ip6_output.c revision 254804
1/*-
2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the project nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	$KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $
30 */
31
32/*-
33 * Copyright (c) 1982, 1986, 1988, 1990, 1993
34 *	The Regents of the University of California.  All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 *    notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 *    notice, this list of conditions and the following disclaimer in the
43 *    documentation and/or other materials provided with the distribution.
44 * 4. Neither the name of the University nor the names of its contributors
45 *    may be used to endorse or promote products derived from this software
46 *    without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
61 */
62
63#include <sys/cdefs.h>
64__FBSDID("$FreeBSD: head/sys/netinet6/ip6_output.c 254804 2013-08-24 19:51:18Z andre $");
65
66#include "opt_inet.h"
67#include "opt_inet6.h"
68#include "opt_ipfw.h"
69#include "opt_ipsec.h"
70#include "opt_sctp.h"
71#include "opt_route.h"
72
73#include <sys/param.h>
74#include <sys/kernel.h>
75#include <sys/malloc.h>
76#include <sys/mbuf.h>
77#include <sys/errno.h>
78#include <sys/priv.h>
79#include <sys/proc.h>
80#include <sys/protosw.h>
81#include <sys/socket.h>
82#include <sys/socketvar.h>
83#include <sys/syslog.h>
84#include <sys/ucred.h>
85
86#include <machine/in_cksum.h>
87
88#include <net/if.h>
89#include <net/netisr.h>
90#include <net/route.h>
91#include <net/pfil.h>
92#include <net/vnet.h>
93
94#include <netinet/in.h>
95#include <netinet/in_var.h>
96#include <netinet/ip_var.h>
97#include <netinet6/in6_var.h>
98#include <netinet/ip6.h>
99#include <netinet/icmp6.h>
100#include <netinet6/ip6_var.h>
101#include <netinet/in_pcb.h>
102#include <netinet/tcp_var.h>
103#include <netinet6/nd6.h>
104
105#ifdef IPSEC
106#include <netipsec/ipsec.h>
107#include <netipsec/ipsec6.h>
108#include <netipsec/key.h>
109#include <netinet6/ip6_ipsec.h>
110#endif /* IPSEC */
111#ifdef SCTP
112#include <netinet/sctp.h>
113#include <netinet/sctp_crc32.h>
114#endif
115
116#include <netinet6/ip6protosw.h>
117#include <netinet6/scope6_var.h>
118
119#ifdef FLOWTABLE
120#include <net/flowtable.h>
121#endif
122
123extern int in6_mcast_loop;
124
125struct ip6_exthdrs {
126	struct mbuf *ip6e_ip6;
127	struct mbuf *ip6e_hbh;
128	struct mbuf *ip6e_dest1;
129	struct mbuf *ip6e_rthdr;
130	struct mbuf *ip6e_dest2;
131};
132
133static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
134			   struct ucred *, int);
135static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *,
136	struct socket *, struct sockopt *);
137static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
138static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *,
139	struct ucred *, int, int, int);
140
141static int ip6_copyexthdr(struct mbuf **, caddr_t, int);
142static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
143	struct ip6_frag **);
144static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
145static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
146static int ip6_getpmtu(struct route_in6 *, struct route_in6 *,
147	struct ifnet *, struct in6_addr *, u_long *, int *, u_int);
148static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
149
150
151/*
152 * Make an extension header from option data.  hp is the source, and
153 * mp is the destination.
154 */
155#define MAKE_EXTHDR(hp, mp)						\
156    do {								\
157	if (hp) {							\
158		struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
159		error = ip6_copyexthdr((mp), (caddr_t)(hp),		\
160		    ((eh)->ip6e_len + 1) << 3);				\
161		if (error)						\
162			goto freehdrs;					\
163	}								\
164    } while (/*CONSTCOND*/ 0)
165
166/*
167 * Form a chain of extension headers.
168 * m is the extension header mbuf
169 * mp is the previous mbuf in the chain
170 * p is the next header
171 * i is the type of option.
