we'd rather not do that, as it
175 *  can introduce other races.
176 *
177 *  As such, we exploit the fact that the scope ID is just the interface
178 *  index, and embed it in the IPv6 destination address accordingly.
179 *  This is potentially NOT VALID for MLDv1 reports, as they
180 *  are always sent to the multicast group itself; as MLDv2
181 *  reports are always sent to ff02::16, this is not an issue
182 *  when MLDv2 is in use.
183 *
184 *  This does not however eliminate the LOR when ip6_output() itself
185 *  calls in6_setscope() internally whilst MLD_LOCK is held. This will
186 *  trigger a LOR warning in WITNESS when the ifnet is detached.
187 *
188 *  The right answer is probably to make IF_AFDATA_LOCK an rwlock, given
189 *  how it's used across the network stack. Here we're simply exploiting
190 *  the fact that MLD runs at a similar layer in the stack to scope6.c.
191 *
192 * VIMAGE:
193 *  * Each in6_multi corresponds to an ifp, and each ifp corresponds
194 *    to a vnet in ifp->if_vnet.
195 */
196static struct mtx		 mld_mtx;
197static MALLOC_DEFINE(M_MLD, "mld", "mld state");
198
199#define	MLD_EMBEDSCOPE(pin6, zoneid)					\
200	if (IN6_IS_SCOPE_LINKLOCAL(pin6) ||				\
201	    IN6_IS_ADDR_MC_INTFACELOCAL(pin6))				\
202		(pin6)->s6_addr16[1] = htons((zoneid) & 0xFFFF)		\
203
204/*
205 * VIMAGE-wide globals.
206 */
207static VNET_DEFINE(struct timeval, mld_gsrdelay) = {10, 0};
208static VNET_DEFINE(LIST_HEAD(, mld_ifinfo), mli_head);
209static VNET_DEFINE(int, interface_timers_running6);
210static VNET_DEFINE(int, state_change_timers_running6);
211static VNET_DEFINE(int, current_state_timers_running6);
212
213#define	V_mld_gsrdelay			VNET(mld_gsrdelay)
214#define	V_mli_head			VNET(mli_head)
215#define	V_interface_timers_running6	VNET(interface_timers_running6)
216#define	V_state_change_timers_running6	VNET(state_change_timers_running6)
217#define	V_current_state_timers_running6	VNET(current_state_timers_running6)
218
219SYSCTL_DECL(_net_inet6);	/* Note: Not in any common header. */
220
221SYSCTL_NODE(_net_inet6, OID_AUTO, mld, CTLFLAG_RW, 0,
222    "IPv6 Multicast Listener Discovery");
223
224/*
225 * Virtualized sysctls.
226 */
227SYSCTL_VNET_PROC(_net_inet6_mld, OID_AUTO, gsrdelay,
228    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
229    &VNET_NAME(mld_gsrdelay.tv_sec), 0, sysctl_mld_gsr, "I",
230    "Rate limit for MLDv2 Group-and-Source queries in seconds");
231
232/*
233 * Non-virtualized sysctls.
234 */
235static SYSCTL_NODE(_net_inet6_mld, OID_AUTO, ifinfo,
236    CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mld_ifinfo,
237    "Per-interface MLDv2 state");
238
239static int	mld_v1enable = 1;
240SYSCTL_INT(_net_inet6_mld, OID_AUTO, v1enable, CTLFLAG_RW,
241    &mld_v1enable, 0, "Enable fallback to MLDv1");
242TUNABLE_INT("net.inet6.mld.v1enable", &mld_v1enable);
243
244static int	mld_use_allow = 1;
245SYSCTL_INT(_net_inet6_mld, OID_AUTO, use_allow, CTLFLAG_RW,
246    &mld_use_allow, 0, "Use ALLOW/BLOCK for RFC 4604 SSM joins/leaves");
247TUNABLE_INT("net.inet6.mld.use_allow", &mld_use_allow);
248
249/*
250 * Packed Router Alert option structure declaration.
251 */
252struct mld_raopt {
253	struct ip6_hbh		hbh;
254	struct ip6_opt		pad;
255	struct ip6_opt_router	ra;
256} __packed;
257
258/*
259 * Router Alert hop-by-hop option header.
260 */
261static struct mld_raopt mld_ra = {
262	.hbh = { 0, 0 },
263	.pad = { .ip6o_type = IP6OPT_PADN, 0 },
264	.ra = {
265	    .ip6or_type = IP6OPT_ROUTER_ALERT,
266	    .ip6or_len = IP6OPT_RTALERT_LEN - 2,
267	    .ip6or_value[0] = ((IP6OPT_RTALERT_MLD >> 8) & 0xFF),
268	    .ip6or_value[1] = (IP6OPT_RTALERT_MLD & 0xFF)
269	}
270};
271static struct ip6_pktopts mld_po;
272
273static __inline void
274mld_save_context(struct mbuf *m, struct ifnet *ifp)
275{
276
277#ifdef VIMAGE
278	m->m_pkthdr.header = ifp->if_vnet;
279#endif /* VIMAGE */
280	m->m_pkthdr.flowid = ifp->if_index;
281}
282
283static __inline void
284mld_scrub_context(struct mbuf *m)
285{
286
287	m->m_pkthdr.header = NULL;
288	m->m_pkthdr.flowid = 0;
289}
290
291/*
292 * Restore context from a queued output chain.
293 * Return saved ifindex.
294 *
295 * VIMAGE: The assertion is there to make sure that we
296 * actually called CURVNET_SET() with what's in the mbuf chain.
297 */
298static __inline uint32_t
299mld_restore_context(struct mbuf *m)
300{
301
302#if defined(VIMAGE) && defined(INVARIANTS)
303	KASSERT(curvnet == m->m_pkthdr.header,
304	    ("%s: called when curvnet was not restored", __func__));
305#endif
306	return (m->m_pkthdr.flowid);
307}
308
309/*
310 * Retrieve or set threshold between group-source queries in seconds.
311 *
312 * VIMAGE: Assume curvnet set by caller.
313 * SMPng: NOTE: Serialized by MLD lock.
314 */
315static int
316sysctl_mld_gsr(SYSCTL_HANDLER_ARGS)
317{
318	int error;
319	int i;
320
321	error = sysctl_wire_old_buffer(req, sizeof(int));
322	if (error)
323		return (error);
324
325	MLD_LOCK();
326
327	i = V_mld_gsrdelay.tv_sec;
328
329	error = sysctl_handle_int(oidp, &i, 0, req);
330	if (error || !req->newptr)
331		goto out_locked;
332
333	if (i < -1 || i >= 60) {
334		error = EINVAL;
335		goto out_locked;
336	}
337
338	CTR2(KTR_MLD, "change mld_gsrdelay from %d to %d",
339	     V_mld_gsrdelay.tv_sec, i);
340	V_mld_gsrdelay.tv_sec = i;
341
342out_locked:
343	MLD_UNLOCK();
344	return (error);
345}
346
347/*
348 * Expose struct mld_ifinfo to userland, keyed by ifindex.
349 * For use by ifmcstat(8).
350 *
351 * SMPng: NOTE: Does an unlocked ifindex space read.
352 * VIMAGE: Assume curvnet set by caller. The node handler itself
353 * is not directly virtualized.
354 */
355static int
356sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS)
357{
358	int			*name;
359	int			 error;
360	u_int			 namelen;
361	struct ifnet		*ifp;
362	struct mld_ifinfo	*mli;
363
364	name = (int *)arg1;
365	namelen = arg2;
366
367	if (req->newptr != NULL)
368		return (EPERM);
369
370	if (namelen != 1)
371		return (EINVAL);
372
373	error = sysctl_wire_old_buffer(req, sizeof(struct mld_ifinfo));
374	if (error)
375		return (error);
376
377	IN6_MULTI_LOCK();
378	MLD_LOCK();
379
380	if (name[0] <= 0 || name[0] > V_if_index) {
381		error = ENOENT;
382		goto out_locked;
383	}
384
385	error = ENOENT;
386
387	ifp = ifnet_byindex(name[0]);
388	if (ifp == NULL)
389		goto out_locked;
390
391	LIST_FOREACH(mli, &V_mli_head, mli_link) {
392		if (ifp == mli->mli_ifp) {
393			error = SYSCTL_OUT(req, mli,
394			    sizeof(struct mld_ifinfo));
395			break;
396		}
397	}
398
399out_locked:
400	MLD_UNLOCK();
401	IN6_MULTI_UNLOCK();
402	return (error);
403}
404
405/*
406 * Dispatch an entire queue of pending packet chains.
407 * VIMAGE: Assumes the vnet pointer has been set.
408 */
409static void
410mld_dispatch_queue(struct ifqueue *ifq, int limit)
411{
412	struct mbuf *m;
413
414	for (;;) {
415		_IF_DEQUEUE(ifq, m);
416		if (m == NULL)
417			break;
418		CTR3(KTR_MLD, "%s: dispatch %p from %p", __func__, ifq, m);
419		mld_dispatch_packet(m);
420		if (--limit == 0)
421			break;
422	}
423}
424
425/*
426 * Filter outgoing MLD report state by group.
427 *
428 * Reports are ALWAYS suppressed for ALL-HOSTS (ff02::1)
429 * and node-local addresses. However, kernel and socket consumers
430 * always embed the KAME scope ID in the address provided, so strip it
431 * when performing comparison.
432 * Note: This is not the same as the *multicast* scope.
433 *
434 * Return zero if the given group is one for which MLD reports
435 * should be suppressed, or non-zero if reports should be issued.
436 */
437static __inline int
438mld_is_addr_reported(const struct in6_addr *addr)
439{
440
441	KASSERT(IN6_IS_ADDR_MULTICAST(addr), ("%s: not multicast", __func__));
442
443	if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_NODELOCAL)
444		return (0);
445
446	if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_LINKLOCAL) {
447		struct in6_addr tmp = *addr;
448		in6_clearscope(&tmp);
449		if (IN6_ARE_ADDR_EQUAL(&tmp, &in6addr_linklocal_allnodes))
450			return (0);
451	}
452
453	return (1);
454}
455
456/*
457 * Attach MLD when PF_INET6 is attached to an interface.
458 *
459 * SMPng: Normally called with IF_AFDATA_LOCK held.
460 */
461struct mld_ifinfo *
462mld_domifattach(struct ifnet *ifp)
463{
464	struct mld_ifinfo *mli;
465
466	CTR3(KTR_MLD, "%s: called for ifp %p(%s)",
467	    __func__, ifp, ifp->if_xname);
468
469	MLD_LOCK();
470
471	mli = mli_alloc_locked(ifp);
472	if (!(ifp->if_flags & IFF_MULTICAST))
473		mli->mli_flags |= MLIF_SILENT;
474	if (mld_use_allow)
475		mli->mli_flags |= MLIF_USEALLOW;
476
477	MLD_UNLOCK();
478
479	return (mli);
480}
481
482/*
483 * VIMAGE: assume curvnet set by caller.
484 */
485static struct mld_ifinfo *
486mli_alloc_locked(/*const*/ struct ifnet *ifp)
487{
488	struct mld_ifinfo *mli;
489
490	MLD_LOCK_ASSERT();
491
492	mli = malloc(sizeof(struct mld_ifinfo), M_MLD, M_NOWAIT|M_ZERO);
493	if (mli == NULL)
494		goto out;
495
496	mli->mli_ifp = ifp;
497	mli->mli_version = MLD_VERSION_2;
498	mli->mli_flags = 0;
499	mli->mli_rv = MLD_RV_INIT;
500	mli->mli_qi = MLD_QI_INIT;
501	mli->mli_qri = MLD_QRI_INIT;
502	mli->mli_uri = MLD_URI_INIT;
503
504	SLIST_INIT(&mli->mli_relinmhead);
505
506	/*
507	 * Responses to general queries are subject to bounds.
508	 */
509	IFQ_SET_MAXLEN(&mli->mli_gq, MLD_MAX_RESPONSE_PACKETS);
510
511	LIST_INSERT_HEAD(&V_mli_head, mli, mli_link);
512
513	CTR2(KTR_MLD, "allocate mld_ifinfo for ifp %p(%s)",
514	     ifp, ifp->if_xname);
515
516out:
517	return (mli);
518}
519
520/*
521 * Hook for ifdetach.
522 *
523 * NOTE: Some finalization tasks need to run before the protocol domain
524 * is detached, but also before the link layer does its cleanup.
525 * Run before link-layer cleanup; cleanup groups, but do not free MLD state.
526 *
527 * SMPng: Caller must hold IN6_MULTI_LOCK().
528 * Must take IF_ADDR_LOCK() to cover if_multiaddrs iterator.
529 * XXX This routine is also bitten by unlocked ifma_protospec access.
530 */
531void
532mld_ifdetach(struct ifnet *ifp)
533{
534	struct mld_ifinfo	*mli;
535	struct ifmultiaddr	*ifma;
536	struct in6_multi	*inm, *tinm;
537
538	CTR3(KTR_MLD, "%s: called for ifp %p(%s)", __func__, ifp,
539	    ifp->if_xname);
540
541	IN6_MULTI_LOCK_ASSERT();
542	MLD_LOCK();
543
544	mli = MLD_IFINFO(ifp);
545	if (mli->mli_version == MLD_VERSION_2) {
546		IF_ADDR_RLOCK(ifp);
547		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
548			if (ifma->ifma_addr->sa_family != AF_INET6 ||
549			    ifma->ifma_protospec == NULL)
550				continue;
551			inm = (struct in6_multi *)ifma->ifma_protospec;
552			if (inm->in6m_state == MLD_LEAVING_MEMBER) {
553				SLIST_INSERT_HEAD(&mli->mli_relinmhead,
554				    inm, in6m_nrele);
555			}
556			in6m_clear_recorded(inm);
557		}
558		IF_ADDR_RUNLOCK(ifp);
559		SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, in6m_nrele,
560		    tinm) {
561			SLIST_REMOVE_HEAD(&mli->mli_relinmhead, in6m_nrele);
562			in6m_release_locked(inm);
563		}
564	}
565
566	MLD_UNLOCK();
567}
568
569/*
570 * Hook for domifdetach.
571 * Runs after link-layer cleanup; free MLD state.
572 *
573 * SMPng: Normally called with IF_AFDATA_LOCK held.
574 */
575void
576mld_domifdetach(struct ifnet *ifp)
577{
578
579	CTR3(KTR_MLD, "%s: called for ifp %p(%s)",
580	    __func__, ifp, ifp->if_xname);
581
582	MLD_LOCK();
583	mli_delete_locked(ifp);
584	MLD_UNLOCK();
585}
586
587static void
588mli_delete_locked(const struct ifnet *ifp)
589{
590	struct mld_ifinfo *mli, *tmli;
591
592	CTR3(KTR_MLD, "%s: freeing mld_ifinfo for ifp %p(%s)",
593	    __func__, ifp, ifp->if_xname);
594
595	MLD_LOCK_ASSERT();
596
597	LIST_FOREACH_SAFE(mli, &V_mli_head, mli_link, tmli) {
598		if (mli->mli_ifp == ifp) {
599			/*
600			 * Free deferred General Query responses.
