ip6_output.c revision 78702
1/*	$FreeBSD: head/sys/netinet6/ip6_output.c 78702 2001-06-24 14:55:18Z ume $	*/
2/*	$KAME: ip6_output.c,v 1.180 2001/05/21 05:37:50 jinmei Exp $	*/
3
4/*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33/*
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 *	The Regents of the University of California.  All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 *    notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 *    notice, this list of conditions and the following disclaimer in the
44 *    documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 *    must display the following acknowledgement:
47 *	This product includes software developed by the University of
48 *	California, Berkeley and its contributors.
49 * 4. Neither the name of the University nor the names of its contributors
50 *    may be used to endorse or promote products derived from this software
51 *    without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
66 */
67
68#include "opt_ip6fw.h"
69#include "opt_inet.h"
70#include "opt_inet6.h"
71#include "opt_ipsec.h"
72#include "opt_pfil_hooks.h"
73
74#include <sys/param.h>
75#include <sys/malloc.h>
76#include <sys/mbuf.h>
77#include <sys/errno.h>
78#include <sys/protosw.h>
79#include <sys/socket.h>
80#include <sys/socketvar.h>
81#include <sys/systm.h>
82#include <sys/kernel.h>
83
84#include <net/if.h>
85#include <net/route.h>
86#ifdef PFIL_HOOKS
87#include <net/pfil.h>
88#endif
89
90#include <netinet/in.h>
91#include <netinet/in_var.h>
92#include <netinet6/in6_var.h>
93#include <netinet/ip6.h>
94#include <netinet/icmp6.h>
95#include <netinet6/ip6_var.h>
96#include <netinet/in_pcb.h>
97#include <netinet6/nd6.h>
98
99#ifdef IPSEC
100#include <netinet6/ipsec.h>
101#ifdef INET6
102#include <netinet6/ipsec6.h>
103#endif
104#include <netkey/key.h>
105#endif /* IPSEC */
106
107#include <netinet6/ip6_fw.h>
108
109#include <net/net_osdep.h>
110
111#include <netinet6/ip6protosw.h>
112
113static MALLOC_DEFINE(M_IPMOPTS, "ip6_moptions", "internet multicast options");
114
115struct ip6_exthdrs {
116	struct mbuf *ip6e_ip6;
117	struct mbuf *ip6e_hbh;
118	struct mbuf *ip6e_dest1;
119	struct mbuf *ip6e_rthdr;
120	struct mbuf *ip6e_dest2;
121};
122
123static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
124			    struct socket *, struct sockopt *sopt));
125static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *));
126static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **));
127static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int));
128static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
129				  struct ip6_frag **));
130static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t));
131static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *));
132
133extern struct ip6protosw inet6sw[];
134extern u_char ip6_protox[IPPROTO_MAX];
135
136/*
137 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
138 * header (with pri, len, nxt, hlim, src, dst).
139 * This function may modify ver and hlim only.
140 * The mbuf chain containing the packet will be freed.
141 * The mbuf opt, if present, will not be freed.
142 *
143 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
144 * nd_ifinfo.linkmtu is u_int32_t.  so we use u_long to hold largest one,
145 * which is rt_rmx.rmx_mtu.
146 */
147int
148ip6_output(m0, opt, ro, flags, im6o, ifpp)
149	struct mbuf *m0;
150	struct ip6_pktopts *opt;
151	struct route_in6 *ro;
152	int flags;
153	struct ip6_moptions *im6o;
154	struct ifnet **ifpp;		/* XXX: just for statistics */
155{
156	struct ip6_hdr *ip6, *mhip6;
157	struct ifnet *ifp, *origifp;
158	struct mbuf *m = m0;
159	int hlen, tlen, len, off;
160	struct route_in6 ip6route;
161	struct sockaddr_in6 *dst;
162	int error = 0;
163	struct in6_ifaddr *ia = NULL;
164	u_long mtu;
165	u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
166	struct ip6_exthdrs exthdrs;
167	struct in6_addr finaldst;
168	struct route_in6 *ro_pmtu = NULL;
169	int hdrsplit = 0;
170	int needipsec = 0;
171#ifdef PFIL_HOOKS
172	struct packet_filter_hook *pfh;
173	struct mbuf *m1;
174	int rv;
175#endif /* PFIL_HOOKS */
176#ifdef IPSEC
177	int needipsectun = 0;
178	struct socket *so;
179	struct secpolicy *sp = NULL;
180
181	/* for AH processing. stupid to have "socket" variable in IP layer... */
182	so = ipsec_getsocket(m);
183	(void)ipsec_setsocket(m, NULL);
184	ip6 = mtod(m, struct ip6_hdr *);
185#endif /* IPSEC */
186
187#define MAKE_EXTHDR(hp, mp)						\
188    do {								\
189	if (hp) {							\
190		struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
191		error = ip6_copyexthdr((mp), (caddr_t)(hp), 		\
192				       ((eh)->ip6e_len + 1) << 3);	\
193		if (error)						\
194			goto freehdrs;					\
195	}								\
196    } while (0)
197
198	bzero(&exthdrs, sizeof(exthdrs));
199
200	if (opt) {
201		/* Hop-by-Hop options header */
202		MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
203		/* Destination options header(1st part) */
204		MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
205		/* Routing header */
206		MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
207		/* Destination options header(2nd part) */
208		MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
209	}
210
211#ifdef IPSEC
212	/* get a security policy for this packet */
213	if (so == NULL)
214		sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
215	else
216		sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
217
218	if (sp == NULL) {
219		ipsec6stat.out_inval++;
220		goto freehdrs;
221	}
222
223	error = 0;
224
225	/* check policy */
226	switch (sp->policy) {
227	case IPSEC_POLICY_DISCARD:
228		/*
229		 * This packet is just discarded.
230		 */
231		ipsec6stat.out_polvio++;
232		goto freehdrs;
233
234	case IPSEC_POLICY_BYPASS:
235	case IPSEC_POLICY_NONE:
236		/* no need to do IPsec. */
237		needipsec = 0;
238		break;
239
240	case IPSEC_POLICY_IPSEC:
241		if (sp->req == NULL) {
242			/* acquire a policy */
243			error = key_spdacquire(sp);
244			goto freehdrs;
245		}
246		needipsec = 1;
247		break;
248
249	case IPSEC_POLICY_ENTRUST:
250	default:
251		printf("ip6_output: Invalid policy found. %d\n", sp->policy);
252	}
253#endif /* IPSEC */
254
255	/*
256	 * Calculate the total length of the extension header chain.
257	 * Keep the length of the unfragmentable part for fragmentation.
258	 */
259	optlen = 0;
260	if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
261	if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
262	if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
263	unfragpartlen = optlen + sizeof(struct ip6_hdr);
264	/* NOTE: we don't add AH/ESP length here. do that later. */
265	if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
266
267	/*
268	 * If we need IPsec, or there is at least one extension header,
269	 * separate IP6 header from the payload.
270	 */
271	if ((needipsec || optlen) && !hdrsplit) {
272		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
273			m = NULL;
274			goto freehdrs;
275		}
276		m = exthdrs.ip6e_ip6;
277		hdrsplit++;
278	}
279
280	/* adjust pointer */
281	ip6 = mtod(m, struct ip6_hdr *);
282
283	/* adjust mbuf packet header length */
284	m->m_pkthdr.len += optlen;
285	plen = m->m_pkthdr.len - sizeof(*ip6);
286
287	/* If this is a jumbo payload, insert a jumbo payload option. */
288	if (plen > IPV6_MAXPACKET) {
289		if (!hdrsplit) {
290			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
291				m = NULL;
292				goto freehdrs;
293			}
294			m = exthdrs.ip6e_ip6;
295			hdrsplit++;
296		}
297		/* adjust pointer */
298		ip6 = mtod(m, struct ip6_hdr *);
299		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
300			goto freehdrs;
301		ip6->ip6_plen = 0;
302	} else
303		ip6->ip6_plen = htons(plen);
304
305	/*
306	 * Concatenate headers and fill in next header fields.
307	 * Here we have, on "m"
308	 *	IPv6 payload
309	 * and we insert headers accordingly.  Finally, we should be getting:
310	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
311	 *
312	 * during the header composing process, "m" points to IPv6 header.
313	 * "mprev" points to an extension header prior to esp.
314	 */
315	{
316		u_char *nexthdrp = &ip6->ip6_nxt;
317		struct mbuf *mprev = m;
318
319		/*
320		 * we treat dest2 specially.  this makes IPsec processing
321		 * much easier.
322		 *
323		 * result: IPv6 dest2 payload
324		 * m and mprev will point to IPv6 header.
325		 */
326		if (exthdrs.ip6e_dest2) {
327			if (!hdrsplit)
328				panic("assumption failed: hdr not split");
329			exthdrs.ip6e_dest2->m_next = m->m_next;
330			m->m_next = exthdrs.ip6e_dest2;
331			*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
332			ip6->ip6_nxt = IPPROTO_DSTOPTS;
333		}
334
335#define MAKE_CHAIN(m, mp, p, i)\
336    do {\
337	if (m) {\
338		if (!hdrsplit) \
339			panic("assumption failed: hdr not split"); \
340		*mtod((m), u_char *) = *(p);\
341		*(p) = (i);\
342		p = mtod((m), u_char *);\
343		(m)->m_next = (mp)->m_next;\
344		(mp)->m_next = (m);\
345		(mp) = (m);\
346	}\
347    } while (0)
348		/*
349		 * result: IPv6 hbh dest1 rthdr dest2 payload
350		 * m will point to IPv6 header.  mprev will point to the
351		 * extension header prior to dest2 (rthdr in the above case).
352		 */
353		MAKE_CHAIN(exthdrs.ip6e_hbh, mprev,
354			   nexthdrp, IPPROTO_HOPOPTS);
355		MAKE_CHAIN(exthdrs.ip6e_dest1, mprev,
356			   nexthdrp, IPPROTO_DSTOPTS);
357		MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev,
358			   nexthdrp, IPPROTO_ROUTING);
359
360#ifdef IPSEC
361		if (!needipsec)
362			goto skip_ipsec2;
363
364		/*
365		 * pointers after IPsec headers are not valid any more.
366		 * other pointers need a great care too.