172 */
173#define MAKE_CHAIN(m, mp, p, i)\
174    do {\
175	if (m) {\
176		if (!hdrsplit) \
177			panic("assumption failed: hdr not split"); \
178		*mtod((m), u_char *) = *(p);\
179		*(p) = (i);\
180		p = mtod((m), u_char *);\
181		(m)->m_next = (mp)->m_next;\
182		(mp)->m_next = (m);\
183		(mp) = (m);\
184	}\
185    } while (/*CONSTCOND*/ 0)
186
187static void
188in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset)
189{
190	u_short csum;
191
192	csum = in_cksum_skip(m, offset + plen, offset);
193	if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0)
194		csum = 0xffff;
195	offset += m->m_pkthdr.csum_data;	/* checksum offset */
196
197	if (offset + sizeof(u_short) > m->m_len) {
198		printf("%s: delayed m_pullup, m->len: %d plen %u off %u "
199		    "csum_flags=%b\n", __func__, m->m_len, plen, offset,
200		    (int)m->m_pkthdr.csum_flags, CSUM_BITS);
201		/*
202		 * XXX this should not happen, but if it does, the correct
203		 * behavior may be to insert the checksum in the appropriate
204		 * next mbuf in the chain.
205		 */
206		return;
207	}
208	*(u_short *)(m->m_data + offset) = csum;
209}
210
211/*
212 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
213 * header (with pri, len, nxt, hlim, src, dst).
214 * This function may modify ver and hlim only.
215 * The mbuf chain containing the packet will be freed.
216 * The mbuf opt, if present, will not be freed.
217 * If route_in6 ro is present and has ro_rt initialized, route lookup would be
218 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL,
219 * then result of route lookup is stored in ro->ro_rt.
220 *
221 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
222 * nd_ifinfo.linkmtu is u_int32_t.  so we use u_long to hold largest one,
223 * which is rt_rmx.rmx_mtu.
224 *
225 * ifpp - XXX: just for statistics
226 */
227int
228ip6_output(struct mbuf *m0, struct ip6_pktopts *opt,
229    struct route_in6 *ro, int flags, struct ip6_moptions *im6o,
230    struct ifnet **ifpp, struct inpcb *inp)
231{
232	struct ip6_hdr *ip6, *mhip6;
233	struct ifnet *ifp, *origifp;
234	struct mbuf *m = m0;
235	struct mbuf *mprev = NULL;
236	int hlen, tlen, len, off;
237	struct route_in6 ip6route;
238	struct rtentry *rt = NULL;
239	struct sockaddr_in6 *dst, src_sa, dst_sa;
240	struct in6_addr odst;
241	int error = 0;
242	struct in6_ifaddr *ia = NULL;
243	u_long mtu;
244	int alwaysfrag, dontfrag;
245	u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
246	struct ip6_exthdrs exthdrs;
247	struct in6_addr finaldst, src0, dst0;
248	u_int32_t zone;
249	struct route_in6 *ro_pmtu = NULL;
250	int hdrsplit = 0;
251	int needipsec = 0;
252	int sw_csum, tso;
253#ifdef IPSEC
254	struct ipsec_output_state state;
255	struct ip6_rthdr *rh = NULL;
256	int needipsectun = 0;
257	int segleft_org = 0;
258	struct secpolicy *sp = NULL;
259#endif /* IPSEC */
260	struct m_tag *fwd_tag = NULL;
261
262	ip6 = mtod(m, struct ip6_hdr *);
263	if (ip6 == NULL) {
264		printf ("ip6 is NULL");
265		goto bad;
266	}
267
268	if (inp != NULL)
269		M_SETFIB(m, inp->inp_inc.inc_fibnum);
270
271	finaldst = ip6->ip6_dst;
272	bzero(&exthdrs, sizeof(exthdrs));
273	if (opt) {
274		/* Hop-by-Hop options header */
275		MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
276		/* Destination options header(1st part) */
277		if (opt->ip6po_rthdr) {
278			/*
279			 * Destination options header(1st part)
280			 * This only makes sense with a routing header.
281			 * See Section 9.2 of RFC 3542.
282			 * Disabling this part just for MIP6 convenience is
283			 * a bad idea.  We need to think carefully about a
284			 * way to make the advanced API coexist with MIP6
285			 * options, which might automatically be inserted in
286			 * the kernel.
287			 */
288			MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
289		}
290		/* Routing header */
291		MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
292		/* Destination options header(2nd part) */
293		MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
294	}
295
296#ifdef IPSEC
297	/*
298	 * IPSec checking which handles several cases.
299	 * FAST IPSEC: We re-injected the packet.