601			 */
602			_IF_DRAIN(&mli->mli_gq);
603
604			LIST_REMOVE(mli, mli_link);
605
606			KASSERT(SLIST_EMPTY(&mli->mli_relinmhead),
607			    ("%s: there are dangling in_multi references",
608			    __func__));
609
610			free(mli, M_MLD);
611			return;
612		}
613	}
614#ifdef INVARIANTS
615	panic("%s: mld_ifinfo not found for ifp %p\n", __func__,  ifp);
616#endif
617}
618
619/*
620 * Process a received MLDv1 general or address-specific query.
621 * Assumes that the query header has been pulled up to sizeof(mld_hdr).
622 *
623 * NOTE: Can't be fully const correct as we temporarily embed scope ID in
624 * mld_addr. This is OK as we own the mbuf chain.
625 */
626static int
627mld_v1_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6,
628    /*const*/ struct mld_hdr *mld)
629{
630	struct ifmultiaddr	*ifma;
631	struct mld_ifinfo	*mli;
632	struct in6_multi	*inm;
633	int			 is_general_query;
634	uint16_t		 timer;
635#ifdef KTR
636	char			 ip6tbuf[INET6_ADDRSTRLEN];
637#endif
638
639	is_general_query = 0;
640
641	if (!mld_v1enable) {
642		CTR3(KTR_MLD, "ignore v1 query %s on ifp %p(%s)",
643		    ip6_sprintf(ip6tbuf, &mld->mld_addr),
644		    ifp, ifp->if_xname);
645		return (0);
646	}
647
648	/*
649	 * RFC3810 Section 6.2: MLD queries must originate from
650	 * a router's link-local address.
651	 */
652	if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) {
653		CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)",
654		    ip6_sprintf(ip6tbuf, &ip6->ip6_src),
655		    ifp, ifp->if_xname);
656		return (0);
657	}
658
659	/*
660	 * Do address field validation upfront before we accept
661	 * the query.
662	 */
663	if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) {
664		/*
665		 * MLDv1 General Query.
666		 * If this was not sent to the all-nodes group, ignore it.
667		 */
668		struct in6_addr		 dst;
669
670		dst = ip6->ip6_dst;
671		in6_clearscope(&dst);
672		if (!IN6_ARE_ADDR_EQUAL(&dst, &in6addr_linklocal_allnodes))
673			return (EINVAL);
674		is_general_query = 1;
675	} else {
676		/*
677		 * Embed scope ID of receiving interface in MLD query for
678		 * lookup whilst we don't hold other locks.
679		 */
680		in6_setscope(&mld->mld_addr, ifp, NULL);
681	}
682
683	IN6_MULTI_LOCK();
684	MLD_LOCK();
685
686	/*
687	 * Switch to MLDv1 host compatibility mode.
688	 */
689	mli = MLD_IFINFO(ifp);
690	KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp));
691	mld_set_version(mli, MLD_VERSION_1);
692
693	timer = (ntohs(mld->mld_maxdelay) * PR_FASTHZ) / MLD_TIMER_SCALE;
694	if (timer == 0)
695		timer = 1;
696
697	IF_ADDR_RLOCK(ifp);
698	if (is_general_query) {
699		/*
700		 * For each reporting group joined on this
701		 * interface, kick the report timer.
702		 */
703		CTR2(KTR_MLD, "process v1 general query on ifp %p(%s)",
704		    ifp, ifp->if_xname);
705		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
706			if (ifma->ifma_addr->sa_family != AF_INET6 ||
707			    ifma->ifma_protospec == NULL)
708				continue;
709			inm = (struct in6_multi *)ifma->ifma_protospec;
710			mld_v1_update_group(inm, timer);
711		}
712	} else {
713		/*
714		 * MLDv1 Group-Specific Query.
715		 * If this is a group-specific MLDv1 query, we need only
716		 * look up the single group to process it.
717		 */
718		inm = in6m_lookup_locked(ifp, &mld->mld_addr);
719		if (inm != NULL) {
720			CTR3(KTR_MLD, "process v1 query %s on ifp %p(%s)",
721			    ip6_sprintf(ip6tbuf, &mld->mld_addr),
722			    ifp, ifp->if_xname);
723			mld_v1_update_group(inm, timer);
724		}
725		/* XXX Clear embedded scope ID as userland won't expect it. */
726		in6_clearscope(&mld->mld_addr);
727	}
728
729	IF_ADDR_RUNLOCK(ifp);
730	MLD_UNLOCK();
731	IN6_MULTI_UNLOCK();
732
733	return (0);
734}
735
736/*
737 * Update the report timer on a group in response to an MLDv1 query.
738 *
739 * If we are becoming the reporting member for this group, start the timer.
740 * If we already are the reporting member for this group, and timer is
741 * below the threshold, reset it.
742 *
743 * We may be updating the group for the first time since we switched
744 * to MLDv2. If we are, then we must clear any recorded source lists,
745 * and transition to REPORTING state; the group timer is overloaded
746 * for group and group-source query responses.
747 *
748 * Unlike MLDv2, the delay per group should be jittered
749 * to avoid bursts of MLDv1 reports.
750 */
751static void
752mld_v1_update_group(struct in6_multi *inm, const int timer)
753{
754#ifdef KTR
755	char			 ip6tbuf[INET6_ADDRSTRLEN];
756#endif
757
758	CTR4(KTR_MLD, "%s: %s/%s timer=%d", __func__,
759	    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
760	    inm->in6m_ifp->if_xname, timer);
761
762	IN6_MULTI_LOCK_ASSERT();
763
764	switch (inm->in6m_state) {
765	case MLD_NOT_MEMBER:
766	case MLD_SILENT_MEMBER:
767		break;
768	case MLD_REPORTING_MEMBER:
769		if (inm->in6m_timer != 0 &&
770		    inm->in6m_timer <= timer) {
771			CTR1(KTR_MLD, "%s: REPORTING and timer running, "
772			    "skipping.", __func__);
773			break;
774		}
775		/* FALLTHROUGH */
776	case MLD_SG_QUERY_PENDING_MEMBER:
777	case MLD_G_QUERY_PENDING_MEMBER:
778	case MLD_IDLE_MEMBER:
779	case MLD_LAZY_MEMBER:
780	case MLD_AWAKENING_MEMBER:
781		CTR1(KTR_MLD, "%s: ->REPORTING", __func__);
782		inm->in6m_state = MLD_REPORTING_MEMBER;
783		inm->in6m_timer = MLD_RANDOM_DELAY(timer);
784		V_current_state_timers_running6 = 1;
785		break;
786	case MLD_SLEEPING_MEMBER:
787		CTR1(KTR_MLD, "%s: ->AWAKENING", __func__);
788		inm->in6m_state = MLD_AWAKENING_MEMBER;
789		break;
790	case MLD_LEAVING_MEMBER:
791		break;
792	}
793}
794
795/*
796 * Process a received MLDv2 general, group-specific or
797 * group-and-source-specific query.
798 *
799 * Assumes that the query header has been pulled up to sizeof(mldv2_query).
800 *
801 * Return 0 if successful, otherwise an appropriate error code is returned.
802 */
803static int
804mld_v2_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6,
805    struct mbuf *m, const int off, const int icmp6len)
806{
807	struct mld_ifinfo	*mli;
808	struct mldv2_query	*mld;
809	struct in6_multi	*inm;
810	uint32_t		 maxdelay, nsrc, qqi;
811	int			 is_general_query;
812	uint16_t		 timer;
813	uint8_t			 qrv;
814#ifdef KTR
815	char			 ip6tbuf[INET6_ADDRSTRLEN];
816#endif
817
818	is_general_query = 0;
819
820	/*
821	 * RFC3810 Section 6.2: MLD queries must originate from
822	 * a router's link-local address.
823	 */
824	if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) {
825		CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)",
826		    ip6_sprintf(ip6tbuf, &ip6->ip6_src),
827		    ifp, ifp->if_xname);
828		return (0);
829	}
830
831	CTR2(KTR_MLD, "input v2 query on ifp %p(%s)", ifp, ifp->if_xname);
832
833	mld = (struct mldv2_query *)(mtod(m, uint8_t *) + off);
834
835	maxdelay = ntohs(mld->mld_maxdelay);	/* in 1/10ths of a second */
836	if (maxdelay >= 32678) {
837		maxdelay = (MLD_MRC_MANT(maxdelay) | 0x1000) <<
838			   (MLD_MRC_EXP(maxdelay) + 3);
839	}
840	timer = (maxdelay * PR_FASTHZ) / MLD_TIMER_SCALE;
841	if (timer == 0)
842		timer = 1;
843
844	qrv = MLD_QRV(mld->mld_misc);
845	if (qrv < 2) {
846		CTR3(KTR_MLD, "%s: clamping qrv %d to %d", __func__,
847		    qrv, MLD_RV_INIT);
848		qrv = MLD_RV_INIT;
849	}
850
851	qqi = mld->mld_qqi;
852	if (qqi >= 128) {
853		qqi = MLD_QQIC_MANT(mld->mld_qqi) <<
854		     (MLD_QQIC_EXP(mld->mld_qqi) + 3);
855	}
856
857	nsrc = ntohs(mld->mld_numsrc);
858	if (nsrc > MLD_MAX_GS_SOURCES)
859		return (EMSGSIZE);
860	if (icmp6len < sizeof(struct mldv2_query) +
861	    (nsrc * sizeof(struct in6_addr)))
862		return (EMSGSIZE);
863
864	/*
865	 * Do further input validation upfront to avoid resetting timers
866	 * should we need to discard this query.
867	 */
868	if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) {
869		/*
870		 * General Queries SHOULD be directed to ff02::1.
871		 * A general query with a source list has undefined
872		 * behaviour; discard it.
873		 */
874		struct in6_addr		 dst;
875
876		dst = ip6->ip6_dst;
877		in6_clearscope(&dst);
878		if (!IN6_ARE_ADDR_EQUAL(&dst, &in6addr_linklocal_allnodes) ||
879		    nsrc > 0)
880			return (EINVAL);
881		is_general_query = 1;
882	} else {
883		/*
884		 * Embed scope ID of receiving interface in MLD query for
885		 * lookup whilst we don't hold other locks (due to KAME
886		 * locking lameness). We own this mbuf chain just now.
887		 */
888		in6_setscope(&mld->mld_addr, ifp, NULL);
889	}
890
891	IN6_MULTI_LOCK();
892	MLD_LOCK();
893
894	mli = MLD_IFINFO(ifp);
895	KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp));
896
897	/*
898	 * Discard the v2 query if we're in Compatibility Mode.
899	 * The RFC is pretty clear that hosts need to stay in MLDv1 mode
900	 * until the Old Version Querier Present timer expires.
901	 */
902	if (mli->mli_version != MLD_VERSION_2)
903		goto out_locked;
904
905	mld_set_version(mli, MLD_VERSION_2);
906	mli->mli_rv = qrv;
907	mli->mli_qi = qqi;
908	mli->mli_qri = maxdelay;
909
910	CTR4(KTR_MLD, "%s: qrv %d qi %d maxdelay %d", __func__, qrv, qqi,
911	    maxdelay);
912
913	if (is_general_query) {
914		/*
915		 * MLDv2 General Query.
916		 *
917		 * Schedule a current-state report on this ifp for
918		 * all groups, possibly containing source lists.
919		 *
920		 * If there is a pending General Query response
921		 * scheduled earlier than the selected delay, do
922		 * not schedule any other reports.
923		 * Otherwise, reset the interface timer.
924		 */
925		CTR2(KTR_MLD, "process v2 general query on ifp %p(%s)",
926		    ifp, ifp->if_xname);
927		if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) {
928			mli->mli_v2_timer = MLD_RANDOM_DELAY(timer);
929			V_interface_timers_running6 = 1;
930		}
931	} else {
932		/*
933		 * MLDv2 Group-specific or Group-and-source-specific Query.
934		 *
935		 * Group-source-specific queries are throttled on
936		 * a per-group basis to defeat denial-of-service attempts.
937		 * Queries for groups we are not a member of on this
938		 * link are simply ignored.
939		 */
940		IF_ADDR_RLOCK(ifp);
941		inm = in6m_lookup_locked(ifp, &mld->mld_addr);
942		if (inm == NULL) {
943			IF_ADDR_RUNLOCK(ifp);
944			goto out_locked;
945		}
946		if (nsrc > 0) {
947			if (!ratecheck(&inm->in6m_lastgsrtv,
948			    &V_mld_gsrdelay)) {
949				CTR1(KTR_MLD, "%s: GS query throttled.",
950				    __func__);
951				IF_ADDR_RUNLOCK(ifp);
952				goto out_locked;
953			}
954		}
955		CTR2(KTR_MLD, "process v2 group query on ifp %p(%s)",
956		     ifp, ifp->if_xname);
957		/*
958		 * If there is a pending General Query response
959		 * scheduled sooner than the selected delay, no
960		 * further report need be scheduled.
961		 * Otherwise, prepare to respond to the
962		 * group-specific or group-and-source query.
963		 */
964		if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer)
965			mld_v2_process_group_query(inm, mli, timer, m, off);
966
967		/* XXX Clear embedded scope ID as userland won't expect it. */
968		in6_clearscope(&mld->mld_addr);
969		IF_ADDR_RUNLOCK(ifp);
970	}
971
972out_locked:
973	MLD_UNLOCK();
974	IN6_MULTI_UNLOCK();
975
976	return (0);
977}
978
979/*
980 * Process a recieved MLDv2 group-specific or group-and-source-specific
981 * query.
982 * Return <0 if any error occured. Currently this is ignored.
983 */
984static int
985mld_v2_process_group_query(struct in6_multi *inm, struct mld_ifinfo *mli,
986    int timer, struct mbuf *m0, const int off)
987{
988	struct mldv2_query	*mld;
989	int			 retval;
990	uint16_t		 nsrc;
991
992	IN6_MULTI_LOCK_ASSERT();
993	MLD_LOCK_ASSERT();
994
995	retval = 0;
996	mld = (struct mldv2_query *)(mtod(m0, uint8_t *) + off);
997
998	switch (inm->in6m_state) {
999	case MLD_NOT_MEMBER:
1000	case MLD_SILENT_MEMBER:
1001	case MLD_SLEEPING_MEMBER:
1002	case MLD_LAZY_MEMBER:
1003	case MLD_AWAKENING_MEMBER:
1004	case MLD_IDLE_MEMBER:
1005	case MLD_LEAVING_MEMBER:
1006		return (retval);
1007		break;
1008	case MLD_REPORTING_MEMBER:
1009	case MLD_G_QUERY_PENDING_MEMBER:
1010	case MLD_SG_QUERY_PENDING_MEMBER:
1011		break;
1012	}
1013
1014	nsrc = ntohs(mld->mld_numsrc);
1015
1016	/*
1017	 * Deal with group-specific queries upfront.