367		 * (IPsec routines should not mangle mbufs prior to AH/ESP)
368		 */
369		exthdrs.ip6e_dest2 = NULL;
370
371	    {
372		struct ip6_rthdr *rh = NULL;
373		int segleft_org = 0;
374		struct ipsec_output_state state;
375
376		if (exthdrs.ip6e_rthdr) {
377			rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
378			segleft_org = rh->ip6r_segleft;
379			rh->ip6r_segleft = 0;
380		}
381
382		bzero(&state, sizeof(state));
383		state.m = m;
384		error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
385			&needipsectun);
386		m = state.m;
387		if (error) {
388			/* mbuf is already reclaimed in ipsec6_output_trans. */
389			m = NULL;
390			switch (error) {
391			case EHOSTUNREACH:
392			case ENETUNREACH:
393			case EMSGSIZE:
394			case ENOBUFS:
395			case ENOMEM:
396				break;
397			default:
398				printf("ip6_output (ipsec): error code %d\n", error);
399				/*fall through*/
400			case ENOENT:
401				/* don't show these error codes to the user */
402				error = 0;
403				break;
404			}
405			goto bad;
406		}
407		if (exthdrs.ip6e_rthdr) {
408			/* ah6_output doesn't modify mbuf chain */
409			rh->ip6r_segleft = segleft_org;
410		}
411	    }
412skip_ipsec2:;
413#endif
414	}
415
416	/*
417	 * If there is a routing header, replace destination address field
418	 * with the first hop of the routing header.
419	 */
420	if (exthdrs.ip6e_rthdr) {
421		struct ip6_rthdr *rh =
422			(struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
423						  struct ip6_rthdr *));
424		struct ip6_rthdr0 *rh0;
425
426		finaldst = ip6->ip6_dst;
427		switch (rh->ip6r_type) {
428		case IPV6_RTHDR_TYPE_0:
429			 rh0 = (struct ip6_rthdr0 *)rh;
430			 ip6->ip6_dst = rh0->ip6r0_addr[0];
431			 bcopy((caddr_t)&rh0->ip6r0_addr[1],
432			       (caddr_t)&rh0->ip6r0_addr[0],
433			       sizeof(struct in6_addr)*(rh0->ip6r0_segleft - 1)
434				 );
435			 rh0->ip6r0_addr[rh0->ip6r0_segleft - 1] = finaldst;
436			 break;
437		default:	/* is it possible? */
438			 error = EINVAL;
439			 goto bad;
440		}
441	}
442
443	/* Source address validation */
444	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
445	    (flags & IPV6_DADOUTPUT) == 0) {
446		error = EOPNOTSUPP;
447		ip6stat.ip6s_badscope++;
448		goto bad;
449	}
450	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
451		error = EOPNOTSUPP;
452		ip6stat.ip6s_badscope++;
453		goto bad;
454	}
455
456	ip6stat.ip6s_localout++;
457
458	/*
459	 * Route packet.
460	 */
461	if (ro == 0) {
462		ro = &ip6route;
463		bzero((caddr_t)ro, sizeof(*ro));
464	}
465	ro_pmtu = ro;
466	if (opt && opt->ip6po_rthdr)
467		ro = &opt->ip6po_route;
468	dst = (struct sockaddr_in6 *)&ro->ro_dst;
469	/*
470	 * If there is a cached route,
471	 * check that it is to the same destination
472	 * and is still up. If not, free it and try again.
473	 */
474	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
475			 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) {
476		RTFREE(ro->ro_rt);
477		ro->ro_rt = (struct rtentry *)0;
478	}
479	if (ro->ro_rt == 0) {
480		bzero(dst, sizeof(*dst));
481		dst->sin6_family = AF_INET6;
482		dst->sin6_len = sizeof(struct sockaddr_in6);
483		dst->sin6_addr = ip6->ip6_dst;
484#ifdef SCOPEDROUTING
485		/* XXX: sin6_scope_id should already be fixed at this point */
486		if (IN6_IS_SCOPE_LINKLOCAL(&dst->sin6_addr))
487			dst->sin6_scope_id = ntohs(dst->sin6_addr.s6_addr16[1]);
488#endif
489	}
490#ifdef IPSEC
491	if (needipsec && needipsectun) {
492		struct ipsec_output_state state;
493
494		/*
495		 * All the extension headers will become inaccessible
496		 * (since they can be encrypted).
497		 * Don't panic, we need no more updates to extension headers
498		 * on inner IPv6 packet (since they are now encapsulated).
499		 *
500		 * IPv6 [ESP|AH] IPv6 [extension headers] payload
501		 */
502		bzero(&exthdrs, sizeof(exthdrs));
503		exthdrs.ip6e_ip6 = m;
504
505		bzero(&state, sizeof(state));
506		state.m = m;
507		state.ro = (struct route *)ro;
508		state.dst = (struct sockaddr *)dst;
509
510		error = ipsec6_output_tunnel(&state, sp, flags);
511
512		m = state.m;
513		ro = (struct route_in6 *)state.ro;
514		dst = (struct sockaddr_in6 *)state.dst;
515		if (error) {
516			/* mbuf is already reclaimed in ipsec6_output_tunnel. */
517			m0 = m = NULL;
518			m = NULL;
519			switch (error) {
520			case EHOSTUNREACH:
521			case ENETUNREACH:
522			case EMSGSIZE:
523			case ENOBUFS:
524			case ENOMEM:
525				break;
526			default:
527				printf("ip6_output (ipsec): error code %d\n", error);
528				/*fall through*/
529			case ENOENT:
530				/* don't show these error codes to the user */
531				error = 0;
532				break;
533			}
534			goto bad;
535		}
536
537		exthdrs.ip6e_ip6 = m;
538	}
539#endif /*IPSEC*/
540
541	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
542		/* Unicast */
543
544#define ifatoia6(ifa)	((struct in6_ifaddr *)(ifa))
545#define sin6tosa(sin6)	((struct sockaddr *)(sin6))
546		/* xxx
547		 * interface selection comes here
548		 * if an interface is specified from an upper layer,
549		 * ifp must point it.
550		 */
551		if (ro->ro_rt == 0) {
552			/*
553			 * non-bsdi always clone routes, if parent is
554			 * PRF_CLONING.
555			 */
556			rtalloc((struct route *)ro);
557		}
558		if (ro->ro_rt == 0) {
559			ip6stat.ip6s_noroute++;
560			error = EHOSTUNREACH;
561			/* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */
562			goto bad;
563		}
564		ia = ifatoia6(ro->ro_rt->rt_ifa);
565		ifp = ro->ro_rt->rt_ifp;
566		ro->ro_rt->rt_use++;
567		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
568			dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway;
569		m->m_flags &= ~(M_BCAST | M_MCAST);	/* just in case */
570
571		in6_ifstat_inc(ifp, ifs6_out_request);
572
573		/*
574		 * Check if the outgoing interface conflicts with
575		 * the interface specified by ifi6_ifindex (if specified).
576		 * Note that loopback interface is always okay.
577		 * (this may happen when we are sending a packet to one of
578		 *  our own addresses.)
579		 */
580		if (opt && opt->ip6po_pktinfo
581		 && opt->ip6po_pktinfo->ipi6_ifindex) {
582			if (!(ifp->if_flags & IFF_LOOPBACK)
583			 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) {
584				ip6stat.ip6s_noroute++;
585				in6_ifstat_inc(ifp, ifs6_out_discard);
586				error = EHOSTUNREACH;
587				goto bad;
588			}
589		}
590
591		if (opt && opt->ip6po_hlim != -1)
592			ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
593	} else {
594		/* Multicast */
595		struct	in6_multi *in6m;
596
597		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
598
599		/*
600		 * See if the caller provided any multicast options
601		 */
602		ifp = NULL;
603		if (im6o != NULL) {
604			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
605			if (im6o->im6o_multicast_ifp != NULL)
606				ifp = im6o->im6o_multicast_ifp;
607		} else
608			ip6->ip6_hlim = ip6_defmcasthlim;
609
610		/*
611		 * See if the caller provided the outgoing interface
612		 * as an ancillary data.
613		 * Boundary check for ifindex is assumed to be already done.
614		 */
615		if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex)
616			ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex];
617
618		/*
619		 * If the destination is a node-local scope multicast,
620		 * the packet should be loop-backed only.
621		 */
622		if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) {
623			/*
624			 * If the outgoing interface is already specified,
625			 * it should be a loopback interface.
626			 */
627			if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) {
628				ip6stat.ip6s_badscope++;
629				error = ENETUNREACH; /* XXX: better error? */
630				/* XXX correct ifp? */
631				in6_ifstat_inc(ifp, ifs6_out_discard);
632				goto bad;
633			} else {
634				ifp = &loif[0];
635			}
636		}
637
638		if (opt && opt->ip6po_hlim != -1)
639			ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
640
641		/*
642		 * If caller did not provide an interface lookup a
643		 * default in the routing table.  This is either a
644		 * default for the speicfied group (i.e. a host
645		 * route), or a multicast default (a route for the
646		 * ``net'' ff00::/8).
647		 */
648		if (ifp == NULL) {
649			if (ro->ro_rt == 0) {
650				ro->ro_rt = rtalloc1((struct sockaddr *)
651						&ro->ro_dst, 0, 0UL);
652			}
653			if (ro->ro_rt == 0) {
654				ip6stat.ip6s_noroute++;
655				error = EHOSTUNREACH;
656				/* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */
657				goto bad;
658			}
659			ia = ifatoia6(ro->ro_rt->rt_ifa);
660			ifp = ro->ro_rt->rt_ifp;
661			ro->ro_rt->rt_use++;
662		}
663
664		if ((flags & IPV6_FORWARDING) == 0)
665			in6_ifstat_inc(ifp, ifs6_out_request);
666		in6_ifstat_inc(ifp, ifs6_out_mcast);
667
668		/*
669		 * Confirm that the outgoing interface supports multicast.
670		 */
671		if ((ifp->if_flags & IFF_MULTICAST) == 0) {
672			ip6stat.ip6s_noroute++;
673			in6_ifstat_inc(ifp, ifs6_out_discard);
674			error = ENETUNREACH;
675			goto bad;
676		}
677		IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
678		if (in6m != NULL &&
679		   (im6o == NULL || im6o->im6o_multicast_loop)) {
680			/*
681			 * If we belong to the destination multicast group
682			 * on the outgoing interface, and the caller did not
683			 * forbid loopback, loop back a copy.
684			 */
685			ip6_mloopback(ifp, m, dst);
686		} else {
687			/*
688			 * If we are acting as a multicast router, perform
689			 * multicast forwarding as if the packet had just
690			 * arrived on the interface to which we are about
691			 * to send.  The multicast forwarding function
692			 * recursively calls this function, using the
693			 * IPV6_FORWARDING flag to prevent infinite recursion.
694			 *
695			 * Multicasts that are looped back by ip6_mloopback(),
696			 * above, will be forwarded by the ip6_input() routine,
697			 * if necessary.
698			 */
699			if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
700				if (ip6_mforward(ip6, ifp, m) != 0) {
701					m_freem(m);
702					goto done;
703				}
704			}
705		}
706		/*
707		 * Multicasts with a hoplimit of zero may be looped back,
708		 * above, but must not be transmitted on a network.
709		 * Also, multicasts addressed to the loopback interface
710		 * are not sent -- the above call to ip6_mloopback() will
711		 * loop back a copy if this host actually belongs to the
712		 * destination group on the loopback interface.
713		 */
714		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) {
715			m_freem(m);
716			goto done;
717		}
718	}
719
720	/*
721	 * Fill the outgoing inteface to tell the upper layer
722	 * to increment per-interface statistics.
723	 */
724	if (ifpp)
725		*ifpp = ifp;
726
727	/*
728	 * Determine path MTU.
729	 */
730	if (ro_pmtu != ro) {
731		/* The first hop and the final destination may differ. */
732		struct sockaddr_in6 *sin6_fin =
733			(struct sockaddr_in6 *)&ro_pmtu->ro_dst;
734		if (ro_pmtu->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
735				       !IN6_ARE_ADDR_EQUAL(&sin6_fin->sin6_addr,
736							   &finaldst))) {
737			RTFREE(ro_pmtu->ro_rt);
738			ro_pmtu->ro_rt = (struct rtentry *)0;
739		}
740		if (ro_pmtu->ro_rt == 0) {
741			bzero(sin6_fin, sizeof(*sin6_fin));
742			sin6_fin->sin6_family = AF_INET6;
743			sin6_fin->sin6_len = sizeof(struct sockaddr_in6);
744			sin6_fin->sin6_addr = finaldst;
745
746			rtalloc((struct route *)ro_pmtu);
747		}
748	}
749	if (ro_pmtu->ro_rt != NULL) {
750		u_int32_t ifmtu = nd_ifinfo[ifp->if_index].linkmtu;
751
752		mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
753		if (mtu > ifmtu || mtu == 0) {
754			/*
755			 * The MTU on the route is larger than the MTU on
756			 * the interface!  This shouldn't happen, unless the
757			 * MTU of the interface has been changed after the
758			 * interface was brought up.  Change the MTU in the
759			 * route to match the interface MTU (as long as the
760			 * field isn't locked).
761			 *
762			 * if MTU on the route is 0, we need to fix the MTU.
763			 * this case happens with path MTU discovery timeouts.
764			 */
765			 mtu = ifmtu;
766			 if ((ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
767				 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; /* XXX */
768		}
769	} else {
770		mtu = nd_ifinfo[ifp->if_index].linkmtu;
771	}
772
773	/*
774	 * advanced API (IPV6_USE_MIN_MTU) overrides mtu setting
775	 */
776	if ((flags & IPV6_MINMTU) != 0 && mtu > IPV6_MMTU)
777		mtu = IPV6_MMTU;
778
779	/* Fake scoped addresses */
780	if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
781		/*
782		 * If source or destination address is a scoped address, and
783		 * the packet is going to be sent to a loopback interface,
784		 * we should keep the original interface.
785		 */
786
787		/*
788		 * XXX: this is a very experimental and temporary solution.
789		 * We eventually have sockaddr_in6 and use the sin6_scope_id
790		 * field of the structure here.
791		 * We rely on the consistency between two scope zone ids
792		 * of source add destination, which should already be assured
793		 * larger scopes than link will be supported in the near
794		 * future.
795		 */
796		origifp = NULL;
797		if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
798			origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])];
799		else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
800			origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])];
801		/*
802		 * XXX: origifp can be NULL even in those two cases above.
803		 * For example, if we remove the (only) link-local address
804		 * from the loopback interface, and try to send a link-local
805		 * address without link-id information.  Then the source
806		 * address is ::1, and the destination address is the
807		 * link-local address with its s6_addr16[1] being zero.
808		 * What is worse, if the packet goes to the loopback interface
809		 * by a default rejected route, the null pointer would be
810		 * passed to looutput, and the kernel would hang.
811		 * The following last resort would prevent such disaster.
812		 */
813		if (origifp == NULL)
814			origifp = ifp;
815	}
816	else
817		origifp = ifp;
818#ifndef SCOPEDROUTING
819	/*
820	 * clear embedded scope identifiers if necessary.
821	 * in6_clearscope will touch the addresses only when necessary.
822	 */
823	in6_clearscope(&ip6->ip6_src);
824	in6_clearscope(&ip6->ip6_dst);
825#endif
826
827	/*
828	 * Check with the firewall...
829	 */
830        if (ip6_fw_enable && ip6_fw_chk_ptr) {
831		u_short port = 0;
832		m->m_pkthdr.rcvif = NULL;	/*XXX*/
833		/* If ipfw says divert, we have to just drop packet */
834		if ((*ip6_fw_chk_ptr)(&ip6, ifp, &port, &m)) {
835			m_freem(m);
836			goto done;
837		}
838		if (!m) {
839			error = EACCES;
840			goto done;
841		}
842	}
843
844	/*
845	 * If the outgoing packet contains a hop-by-hop options header,
846	 * it must be examined and processed even by the source node.
847	 * (RFC 2460, section 4.)
848	 */
849	if (exthdrs.ip6e_hbh) {
850		struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
851		u_int32_t dummy1; /* XXX unused */
852		u_int32_t dummy2; /* XXX unused */
853
854#ifdef DIAGNOSTIC
855		if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len)
856			panic("ip6e_hbh is not continuous");
857#endif
858		/*
859		 *  XXX: if we have to send an ICMPv6 error to the sender,
860		 *       we need the M_LOOP flag since icmp6_error() expects
861		 *       the IPv6 and the hop-by-hop options header are
862		 *       continuous unless the flag is set.
863		 */
864		m->m_flags |= M_LOOP;
865		m->m_pkthdr.rcvif = ifp;
866		if (ip6_process_hopopts(m,
867					(u_int8_t *)(hbh + 1),
868					((hbh->ip6h_len + 1) << 3) -
869					sizeof(struct ip6_hbh),
870					&dummy1, &dummy2) < 0) {
871			/* m was already freed at this point */
872			error = EINVAL;/* better error? */
873			goto done;
874		}
875		m->m_flags &= ~M_LOOP; /* XXX */
876		m->m_pkthdr.rcvif = NULL;
877	}
878
879#ifdef PFIL_HOOKS
880	/*
881	 * Run through list of hooks for output packets.
882	 */
883	m1 = m;
884	pfh = pfil_hook_get(PFIL_OUT, &inet6sw[ip6_protox[IPPROTO_IPV6]].pr_pfh);
885	for (; pfh; pfh = pfh->pfil_link.tqe_next)
886		if (pfh->pfil_func) {
887			rv = pfh->pfil_func(ip6, sizeof(*ip6), ifp, 1, &m1);
888			if (rv) {
889				error = EHOSTUNREACH;
890				goto done;
891			}
892			m = m1;
893			if (m == NULL)
894				goto done;
895			ip6 = mtod(m, struct ip6_hdr *);
896		}
897#endif /* PFIL_HOOKS */
898	/*
899	 * Send the packet to the outgoing interface.
900	 * If necessary, do IPv6 fragmentation before sending.
901	 */
902	tlen = m->m_pkthdr.len;
903	if (tlen <= mtu
904#ifdef notyet
905	    /*
906	     * On any link that cannot convey a 1280-octet packet in one piece,
907	     * link-specific fragmentation and reassembly must be provided at
908	     * a layer below IPv6. [RFC 2460, sec.5]
909	     * Thus if the interface has ability of link-level fragmentation,
910	     * we can just send the packet even if the packet size is
911	     * larger than the link's MTU.
912	     * XXX: IFF_FRAGMENTABLE (or such) flag has not been defined yet...
913	     */
914
915	    || ifp->if_flags & IFF_FRAGMENTABLE
916#endif
917	    )
918	{
919 		/* Record statistics for this interface address. */
920 		if (ia && !(flags & IPV6_FORWARDING)) {
921 			ia->ia_ifa.if_opackets++;
922 			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
923 		}
924#ifdef IPSEC
925		/* clean ipsec history once it goes out of the node */
926		ipsec_delaux(m);
927#endif
928		error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
929		goto done;
930	} else if (mtu < IPV6_MMTU) {
931		/*
932		 * note that path MTU is never less than IPV6_MMTU
933		 * (see icmp6_input).
934		 */
935		error = EMSGSIZE;
936		in6_ifstat_inc(ifp, ifs6_out_fragfail);
937		goto bad;
938	} else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */
939		error = EMSGSIZE;
940		in6_ifstat_inc(ifp, ifs6_out_fragfail);
941		goto bad;
942	} else {
943		struct mbuf **mnext, *m_frgpart;
944		struct ip6_frag *ip6f;
945		u_int32_t id = htonl(ip6_id++);
946		u_char nextproto;
947
948		/*
949		 * Too large for the destination or interface;
950		 * fragment if possible.
951		 * Must be able to put at least 8 bytes per fragment.
952		 */
953		hlen = unfragpartlen;
954		if (mtu > IPV6_MAXPACKET)
955			mtu = IPV6_MAXPACKET;
956
957		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
958		if (len < 8) {
959			error = EMSGSIZE;
960			in6_ifstat_inc(ifp, ifs6_out_fragfail);
961			goto bad;
962		}
963
964		mnext = &m->m_nextpkt;
965
966		/*
967		 * Change the next header field of the last header in the
968		 * unfragmentable part.