1018	 * If any group query is already pending, purge any recorded
1019	 * source-list state if it exists, and schedule a query response
1020	 * for this group-specific query.
1021	 */
1022	if (nsrc == 0) {
1023		if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER ||
1024		    inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) {
1025			in6m_clear_recorded(inm);
1026			timer = min(inm->in6m_timer, timer);
1027		}
1028		inm->in6m_state = MLD_G_QUERY_PENDING_MEMBER;
1029		inm->in6m_timer = MLD_RANDOM_DELAY(timer);
1030		V_current_state_timers_running6 = 1;
1031		return (retval);
1032	}
1033
1034	/*
1035	 * Deal with the case where a group-and-source-specific query has
1036	 * been received but a group-specific query is already pending.
1037	 */
1038	if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER) {
1039		timer = min(inm->in6m_timer, timer);
1040		inm->in6m_timer = MLD_RANDOM_DELAY(timer);
1041		V_current_state_timers_running6 = 1;
1042		return (retval);
1043	}
1044
1045	/*
1046	 * Finally, deal with the case where a group-and-source-specific
1047	 * query has been received, where a response to a previous g-s-r
1048	 * query exists, or none exists.
1049	 * In this case, we need to parse the source-list which the Querier
1050	 * has provided us with and check if we have any source list filter
1051	 * entries at T1 for these sources. If we do not, there is no need
1052	 * schedule a report and the query may be dropped.
1053	 * If we do, we must record them and schedule a current-state
1054	 * report for those sources.
1055	 */
1056	if (inm->in6m_nsrc > 0) {
1057		struct mbuf		*m;
1058		uint8_t			*sp;
1059		int			 i, nrecorded;
1060		int			 soff;
1061
1062		m = m0;
1063		soff = off + sizeof(struct mldv2_query);
1064		nrecorded = 0;
1065		for (i = 0; i < nsrc; i++) {
1066			sp = mtod(m, uint8_t *) + soff;
1067			retval = in6m_record_source(inm,
1068			    (const struct in6_addr *)sp);
1069			if (retval < 0)
1070				break;
1071			nrecorded += retval;
1072			soff += sizeof(struct in6_addr);
1073			if (soff >= m->m_len) {
1074				soff = soff - m->m_len;
1075				m = m->m_next;
1076				if (m == NULL)
1077					break;
1078			}
1079		}
1080		if (nrecorded > 0) {
1081			CTR1(KTR_MLD,
1082			    "%s: schedule response to SG query", __func__);
1083			inm->in6m_state = MLD_SG_QUERY_PENDING_MEMBER;
1084			inm->in6m_timer = MLD_RANDOM_DELAY(timer);
1085			V_current_state_timers_running6 = 1;
1086		}
1087	}
1088
1089	return (retval);
1090}
1091
1092/*
1093 * Process a received MLDv1 host membership report.
1094 * Assumes mld points to mld_hdr in pulled up mbuf chain.
1095 *
1096 * NOTE: Can't be fully const correct as we temporarily embed scope ID in
1097 * mld_addr. This is OK as we own the mbuf chain.
1098 */
1099static int
1100mld_v1_input_report(struct ifnet *ifp, const struct ip6_hdr *ip6,
1101    /*const*/ struct mld_hdr *mld)
1102{
1103	struct in6_addr		 src, dst;
1104	struct in6_ifaddr	*ia;
1105	struct in6_multi	*inm;
1106#ifdef KTR
1107	char			 ip6tbuf[INET6_ADDRSTRLEN];
1108#endif
1109
1110	if (!mld_v1enable) {
1111		CTR3(KTR_MLD, "ignore v1 report %s on ifp %p(%s)",
1112		    ip6_sprintf(ip6tbuf, &mld->mld_addr),
1113		    ifp, ifp->if_xname);
1114		return (0);
1115	}
1116
1117	if (ifp->if_flags & IFF_LOOPBACK)
1118		return (0);
1119
1120	/*
1121	 * MLDv1 reports must originate from a host's link-local address,
1122	 * or the unspecified address (when booting).
1123	 */
1124	src = ip6->ip6_src;
1125	in6_clearscope(&src);
1126	if (!IN6_IS_SCOPE_LINKLOCAL(&src) && !IN6_IS_ADDR_UNSPECIFIED(&src)) {
1127		CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)",
1128		    ip6_sprintf(ip6tbuf, &ip6->ip6_src),
1129		    ifp, ifp->if_xname);
1130		return (EINVAL);
1131	}
1132
1133	/*
1134	 * RFC2710 Section 4: MLDv1 reports must pertain to a multicast
1135	 * group, and must be directed to the group itself.
1136	 */
1137	dst = ip6->ip6_dst;
1138	in6_clearscope(&dst);
1139	if (!IN6_IS_ADDR_MULTICAST(&mld->mld_addr) ||
1140	    !IN6_ARE_ADDR_EQUAL(&mld->mld_addr, &dst)) {
1141		CTR3(KTR_MLD, "ignore v1 query dst %s on ifp %p(%s)",
1142		    ip6_sprintf(ip6tbuf, &ip6->ip6_dst),
1143		    ifp, ifp->if_xname);
1144		return (EINVAL);
1145	}
1146
1147	/*
1148	 * Make sure we don't hear our own membership report, as fast
1149	 * leave requires knowing that we are the only member of a
1150	 * group. Assume we used the link-local address if available,
1151	 * otherwise look for ::.
1152	 *
1153	 * XXX Note that scope ID comparison is needed for the address
1154	 * returned by in6ifa_ifpforlinklocal(), but SHOULD NOT be
1155	 * performed for the on-wire address.
1156	 */
1157	ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST);
1158	if ((ia && IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, IA6_IN6(ia))) ||
1159	    (ia == NULL && IN6_IS_ADDR_UNSPECIFIED(&src))) {
1160		if (ia != NULL)
1161			ifa_free(&ia->ia_ifa);
1162		return (0);
1163	}
1164	if (ia != NULL)
1165		ifa_free(&ia->ia_ifa);
1166
1167	CTR3(KTR_MLD, "process v1 report %s on ifp %p(%s)",
1168	    ip6_sprintf(ip6tbuf, &mld->mld_addr), ifp, ifp->if_xname);
1169
1170	/*
1171	 * Embed scope ID of receiving interface in MLD query for lookup
1172	 * whilst we don't hold other locks (due to KAME locking lameness).
1173	 */
1174	if (!IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr))
1175		in6_setscope(&mld->mld_addr, ifp, NULL);
1176
1177	IN6_MULTI_LOCK();
1178	MLD_LOCK();
1179	IF_ADDR_RLOCK(ifp);
1180
1181	/*
1182	 * MLDv1 report suppression.
1183	 * If we are a member of this group, and our membership should be
1184	 * reported, and our group timer is pending or about to be reset,
1185	 * stop our group timer by transitioning to the 'lazy' state.
1186	 */
1187	inm = in6m_lookup_locked(ifp, &mld->mld_addr);
1188	if (inm != NULL) {
1189		struct mld_ifinfo *mli;
1190
1191		mli = inm->in6m_mli;
1192		KASSERT(mli != NULL,
1193		    ("%s: no mli for ifp %p", __func__, ifp));
1194
1195		/*
1196		 * If we are in MLDv2 host mode, do not allow the
1197		 * other host's MLDv1 report to suppress our reports.
1198		 */
1199		if (mli->mli_version == MLD_VERSION_2)
1200			goto out_locked;
1201
1202		inm->in6m_timer = 0;
1203
1204		switch (inm->in6m_state) {
1205		case MLD_NOT_MEMBER:
1206		case MLD_SILENT_MEMBER:
1207		case MLD_SLEEPING_MEMBER:
1208			break;
1209		case MLD_REPORTING_MEMBER:
1210		case MLD_IDLE_MEMBER:
1211		case MLD_AWAKENING_MEMBER:
1212			CTR3(KTR_MLD,
1213			    "report suppressed for %s on ifp %p(%s)",
1214			    ip6_sprintf(ip6tbuf, &mld->mld_addr),
1215			    ifp, ifp->if_xname);
1216		case MLD_LAZY_MEMBER:
1217			inm->in6m_state = MLD_LAZY_MEMBER;
1218			break;
1219		case MLD_G_QUERY_PENDING_MEMBER:
1220		case MLD_SG_QUERY_PENDING_MEMBER:
1221		case MLD_LEAVING_MEMBER:
1222			break;
1223		}
1224	}
1225
1226out_locked:
1227	IF_ADDR_RUNLOCK(ifp);
1228	MLD_UNLOCK();
1229	IN6_MULTI_UNLOCK();
1230
1231	/* XXX Clear embedded scope ID as userland won't expect it. */
1232	in6_clearscope(&mld->mld_addr);
1233
1234	return (0);
1235}
1236
1237/*
1238 * MLD input path.
1239 *
1240 * Assume query messages which fit in a single ICMPv6 message header
1241 * have been pulled up.
1242 * Assume that userland will want to see the message, even if it
1243 * otherwise fails kernel input validation; do not free it.
1244 * Pullup may however free the mbuf chain m if it fails.
1245 *
1246 * Return IPPROTO_DONE if we freed m. Otherwise, return 0.
1247 */
1248int
1249mld_input(struct mbuf *m, int off, int icmp6len)
1250{
1251	struct ifnet	*ifp;
1252	struct ip6_hdr	*ip6;
1253	struct mld_hdr	*mld;
1254	int		 mldlen;
1255
1256	CTR3(KTR_MLD, "%s: called w/mbuf (%p,%d)", __func__, m, off);
1257
1258	ifp = m->m_pkthdr.rcvif;
1259
1260	ip6 = mtod(m, struct ip6_hdr *);
1261
1262	/* Pullup to appropriate size. */
1263	mld = (struct mld_hdr *)(mtod(m, uint8_t *) + off);
1264	if (mld->mld_type == MLD_LISTENER_QUERY &&
1265	    icmp6len >= sizeof(struct mldv2_query)) {
1266		mldlen = sizeof(struct mldv2_query);
1267	} else {
1268		mldlen = sizeof(struct mld_hdr);
1269	}
1270	IP6_EXTHDR_GET(mld, struct mld_hdr *, m, off, mldlen);
1271	if (mld == NULL) {
1272		ICMP6STAT_INC(icp6s_badlen);
1273		return (IPPROTO_DONE);
1274	}
1275
1276	/*
1277	 * Userland needs to see all of this traffic for implementing
1278	 * the endpoint discovery portion of multicast routing.
1279	 */
1280	switch (mld->mld_type) {
1281	case MLD_LISTENER_QUERY:
1282		icmp6_ifstat_inc(ifp, ifs6_in_mldquery);
1283		if (icmp6len == sizeof(struct mld_hdr)) {
1284			if (mld_v1_input_query(ifp, ip6, mld) != 0)
1285				return (0);
1286		} else if (icmp6len >= sizeof(struct mldv2_query)) {
1287			if (mld_v2_input_query(ifp, ip6, m, off,
1288			    icmp6len) != 0)
1289				return (0);
1290		}
1291		break;
1292	case MLD_LISTENER_REPORT:
1293		icmp6_ifstat_inc(ifp, ifs6_in_mldreport);
1294		if (mld_v1_input_report(ifp, ip6, mld) != 0)
1295			return (0);
1296		break;
1297	case MLDV2_LISTENER_REPORT:
1298		icmp6_ifstat_inc(ifp, ifs6_in_mldreport);
1299		break;
1300	case MLD_LISTENER_DONE:
1301		icmp6_ifstat_inc(ifp, ifs6_in_mlddone);
1302		break;
1303	default:
1304		break;
1305	}
1306
1307	return (0);
1308}
1309
1310/*
1311 * Fast timeout handler (global).
1312 * VIMAGE: Timeout handlers are expected to service all vimages.
1313 */
1314void
1315mld_fasttimo(void)
1316{
1317	VNET_ITERATOR_DECL(vnet_iter);
1318
1319	VNET_LIST_RLOCK_NOSLEEP();
1320	VNET_FOREACH(vnet_iter) {
1321		CURVNET_SET(vnet_iter);
1322		mld_fasttimo_vnet();
1323		CURVNET_RESTORE();
1324	}
1325	VNET_LIST_RUNLOCK_NOSLEEP();
1326}
1327
1328/*
1329 * Fast timeout handler (per-vnet).
1330 *
1331 * VIMAGE: Assume caller has set up our curvnet.
1332 */
1333static void
1334mld_fasttimo_vnet(void)
1335{
1336	struct ifqueue		 scq;	/* State-change packets */
1337	struct ifqueue		 qrq;	/* Query response packets */
1338	struct ifnet		*ifp;
1339	struct mld_ifinfo	*mli;
1340	struct ifmultiaddr	*ifma;
1341	struct in6_multi	*inm, *tinm;
1342	int			 uri_fasthz;
1343
1344	uri_fasthz = 0;
1345
1346	/*
1347	 * Quick check to see if any work needs to be done, in order to
1348	 * minimize the overhead of fasttimo processing.
1349	 * SMPng: XXX Unlocked reads.
1350	 */
1351	if (!V_current_state_timers_running6 &&
1352	    !V_interface_timers_running6 &&
1353	    !V_state_change_timers_running6)
1354		return;
1355
1356	IN6_MULTI_LOCK();
1357	MLD_LOCK();
1358
1359	/*
1360	 * MLDv2 General Query response timer processing.
1361	 */
1362	if (V_interface_timers_running6) {
1363		CTR1(KTR_MLD, "%s: interface timers running", __func__);
1364
1365		V_interface_timers_running6 = 0;
1366		LIST_FOREACH(mli, &V_mli_head, mli_link) {
1367			if (mli->mli_v2_timer == 0) {
1368				/* Do nothing. */
1369			} else if (--mli->mli_v2_timer == 0) {
1370				mld_v2_dispatch_general_query(mli);
1371			} else {
1372				V_interface_timers_running6 = 1;
1373			}
1374		}
1375	}
1376
1377	if (!V_current_state_timers_running6 &&
1378	    !V_state_change_timers_running6)
1379		goto out_locked;
1380
1381	V_current_state_timers_running6 = 0;
1382	V_state_change_timers_running6 = 0;
1383
1384	CTR1(KTR_MLD, "%s: state change timers running", __func__);
1385
1386	/*
1387	 * MLD host report and state-change timer processing.
1388	 * Note: Processing a v2 group timer may remove a node.