969		 */
970		if (exthdrs.ip6e_rthdr) {
971			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
972			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
973		} else if (exthdrs.ip6e_dest1) {
974			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
975			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
976		} else if (exthdrs.ip6e_hbh) {
977			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
978			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
979		} else {
980			nextproto = ip6->ip6_nxt;
981			ip6->ip6_nxt = IPPROTO_FRAGMENT;
982		}
983
984		/*
985		 * Loop through length of segment after first fragment,
986		 * make new header and copy data of each part and link onto chain.
987		 */
988		m0 = m;
989		for (off = hlen; off < tlen; off += len) {
990			MGETHDR(m, M_DONTWAIT, MT_HEADER);
991			if (!m) {
992				error = ENOBUFS;
993				ip6stat.ip6s_odropped++;
994				goto sendorfree;
995			}
996			m->m_pkthdr.rcvif = NULL;
997			m->m_flags = m0->m_flags & M_COPYFLAGS;
998			*mnext = m;
999			mnext = &m->m_nextpkt;
1000			m->m_data += max_linkhdr;
1001			mhip6 = mtod(m, struct ip6_hdr *);
1002			*mhip6 = *ip6;
1003			m->m_len = sizeof(*mhip6);
1004 			error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
1005 			if (error) {
1006				ip6stat.ip6s_odropped++;
1007				goto sendorfree;
1008			}
1009			ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
1010			if (off + len >= tlen)
1011				len = tlen - off;
1012			else
1013				ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
1014			mhip6->ip6_plen = htons((u_short)(len + hlen +
1015							  sizeof(*ip6f) -
1016							  sizeof(struct ip6_hdr)));
1017			if ((m_frgpart = m_copy(m0, off, len)) == 0) {
1018				error = ENOBUFS;
1019				ip6stat.ip6s_odropped++;
1020				goto sendorfree;
1021			}
1022			m_cat(m, m_frgpart);
1023			m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
1024			m->m_pkthdr.rcvif = (struct ifnet *)0;
1025			ip6f->ip6f_reserved = 0;
1026			ip6f->ip6f_ident = id;
1027			ip6f->ip6f_nxt = nextproto;
1028			ip6stat.ip6s_ofragments++;
1029			in6_ifstat_inc(ifp, ifs6_out_fragcreat);
1030		}
1031
1032		in6_ifstat_inc(ifp, ifs6_out_fragok);
1033	}
1034
1035	/*
1036	 * Remove leading garbages.
1037	 */
1038sendorfree:
1039	m = m0->m_nextpkt;
1040	m0->m_nextpkt = 0;
1041	m_freem(m0);
1042	for (m0 = m; m; m = m0) {
1043		m0 = m->m_nextpkt;
1044		m->m_nextpkt = 0;
1045		if (error == 0) {
1046 			/* Record statistics for this interface address. */
1047 			if (ia) {
1048 				ia->ia_ifa.if_opackets++;
1049 				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1050 			}
1051#ifdef IPSEC
1052			/* clean ipsec history once it goes out of the node */
1053			ipsec_delaux(m);
1054#endif
1055			error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1056		} else
1057			m_freem(m);
1058	}
1059
1060	if (error == 0)
1061		ip6stat.ip6s_fragmented++;
1062
1063done:
1064	if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
1065		RTFREE(ro->ro_rt);
1066	} else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
1067		RTFREE(ro_pmtu->ro_rt);
1068	}
1069
1070#ifdef IPSEC
1071	if (sp != NULL)
1072		key_freesp(sp);
1073#endif /* IPSEC */
1074
1075	return(error);
1076
1077freehdrs:
1078	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
1079	m_freem(exthdrs.ip6e_dest1);
1080	m_freem(exthdrs.ip6e_rthdr);
1081	m_freem(exthdrs.ip6e_dest2);
1082	/* fall through */
1083bad:
1084	m_freem(m);
1085	goto done;
1086}
1087
1088static int
1089ip6_copyexthdr(mp, hdr, hlen)
1090	struct mbuf **mp;
1091	caddr_t hdr;
1092	int hlen;
1093{
1094	struct mbuf *m;
1095
1096	if (hlen > MCLBYTES)
1097		return(ENOBUFS); /* XXX */
1098
1099	MGET(m, M_DONTWAIT, MT_DATA);
1100	if (!m)
1101		return(ENOBUFS);
1102
1103	if (hlen > MLEN) {
1104		MCLGET(m, M_DONTWAIT);
1105		if ((m->m_flags & M_EXT) == 0) {
1106			m_free(m);
1107			return(ENOBUFS);
1108		}
1109	}
1110	m->m_len = hlen;
1111	if (hdr)
1112		bcopy(hdr, mtod(m, caddr_t), hlen);
1113
1114	*mp = m;
1115	return(0);
1116}
1117
1118/*
1119 * Insert jumbo payload option.
1120 */
1121static int
1122ip6_insert_jumboopt(exthdrs, plen)
1123	struct ip6_exthdrs *exthdrs;
1124	u_int32_t plen;
1125{
1126	struct mbuf *mopt;
1127	u_char *optbuf;
1128	u_int32_t v;
1129
1130#define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
1131
1132	/*
1133	 * If there is no hop-by-hop options header, allocate new one.
1134	 * If there is one but it doesn't have enough space to store the
1135	 * jumbo payload option, allocate a cluster to store the whole options.
1136	 * Otherwise, use it to store the options.
1137	 */
1138	if (exthdrs->ip6e_hbh == 0) {
1139		MGET(mopt, M_DONTWAIT, MT_DATA);
1140		if (mopt == 0)
1141			return(ENOBUFS);
1142		mopt->m_len = JUMBOOPTLEN;
1143		optbuf = mtod(mopt, u_char *);
1144		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
1145		exthdrs->ip6e_hbh = mopt;
1146	} else {
1147		struct ip6_hbh *hbh;
1148
1149		mopt = exthdrs->ip6e_hbh;
1150		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1151			/*
1152			 * XXX assumption:
1153			 * - exthdrs->ip6e_hbh is not referenced from places
1154			 *   other than exthdrs.
1155			 * - exthdrs->ip6e_hbh is not an mbuf chain.
1156			 */
1157			int oldoptlen = mopt->m_len;
1158			struct mbuf *n;
1159
1160			/*
1161			 * XXX: give up if the whole (new) hbh header does
1162			 * not fit even in an mbuf cluster.
1163			 */
1164			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1165				return(ENOBUFS);
1166
1167			/*
1168			 * As a consequence, we must always prepare a cluster
1169			 * at this point.
1170			 */
1171			MGET(n, M_DONTWAIT, MT_DATA);
1172			if (n) {
1173				MCLGET(n, M_DONTWAIT);
1174				if ((n->m_flags & M_EXT) == 0) {
1175					m_freem(n);
1176					n = NULL;
1177				}
1178			}
1179			if (!n)
1180				return(ENOBUFS);
1181			n->m_len = oldoptlen + JUMBOOPTLEN;
1182			bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1183			      oldoptlen);
1184			optbuf = mtod(n, caddr_t) + oldoptlen;
1185			m_freem(mopt);
1186			mopt = exthdrs->ip6e_hbh = n;
1187		} else {
1188			optbuf = mtod(mopt, u_char *) + mopt->m_len;
1189			mopt->m_len += JUMBOOPTLEN;
1190		}
1191		optbuf[0] = IP6OPT_PADN;
1192		optbuf[1] = 1;
1193
1194		/*
1195		 * Adjust the header length according to the pad and
1196		 * the jumbo payload option.
1197		 */
1198		hbh = mtod(mopt, struct ip6_hbh *);
1199		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1200	}
1201
1202	/* fill in the option. */
1203	optbuf[2] = IP6OPT_JUMBO;
1204	optbuf[3] = 4;
1205	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1206	bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1207
1208	/* finally, adjust the packet header length */
1209	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1210
1211	return(0);
1212#undef JUMBOOPTLEN
1213}
1214
1215/*
1216 * Insert fragment header and copy unfragmentable header portions.
1217 */
1218static int
1219ip6_insertfraghdr(m0, m, hlen, frghdrp)
1220	struct mbuf *m0, *m;
1221	int hlen;
1222	struct ip6_frag **frghdrp;
1223{
1224	struct mbuf *n, *mlast;
1225
1226	if (hlen > sizeof(struct ip6_hdr)) {
1227		n = m_copym(m0, sizeof(struct ip6_hdr),
1228			    hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1229		if (n == 0)
1230			return(ENOBUFS);
1231		m->m_next = n;
1232	} else
1233		n = m;
1234
1235	/* Search for the last mbuf of unfragmentable part. */
1236	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1237		;
1238
1239	if ((mlast->m_flags & M_EXT) == 0 &&
1240	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1241		/* use the trailing space of the last mbuf for the fragment hdr */
1242		*frghdrp =
1243			(struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len);
1244		mlast->m_len += sizeof(struct ip6_frag);
1245		m->m_pkthdr.len += sizeof(struct ip6_frag);
1246	} else {
1247		/* allocate a new mbuf for the fragment header */
1248		struct mbuf *mfrg;
1249
1250		MGET(mfrg, M_DONTWAIT, MT_DATA);
1251		if (mfrg == 0)
1252			return(ENOBUFS);
1253		mfrg->m_len = sizeof(struct ip6_frag);
1254		*frghdrp = mtod(mfrg, struct ip6_frag *);
1255		mlast->m_next = mfrg;
1256	}
1257
1258	return(0);
1259}
1260
1261/*
1262 * IP6 socket option processing.
1263 */
1264int
1265ip6_ctloutput(so, sopt)
1266	struct socket *so;
1267	struct sockopt *sopt;
1268{
1269	int privileged;
1270	struct inpcb *in6p = sotoinpcb(so);
1271	int error, optval;
1272	int level, op, optname;
1273	int optlen;
1274	struct proc *p;
1275
1276	if (sopt) {
1277		level = sopt->sopt_level;
1278		op = sopt->sopt_dir;
1279		optname = sopt->sopt_name;
1280		optlen = sopt->sopt_valsize;
1281		p = sopt->sopt_p;
1282	} else {
1283		panic("ip6_ctloutput: arg soopt is NULL");
1284	}
1285	error = optval = 0;
1286
1287	privileged = (p == 0 || suser(p)) ? 0 : 1;
1288
1289	if (level == IPPROTO_IPV6) {
1290		switch (op) {
1291
1292		case SOPT_SET:
1293			switch (optname) {
1294			case IPV6_PKTOPTIONS:
1295			{
1296				struct mbuf *m;
1297
1298				error = soopt_getm(sopt, &m); /* XXX */
1299				if (error != NULL)
1300					break;
1301				error = soopt_mcopyin(sopt, m); /* XXX */
1302				if (error != NULL)
1303					break;
1304				error = ip6_pcbopts(&in6p->in6p_outputopts,
1305						    m, so, sopt);
1306				m_freem(m); /* XXX */
1307				break;
1308			}
1309
1310			/*
1311			 * Use of some Hop-by-Hop options or some
1312			 * Destination options, might require special
1313			 * privilege.  That is, normal applications
1314			 * (without special privilege) might be forbidden
1315			 * from setting certain options in outgoing packets,
1316			 * and might never see certain options in received
1317			 * packets. [RFC 2292 Section 6]
1318			 * KAME specific note:
1319			 *  KAME prevents non-privileged users from sending or
1320			 *  receiving ANY hbh/dst options in order to avoid
1321			 *  overhead of parsing options in the kernel.
1322			 */
1323			case IPV6_UNICAST_HOPS:
1324			case IPV6_CHECKSUM:
1325			case IPV6_FAITH:
1326
1327			case IPV6_V6ONLY:
1328				if (optlen != sizeof(int)) {
1329					error = EINVAL;
1330					break;
1331				}
1332				error = sooptcopyin(sopt, &optval,
1333					sizeof optval, sizeof optval);
1334				if (error)
1335					break;
1336				switch (optname) {
1337
1338				case IPV6_UNICAST_HOPS:
1339					if (optval < -1 || optval >= 256)
1340						error = EINVAL;
1341					else {
1342						/* -1 = kernel default */
1343						in6p->in6p_hops = optval;
1344
1345						if ((in6p->in6p_vflag &
1346						     INP_IPV4) != 0)
1347							in6p->inp_ip_ttl = optval;
1348					}
1349					break;
1350#define OPTSET(bit) \
1351do { \
1352	if (optval) \
1353		in6p->in6p_flags |= (bit); \
1354	else \
1355		in6p->in6p_flags &= ~(bit); \
1356} while (0)
1357#define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
1358
1359				case IPV6_CHECKSUM:
1360					in6p->in6p_cksum = optval;
1361					break;
1362
1363				case IPV6_FAITH:
1364					OPTSET(IN6P_FAITH);
1365					break;
1366
1367				case IPV6_V6ONLY:
1368					/*
1369					 * XXX: BINDV6ONLY should be integrated
1370					 * into V6ONLY.
1371					 */
1372					OPTSET(IN6P_BINDV6ONLY);
1373					OPTSET(IN6P_IPV6_V6ONLY);
1374					break;
1375				}
1376				break;
1377
1378			case IPV6_PKTINFO:
1379			case IPV6_HOPLIMIT:
1380			case IPV6_HOPOPTS:
1381			case IPV6_DSTOPTS:
1382			case IPV6_RTHDR:
1383				/* RFC 2292 */
1384				if (optlen != sizeof(int)) {
1385					error = EINVAL;
1386					break;
1387				}
1388				error = sooptcopyin(sopt, &optval,
1389					sizeof optval, sizeof optval);
1390				if (error)
1391					break;
1392				switch (optname) {
1393				case IPV6_PKTINFO:
1394					OPTSET(IN6P_PKTINFO);
1395					break;
1396				case IPV6_HOPLIMIT:
1397					OPTSET(IN6P_HOPLIMIT);
1398					break;
1399				case IPV6_HOPOPTS:
1400					/*
1401					 * Check super-user privilege.
1402					 * See comments for IPV6_RECVHOPOPTS.
1403					 */
1404					if (!privileged)
1405						return(EPERM);
1406					OPTSET(IN6P_HOPOPTS);
1407					break;
1408				case IPV6_DSTOPTS:
1409					if (!privileged)
1410						return(EPERM);
1411					OPTSET(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1412					break;
1413				case IPV6_RTHDR:
1414					OPTSET(IN6P_RTHDR);
1415					break;
1416				}
1417				break;
1418#undef OPTSET
1419
1420			case IPV6_MULTICAST_IF:
1421			case IPV6_MULTICAST_HOPS:
1422			case IPV6_MULTICAST_LOOP:
1423			case IPV6_JOIN_GROUP:
1424			case IPV6_LEAVE_GROUP:
1425			    {
1426				struct mbuf *m;
1427				if (sopt->sopt_valsize > MLEN) {
1428					error = EMSGSIZE;
1429					break;
1430				}
1431				/* XXX */
1432				MGET(m, sopt->sopt_p ? M_TRYWAIT : M_DONTWAIT, MT_HEADER);
1433				if (m == 0) {
1434					error = ENOBUFS;
1435					break;
1436				}
1437				m->m_len = sopt->sopt_valsize;
1438				error = sooptcopyin(sopt, mtod(m, char *),
1439						    m->m_len, m->m_len);
1440				error =	ip6_setmoptions(sopt->sopt_name,
1441							&in6p->in6p_moptions,
1442							m);
1443				(void)m_free(m);
1444			    }
1445				break;
1446
1447			case IPV6_PORTRANGE:
1448				error = sooptcopyin(sopt, &optval,
1449				    sizeof optval, sizeof optval);
1450				if (error)
1451					break;
1452
1453				switch (optval) {
1454				case IPV6_PORTRANGE_DEFAULT:
1455					in6p->in6p_flags &= ~(IN6P_LOWPORT);
1456					in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1457					break;
1458
1459				case IPV6_PORTRANGE_HIGH:
1460					in6p->in6p_flags &= ~(IN6P_LOWPORT);
1461					in6p->in6p_flags |= IN6P_HIGHPORT;
1462					break;
1463
1464				case IPV6_PORTRANGE_LOW:
1465					in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1466					in6p->in6p_flags |= IN6P_LOWPORT;
1467					break;
1468
1469				default:
1470					error = EINVAL;
1471					break;
1472				}
1473				break;
1474
1475#ifdef IPSEC
1476			case IPV6_IPSEC_POLICY:
1477			    {
1478				caddr_t req = NULL;
1479				size_t len = 0;
1480				struct mbuf *m;
1481
1482				if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1483					break;
1484				if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1485					break;
1486				if (m) {
1487					req = mtod(m, caddr_t);
1488					len = m->m_len;
1489				}
1490				error = ipsec6_set_policy(in6p, optname, req,
1491				                          len, privileged);
1492				m_freem(m);
1493			    }
1494				break;
1495#endif /* KAME IPSEC */
1496
1497			case IPV6_FW_ADD:
1498			case IPV6_FW_DEL:
1499			case IPV6_FW_FLUSH:
1500			case IPV6_FW_ZERO:
1501			    {
1502				struct mbuf *m;
1503				struct mbuf **mp = &m;
1504
1505				if (ip6_fw_ctl_ptr == NULL)
1506					return EINVAL;
1507				if (error = soopt_getm(sopt, &m)) /* XXX */
1508					break;
1509				if (error = soopt_mcopyin(sopt, m)) /* XXX */
1510					break;
1511				error = (*ip6_fw_ctl_ptr)(optname, mp);
1512				m = *mp;
1513			    }
1514				break;
1515
1516			default:
1517				error = ENOPROTOOPT;
1518				break;
1519			}
1520			break;
1521
1522		case SOPT_GET:
1523			switch (optname) {
1524
1525			case IPV6_PKTOPTIONS:
1526				if (in6p->in6p_options) {
1527					error = soopt_mcopyout(sopt,
1528							       in6p->in6p_options);
1529				} else
1530					sopt->sopt_valsize = 0;
1531				break;
1532
1533			case IPV6_UNICAST_HOPS:
1534			case IPV6_CHECKSUM:
1535
1536			case IPV6_FAITH:
1537			case IPV6_V6ONLY:
1538			case IPV6_PORTRANGE:
1539				switch (optname) {
1540
1541				case IPV6_UNICAST_HOPS:
1542					optval = in6p->in6p_hops;
1543					break;
1544
1545				case IPV6_CHECKSUM:
1546					optval = in6p->in6p_cksum;
1547					break;
1548
1549				case IPV6_FAITH:
1550					optval = OPTBIT(IN6P_FAITH);
1551					break;
1552
1553				case IPV6_V6ONLY:
1554					/* XXX: see the setopt case. */
1555					optval = OPTBIT(IN6P_BINDV6ONLY);
1556					break;
1557
1558				case IPV6_PORTRANGE:
1559				    {
1560					int flags;
1561					flags = in6p->in6p_flags;
1562					if (flags & IN6P_HIGHPORT)
1563						optval = IPV6_PORTRANGE_HIGH;
1564					else if (flags & IN6P_LOWPORT)
1565						optval = IPV6_PORTRANGE_LOW;
1566					else
1567						optval = 0;
1568					break;
1569				    }
1570				}
1571				error = sooptcopyout(sopt, &optval,
1572					sizeof optval);
1573				break;
1574
1575			case IPV6_PKTINFO:
1576			case IPV6_HOPLIMIT:
1577			case IPV6_HOPOPTS:
1578			case IPV6_RTHDR:
1579			case IPV6_DSTOPTS:
1580				if (optname == IPV6_HOPOPTS ||
1581				    optname == IPV6_DSTOPTS ||
1582				    !privileged)
1583					return(EPERM);
1584				switch (optname) {
1585				case IPV6_PKTINFO:
1586					optval = OPTBIT(IN6P_PKTINFO);
1587					break;
1588				case IPV6_HOPLIMIT:
1589					optval = OPTBIT(IN6P_HOPLIMIT);
1590					break;
1591				case IPV6_HOPOPTS:
1592					if (!privileged)
1593						return(EPERM);
1594					optval = OPTBIT(IN6P_HOPOPTS);
1595					break;
1596				case IPV6_RTHDR:
1597					optval = OPTBIT(IN6P_RTHDR);
1598					break;
1599				case IPV6_DSTOPTS:
1600					if (!privileged)
1601						return(EPERM);
1602					optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
1603					break;
1604				}
1605				error = sooptcopyout(sopt, &optval,
1606					sizeof optval);
1607				break;
1608
1609			case IPV6_MULTICAST_IF:
1610			case IPV6_MULTICAST_HOPS:
1611			case IPV6_MULTICAST_LOOP:
1612			case IPV6_JOIN_GROUP:
1613			case IPV6_LEAVE_GROUP:
1614			    {
1615				struct mbuf *m;
1616				error = ip6_getmoptions(sopt->sopt_name,
1617						in6p->in6p_moptions, &m);
1618				if (error == 0)
1619					error = sooptcopyout(sopt,
1620						mtod(m, char *), m->m_len);
1621				m_freem(m);
1622			    }
1623				break;
1624
1625#ifdef IPSEC
1626			case IPV6_IPSEC_POLICY:
1627			  {
1628				caddr_t req = NULL;
1629				size_t len = 0;
1630				struct mbuf *m = NULL;
1631				struct mbuf **mp = &m;
1632
1633				error = soopt_getm(sopt, &m); /* XXX */
1634				if (error != NULL)
1635					break;
1636				error = soopt_mcopyin(sopt, m); /* XXX */
1637				if (error != NULL)
1638					break;
1639				if (m) {
1640					req = mtod(m, caddr_t);
1641					len = m->m_len;
1642				}
1643				error = ipsec6_get_policy(in6p, req, len, mp);
1644				if (error == 0)
1645					error = soopt_mcopyout(sopt, m); /*XXX*/
1646				if (error == 0 && m)
1647					m_freem(m);
1648				break;
1649			  }
1650#endif /* KAME IPSEC */
1651
1652			case IPV6_FW_GET:
1653			  {
1654				struct mbuf *m;
1655				struct mbuf **mp = &m;
1656
1657				if (ip6_fw_ctl_ptr == NULL)
1658			        {
1659					if (m)
1660						(void)m_free(m);
1661					return EINVAL;
1662				}
1663				error = (*ip6_fw_ctl_ptr)(optname, mp);
1664				if (error == 0)
1665					error = soopt_mcopyout(sopt, m); /* XXX */
1666				if (error == 0 && m)
1667					m_freem(m);
1668			  }
1669				break;
1670
1671			default:
1672				error = ENOPROTOOPT;
1673				break;
1674			}
1675			break;
1676		}
1677	} else {
1678		error = EINVAL;
1679	}
1680	return(error);
1681}
1682
1683/*
1684 * Set up IP6 options in pcb for insertion in output packets or
1685 * specifying behavior of outgoing packets.