1389	 */
1390	LIST_FOREACH(mli, &V_mli_head, mli_link) {
1391		ifp = mli->mli_ifp;
1392
1393		if (mli->mli_version == MLD_VERSION_2) {
1394			uri_fasthz = MLD_RANDOM_DELAY(mli->mli_uri *
1395			    PR_FASTHZ);
1396
1397			memset(&qrq, 0, sizeof(struct ifqueue));
1398			IFQ_SET_MAXLEN(&qrq, MLD_MAX_G_GS_PACKETS);
1399
1400			memset(&scq, 0, sizeof(struct ifqueue));
1401			IFQ_SET_MAXLEN(&scq, MLD_MAX_STATE_CHANGE_PACKETS);
1402		}
1403
1404		IF_ADDR_RLOCK(ifp);
1405		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1406			if (ifma->ifma_addr->sa_family != AF_INET6 ||
1407			    ifma->ifma_protospec == NULL)
1408				continue;
1409			inm = (struct in6_multi *)ifma->ifma_protospec;
1410			switch (mli->mli_version) {
1411			case MLD_VERSION_1:
1412				mld_v1_process_group_timer(mli, inm);
1413				break;
1414			case MLD_VERSION_2:
1415				mld_v2_process_group_timers(mli, &qrq,
1416				    &scq, inm, uri_fasthz);
1417				break;
1418			}
1419		}
1420		IF_ADDR_RUNLOCK(ifp);
1421
1422		switch (mli->mli_version) {
1423		case MLD_VERSION_1:
1424			/*
1425			 * Transmit reports for this lifecycle.  This
1426			 * is done while not holding IF_ADDR_LOCK
1427			 * since this can call
1428			 * in6ifa_ifpforlinklocal() which locks
1429			 * IF_ADDR_LOCK internally as well as
1430			 * ip6_output() to transmit a packet.
1431			 */
1432			SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead,
1433			    in6m_nrele, tinm) {
1434				SLIST_REMOVE_HEAD(&mli->mli_relinmhead,
1435				    in6m_nrele);
1436				(void)mld_v1_transmit_report(inm,
1437				    MLD_LISTENER_REPORT);
1438			}
1439			break;
1440		case MLD_VERSION_2:
1441			mld_dispatch_queue(&qrq, 0);
1442			mld_dispatch_queue(&scq, 0);
1443
1444			/*
1445			 * Free the in_multi reference(s) for
1446			 * this lifecycle.
1447			 */
1448			SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead,
1449			    in6m_nrele, tinm) {
1450				SLIST_REMOVE_HEAD(&mli->mli_relinmhead,
1451				    in6m_nrele);
1452				in6m_release_locked(inm);
1453			}
1454			break;
1455		}
1456	}
1457
1458out_locked:
1459	MLD_UNLOCK();
1460	IN6_MULTI_UNLOCK();
1461}
1462
1463/*
1464 * Update host report group timer.
1465 * Will update the global pending timer flags.
1466 */
1467static void
1468mld_v1_process_group_timer(struct mld_ifinfo *mli, struct in6_multi *inm)
1469{
1470	int report_timer_expired;
1471
1472	IN6_MULTI_LOCK_ASSERT();
1473	MLD_LOCK_ASSERT();
1474
1475	if (inm->in6m_timer == 0) {
1476		report_timer_expired = 0;
1477	} else if (--inm->in6m_timer == 0) {
1478		report_timer_expired = 1;
1479	} else {
1480		V_current_state_timers_running6 = 1;
1481		return;
1482	}
1483
1484	switch (inm->in6m_state) {
1485	case MLD_NOT_MEMBER:
1486	case MLD_SILENT_MEMBER:
1487	case MLD_IDLE_MEMBER:
1488	case MLD_LAZY_MEMBER:
1489	case MLD_SLEEPING_MEMBER:
1490	case MLD_AWAKENING_MEMBER:
1491		break;
1492	case MLD_REPORTING_MEMBER:
1493		if (report_timer_expired) {
1494			inm->in6m_state = MLD_IDLE_MEMBER;
1495			SLIST_INSERT_HEAD(&mli->mli_relinmhead, inm,
1496			    in6m_nrele);
1497		}
1498		break;
1499	case MLD_G_QUERY_PENDING_MEMBER:
1500	case MLD_SG_QUERY_PENDING_MEMBER:
1501	case MLD_LEAVING_MEMBER:
1502		break;
1503	}
1504}
1505
1506/*
1507 * Update a group's timers for MLDv2.
1508 * Will update the global pending timer flags.
1509 * Note: Unlocked read from mli.
1510 */
1511static void
1512mld_v2_process_group_timers(struct mld_ifinfo *mli,
1513    struct ifqueue *qrq, struct ifqueue *scq,
1514    struct in6_multi *inm, const int uri_fasthz)
1515{
1516	int query_response_timer_expired;
1517	int state_change_retransmit_timer_expired;
1518#ifdef KTR
1519	char ip6tbuf[INET6_ADDRSTRLEN];
1520#endif
1521
1522	IN6_MULTI_LOCK_ASSERT();
1523	MLD_LOCK_ASSERT();
1524
1525	query_response_timer_expired = 0;
1526	state_change_retransmit_timer_expired = 0;
1527
1528	/*
1529	 * During a transition from compatibility mode back to MLDv2,
1530	 * a group record in REPORTING state may still have its group
1531	 * timer active. This is a no-op in this function; it is easier
1532	 * to deal with it here than to complicate the slow-timeout path.
1533	 */
1534	if (inm->in6m_timer == 0) {
1535		query_response_timer_expired = 0;
1536	} else if (--inm->in6m_timer == 0) {
1537		query_response_timer_expired = 1;
1538	} else {
1539		V_current_state_timers_running6 = 1;
1540	}
1541
1542	if (inm->in6m_sctimer == 0) {
1543		state_change_retransmit_timer_expired = 0;
1544	} else if (--inm->in6m_sctimer == 0) {
1545		state_change_retransmit_timer_expired = 1;
1546	} else {
1547		V_state_change_timers_running6 = 1;
1548	}
1549
1550	/* We are in fasttimo, so be quick about it. */
1551	if (!state_change_retransmit_timer_expired &&
1552	    !query_response_timer_expired)
1553		return;
1554
1555	switch (inm->in6m_state) {
1556	case MLD_NOT_MEMBER:
1557	case MLD_SILENT_MEMBER:
1558	case MLD_SLEEPING_MEMBER:
1559	case MLD_LAZY_MEMBER:
1560	case MLD_AWAKENING_MEMBER:
1561	case MLD_IDLE_MEMBER:
1562		break;
1563	case MLD_G_QUERY_PENDING_MEMBER:
1564	case MLD_SG_QUERY_PENDING_MEMBER:
1565		/*
1566		 * Respond to a previously pending Group-Specific
1567		 * or Group-and-Source-Specific query by enqueueing
1568		 * the appropriate Current-State report for
1569		 * immediate transmission.
1570		 */
1571		if (query_response_timer_expired) {
1572			int retval;
1573
1574			retval = mld_v2_enqueue_group_record(qrq, inm, 0, 1,
1575			    (inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER),
1576			    0);
1577			CTR2(KTR_MLD, "%s: enqueue record = %d",
1578			    __func__, retval);
1579			inm->in6m_state = MLD_REPORTING_MEMBER;
1580			in6m_clear_recorded(inm);
1581		}
1582		/* FALLTHROUGH */
1583	case MLD_REPORTING_MEMBER:
1584	case MLD_LEAVING_MEMBER:
1585		if (state_change_retransmit_timer_expired) {
1586			/*
1587			 * State-change retransmission timer fired.
1588			 * If there are any further pending retransmissions,
1589			 * set the global pending state-change flag, and
1590			 * reset the timer.
1591			 */
1592			if (--inm->in6m_scrv > 0) {
1593				inm->in6m_sctimer = uri_fasthz;
1594				V_state_change_timers_running6 = 1;
1595			}
1596			/*
1597			 * Retransmit the previously computed state-change
1598			 * report. If there are no further pending
1599			 * retransmissions, the mbuf queue will be consumed.
1600			 * Update T0 state to T1 as we have now sent
1601			 * a state-change.
1602			 */
1603			(void)mld_v2_merge_state_changes(inm, scq);
1604
1605			in6m_commit(inm);
1606			CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__,
1607			    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
1608			    inm->in6m_ifp->if_xname);
1609
1610			/*
1611			 * If we are leaving the group for good, make sure
1612			 * we release MLD's reference to it.
1613			 * This release must be deferred using a SLIST,
1614			 * as we are called from a loop which traverses
1615			 * the in_ifmultiaddr TAILQ.
1616			 */
1617			if (inm->in6m_state == MLD_LEAVING_MEMBER &&
1618			    inm->in6m_scrv == 0) {
1619				inm->in6m_state = MLD_NOT_MEMBER;
1620				SLIST_INSERT_HEAD(&mli->mli_relinmhead,
1621				    inm, in6m_nrele);
1622			}
1623		}
1624		break;
1625	}
1626}
1627
1628/*
1629 * Switch to a different version on the given interface,
1630 * as per Section 9.12.
1631 */
1632static void
1633mld_set_version(struct mld_ifinfo *mli, const int version)
1634{
1635	int old_version_timer;
1636
1637	MLD_LOCK_ASSERT();
1638
1639	CTR4(KTR_MLD, "%s: switching to v%d on ifp %p(%s)", __func__,
1640	    version, mli->mli_ifp, mli->mli_ifp->if_xname);
1641
1642	if (version == MLD_VERSION_1) {
1643		/*
1644		 * Compute the "Older Version Querier Present" timer as per
1645		 * Section 9.12.
1646		 */
1647		old_version_timer = (mli->mli_rv * mli->mli_qi) + mli->mli_qri;
1648		old_version_timer *= PR_SLOWHZ;
1649		mli->mli_v1_timer = old_version_timer;
1650	}
1651
1652	if (mli->mli_v1_timer > 0 && mli->mli_version != MLD_VERSION_1) {
1653		mli->mli_version = MLD_VERSION_1;
1654		mld_v2_cancel_link_timers(mli);
1655	}
1656}
1657
1658/*
1659 * Cancel pending MLDv2 timers for the given link and all groups
1660 * joined on it; state-change, general-query, and group-query timers.
1661 */
1662static void
1663mld_v2_cancel_link_timers(struct mld_ifinfo *mli)
1664{
1665	struct ifmultiaddr	*ifma;
1666	struct ifnet		*ifp;
1667	struct in6_multi	*inm, *tinm;
1668
1669	CTR3(KTR_MLD, "%s: cancel v2 timers on ifp %p(%s)", __func__,
1670	    mli->mli_ifp, mli->mli_ifp->if_xname);
1671
1672	IN6_MULTI_LOCK_ASSERT();
1673	MLD_LOCK_ASSERT();
1674
1675	/*
1676	 * Fast-track this potentially expensive operation
1677	 * by checking all the global 'timer pending' flags.
1678	 */
1679	if (!V_interface_timers_running6 &&
1680	    !V_state_change_timers_running6 &&
1681	    !V_current_state_timers_running6)
1682		return;
1683
1684	mli->mli_v2_timer = 0;
1685
1686	ifp = mli->mli_ifp;
1687
1688	IF_ADDR_RLOCK(ifp);
1689	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1690		if (ifma->ifma_addr->sa_family != AF_INET6)
1691			continue;
1692		inm = (struct in6_multi *)ifma->ifma_protospec;
1693		switch (inm->in6m_state) {
1694		case MLD_NOT_MEMBER:
1695		case MLD_SILENT_MEMBER:
1696		case MLD_IDLE_MEMBER:
1697		case MLD_LAZY_MEMBER:
1698		case MLD_SLEEPING_MEMBER:
1699		case MLD_AWAKENING_MEMBER:
1700			break;
1701		case MLD_LEAVING_MEMBER:
1702			/*
1703			 * If we are leaving the group and switching
1704			 * version, we need to release the final
1705			 * reference held for issuing the INCLUDE {}.
1706			 */
1707			SLIST_INSERT_HEAD(&mli->mli_relinmhead, inm,
1708			    in6m_nrele);
1709			/* FALLTHROUGH */
1710		case MLD_G_QUERY_PENDING_MEMBER:
1711		case MLD_SG_QUERY_PENDING_MEMBER:
1712			in6m_clear_recorded(inm);
1713			/* FALLTHROUGH */
1714		case MLD_REPORTING_MEMBER:
1715			inm->in6m_sctimer = 0;
1716			inm->in6m_timer = 0;
1717			inm->in6m_state = MLD_REPORTING_MEMBER;
1718			/*
1719			 * Free any pending MLDv2 state-change records.
1720			 */
1721			_IF_DRAIN(&inm->in6m_scq);
1722			break;
1723		}
1724	}
1725	IF_ADDR_RUNLOCK(ifp);
1726	SLIST_FOREACH_SAFE(inm, &mli->mli_relinmhead, in6m_nrele, tinm) {
1727		SLIST_REMOVE_HEAD(&mli->mli_relinmhead, in6m_nrele);
1728		in6m_release_locked(inm);
1729	}
1730}
1731
1732/*
1733 * Global slowtimo handler.
1734 * VIMAGE: Timeout handlers are expected to service all vimages.
1735 */
1736void
1737mld_slowtimo(void)
1738{
1739	VNET_ITERATOR_DECL(vnet_iter);
1740
1741	VNET_LIST_RLOCK_NOSLEEP();
1742	VNET_FOREACH(vnet_iter) {
1743		CURVNET_SET(vnet_iter);
1744		mld_slowtimo_vnet();
1745		CURVNET_RESTORE();
1746	}
1747	VNET_LIST_RUNLOCK_NOSLEEP();
1748}
1749
1750/*
1751 * Per-vnet slowtimo handler.
1752 */
1753static void
1754mld_slowtimo_vnet(void)
1755{
1756	struct mld_ifinfo *mli;
1757
1758	MLD_LOCK();
1759
1760	LIST_FOREACH(mli, &V_mli_head, mli_link) {
1761		mld_v1_process_querier_timers(mli);
1762	}
1763
1764	MLD_UNLOCK();
1765}
1766
1767/*
1768 * Update the Older Version Querier Present timers for a link.
1769 * See Section 9.12 of RFC 3810.
1770 */
1771static void
1772mld_v1_process_querier_timers(struct mld_ifinfo *mli)
1773{
1774
1775	MLD_LOCK_ASSERT();
1776
1777	if (mli->mli_version != MLD_VERSION_2 && --mli->mli_v1_timer == 0) {
1778		/*
1779		 * MLDv1 Querier Present timer expired; revert to MLDv2.
1780		 */
1781		CTR5(KTR_MLD,
1782		    "%s: transition from v%d -> v%d on %p(%s)",
1783		    __func__, mli->mli_version, MLD_VERSION_2,
1784		    mli->mli_ifp, mli->mli_ifp->if_xname);
1785		mli->mli_version = MLD_VERSION_2;
1786	}
1787}
1788
1789/*
1790 * Transmit an MLDv1 report immediately.
1791 */
1792static int
1793mld_v1_transmit_report(struct in6_multi *in6m, const int type)
1794{
1795	struct ifnet		*ifp;
1796	struct in6_ifaddr	*ia;
1797	struct ip6_hdr		*ip6;
1798	struct mbuf		*mh, *md;
1799	struct mld_hdr		*mld;
1800
1801	IN6_MULTI_LOCK_ASSERT();
1802	MLD_LOCK_ASSERT();
1803
1804	ifp = in6m->in6m_ifp;
1805	ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST);
1806	/* ia may be NULL if link-local address is tentative. */
1807
1808	MGETHDR(mh, M_DONTWAIT, MT_HEADER);
1809	if (mh == NULL) {
1810		if (ia != NULL)
1811			ifa_free(&ia->ia_ifa);
1812		return (ENOMEM);
1813	}
1814	MGET(md, M_DONTWAIT, MT_DATA);
1815	if (md == NULL) {
1816		m_free(mh);
1817		if (ia != NULL)
1818			ifa_free(&ia->ia_ifa);
1819		return (ENOMEM);
1820	}
1821	mh->m_next = md;
1822
1823	/*
1824	 * FUTURE: Consider increasing alignment by ETHER_HDR_LEN, so
1825	 * that ether_output() does not need to allocate another mbuf
1826	 * for the header in the most common case.
1827	 */
1828	MH_ALIGN(mh, sizeof(struct ip6_hdr));
1829	mh->m_pkthdr.len = sizeof(struct ip6_hdr) + sizeof(struct mld_hdr);
1830	mh->m_len = sizeof(struct ip6_hdr);
1831
1832	ip6 = mtod(mh, struct ip6_hdr *);
1833	ip6->ip6_flow = 0;
1834	ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
1835	ip6->ip6_vfc |= IPV6_VERSION;
1836	ip6->ip6_nxt = IPPROTO_ICMPV6;
1837	ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any;
1838	ip6->ip6_dst = in6m->in6m_addr;
1839
1840	md->m_len = sizeof(struct mld_hdr);
1841	mld = mtod(md, struct mld_hdr *);
1842	mld->mld_type = type;
1843	mld->mld_code = 0;
1844	mld->mld_cksum = 0;
1845	mld->mld_maxdelay = 0;
1846	mld->mld_reserved = 0;
1847	mld->mld_addr = in6m->in6m_addr;
1848	in6_clearscope(&mld->mld_addr);
1849	mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6,
1850	    sizeof(struct ip6_hdr), sizeof(struct mld_hdr));
1851
1852	mld_save_context(mh, ifp);
1853	mh->m_flags |= M_MLDV1;
1854
1855	mld_dispatch_packet(mh);
1856
1857	if (ia != NULL)
1858		ifa_free(&ia->ia_ifa);
1859	return (0);
1860}
1861
1862/*
1863 * Process a state change from the upper layer for the given IPv6 group.
1864 *
1865 * Each socket holds a reference on the in_multi in its own ip_moptions.
1866 * The socket layer will have made the necessary updates to.the group
1867 * state, it is now up to MLD to issue a state change report if there
1868 * has been any change between T0 (when the last state-change was issued)
1869 * and T1 (now).
1870 *
1871 * We use the MLDv2 state machine at group level. The MLd module
1872 * however makes the decision as to which MLD protocol version to speak.
1873 * A state change *from* INCLUDE {} always means an initial join.
1874 * A state change *to* INCLUDE {} always means a final leave.
1875 *
1876 * If delay is non-zero, and the state change is an initial multicast
1877 * join, the state change report will be delayed by 'delay' ticks
1878 * in units of PR_FASTHZ if MLDv1 is active on the link; otherwise
1879 * the initial MLDv2 state change report will be delayed by whichever
1880 * is sooner, a pending state-change timer or delay itself.
1881 *
1882 * VIMAGE: curvnet should have been set by caller, as this routine
1883 * is called from the socket option handlers.
1884 */
1885int
1886mld_change_state(struct in6_multi *inm, const int delay)
1887{
1888	struct mld_ifinfo *mli;
1889	struct ifnet *ifp;
1890	int error;
1891
1892	IN6_MULTI_LOCK_ASSERT();
1893
1894	error = 0;
1895
1896	/*
1897	 * Try to detect if the upper layer just asked us to change state
1898	 * for an interface which has now gone away.
1899	 */
1900	KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__));
1901	ifp = inm->in6m_ifma->ifma_ifp;
1902	if (ifp != NULL) {
1903		/*
1904		 * Sanity check that netinet6's notion of ifp is the
1905		 * same as net's.
1906		 */
1907		KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__));
1908	}
1909
1910	MLD_LOCK();
1911
1912	mli = MLD_IFINFO(ifp);
1913	KASSERT(mli != NULL, ("%s: no mld_ifinfo for ifp %p", __func__, ifp));
1914
1915	/*
1916	 * If we detect a state transition to or from MCAST_UNDEFINED
1917	 * for this group, then we are starting or finishing an MLD
1918	 * life cycle for this group.
1919	 */
1920	if (inm->in6m_st[1].iss_fmode != inm->in6m_st[0].iss_fmode) {
1921		CTR3(KTR_MLD, "%s: inm transition %d -> %d", __func__,
1922		    inm->in6m_st[0].iss_fmode, inm->in6m_st[1].iss_fmode);
1923		if (inm->in6m_st[0].iss_fmode == MCAST_UNDEFINED) {
1924			CTR1(KTR_MLD, "%s: initial join", __func__);
1925			error = mld_initial_join(inm, mli, delay);
1926			goto out_locked;
1927		} else if (inm->in6m_st[1].iss_fmode == MCAST_UNDEFINED) {
1928			CTR1(KTR_MLD, "%s: final leave", __func__);
1929			mld_final_leave(inm, mli);
1930			goto out_locked;
1931		}
1932	} else {
1933		CTR1(KTR_MLD, "%s: filter set change", __func__);
1934	}
1935
1936	error = mld_handle_state_change(inm, mli);
1937
1938out_locked:
1939	MLD_UNLOCK();
1940	return (error);
1941}
1942
1943/*
1944 * Perform the initial join for an MLD group.
1945 *
1946 * When joining a group:
1947 *  If the group should have its MLD traffic suppressed, do nothing.
1948 *  MLDv1 starts sending MLDv1 host membership reports.
1949 *  MLDv2 will schedule an MLDv2 state-change report containing the
1950 *  initial state of the membership.
1951 *
1952 * If the delay argument is non-zero, then we must delay sending the
1953 * initial state change for delay ticks (in units of PR_FASTHZ).
1954 */
1955static int
1956mld_initial_join(struct in6_multi *inm, struct mld_ifinfo *mli,
1957    const int delay)
1958{
1959	struct ifnet		*ifp;
1960	struct ifqueue		*ifq;
1961	int			 error, retval, syncstates;
1962	int			 odelay;
1963#ifdef KTR
1964	char			 ip6tbuf[INET6_ADDRSTRLEN];
1965#endif
1966
1967	CTR4(KTR_MLD, "%s: initial join %s on ifp %p(%s)",
1968	    __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr),
1969	    inm->in6m_ifp, inm->in6m_ifp->if_xname);
1970
1971	error = 0;
1972	syncstates = 1;
1973
1974	ifp = inm->in6m_ifp;
1975
1976	IN6_MULTI_LOCK_ASSERT();
1977	MLD_LOCK_ASSERT();
1978
1979	KASSERT(mli && mli->mli_ifp == ifp, ("%s: inconsistent ifp", __func__));
1980
1981	/*
1982	 * Groups joined on loopback or marked as 'not reported',
1983	 * enter the MLD_SILENT_MEMBER state and
1984	 * are never reported in any protocol exchanges.
1985	 * All other groups enter the appropriate state machine
1986	 * for the version in use on this link.
1987	 * A link marked as MLIF_SILENT causes MLD to be completely
1988	 * disabled for the link.
1989	 */
1990	if ((ifp->if_flags & IFF_LOOPBACK) ||
1991	    (mli->mli_flags & MLIF_SILENT) ||
1992	    !mld_is_addr_reported(&inm->in6m_addr)) {
1993		CTR1(KTR_MLD,
1994"%s: not kicking state machine for silent group", __func__);
1995		inm->in6m_state = MLD_SILENT_MEMBER;
1996		inm->in6m_timer = 0;
1997	} else {
1998		/*
1999		 * Deal with overlapping in_multi lifecycle.
2000		 * If this group was LEAVING, then make sure
2001		 * we drop the reference we picked up to keep the
2002		 * group around for the final INCLUDE {} enqueue.
2003		 */
2004		if (mli->mli_version == MLD_VERSION_2 &&
2005		    inm->in6m_state == MLD_LEAVING_MEMBER)
2006			in6m_release_locked(inm);
2007
2008		inm->in6m_state = MLD_REPORTING_MEMBER;
2009
2010		switch (mli->mli_version) {
2011		case MLD_VERSION_1:
2012			/*
2013			 * If a delay was provided, only use it if
2014			 * it is greater than the delay normally
2015			 * used for an MLDv1 state change report,
2016			 * and delay sending the initial MLDv1 report
2017			 * by not transitioning to the IDLE state.
2018			 */
2019			odelay = MLD_RANDOM_DELAY(MLD_V1_MAX_RI * PR_FASTHZ);
2020			if (delay) {
2021				inm->in6m_timer = max(delay, odelay);
2022				V_current_state_timers_running6 = 1;
2023			} else {
2024				inm->in6m_state = MLD_IDLE_MEMBER;
2025				error = mld_v1_transmit_report(inm,
2026				     MLD_LISTENER_REPORT);
2027				if (error == 0) {
2028					inm->in6m_timer = odelay;
2029					V_current_state_timers_running6 = 1;
2030				}
2031			}
2032			break;
2033
2034		case MLD_VERSION_2:
2035			/*
2036			 * Defer update of T0 to T1, until the first copy
2037			 * of the state change has been transmitted.
2038			 */
2039			syncstates = 0;
2040
2041			/*
2042			 * Immediately enqueue a State-Change Report for
2043			 * this interface, freeing any previous reports.
2044			 * Don't kick the timers if there is nothing to do,
2045			 * or if an error occurred.
2046			 */
2047			ifq = &inm->in6m_scq;
2048			_IF_DRAIN(ifq);
2049			retval = mld_v2_enqueue_group_record(ifq, inm, 1,
2050			    0, 0, (mli->mli_flags & MLIF_USEALLOW));
2051			CTR2(KTR_MLD, "%s: enqueue record = %d",
2052			    __func__, retval);
2053			if (retval <= 0) {
2054				error = retval * -1;
2055				break;
2056			}
2057
2058			/*
2059			 * Schedule transmission of pending state-change
2060			 * report up to RV times for this link. The timer
2061			 * will fire at the next mld_fasttimo (~200ms),
2062			 * giving us an opportunity to merge the reports.
2063			 *
2064			 * If a delay was provided to this function, only
2065			 * use this delay if sooner than the existing one.
2066			 */
2067			KASSERT(mli->mli_rv > 1,
2068			   ("%s: invalid robustness %d", __func__,
2069			    mli->mli_rv));
2070			inm->in6m_scrv = mli->mli_rv;
2071			if (delay) {
2072				if (inm->in6m_sctimer > 1) {
2073					inm->in6m_sctimer =
2074					    min(inm->in6m_sctimer, delay);
2075				} else
2076					inm->in6m_sctimer = delay;
2077			} else
2078				inm->in6m_sctimer = 1;
2079			V_state_change_timers_running6 = 1;
2080
2081			error = 0;
2082			break;
2083		}
2084	}
2085
2086	/*
2087	 * Only update the T0 state if state change is atomic,
2088	 * i.e. we don't need to wait for a timer to fire before we
2089	 * can consider the state change to have been communicated.
2090	 */
2091	if (syncstates) {
2092		in6m_commit(inm);
2093		CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__,
2094		    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2095		    inm->in6m_ifp->if_xname);
2096	}
2097
2098	return (error);
2099}
2100
2101/*
2102 * Issue an intermediate state change during the life-cycle.
2103 */
2104static int
2105mld_handle_state_change(struct in6_multi *inm, struct mld_ifinfo *mli)
2106{
2107	struct ifnet		*ifp;
2108	int			 retval;
2109#ifdef KTR
2110	char			 ip6tbuf[INET6_ADDRSTRLEN];
2111#endif
2112
2113	CTR4(KTR_MLD, "%s: state change for %s on ifp %p(%s)",
2114	    __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2115	    inm->in6m_ifp, inm->in6m_ifp->if_xname);
2116
2117	ifp = inm->in6m_ifp;
2118
2119	IN6_MULTI_LOCK_ASSERT();
2120	MLD_LOCK_ASSERT();
2121
2122	KASSERT(mli && mli->mli_ifp == ifp,
2123	    ("%s: inconsistent ifp", __func__));
2124
2125	if ((ifp->if_flags & IFF_LOOPBACK) ||
2126	    (mli->mli_flags & MLIF_SILENT) ||
2127	    !mld_is_addr_reported(&inm->in6m_addr) ||
2128	    (mli->mli_version != MLD_VERSION_2)) {
2129		if (!mld_is_addr_reported(&inm->in6m_addr)) {
2130			CTR1(KTR_MLD,
2131"%s: not kicking state machine for silent group", __func__);
2132		}
2133		CTR1(KTR_MLD, "%s: nothing to do", __func__);
2134		in6m_commit(inm);
2135		CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__,
2136		    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2137		    inm->in6m_ifp->if_xname);
2138		return (0);
2139	}
2140
2141	_IF_DRAIN(&inm->in6m_scq);
2142
2143	retval = mld_v2_enqueue_group_record(&inm->in6m_scq, inm, 1, 0, 0,
2144	    (mli->mli_flags & MLIF_USEALLOW));
2145	CTR2(KTR_MLD, "%s: enqueue record = %d", __func__, retval);
2146	if (retval <= 0)
2147		return (-retval);
2148
2149	/*
2150	 * If record(s) were enqueued, start the state-change
2151	 * report timer for this group.
2152	 */
2153	inm->in6m_scrv = mli->mli_rv;
2154	inm->in6m_sctimer = 1;
2155	V_state_change_timers_running6 = 1;
2156
2157	return (0);
2158}
2159
2160/*
2161 * Perform the final leave for a multicast address.
2162 *
2163 * When leaving a group:
2164 *  MLDv1 sends a DONE message, if and only if we are the reporter.
2165 *  MLDv2 enqueues a state-change report containing a transition
2166 *  to INCLUDE {} for immediate transmission.
2167 */
2168static void
2169mld_final_leave(struct in6_multi *inm, struct mld_ifinfo *mli)
2170{
2171	int syncstates;
2172#ifdef KTR
2173	char ip6tbuf[INET6_ADDRSTRLEN];
2174#endif
2175
2176	syncstates = 1;
2177
2178	CTR4(KTR_MLD, "%s: final leave %s on ifp %p(%s)",
2179	    __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2180	    inm->in6m_ifp, inm->in6m_ifp->if_xname);
2181
2182	IN6_MULTI_LOCK_ASSERT();
2183	MLD_LOCK_ASSERT();
2184
2185	switch (inm->in6m_state) {
2186	case MLD_NOT_MEMBER:
2187	case MLD_SILENT_MEMBER:
2188	case MLD_LEAVING_MEMBER:
2189		/* Already leaving or left; do nothing. */
2190		CTR1(KTR_MLD,
2191"%s: not kicking state machine for silent group", __func__);
2192		break;
2193	case MLD_REPORTING_MEMBER:
2194	case MLD_IDLE_MEMBER:
2195	case MLD_G_QUERY_PENDING_MEMBER:
2196	case MLD_SG_QUERY_PENDING_MEMBER:
2197		if (mli->mli_version == MLD_VERSION_1) {
2198#ifdef INVARIANTS
2199			if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER ||
2200			    inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER)
2201			panic("%s: MLDv2 state reached, not MLDv2 mode",
2202			     __func__);
2203#endif
2204			mld_v1_transmit_report(inm, MLD_LISTENER_DONE);
2205			inm->in6m_state = MLD_NOT_MEMBER;
2206		} else if (mli->mli_version == MLD_VERSION_2) {
2207			/*
2208			 * Stop group timer and all pending reports.