1686 */
1687static int
1688ip6_pcbopts(pktopt, m, so, sopt)
1689	struct ip6_pktopts **pktopt;
1690	struct mbuf *m;
1691	struct socket *so;
1692	struct sockopt *sopt;
1693{
1694	struct ip6_pktopts *opt = *pktopt;
1695	int error = 0;
1696	struct proc *p = sopt->sopt_p;
1697	int priv = 0;
1698
1699	/* turn off any old options. */
1700	if (opt) {
1701#ifdef DIAGNOSTIC
1702		if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
1703		    opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
1704		    opt->ip6po_rhinfo.ip6po_rhi_rthdr)
1705			printf("ip6_pcbopts: all specified options are cleared.\n");
1706#endif
1707		ip6_clearpktopts(opt, 1, -1);
1708	} else
1709		opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
1710	*pktopt = NULL;
1711
1712	if (!m || m->m_len == 0) {
1713		/*
1714		 * Only turning off any previous options.
1715		 */
1716		if (opt)
1717			free(opt, M_IP6OPT);
1718		return(0);
1719	}
1720
1721	/*  set options specified by user. */
1722	if (p && !suser(p))
1723		priv = 1;
1724	if ((error = ip6_setpktoptions(m, opt, priv, 1)) != 0) {
1725		ip6_clearpktopts(opt, 1, -1); /* XXX: discard all options */
1726		return(error);
1727	}
1728	*pktopt = opt;
1729	return(0);
1730}
1731
1732/*
1733 * initialize ip6_pktopts.  beware that there are non-zero default values in
1734 * the struct.
1735 */
1736void
1737init_ip6pktopts(opt)
1738	struct ip6_pktopts *opt;
1739{
1740
1741	bzero(opt, sizeof(*opt));
1742	opt->ip6po_hlim = -1;	/* -1 means default hop limit */
1743}
1744
1745void
1746ip6_clearpktopts(pktopt, needfree, optname)
1747	struct ip6_pktopts *pktopt;
1748	int needfree, optname;
1749{
1750	if (pktopt == NULL)
1751		return;
1752
1753	if (optname == -1) {
1754		if (needfree && pktopt->ip6po_pktinfo)
1755			free(pktopt->ip6po_pktinfo, M_IP6OPT);
1756		pktopt->ip6po_pktinfo = NULL;
1757	}
1758	if (optname == -1)
1759		pktopt->ip6po_hlim = -1;
1760	if (optname == -1) {
1761		if (needfree && pktopt->ip6po_nexthop)
1762			free(pktopt->ip6po_nexthop, M_IP6OPT);
1763		pktopt->ip6po_nexthop = NULL;
1764	}
1765	if (optname == -1) {
1766		if (needfree && pktopt->ip6po_hbh)
1767			free(pktopt->ip6po_hbh, M_IP6OPT);
1768		pktopt->ip6po_hbh = NULL;
1769	}
1770	if (optname == -1) {
1771		if (needfree && pktopt->ip6po_dest1)
1772			free(pktopt->ip6po_dest1, M_IP6OPT);
1773		pktopt->ip6po_dest1 = NULL;
1774	}
1775	if (optname == -1) {
1776		if (needfree && pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
1777			free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
1778		pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
1779		if (pktopt->ip6po_route.ro_rt) {
1780			RTFREE(pktopt->ip6po_route.ro_rt);
1781			pktopt->ip6po_route.ro_rt = NULL;
1782		}
1783	}
1784	if (optname == -1) {
1785		if (needfree && pktopt->ip6po_dest2)
1786			free(pktopt->ip6po_dest2, M_IP6OPT);
1787		pktopt->ip6po_dest2 = NULL;
1788	}
1789}
1790
1791#define PKTOPT_EXTHDRCPY(type) \
1792do {\
1793	if (src->type) {\
1794		int hlen =\
1795			(((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
1796		dst->type = malloc(hlen, M_IP6OPT, canwait);\
1797		if (dst->type == NULL && canwait == M_NOWAIT)\
1798			goto bad;\
1799		bcopy(src->type, dst->type, hlen);\
1800	}\
1801} while (0)
1802
1803struct ip6_pktopts *
1804ip6_copypktopts(src, canwait)
1805	struct ip6_pktopts *src;
1806	int canwait;
1807{
1808	struct ip6_pktopts *dst;
1809
1810	if (src == NULL) {
1811		printf("ip6_clearpktopts: invalid argument\n");
1812		return(NULL);
1813	}
1814
1815	dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
1816	if (dst == NULL && canwait == M_NOWAIT)
1817		goto bad;
1818	bzero(dst, sizeof(*dst));
1819
1820	dst->ip6po_hlim = src->ip6po_hlim;
1821	if (src->ip6po_pktinfo) {
1822		dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
1823					    M_IP6OPT, canwait);
1824		if (dst->ip6po_pktinfo == NULL && canwait == M_NOWAIT)
1825			goto bad;
1826		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
1827	}
1828	if (src->ip6po_nexthop) {
1829		dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
1830					    M_IP6OPT, canwait);
1831		if (dst->ip6po_nexthop == NULL && canwait == M_NOWAIT)
1832			goto bad;
1833		bcopy(src->ip6po_nexthop, dst->ip6po_nexthop,
1834		      src->ip6po_nexthop->sa_len);
1835	}
1836	PKTOPT_EXTHDRCPY(ip6po_hbh);
1837	PKTOPT_EXTHDRCPY(ip6po_dest1);
1838	PKTOPT_EXTHDRCPY(ip6po_dest2);
1839	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
1840	return(dst);
1841
1842  bad:
1843	printf("ip6_copypktopts: copy failed");
1844	if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT);
1845	if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT);
1846	if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT);
1847	if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT);
1848	if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT);
1849	if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT);
1850	return(NULL);
1851}
1852#undef PKTOPT_EXTHDRCPY
1853
1854void
1855ip6_freepcbopts(pktopt)
1856	struct ip6_pktopts *pktopt;
1857{
1858	if (pktopt == NULL)
1859		return;
1860
1861	ip6_clearpktopts(pktopt, 1, -1);
1862
1863	free(pktopt, M_IP6OPT);
1864}
1865
1866/*
1867 * Set the IP6 multicast options in response to user setsockopt().
1868 */
1869static int
1870ip6_setmoptions(optname, im6op, m)
1871	int optname;
1872	struct ip6_moptions **im6op;
1873	struct mbuf *m;
1874{
1875	int error = 0;
1876	u_int loop, ifindex;
1877	struct ipv6_mreq *mreq;
1878	struct ifnet *ifp;
1879	struct ip6_moptions *im6o = *im6op;
1880	struct route_in6 ro;
1881	struct sockaddr_in6 *dst;
1882	struct in6_multi_mship *imm;
1883	struct proc *p = curproc;	/* XXX */
1884
1885	if (im6o == NULL) {
1886		/*
1887		 * No multicast option buffer attached to the pcb;
1888		 * allocate one and initialize to default values.
1889		 */
1890		im6o = (struct ip6_moptions *)
1891			malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
1892
1893		if (im6o == NULL)
1894			return(ENOBUFS);
1895		*im6op = im6o;
1896		im6o->im6o_multicast_ifp = NULL;
1897		im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1898		im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
1899		LIST_INIT(&im6o->im6o_memberships);
1900	}
1901
1902	switch (optname) {
1903
1904	case IPV6_MULTICAST_IF:
1905		/*
1906		 * Select the interface for outgoing multicast packets.
1907		 */
1908		if (m == NULL || m->m_len != sizeof(u_int)) {
1909			error = EINVAL;
1910			break;
1911		}
1912		bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
1913		if (ifindex < 0 || if_index < ifindex) {
1914			error = ENXIO;	/* XXX EINVAL? */
1915			break;
1916		}
1917		ifp = ifindex2ifnet[ifindex];
1918		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1919			error = EADDRNOTAVAIL;
1920			break;
1921		}
1922		im6o->im6o_multicast_ifp = ifp;
1923		break;
1924
1925	case IPV6_MULTICAST_HOPS:
1926	    {
1927		/*
1928		 * Set the IP6 hoplimit for outgoing multicast packets.