2209			 * Immediately enqueue a state-change report
2210			 * TO_IN {} to be sent on the next fast timeout,
2211			 * giving us an opportunity to merge reports.
2212			 */
2213			_IF_DRAIN(&inm->in6m_scq);
2214			inm->in6m_timer = 0;
2215			inm->in6m_scrv = mli->mli_rv;
2216			CTR4(KTR_MLD, "%s: Leaving %s/%s with %d "
2217			    "pending retransmissions.", __func__,
2218			    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2219			    inm->in6m_ifp->if_xname, inm->in6m_scrv);
2220			if (inm->in6m_scrv == 0) {
2221				inm->in6m_state = MLD_NOT_MEMBER;
2222				inm->in6m_sctimer = 0;
2223			} else {
2224				int retval;
2225
2226				in6m_acquire_locked(inm);
2227
2228				retval = mld_v2_enqueue_group_record(
2229				    &inm->in6m_scq, inm, 1, 0, 0,
2230				    (mli->mli_flags & MLIF_USEALLOW));
2231				KASSERT(retval != 0,
2232				    ("%s: enqueue record = %d", __func__,
2233				     retval));
2234
2235				inm->in6m_state = MLD_LEAVING_MEMBER;
2236				inm->in6m_sctimer = 1;
2237				V_state_change_timers_running6 = 1;
2238				syncstates = 0;
2239			}
2240			break;
2241		}
2242		break;
2243	case MLD_LAZY_MEMBER:
2244	case MLD_SLEEPING_MEMBER:
2245	case MLD_AWAKENING_MEMBER:
2246		/* Our reports are suppressed; do nothing. */
2247		break;
2248	}
2249
2250	if (syncstates) {
2251		in6m_commit(inm);
2252		CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__,
2253		    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2254		    inm->in6m_ifp->if_xname);
2255		inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED;
2256		CTR3(KTR_MLD, "%s: T1 now MCAST_UNDEFINED for %p/%s",
2257		    __func__, &inm->in6m_addr, inm->in6m_ifp->if_xname);
2258	}
2259}
2260
2261/*
2262 * Enqueue an MLDv2 group record to the given output queue.
2263 *
2264 * If is_state_change is zero, a current-state record is appended.
2265 * If is_state_change is non-zero, a state-change report is appended.
2266 *
2267 * If is_group_query is non-zero, an mbuf packet chain is allocated.
2268 * If is_group_query is zero, and if there is a packet with free space
2269 * at the tail of the queue, it will be appended to providing there
2270 * is enough free space.
2271 * Otherwise a new mbuf packet chain is allocated.
2272 *
2273 * If is_source_query is non-zero, each source is checked to see if
2274 * it was recorded for a Group-Source query, and will be omitted if
2275 * it is not both in-mode and recorded.
2276 *
2277 * If use_block_allow is non-zero, state change reports for initial join
2278 * and final leave, on an inclusive mode group with a source list, will be
2279 * rewritten to use the ALLOW_NEW and BLOCK_OLD record types, respectively.
2280 *
2281 * The function will attempt to allocate leading space in the packet
2282 * for the IPv6+ICMP headers to be prepended without fragmenting the chain.
2283 *
2284 * If successful the size of all data appended to the queue is returned,
2285 * otherwise an error code less than zero is returned, or zero if
2286 * no record(s) were appended.
2287 */
2288static int
2289mld_v2_enqueue_group_record(struct ifqueue *ifq, struct in6_multi *inm,
2290    const int is_state_change, const int is_group_query,
2291    const int is_source_query, const int use_block_allow)
2292{
2293	struct mldv2_record	 mr;
2294	struct mldv2_record	*pmr;
2295	struct ifnet		*ifp;
2296	struct ip6_msource	*ims, *nims;
2297	struct mbuf		*m0, *m, *md;
2298	int			 error, is_filter_list_change;
2299	int			 minrec0len, m0srcs, msrcs, nbytes, off;
2300	int			 record_has_sources;
2301	int			 now;
2302	int			 type;
2303	uint8_t			 mode;
2304#ifdef KTR
2305	char			 ip6tbuf[INET6_ADDRSTRLEN];
2306#endif
2307
2308	IN6_MULTI_LOCK_ASSERT();
2309
2310	error = 0;
2311	ifp = inm->in6m_ifp;
2312	is_filter_list_change = 0;
2313	m = NULL;
2314	m0 = NULL;
2315	m0srcs = 0;
2316	msrcs = 0;
2317	nbytes = 0;
2318	nims = NULL;
2319	record_has_sources = 1;
2320	pmr = NULL;
2321	type = MLD_DO_NOTHING;
2322	mode = inm->in6m_st[1].iss_fmode;
2323
2324	/*
2325	 * If we did not transition out of ASM mode during t0->t1,
2326	 * and there are no source nodes to process, we can skip
2327	 * the generation of source records.
2328	 */
2329	if (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0 &&
2330	    inm->in6m_nsrc == 0)
2331		record_has_sources = 0;
2332
2333	if (is_state_change) {
2334		/*
2335		 * Queue a state change record.
2336		 * If the mode did not change, and there are non-ASM
2337		 * listeners or source filters present,
2338		 * we potentially need to issue two records for the group.
2339		 * If there are ASM listeners, and there was no filter
2340		 * mode transition of any kind, do nothing.
2341		 *
2342		 * If we are transitioning to MCAST_UNDEFINED, we need
2343		 * not send any sources. A transition to/from this state is
2344		 * considered inclusive with some special treatment.
2345		 *
2346		 * If we are rewriting initial joins/leaves to use
2347		 * ALLOW/BLOCK, and the group's membership is inclusive,
2348		 * we need to send sources in all cases.
2349		 */
2350		if (mode != inm->in6m_st[0].iss_fmode) {
2351			if (mode == MCAST_EXCLUDE) {
2352				CTR1(KTR_MLD, "%s: change to EXCLUDE",
2353				    __func__);
2354				type = MLD_CHANGE_TO_EXCLUDE_MODE;
2355			} else {
2356				CTR1(KTR_MLD, "%s: change to INCLUDE",
2357				    __func__);
2358				if (use_block_allow) {
2359					/*
2360					 * XXX
2361					 * Here we're interested in state
2362					 * edges either direction between
2363					 * MCAST_UNDEFINED and MCAST_INCLUDE.
2364					 * Perhaps we should just check
2365					 * the group state, rather than
2366					 * the filter mode.
2367					 */
2368					if (mode == MCAST_UNDEFINED) {
2369						type = MLD_BLOCK_OLD_SOURCES;
2370					} else {
2371						type = MLD_ALLOW_NEW_SOURCES;
2372					}
2373				} else {
2374					type = MLD_CHANGE_TO_INCLUDE_MODE;
2375					if (mode == MCAST_UNDEFINED)
2376						record_has_sources = 0;
2377				}
2378			}
2379		} else {
2380			if (record_has_sources) {
2381				is_filter_list_change = 1;
2382			} else {
2383				type = MLD_DO_NOTHING;
2384			}
2385		}
2386	} else {
2387		/*
2388		 * Queue a current state record.
2389		 */
2390		if (mode == MCAST_EXCLUDE) {
2391			type = MLD_MODE_IS_EXCLUDE;
2392		} else if (mode == MCAST_INCLUDE) {
2393			type = MLD_MODE_IS_INCLUDE;
2394			KASSERT(inm->in6m_st[1].iss_asm == 0,
2395			    ("%s: inm %p is INCLUDE but ASM count is %d",
2396			     __func__, inm, inm->in6m_st[1].iss_asm));
2397		}
2398	}
2399
2400	/*
2401	 * Generate the filter list changes using a separate function.
2402	 */
2403	if (is_filter_list_change)
2404		return (mld_v2_enqueue_filter_change(ifq, inm));
2405
2406	if (type == MLD_DO_NOTHING) {
2407		CTR3(KTR_MLD, "%s: nothing to do for %s/%s",
2408		    __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2409		    inm->in6m_ifp->if_xname);
2410		return (0);
2411	}
2412
2413	/*
2414	 * If any sources are present, we must be able to fit at least
2415	 * one in the trailing space of the tail packet's mbuf,
2416	 * ideally more.
2417	 */
2418	minrec0len = sizeof(struct mldv2_record);
2419	if (record_has_sources)
2420		minrec0len += sizeof(struct in6_addr);
2421
2422	CTR4(KTR_MLD, "%s: queueing %s for %s/%s", __func__,
2423	    mld_rec_type_to_str(type),
2424	    ip6_sprintf(ip6tbuf, &inm->in6m_addr),
2425	    inm->in6m_ifp->if_xname);
2426
2427	/*
2428	 * Check if we have a packet in the tail of the queue for this
2429	 * group into which the first group record for this group will fit.
2430	 * Otherwise allocate a new packet.
2431	 * Always allocate leading space for IP6+RA+ICMPV6+REPORT.
2432	 * Note: Group records for G/GSR query responses MUST be sent
2433	 * in their own packet.
2434	 */
2435	m0 = ifq->ifq_tail;
2436	if (!is_group_query &&
2437	    m0 != NULL &&
2438	    (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <= MLD_V2_REPORT_MAXRECS) &&
2439	    (m0->m_pkthdr.len + minrec0len) <
2440	     (ifp->if_mtu - MLD_MTUSPACE)) {
2441		m0srcs = (ifp->if_mtu - m0->m_pkthdr.len -
2442			    sizeof(struct mldv2_record)) /
2443			    sizeof(struct in6_addr);
2444		m = m0;
2445		CTR1(KTR_MLD, "%s: use existing packet", __func__);
2446	} else {
2447		if (_IF_QFULL(ifq)) {
2448			CTR1(KTR_MLD, "%s: outbound queue full", __func__);
2449			return (-ENOMEM);
2450		}
2451		m = NULL;
2452		m0srcs = (ifp->if_mtu - MLD_MTUSPACE -
2453		    sizeof(struct mldv2_record)) / sizeof(struct in6_addr);
2454		if (!is_state_change && !is_group_query)
2455			m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2456		if (m == NULL)
2457			m = m_gethdr(M_DONTWAIT, MT_DATA);
2458		if (m == NULL)
2459			return (-ENOMEM);
2460
2461		mld_save_context(m, ifp);
2462
2463		CTR1(KTR_MLD, "%s: allocated first packet", __func__);
2464	}
2465
2466	/*
2467	 * Append group record.
2468	 * If we have sources, we don't know how many yet.
2469	 */
2470	mr.mr_type = type;
2471	mr.mr_datalen = 0;
2472	mr.mr_numsrc = 0;
2473	mr.mr_addr = inm->in6m_addr;
2474	in6_clearscope(&mr.mr_addr);
2475	if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) {
2476		if (m != m0)
2477			m_freem(m);
2478		CTR1(KTR_MLD, "%s: m_append() failed.", __func__);
2479		return (-ENOMEM);
2480	}
2481	nbytes += sizeof(struct mldv2_record);
2482
2483	/*
2484	 * Append as many sources as will fit in the first packet.
2485	 * If we are appending to a new packet, the chain allocation
2486	 * may potentially use clusters; use m_getptr() in this case.
2487	 * If we are appending to an existing packet, we need to obtain
2488	 * a pointer to the group record after m_append(), in case a new
2489	 * mbuf was allocated.
2490	 *
2491	 * Only append sources which are in-mode at t1. If we are
2492	 * transitioning to MCAST_UNDEFINED state on the group, and
2493	 * use_block_allow is zero, do not include source entries.
2494	 * Otherwise, we need to include this source in the report.
2495	 *
2496	 * Only report recorded sources in our filter set when responding
2497	 * to a group-source query.
2498	 */
2499	if (record_has_sources) {
2500		if (m == m0) {
2501			md = m_last(m);
2502			pmr = (struct mldv2_record *)(mtod(md, uint8_t *) +
2503			    md->m_len - nbytes);
2504		} else {
2505			md = m_getptr(m, 0, &off);
2506			pmr = (struct mldv2_record *)(mtod(md, uint8_t *) +
2507			    off);
2508		}
2509		msrcs = 0;
2510		RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs,
2511		    nims) {
2512			CTR2(KTR_MLD, "%s: visit node %s", __func__,
2513			    ip6_sprintf(ip6tbuf, &ims->im6s_addr));
2514			now = im6s_get_mode(inm, ims, 1);
2515			CTR2(KTR_MLD, "%s: node is %d", __func__, now);
2516			if ((now != mode) ||
2517			    (now == mode &&
2518			     (!use_block_allow && mode == MCAST_UNDEFINED))) {
2519				CTR1(KTR_MLD, "%s: skip node", __func__);
2520				continue;
2521			}
2522			if (is_source_query && ims->im6s_stp == 0) {
2523				CTR1(KTR_MLD, "%s: skip unrecorded node",
2524				    __func__);
2525				continue;
2526			}
2527			CTR1(KTR_MLD, "%s: append node", __func__);
2528			if (!m_append(m, sizeof(struct in6_addr),
2529			    (void *)&ims->im6s_addr)) {
2530				if (m != m0)
2531					m_freem(m);
2532				CTR1(KTR_MLD, "%s: m_append() failed.",
2533				    __func__);
2534				return (-ENOMEM);
2535			}
2536			nbytes += sizeof(struct in6_addr);
2537			++msrcs;
2538			if (msrcs == m0srcs)
2539				break;
2540		}
2541		CTR2(KTR_MLD, "%s: msrcs is %d this packet", __func__,
2542		    msrcs);
2543		pmr->mr_numsrc = htons(msrcs);
2544		nbytes += (msrcs * sizeof(struct in6_addr));
2545	}
2546
2547	if (is_source_query && msrcs == 0) {
2548		CTR1(KTR_MLD, "%s: no recorded sources to report", __func__);
2549		if (m != m0)
2550			m_freem(m);
2551		return (0);
2552	}
2553
2554	/*
2555	 * We are good to go with first packet.
2556	 */
2557	if (m != m0) {
2558		CTR1(KTR_MLD, "%s: enqueueing first packet", __func__);
2559		m->m_pkthdr.PH_vt.vt_nrecs = 1;
2560		_IF_ENQUEUE(ifq, m);
2561	} else
2562		m->m_pkthdr.PH_vt.vt_nrecs++;
2563
2564	/*
2565	 * No further work needed if no source list in packet(s).
2566	 */
2567	if (!record_has_sources)
2568		return (nbytes);
2569
2570	/*
2571	 * Whilst sources remain to be announced, we need to allocate
2572	 * a new packet and fill out as many sources as will fit.
2573	 * Always try for a cluster first.
2574	 */
2575	while (nims != NULL) {
2576		if (_IF_QFULL(ifq)) {
2577			CTR1(KTR_MLD, "%s: outbound queue full", __func__);
2578			return (-ENOMEM);
2579		}
2580		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2581		if (m == NULL)
2582			m = m_gethdr(M_DONTWAIT, MT_DATA);
2583		if (m == NULL)
2584			return (-ENOMEM);
2585		mld_save_context(m, ifp);
2586		md = m_getptr(m, 0, &off);
2587		pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + off);
2588		CTR1(KTR_MLD, "%s: allocated next packet", __func__);
2589
2590		if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) {
2591			if (m != m0)
2592				m_freem(m);
2593			CTR1(KTR_MLD, "%s: m_append() failed.", __func__);
2594			return (-ENOMEM);
2595		}
2596		m->m_pkthdr.PH_vt.vt_nrecs = 1;
2597		nbytes += sizeof(struct mldv2_record);
2598
2599		m0srcs = (ifp->if_mtu - MLD_MTUSPACE -
2600		    sizeof(struct mldv2_record)) / sizeof(struct in6_addr);
2601
2602		msrcs = 0;
2603		RB_FOREACH_FROM(ims, ip6_msource_tree, nims) {
2604			CTR2(KTR_MLD, "%s: visit node %s",
2605			    __func__, ip6_sprintf(ip6tbuf, &ims->im6s_addr));
2606			now = im6s_get_mode(inm, ims, 1);
2607			if ((now != mode) ||
2608			    (now == mode &&
2609			     (!use_block_allow && mode == MCAST_UNDEFINED))) {
2610				CTR1(KTR_MLD, "%s: skip node", __func__);
2611				continue;
2612			}
2613			if (is_source_query && ims->im6s_stp == 0) {
2614				CTR1(KTR_MLD, "%s: skip unrecorded node",
2615				    __func__);
2616				continue;
2617			}
2618			CTR1(KTR_MLD, "%s: append node", __func__);
2619			if (!m_append(m, sizeof(struct in6_addr),
2620			    (void *)&ims->im6s_addr)) {
2621				if (m != m0)
2622					m_freem(m);
2623				CTR1(KTR_MLD, "%s: m_append() failed.",
2624				    __func__);
2625				return (-ENOMEM);
2626			}
2627			++msrcs;
2628			if (msrcs == m0srcs)
2629				break;
2630		}
2631		pmr->mr_numsrc = htons(msrcs);
2632		nbytes += (msrcs * sizeof(struct in6_addr));
2633
2634		CTR1(KTR_MLD, "%s: enqueueing next packet", __func__);
2635		_IF_ENQUEUE(ifq, m);
2636	}
2637
2638	return (nbytes);
2639}
2640
2641/*
2642 * Type used to mark record pass completion.
2643 * We exploit the fact we can cast to this easily from the
2644 * current filter modes on each ip_msource node.
2645 */
2646typedef enum {
2647	REC_NONE = 0x00,	/* MCAST_UNDEFINED */
2648	REC_ALLOW = 0x01,	/* MCAST_INCLUDE */
2649	REC_BLOCK = 0x02,	/* MCAST_EXCLUDE */
2650	REC_FULL = REC_ALLOW | REC_BLOCK
2651} rectype_t;
2652
2653/*
2654 * Enqueue an MLDv2 filter list change to the given output queue.
2655 *
2656 * Source list filter state is held in an RB-tree. When the filter list
2657 * for a group is changed without changing its mode, we need to compute
2658 * the deltas between T0 and T1 for each source in the filter set,
2659 * and enqueue the appropriate ALLOW_NEW/BLOCK_OLD records.
2660 *
2661 * As we may potentially queue two record types, and the entire R-B tree
2662 * needs to be walked at once, we break this out into its own function
2663 * so we can generate a tightly packed queue of packets.
2664 *
2665 * XXX This could be written to only use one tree walk, although that makes
2666 * serializing into the mbuf chains a bit harder. For now we do two walks
2667 * which makes things easier on us, and it may or may not be harder on
2668 * the L2 cache.
2669 *
2670 * If successful the size of all data appended to the queue is returned,
2671 * otherwise an error code less than zero is returned, or zero if
2672 * no record(s) were appended.
2673 */
2674static int
2675mld_v2_enqueue_filter_change(struct ifqueue *ifq, struct in6_multi *inm)
2676{
2677	static const int MINRECLEN =
2678	    sizeof(struct mldv2_record) + sizeof(struct in6_addr);
2679	struct ifnet		*ifp;
2680	struct mldv2_record	 mr;
2681	struct mldv2_record	*pmr;
2682	struct ip6_msource	*ims, *nims;
2683	struct mbuf		*m, *m0, *md;
2684	int			 m0srcs, nbytes, npbytes, off, rsrcs, schanged;
2685	int			 nallow, nblock;
2686	uint8_t			 mode, now, then;
2687	rectype_t		 crt, drt, nrt;
2688#ifdef KTR
2689	char			 ip6tbuf[INET6_ADDRSTRLEN];
2690#endif
2691
2692	IN6_MULTI_LOCK_ASSERT();
2693
2694	if (inm->in6m_nsrc == 0 ||
2695	    (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0))
2696		return (0);
2697
2698	ifp = inm->in6m_ifp;			/* interface */
2699	mode = inm->in6m_st[1].iss_fmode;	/* filter mode at t1 */
2700	crt = REC_NONE;	/* current group record type */
2701	drt = REC_NONE;	/* mask of completed group record types */
2702	nrt = REC_NONE;	/* record type for current node */
2703	m0srcs = 0;	/* # source which will fit in current mbuf chain */
2704	npbytes = 0;	/* # of bytes appended this packet */
2705	nbytes = 0;	/* # of bytes appended to group's state-change queue */
2706	rsrcs = 0;	/* # sources encoded in current record */
2707	schanged = 0;	/* # nodes encoded in overall filter change */
2708	nallow = 0;	/* # of source entries in ALLOW_NEW */
2709	nblock = 0;	/* # of source entries in BLOCK_OLD */
2710	nims = NULL;	/* next tree node pointer */
2711
2712	/*
2713	 * For each possible filter record mode.
2714	 * The first kind of source we encounter tells us which
2715	 * is the first kind of record we start appending.
2716	 * If a node transitioned to UNDEFINED at t1, its mode is treated
2717	 * as the inverse of the group's filter mode.
2718	 */
2719	while (drt != REC_FULL) {
2720		do {
2721			m0 = ifq->ifq_tail;
2722			if (m0 != NULL &&
2723			    (m0->m_pkthdr.PH_vt.vt_nrecs + 1 <=
2724			     MLD_V2_REPORT_MAXRECS) &&
2725			    (m0->m_pkthdr.len + MINRECLEN) <
2726			     (ifp->if_mtu - MLD_MTUSPACE)) {
2727				m = m0;
2728				m0srcs = (ifp->if_mtu - m0->m_pkthdr.len -
2729					    sizeof(struct mldv2_record)) /
2730					    sizeof(struct in6_addr);
2731				CTR1(KTR_MLD,
2732				    "%s: use previous packet", __func__);
2733			} else {
2734				m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2735				if (m == NULL)
2736					m = m_gethdr(M_DONTWAIT, MT_DATA);
2737				if (m == NULL) {
2738					CTR1(KTR_MLD,
2739					    "%s: m_get*() failed", __func__);
2740					return (-ENOMEM);
2741				}
2742				m->m_pkthdr.PH_vt.vt_nrecs = 0;
2743				mld_save_context(m, ifp);
2744				m0srcs = (ifp->if_mtu - MLD_MTUSPACE -
2745				    sizeof(struct mldv2_record)) /
2746				    sizeof(struct in6_addr);
2747				npbytes = 0;
2748				CTR1(KTR_MLD,
2749				    "%s: allocated new packet", __func__);
2750			}
2751			/*
2752			 * Append the MLD group record header to the
2753			 * current packet's data area.
2754			 * Recalculate pointer to free space for next
2755			 * group record, in case m_append() allocated
2756			 * a new mbuf or cluster.
2757			 */
2758			memset(&mr, 0, sizeof(mr));
2759			mr.mr_addr = inm->in6m_addr;
2760			in6_clearscope(&mr.mr_addr);
2761			if (!m_append(m, sizeof(mr), (void *)&mr)) {
2762				if (m != m0)
2763					m_freem(m);
2764				CTR1(KTR_MLD,
2765				    "%s: m_append() failed", __func__);
2766				return (-ENOMEM);
2767			}
2768			npbytes += sizeof(struct mldv2_record);
2769			if (m != m0) {
2770				/* new packet; offset in chain */
2771				md = m_getptr(m, npbytes -
2772				    sizeof(struct mldv2_record), &off);
2773				pmr = (struct mldv2_record *)(mtod(md,
2774				    uint8_t *) + off);
2775			} else {
2776				/* current packet; offset from last append */
2777				md = m_last(m);
2778				pmr = (struct mldv2_record *)(mtod(md,
2779				    uint8_t *) + md->m_len -
2780				    sizeof(struct mldv2_record));
2781			}
2782			/*
2783			 * Begin walking the tree for this record type
2784			 * pass, or continue from where we left off
2785			 * previously if we had to allocate a new packet.
2786			 * Only report deltas in-mode at t1.
2787			 * We need not report included sources as allowed
2788			 * if we are in inclusive mode on the group,
2789			 * however the converse is not true.
2790			 */
2791			rsrcs = 0;
2792			if (nims == NULL) {
2793				nims = RB_MIN(ip6_msource_tree,
2794				    &inm->in6m_srcs);
2795			}
2796			RB_FOREACH_FROM(ims, ip6_msource_tree, nims) {
2797				CTR2(KTR_MLD, "%s: visit node %s", __func__,
2798				    ip6_sprintf(ip6tbuf, &ims->im6s_addr));
2799				now = im6s_get_mode(inm, ims, 1);
2800				then = im6s_get_mode(inm, ims, 0);
2801				CTR3(KTR_MLD, "%s: mode: t0 %d, t1 %d",
2802				    __func__, then, now);
2803				if (now == then) {
2804					CTR1(KTR_MLD,
2805					    "%s: skip unchanged", __func__);
2806					continue;
2807				}
2808				if (mode == MCAST_EXCLUDE &&
2809				    now == MCAST_INCLUDE) {
2810					CTR1(KTR_MLD,
2811					    "%s: skip IN src on EX group",
2812					    __func__);
2813					continue;
2814				}
2815				nrt = (rectype_t)now;
2816				if (nrt == REC_NONE)
2817					nrt = (rectype_t)(~mode & REC_FULL);
2818				if (schanged++ == 0) {
2819					crt = nrt;
2820				} else if (crt != nrt)
2821					continue;
2822				if (!m_append(m, sizeof(struct in6_addr),
2823				    (void *)&ims->im6s_addr)) {
2824					if (m != m0)
2825						m_freem(m);
2826					CTR1(KTR_MLD,
2827					    "%s: m_append() failed", __func__);
2828					return (-ENOMEM);
2829				}
2830				nallow += !!(crt == REC_ALLOW);
2831				nblock += !!(crt == REC_BLOCK);
2832				if (++rsrcs == m0srcs)
2833					break;
2834			}
2835			/*
2836			 * If we did not append any tree nodes on this
2837			 * pass, back out of allocations.
2838			 */
2839			if (rsrcs == 0) {
2840				npbytes -= sizeof(struct mldv2_record);
2841				if (m != m0) {
2842					CTR1(KTR_MLD,
2843					    "%s: m_free(m)", __func__);
2844					m_freem(m);
2845				} else {
2846					CTR1(KTR_MLD,
2847					    "%s: m_adj(m, -mr)", __func__);
2848					m_adj(m, -((int)sizeof(
2849					    struct mldv2_record)));
2850				}
2851				continue;
2852			}
2853			npbytes += (rsrcs * sizeof(struct in6_addr));
2854			if (crt == REC_ALLOW)
2855				pmr->mr_type = MLD_ALLOW_NEW_SOURCES;
2856			else if (crt == REC_BLOCK)
2857				pmr->mr_type = MLD_BLOCK_OLD_SOURCES;
2858			pmr->mr_numsrc = htons(rsrcs);
2859			/*
2860			 * Count the new group record, and enqueue this
2861			 * packet if it wasn't already queued.
2862			 */
2863			m->m_pkthdr.PH_vt.vt_nrecs++;
2864			if (m != m0)
2865				_IF_ENQUEUE(ifq, m);
2866			nbytes += npbytes;
2867		} while (nims != NULL);
2868		drt |= crt;
2869		crt = (~crt & REC_FULL);
2870	}
2871
2872	CTR3(KTR_MLD, "%s: queued %d ALLOW_NEW, %d BLOCK_OLD", __func__,
2873	    nallow, nblock);
2874
2875	return (nbytes);
2876}
2877
2878static int
2879mld_v2_merge_state_changes(struct in6_multi *inm, struct ifqueue *ifscq)
2880{
2881	struct ifqueue	*gq;
2882	struct mbuf	*m;		/* pending state-change */
2883	struct mbuf	*m0;		/* copy of pending state-change */
2884	struct mbuf	*mt;		/* last state-change in packet */
2885	int		 docopy, domerge;
2886	u_int		 recslen;
2887
2888	docopy = 0;
2889	domerge = 0;
2890	recslen = 0;
2891
2892	IN6_MULTI_LOCK_ASSERT();
2893	MLD_LOCK_ASSERT();
2894
2895	/*
2896	 * If there are further pending retransmissions, make a writable
2897	 * copy of each queued state-change message before merging.
2898	 */
2899	if (inm->in6m_scrv > 0)
2900		docopy = 1;
2901
2902	gq = &inm->in6m_scq;
2903#ifdef KTR
2904	if (gq->ifq_head == NULL) {
2905		CTR2(KTR_MLD, "%s: WARNING: queue for inm %p is empty",
2906		    __func__, inm);
2907	}
2908#endif
2909
2910	m = gq->ifq_head;
2911	while (m != NULL) {
2912		/*
2913		 * Only merge the report into the current packet if
2914		 * there is sufficient space to do so; an MLDv2 report
2915		 * packet may only contain 65,535 group records.
2916		 * Always use a simple mbuf chain concatentation to do this,
2917		 * as large state changes for single groups may have
2918		 * allocated clusters.