1929		 */
1930		int optval;
1931		if (m == NULL || m->m_len != sizeof(int)) {
1932			error = EINVAL;
1933			break;
1934		}
1935		bcopy(mtod(m, u_int *), &optval, sizeof(optval));
1936		if (optval < -1 || optval >= 256)
1937			error = EINVAL;
1938		else if (optval == -1)
1939			im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1940		else
1941			im6o->im6o_multicast_hlim = optval;
1942		break;
1943	    }
1944
1945	case IPV6_MULTICAST_LOOP:
1946		/*
1947		 * Set the loopback flag for outgoing multicast packets.
1948		 * Must be zero or one.
1949		 */
1950		if (m == NULL || m->m_len != sizeof(u_int)) {
1951			error = EINVAL;
1952			break;
1953		}
1954		bcopy(mtod(m, u_int *), &loop, sizeof(loop));
1955		if (loop > 1) {
1956			error = EINVAL;
1957			break;
1958		}
1959		im6o->im6o_multicast_loop = loop;
1960		break;
1961
1962	case IPV6_JOIN_GROUP:
1963		/*
1964		 * Add a multicast group membership.
1965		 * Group must be a valid IP6 multicast address.
1966		 */
1967		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1968			error = EINVAL;
1969			break;
1970		}
1971		mreq = mtod(m, struct ipv6_mreq *);
1972		if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1973			/*
1974			 * We use the unspecified address to specify to accept
1975			 * all multicast addresses. Only super user is allowed
1976			 * to do this.
1977			 */
1978			if (suser(p))
1979			{
1980				error = EACCES;
1981				break;
1982			}
1983		} else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1984			error = EINVAL;
1985			break;
1986		}
1987
1988		/*
1989		 * If the interface is specified, validate it.
1990		 */
1991		if (mreq->ipv6mr_interface < 0
1992		 || if_index < mreq->ipv6mr_interface) {
1993			error = ENXIO;	/* XXX EINVAL? */
1994			break;
1995		}
1996		/*
1997		 * If no interface was explicitly specified, choose an
1998		 * appropriate one according to the given multicast address.
1999		 */
2000		if (mreq->ipv6mr_interface == 0) {
2001			/*
2002			 * If the multicast address is in node-local scope,
2003			 * the interface should be a loopback interface.
2004			 * Otherwise, look up the routing table for the
2005			 * address, and choose the outgoing interface.
2006			 *   XXX: is it a good approach?
2007			 */
2008			if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) {
2009				ifp = &loif[0];
2010			} else {
2011				ro.ro_rt = NULL;
2012				dst = (struct sockaddr_in6 *)&ro.ro_dst;
2013				bzero(dst, sizeof(*dst));
2014				dst->sin6_len = sizeof(struct sockaddr_in6);
2015				dst->sin6_family = AF_INET6;
2016				dst->sin6_addr = mreq->ipv6mr_multiaddr;
2017				rtalloc((struct route *)&ro);
2018				if (ro.ro_rt == NULL) {
2019					error = EADDRNOTAVAIL;
2020					break;
2021				}
2022				ifp = ro.ro_rt->rt_ifp;
2023				rtfree(ro.ro_rt);
2024			}
2025		} else
2026			ifp = ifindex2ifnet[mreq->ipv6mr_interface];
2027
2028		/*
2029		 * See if we found an interface, and confirm that it
2030		 * supports multicast
2031		 */
2032		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2033			error = EADDRNOTAVAIL;
2034			break;
2035		}
2036		/*
2037		 * Put interface index into the multicast address,
2038		 * if the address has link-local scope.
2039		 */
2040		if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
2041			mreq->ipv6mr_multiaddr.s6_addr16[1]
2042				= htons(mreq->ipv6mr_interface);
2043		}
2044		/*
2045		 * See if the membership already exists.
2046		 */
2047		for (imm = im6o->im6o_memberships.lh_first;
2048		     imm != NULL; imm = imm->i6mm_chain.le_next)
2049			if (imm->i6mm_maddr->in6m_ifp == ifp &&
2050			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2051					       &mreq->ipv6mr_multiaddr))
2052				break;
2053		if (imm != NULL) {
2054			error = EADDRINUSE;
2055			break;
2056		}
2057		/*
2058		 * Everything looks good; add a new record to the multicast
2059		 * address list for the given interface.
2060		 */
2061		imm = malloc(sizeof(*imm), M_IPMADDR, M_WAITOK);
2062		if (imm == NULL) {
2063			error = ENOBUFS;
2064			break;
2065		}
2066		if ((imm->i6mm_maddr =
2067		     in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) {
2068			free(imm, M_IPMADDR);
2069			break;
2070		}
2071		LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
2072		break;
2073
2074	case IPV6_LEAVE_GROUP:
2075		/*
2076		 * Drop a multicast group membership.
2077		 * Group must be a valid IP6 multicast address.
2078		 */
2079		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
2080			error = EINVAL;
2081			break;
2082		}
2083		mreq = mtod(m, struct ipv6_mreq *);
2084		if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
2085			if (suser(p)) {
2086				error = EACCES;
2087				break;
2088			}
2089		} else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
2090			error = EINVAL;
2091			break;
2092		}
2093		/*
2094		 * If an interface address was specified, get a pointer
2095		 * to its ifnet structure.
2096		 */
2097		if (mreq->ipv6mr_interface < 0
2098		 || if_index < mreq->ipv6mr_interface) {
2099			error = ENXIO;	/* XXX EINVAL? */
2100			break;
2101		}
2102		ifp = ifindex2ifnet[mreq->ipv6mr_interface];
2103		/*
2104		 * Put interface index into the multicast address,
2105		 * if the address has link-local scope.
2106		 */
2107		if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
2108			mreq->ipv6mr_multiaddr.s6_addr16[1]
2109				= htons(mreq->ipv6mr_interface);
2110		}
2111		/*
2112		 * Find the membership in the membership list.
2113		 */
2114		for (imm = im6o->im6o_memberships.lh_first;
2115		     imm != NULL; imm = imm->i6mm_chain.le_next) {
2116			if ((ifp == NULL ||
2117			     imm->i6mm_maddr->in6m_ifp == ifp) &&
2118			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2119					       &mreq->ipv6mr_multiaddr))
2120				break;
2121		}
2122		if (imm == NULL) {
2123			/* Unable to resolve interface */
2124			error = EADDRNOTAVAIL;
2125			break;
2126		}
2127		/*
2128		 * Give up the multicast address record to which the
2129		 * membership points.
2130		 */
2131		LIST_REMOVE(imm, i6mm_chain);
2132		in6_delmulti(imm->i6mm_maddr);
2133		free(imm, M_IPMADDR);
2134		break;
2135
2136	default:
2137		error = EOPNOTSUPP;
2138		break;
2139	}
2140
2141	/*
2142	 * If all options have default values, no need to keep the mbuf.
2143	 */
2144	if (im6o->im6o_multicast_ifp == NULL &&
2145	    im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
2146	    im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2147	    im6o->im6o_memberships.lh_first == NULL) {
2148		free(*im6op, M_IPMOPTS);
2149		*im6op = NULL;
2150	}
2151
2152	return(error);
2153}
2154
2155/*
2156 * Return the IP6 multicast options in response to user getsockopt().
2157 */
2158static int
2159ip6_getmoptions(optname, im6o, mp)
2160	int optname;
2161	struct ip6_moptions *im6o;
2162	struct mbuf **mp;
2163{
2164	u_int *hlim, *loop, *ifindex;
2165
2166	*mp = m_get(M_TRYWAIT, MT_HEADER);		/*XXX*/
2167
2168	switch (optname) {
2169
2170	case IPV6_MULTICAST_IF:
2171		ifindex = mtod(*mp, u_int *);
2172		(*mp)->m_len = sizeof(u_int);
2173		if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
2174			*ifindex = 0;
2175		else
2176			*ifindex = im6o->im6o_multicast_ifp->if_index;
2177		return(0);
2178
2179	case IPV6_MULTICAST_HOPS:
2180		hlim = mtod(*mp, u_int *);
2181		(*mp)->m_len = sizeof(u_int);
2182		if (im6o == NULL)
2183			*hlim = ip6_defmcasthlim;
2184		else
2185			*hlim = im6o->im6o_multicast_hlim;
2186		return(0);
2187
2188	case IPV6_MULTICAST_LOOP:
2189		loop = mtod(*mp, u_int *);
2190		(*mp)->m_len = sizeof(u_int);
2191		if (im6o == NULL)
2192			*loop = ip6_defmcasthlim;
2193		else
2194			*loop = im6o->im6o_multicast_loop;
2195		return(0);
2196
2197	default:
2198		return(EOPNOTSUPP);
2199	}
2200}
2201
2202/*
2203 * Discard the IP6 multicast options.
2204 */
2205void
2206ip6_freemoptions(im6o)
2207	struct ip6_moptions *im6o;
2208{
2209	struct in6_multi_mship *imm;
2210
2211	if (im6o == NULL)
2212		return;
2213
2214	while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
2215		LIST_REMOVE(imm, i6mm_chain);
2216		if (imm->i6mm_maddr)
2217			in6_delmulti(imm->i6mm_maddr);
2218		free(imm, M_IPMADDR);
2219	}
2220	free(im6o, M_IPMOPTS);
2221}
2222
2223/*
2224 * Set IPv6 outgoing packet options based on advanced API.
2225 */
2226int
2227ip6_setpktoptions(control, opt, priv, needcopy)
2228	struct mbuf *control;
2229	struct ip6_pktopts *opt;
2230	int priv, needcopy;
2231{
2232	struct cmsghdr *cm = 0;
2233
2234	if (control == 0 || opt == 0)
2235		return(EINVAL);
2236
2237	init_ip6pktopts(opt);
2238
2239	/*
2240	 * XXX: Currently, we assume all the optional information is stored
2241	 * in a single mbuf.
2242	 */
2243	if (control->m_next)
2244		return(EINVAL);
2245
2246	for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2247		     control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2248		cm = mtod(control, struct cmsghdr *);
2249		if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2250			return(EINVAL);
2251		if (cm->cmsg_level != IPPROTO_IPV6)
2252			continue;
2253
2254		/*
2255		 * XXX should check if RFC2292 API is mixed with 2292bis API
2256		 */
2257		switch (cm->cmsg_type) {
2258		case IPV6_PKTINFO:
2259			if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo)))
2260				return(EINVAL);
2261			if (needcopy) {
2262				/* XXX: Is it really WAITOK? */
2263				opt->ip6po_pktinfo =
2264					malloc(sizeof(struct in6_pktinfo),
2265					       M_IP6OPT, M_WAITOK);
2266				bcopy(CMSG_DATA(cm), opt->ip6po_pktinfo,
2267				    sizeof(struct in6_pktinfo));
2268			} else
2269				opt->ip6po_pktinfo =
2270					(struct in6_pktinfo *)CMSG_DATA(cm);
2271			if (opt->ip6po_pktinfo->ipi6_ifindex &&
2272			    IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr))
2273				opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] =
2274					htons(opt->ip6po_pktinfo->ipi6_ifindex);
2275
2276			if (opt->ip6po_pktinfo->ipi6_ifindex > if_index
2277			 || opt->ip6po_pktinfo->ipi6_ifindex < 0) {
2278				return(ENXIO);
2279			}
2280
2281			/*
2282			 * Check if the requested source address is indeed a
2283			 * unicast address assigned to the node, and can be
2284			 * used as the packet's source address.
2285			 */
2286			if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) {
2287				struct in6_ifaddr *ia6;
2288				struct sockaddr_in6 sin6;
2289
2290				bzero(&sin6, sizeof(sin6));
2291				sin6.sin6_len = sizeof(sin6);
2292				sin6.sin6_family = AF_INET6;
2293				sin6.sin6_addr =
2294					opt->ip6po_pktinfo->ipi6_addr;
2295				ia6 = (struct in6_ifaddr *)ifa_ifwithaddr(sin6tosa(&sin6));
2296				if (ia6 == NULL ||
2297				    (ia6->ia6_flags & (IN6_IFF_ANYCAST |
2298						       IN6_IFF_NOTREADY)) != 0)
2299					return(EADDRNOTAVAIL);
2300			}
2301			break;
2302
2303		case IPV6_HOPLIMIT:
2304			if (cm->cmsg_len != CMSG_LEN(sizeof(int)))
2305				return(EINVAL);
2306
2307			opt->ip6po_hlim = *(int *)CMSG_DATA(cm);
2308			if (opt->ip6po_hlim < -1 || opt->ip6po_hlim > 255)
2309				return(EINVAL);
2310			break;
2311
2312		case IPV6_NEXTHOP:
2313			if (!priv)
2314				return(EPERM);
2315
2316			if (cm->cmsg_len < sizeof(u_char) ||
2317			    /* check if cmsg_len is large enough for sa_len */
2318			    cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm)))
2319				return(EINVAL);
2320
2321			if (needcopy) {
2322				opt->ip6po_nexthop =
2323					malloc(*CMSG_DATA(cm),
2324					       M_IP6OPT, M_WAITOK);
2325				bcopy(CMSG_DATA(cm),
2326				      opt->ip6po_nexthop,
2327				      *CMSG_DATA(cm));
2328			} else
2329				opt->ip6po_nexthop =
2330					(struct sockaddr *)CMSG_DATA(cm);
2331			break;
2332
2333		case IPV6_HOPOPTS:
2334		{
2335			struct ip6_hbh *hbh;
2336			int hbhlen;
2337
2338			if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh)))
2339				return(EINVAL);
2340			hbh = (struct ip6_hbh *)CMSG_DATA(cm);
2341			hbhlen = (hbh->ip6h_len + 1) << 3;
2342			if (cm->cmsg_len != CMSG_LEN(hbhlen))
2343				return(EINVAL);
2344
2345			if (needcopy) {
2346				opt->ip6po_hbh =
2347					malloc(hbhlen, M_IP6OPT, M_WAITOK);
2348				bcopy(hbh, opt->ip6po_hbh, hbhlen);
2349			} else
2350				opt->ip6po_hbh = hbh;
2351			break;
2352		}
2353
2354		case IPV6_DSTOPTS:
2355		{
2356			struct ip6_dest *dest, **newdest;
2357			int destlen;
2358
2359			if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest)))
2360				return(EINVAL);
2361			dest = (struct ip6_dest *)CMSG_DATA(cm);
2362			destlen = (dest->ip6d_len + 1) << 3;
2363			if (cm->cmsg_len != CMSG_LEN(destlen))
2364				return(EINVAL);
2365
2366			/*
2367			 * The old advacned API is ambiguous on this
2368			 * point. Our approach is to determine the
2369			 * position based according to the existence
2370			 * of a routing header. Note, however, that
2371			 * this depends on the order of the extension
2372			 * headers in the ancillary data; the 1st part
2373			 * of the destination options header must
2374			 * appear before the routing header in the
2375			 * ancillary data, too.
2376			 * RFC2292bis solved the ambiguity by
2377			 * introducing separate cmsg types.
2378			 */
2379			if (opt->ip6po_rthdr == NULL)
2380				newdest = &opt->ip6po_dest1;
2381			else
2382				newdest = &opt->ip6po_dest2;
2383
2384			if (needcopy) {
2385				*newdest = malloc(destlen, M_IP6OPT, M_WAITOK);
2386				bcopy(dest, *newdest, destlen);
2387			} else
2388				*newdest = dest;
2389
2390			break;
2391		}
2392
2393		case IPV6_RTHDR:
2394		{
2395			struct ip6_rthdr *rth;
2396			int rthlen;
2397
2398			if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr)))
2399				return(EINVAL);
2400			rth = (struct ip6_rthdr *)CMSG_DATA(cm);
2401			rthlen = (rth->ip6r_len + 1) << 3;
2402			if (cm->cmsg_len != CMSG_LEN(rthlen))
2403				return(EINVAL);
2404
2405			switch (rth->ip6r_type) {
2406			case IPV6_RTHDR_TYPE_0:
2407				/* must contain one addr */
2408				if (rth->ip6r_len == 0)
2409					return(EINVAL);
2410				/* length must be even */
2411				if (rth->ip6r_len % 2)
2412					return(EINVAL);
2413				if (rth->ip6r_len / 2 != rth->ip6r_segleft)
2414					return(EINVAL);
2415				break;
2416			default:
2417				return(EINVAL);	/* not supported */
2418			}
2419
2420			if (needcopy) {
2421				opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT,
2422							  M_WAITOK);
2423				bcopy(rth, opt->ip6po_rthdr, rthlen);
2424			} else
2425				opt->ip6po_rthdr = rth;
2426
2427			break;
2428		}
2429
2430		default:
2431			return(ENOPROTOOPT);
2432		}
2433	}
2434
2435	return(0);
2436}
2437
2438/*
2439 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
2440 * packet to the input queue of a specified interface.  Note that this
2441 * calls the output routine of the loopback "driver", but with an interface
2442 * pointer that might NOT be &loif -- easier than replicating that code here.
2443 */
2444void
2445ip6_mloopback(ifp, m, dst)
2446	struct ifnet *ifp;
2447	struct mbuf *m;
2448	struct sockaddr_in6 *dst;
2449{
2450	struct mbuf *copym;
2451	struct ip6_hdr *ip6;
2452
2453	copym = m_copy(m, 0, M_COPYALL);
2454	if (copym == NULL)
2455		return;
2456
2457	/*
2458	 * Make sure to deep-copy IPv6 header portion in case the data
2459	 * is in an mbuf cluster, so that we can safely override the IPv6
2460	 * header portion later.
2461	 */
2462	if ((copym->m_flags & M_EXT) != 0 ||
2463	    copym->m_len < sizeof(struct ip6_hdr)) {
2464		copym = m_pullup(copym, sizeof(struct ip6_hdr));
2465		if (copym == NULL)
2466			return;
2467	}
2468
2469#ifdef DIAGNOSTIC
2470	if (copym->m_len < sizeof(*ip6)) {
2471		m_freem(copym);
2472		return;
2473	}
2474#endif
2475
2476	ip6 = mtod(copym, struct ip6_hdr *);
2477#ifndef SCOPEDROUTING
2478	/*
2479	 * clear embedded scope identifiers if necessary.
2480	 * in6_clearscope will touch the addresses only when necessary.
2481	 */
2482	in6_clearscope(&ip6->ip6_src);
2483	in6_clearscope(&ip6->ip6_dst);
2484#endif
2485
2486	(void)if_simloop(ifp, copym, dst->sin6_family, NULL);
2487}
2488
2489/*
2490 * Chop IPv6 header off from the payload.
2491 */
2492static int
2493ip6_splithdr(m, exthdrs)
2494	struct mbuf *m;
2495	struct ip6_exthdrs *exthdrs;
2496{
2497	struct mbuf *mh;
2498	struct ip6_hdr *ip6;
2499
2500	ip6 = mtod(m, struct ip6_hdr *);
2501	if (m->m_len > sizeof(*ip6)) {
2502		MGETHDR(mh, M_DONTWAIT, MT_HEADER);
2503		if (mh == 0) {
2504			m_freem(m);
2505			return ENOBUFS;
2506		}
2507		M_COPY_PKTHDR(mh, m);
2508		MH_ALIGN(mh, sizeof(*ip6));
2509		m->m_flags &= ~M_PKTHDR;
2510		m->m_len -= sizeof(*ip6);
2511		m->m_data += sizeof(*ip6);
2512		mh->m_next = m;
2513		m = mh;
2514		m->m_len = sizeof(*ip6);
2515		bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
2516	}
2517	exthdrs->ip6e_ip6 = m;
2518	return 0;
2519}
2520
2521/*
2522 * Compute IPv6 extension header length.
2523 */
2524int
2525ip6_optlen(in6p)
2526	struct in6pcb *in6p;
2527{
2528	int len;
2529
2530	if (!in6p->in6p_outputopts)
2531		return 0;
2532
2533	len = 0;
2534#define elen(x) \
2535    (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
2536
2537	len += elen(in6p->in6p_outputopts->ip6po_hbh);
2538	if (in6p->in6p_outputopts->ip6po_rthdr)
2539		/* dest1 is valid with rthdr only */
2540		len += elen(in6p->in6p_outputopts->ip6po_dest1);
2541	len += elen(in6p->in6p_outputopts->ip6po_rthdr);
2542	len += elen(in6p->in6p_outputopts->ip6po_dest2);
2543	return len;
2544#undef elen
2545}
2546