2919		 */
2920		domerge = 0;
2921		mt = ifscq->ifq_tail;
2922		if (mt != NULL) {
2923			recslen = m_length(m, NULL);
2924
2925			if ((mt->m_pkthdr.PH_vt.vt_nrecs +
2926			    m->m_pkthdr.PH_vt.vt_nrecs <=
2927			    MLD_V2_REPORT_MAXRECS) &&
2928			    (mt->m_pkthdr.len + recslen <=
2929			    (inm->in6m_ifp->if_mtu - MLD_MTUSPACE)))
2930				domerge = 1;
2931		}
2932
2933		if (!domerge && _IF_QFULL(gq)) {
2934			CTR2(KTR_MLD,
2935			    "%s: outbound queue full, skipping whole packet %p",
2936			    __func__, m);
2937			mt = m->m_nextpkt;
2938			if (!docopy)
2939				m_freem(m);
2940			m = mt;
2941			continue;
2942		}
2943
2944		if (!docopy) {
2945			CTR2(KTR_MLD, "%s: dequeueing %p", __func__, m);
2946			_IF_DEQUEUE(gq, m0);
2947			m = m0->m_nextpkt;
2948		} else {
2949			CTR2(KTR_MLD, "%s: copying %p", __func__, m);
2950			m0 = m_dup(m, M_NOWAIT);
2951			if (m0 == NULL)
2952				return (ENOMEM);
2953			m0->m_nextpkt = NULL;
2954			m = m->m_nextpkt;
2955		}
2956
2957		if (!domerge) {
2958			CTR3(KTR_MLD, "%s: queueing %p to ifscq %p)",
2959			    __func__, m0, ifscq);
2960			_IF_ENQUEUE(ifscq, m0);
2961		} else {
2962			struct mbuf *mtl;	/* last mbuf of packet mt */
2963
2964			CTR3(KTR_MLD, "%s: merging %p with ifscq tail %p)",
2965			    __func__, m0, mt);
2966
2967			mtl = m_last(mt);
2968			m0->m_flags &= ~M_PKTHDR;
2969			mt->m_pkthdr.len += recslen;
2970			mt->m_pkthdr.PH_vt.vt_nrecs +=
2971			    m0->m_pkthdr.PH_vt.vt_nrecs;
2972
2973			mtl->m_next = m0;
2974		}
2975	}
2976
2977	return (0);
2978}
2979
2980/*
2981 * Respond to a pending MLDv2 General Query.
2982 */
2983static void
2984mld_v2_dispatch_general_query(struct mld_ifinfo *mli)
2985{
2986	struct ifmultiaddr	*ifma;
2987	struct ifnet		*ifp;
2988	struct in6_multi	*inm;
2989	int			 retval;
2990
2991	IN6_MULTI_LOCK_ASSERT();
2992	MLD_LOCK_ASSERT();
2993
2994	KASSERT(mli->mli_version == MLD_VERSION_2,
2995	    ("%s: called when version %d", __func__, mli->mli_version));
2996
2997	ifp = mli->mli_ifp;
2998
2999	IF_ADDR_RLOCK(ifp);
3000	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
3001		if (ifma->ifma_addr->sa_family != AF_INET6 ||
3002		    ifma->ifma_protospec == NULL)
3003			continue;
3004
3005		inm = (struct in6_multi *)ifma->ifma_protospec;
3006		KASSERT(ifp == inm->in6m_ifp,
3007		    ("%s: inconsistent ifp", __func__));
3008
3009		switch (inm->in6m_state) {
3010		case MLD_NOT_MEMBER:
3011		case MLD_SILENT_MEMBER:
3012			break;
3013		case MLD_REPORTING_MEMBER:
3014		case MLD_IDLE_MEMBER:
3015		case MLD_LAZY_MEMBER:
3016		case MLD_SLEEPING_MEMBER:
3017		case MLD_AWAKENING_MEMBER:
3018			inm->in6m_state = MLD_REPORTING_MEMBER;
3019			retval = mld_v2_enqueue_group_record(&mli->mli_gq,
3020			    inm, 0, 0, 0, 0);
3021			CTR2(KTR_MLD, "%s: enqueue record = %d",
3022			    __func__, retval);
3023			break;
3024		case MLD_G_QUERY_PENDING_MEMBER:
3025		case MLD_SG_QUERY_PENDING_MEMBER:
3026		case MLD_LEAVING_MEMBER:
3027			break;
3028		}
3029	}
3030	IF_ADDR_RUNLOCK(ifp);
3031
3032	mld_dispatch_queue(&mli->mli_gq, MLD_MAX_RESPONSE_BURST);
3033
3034	/*
3035	 * Slew transmission of bursts over 500ms intervals.
3036	 */
3037	if (mli->mli_gq.ifq_head != NULL) {
3038		mli->mli_v2_timer = 1 + MLD_RANDOM_DELAY(
3039		    MLD_RESPONSE_BURST_INTERVAL);
3040		V_interface_timers_running6 = 1;
3041	}
3042}
3043
3044/*
3045 * Transmit the next pending message in the output queue.
3046 *
3047 * VIMAGE: Needs to store/restore vnet pointer on a per-mbuf-chain basis.
3048 * MRT: Nothing needs to be done, as MLD traffic is always local to
3049 * a link and uses a link-scope multicast address.
3050 */
3051static void
3052mld_dispatch_packet(struct mbuf *m)
3053{
3054	struct ip6_moptions	 im6o;
3055	struct ifnet		*ifp;
3056	struct ifnet		*oifp;
3057	struct mbuf		*m0;
3058	struct mbuf		*md;
3059	struct ip6_hdr		*ip6;
3060	struct mld_hdr		*mld;
3061	int			 error;
3062	int			 off;
3063	int			 type;
3064	uint32_t		 ifindex;
3065
3066	CTR2(KTR_MLD, "%s: transmit %p", __func__, m);
3067
3068	/*
3069	 * Set VNET image pointer from enqueued mbuf chain
3070	 * before doing anything else. Whilst we use interface
3071	 * indexes to guard against interface detach, they are
3072	 * unique to each VIMAGE and must be retrieved.
3073	 */
3074	ifindex = mld_restore_context(m);
3075
3076	/*
3077	 * Check if the ifnet still exists. This limits the scope of
3078	 * any race in the absence of a global ifp lock for low cost
3079	 * (an array lookup).
3080	 */
3081	ifp = ifnet_byindex(ifindex);
3082	if (ifp == NULL) {
3083		CTR3(KTR_MLD, "%s: dropped %p as ifindex %u went away.",
3084		    __func__, m, ifindex);
3085		m_freem(m);
3086		IP6STAT_INC(ip6s_noroute);
3087		goto out;
3088	}
3089
3090	im6o.im6o_multicast_hlim  = 1;
3091	im6o.im6o_multicast_loop = (V_ip6_mrouter != NULL);
3092	im6o.im6o_multicast_ifp = ifp;
3093
3094	if (m->m_flags & M_MLDV1) {
3095		m0 = m;
3096	} else {
3097		m0 = mld_v2_encap_report(ifp, m);
3098		if (m0 == NULL) {
3099			CTR2(KTR_MLD, "%s: dropped %p", __func__, m);
3100			IP6STAT_INC(ip6s_odropped);
3101			goto out;
3102		}
3103	}
3104
3105	mld_scrub_context(m0);
3106	m->m_flags &= ~(M_PROTOFLAGS);
3107	m0->m_pkthdr.rcvif = V_loif;
3108
3109	ip6 = mtod(m0, struct ip6_hdr *);
3110#if 0
3111	(void)in6_setscope(&ip6->ip6_dst, ifp, NULL);	/* XXX LOR */
3112#else
3113	/*
3114	 * XXX XXX Break some KPI rules to prevent an LOR which would
3115	 * occur if we called in6_setscope() at transmission.
3116	 * See comments at top of file.
3117	 */
3118	MLD_EMBEDSCOPE(&ip6->ip6_dst, ifp->if_index);
3119#endif
3120
3121	/*
3122	 * Retrieve the ICMPv6 type before handoff to ip6_output(),
3123	 * so we can bump the stats.
3124	 */
3125	md = m_getptr(m0, sizeof(struct ip6_hdr), &off);
3126	mld = (struct mld_hdr *)(mtod(md, uint8_t *) + off);
3127	type = mld->mld_type;
3128
3129	error = ip6_output(m0, &mld_po, NULL, IPV6_UNSPECSRC, &im6o,
3130	    &oifp, NULL);
3131	if (error) {
3132		CTR3(KTR_MLD, "%s: ip6_output(%p) = %d", __func__, m0, error);
3133		goto out;
3134	}
3135	ICMP6STAT_INC(icp6s_outhist[type]);
3136	if (oifp != NULL) {
3137		icmp6_ifstat_inc(oifp, ifs6_out_msg);
3138		switch (type) {
3139		case MLD_LISTENER_REPORT:
3140		case MLDV2_LISTENER_REPORT:
3141			icmp6_ifstat_inc(oifp, ifs6_out_mldreport);
3142			break;
3143		case MLD_LISTENER_DONE:
3144			icmp6_ifstat_inc(oifp, ifs6_out_mlddone);
3145			break;
3146		}
3147	}
3148out:
3149	return;
3150}
3151
3152/*
3153 * Encapsulate an MLDv2 report.
3154 *
3155 * KAME IPv6 requires that hop-by-hop options be passed separately,
3156 * and that the IPv6 header be prepended in a separate mbuf.
3157 *
3158 * Returns a pointer to the new mbuf chain head, or NULL if the
3159 * allocation failed.
3160 */
3161static struct mbuf *
3162mld_v2_encap_report(struct ifnet *ifp, struct mbuf *m)
3163{
3164	struct mbuf		*mh;
3165	struct mldv2_report	*mld;
3166	struct ip6_hdr		*ip6;
3167	struct in6_ifaddr	*ia;
3168	int			 mldreclen;
3169
3170	KASSERT(ifp != NULL, ("%s: null ifp", __func__));
3171	KASSERT((m->m_flags & M_PKTHDR),
3172	    ("%s: mbuf chain %p is !M_PKTHDR", __func__, m));
3173
3174	/*
3175	 * RFC3590: OK to send as :: or tentative during DAD.
3176	 */
3177	ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST);
3178	if (ia == NULL)
3179		CTR1(KTR_MLD, "%s: warning: ia is NULL", __func__);
3180
3181	MGETHDR(mh, M_DONTWAIT, MT_HEADER);
3182	if (mh == NULL) {
3183		if (ia != NULL)
3184			ifa_free(&ia->ia_ifa);
3185		m_freem(m);
3186		return (NULL);
3187	}
3188	MH_ALIGN(mh, sizeof(struct ip6_hdr) + sizeof(struct mldv2_report));
3189
3190	mldreclen = m_length(m, NULL);
3191	CTR2(KTR_MLD, "%s: mldreclen is %d", __func__, mldreclen);
3192
3193	mh->m_len = sizeof(struct ip6_hdr) + sizeof(struct mldv2_report);
3194	mh->m_pkthdr.len = sizeof(struct ip6_hdr) +
3195	    sizeof(struct mldv2_report) + mldreclen;
3196
3197	ip6 = mtod(mh, struct ip6_hdr *);
3198	ip6->ip6_flow = 0;
3199	ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
3200	ip6->ip6_vfc |= IPV6_VERSION;
3201	ip6->ip6_nxt = IPPROTO_ICMPV6;
3202	ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any;
3203	if (ia != NULL)
3204		ifa_free(&ia->ia_ifa);
3205	ip6->ip6_dst = in6addr_linklocal_allv2routers;
3206	/* scope ID will be set in netisr */
3207
3208	mld = (struct mldv2_report *)(ip6 + 1);
3209	mld->mld_type = MLDV2_LISTENER_REPORT;
3210	mld->mld_code = 0;
3211	mld->mld_cksum = 0;
3212	mld->mld_v2_reserved = 0;
3213	mld->mld_v2_numrecs = htons(m->m_pkthdr.PH_vt.vt_nrecs);
3214	m->m_pkthdr.PH_vt.vt_nrecs = 0;
3215
3216	mh->m_next = m;
3217	mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6,
3218	    sizeof(struct ip6_hdr), sizeof(struct mldv2_report) + mldreclen);
3219	return (mh);
3220}
3221
3222#ifdef KTR
3223static char *
3224mld_rec_type_to_str(const int type)
3225{
3226
3227	switch (type) {
3228		case MLD_CHANGE_TO_EXCLUDE_MODE:
3229			return "TO_EX";
3230			break;
3231		case MLD_CHANGE_TO_INCLUDE_MODE:
3232			return "TO_IN";
3233			break;
3234		case MLD_MODE_IS_EXCLUDE:
3235			return "MODE_EX";
3236			break;
3237		case MLD_MODE_IS_INCLUDE:
3238			return "MODE_IN";
3239			break;
3240		case MLD_ALLOW_NEW_SOURCES:
3241			return "ALLOW_NEW";
3242			break;
3243		case MLD_BLOCK_OLD_SOURCES:
3244			return "BLOCK_OLD";
3245			break;
3246		default:
3247			break;
3248	}
3249	return "unknown";
3250}
3251#endif
3252
3253static void
3254mld_init(void *unused __unused)
3255{
3256
3257	CTR1(KTR_MLD, "%s: initializing", __func__);
3258	MLD_LOCK_INIT();
3259
3260	ip6_initpktopts(&mld_po);
3261	mld_po.ip6po_hlim = 1;
3262	mld_po.ip6po_hbh = &mld_ra.hbh;
3263	mld_po.ip6po_prefer_tempaddr = IP6PO_TEMPADDR_NOTPREFER;
3264	mld_po.ip6po_flags = IP6PO_DONTFRAG;
3265}
3266SYSINIT(mld_init, SI_SUB_PSEUDO, SI_ORDER_MIDDLE, mld_init, NULL);
3267
3268static void
3269mld_uninit(void *unused __unused)
3270{
3271
3272	CTR1(KTR_MLD, "%s: tearing down", __func__);
3273	MLD_LOCK_DESTROY();
3274}
3275SYSUNINIT(mld_uninit, SI_SUB_PSEUDO, SI_ORDER_MIDDLE, mld_uninit, NULL);
3276
3277static void
3278vnet_mld_init(const void *unused __unused)
3279{
3280
3281	CTR1(KTR_MLD, "%s: initializing", __func__);
3282
3283	LIST_INIT(&V_mli_head);
3284}
3285VNET_SYSINIT(vnet_mld_init, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_mld_init,
3286    NULL);
3287
3288static void
3289vnet_mld_uninit(const void *unused __unused)
3290{
3291
3292	CTR1(KTR_MLD, "%s: tearing down", __func__);
3293
3294	KASSERT(LIST_EMPTY(&V_mli_head),
3295	    ("%s: mli list not empty; ifnets not detached?", __func__));
3296}
3297VNET_SYSUNINIT(vnet_mld_uninit, SI_SUB_PSEUDO, SI_ORDER_ANY, vnet_mld_uninit,
3298    NULL);
3299
3300static int
3301mld_modevent(module_t mod, int type, void *unused __unused)
3302{
3303
3304    switch (type) {
3305    case MOD_LOAD:
3306    case MOD_UNLOAD:
3307	break;
3308    default:
3309	return (EOPNOTSUPP);
3310    }
3311    return (0);
3312}
3313
3314static moduledata_t mld_mod = {
3315    "mld",
3316    mld_modevent,
3317    0
3318};
3319DECLARE_MODULE(mld, mld_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
3320