300	 */
301	switch(ip6_ipsec_output(&m, inp, &flags, &error, &ifp, &sp))
302	{
303	case 1:                 /* Bad packet */
304		goto freehdrs;
305	case -1:                /* Do IPSec */
306		needipsec = 1;
307		/*
308		 * Do delayed checksums now, as we may send before returning.
309		 */
310		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
311			plen = m->m_pkthdr.len - sizeof(*ip6);
312			in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr));
313			m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6;
314		}
315#ifdef SCTP
316		if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) {
317			sctp_delayed_cksum(m, sizeof(struct ip6_hdr));
318			m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6;
319		}
320#endif
321	case 0:                 /* No IPSec */
322	default:
323		break;
324	}
325#endif /* IPSEC */
326
327	/*
328	 * Calculate the total length of the extension header chain.
329	 * Keep the length of the unfragmentable part for fragmentation.
330	 */
331	optlen = 0;
332	if (exthdrs.ip6e_hbh)
333		optlen += exthdrs.ip6e_hbh->m_len;
334	if (exthdrs.ip6e_dest1)
335		optlen += exthdrs.ip6e_dest1->m_len;
336	if (exthdrs.ip6e_rthdr)
337		optlen += exthdrs.ip6e_rthdr->m_len;
338	unfragpartlen = optlen + sizeof(struct ip6_hdr);
339
340	/* NOTE: we don't add AH/ESP length here. do that later. */
341	if (exthdrs.ip6e_dest2)
342		optlen += exthdrs.ip6e_dest2->m_len;
343
344	/*
345	 * If we need IPsec, or there is at least one extension header,
346	 * separate IP6 header from the payload.
347	 */
348	if ((needipsec || optlen) && !hdrsplit) {
349		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
350			m = NULL;
351			goto freehdrs;
352		}
353		m = exthdrs.ip6e_ip6;
354		hdrsplit++;
355	}
356
357	/* adjust pointer */
358	ip6 = mtod(m, struct ip6_hdr *);
359
360	/* adjust mbuf packet header length */
361	m->m_pkthdr.len += optlen;
362	plen = m->m_pkthdr.len - sizeof(*ip6);
363
364	/* If this is a jumbo payload, insert a jumbo payload option. */
365	if (plen > IPV6_MAXPACKET) {
366		if (!hdrsplit) {
367			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
368				m = NULL;
369				goto freehdrs;
370			}
371			m = exthdrs.ip6e_ip6;
372			hdrsplit++;
373		}
374		/* adjust pointer */
375		ip6 = mtod(m, struct ip6_hdr *);
376		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
377			goto freehdrs;
378		ip6->ip6_plen = 0;
379	} else
380		ip6->ip6_plen = htons(plen);
381
382	/*
383	 * Concatenate headers and fill in next header fields.
384	 * Here we have, on "m"
385	 *	IPv6 payload
386	 * and we insert headers accordingly.  Finally, we should be getting:
387	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
388	 *
389	 * during the header composing process, "m" points to IPv6 header.
390	 * "mprev" points to an extension header prior to esp.
391	 */
392	u_char *nexthdrp = &ip6->ip6_nxt;
393	mprev = m;
394
395	/*
396	 * we treat dest2 specially.  this makes IPsec processing
397	 * much easier.  the goal here is to make mprev point the
398	 * mbuf prior to dest2.
399	 *
400	 * result: IPv6 dest2 payload
401	 * m and mprev will point to IPv6 header.
402	 */
403	if (exthdrs.ip6e_dest2) {
404		if (!hdrsplit)
405			panic("assumption failed: hdr not split");
406		exthdrs.ip6e_dest2->m_next = m->m_next;
407		m->m_next = exthdrs.ip6e_dest2;
408		*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
409		ip6->ip6_nxt = IPPROTO_DSTOPTS;
410	}
411
412	/*
413	 * result: IPv6 hbh dest1 rthdr dest2 payload
414	 * m will point to IPv6 header.  mprev will point to the
415	 * extension header prior to dest2 (rthdr in the above case).
416	 */
417	MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
418	MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
419		   IPPROTO_DSTOPTS);
420	MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
421		   IPPROTO_ROUTING);
422
423#ifdef IPSEC
424	if (!needipsec)
425		goto skip_ipsec2;
426
427	/*
428	 * pointers after IPsec headers are not valid any more.
429	 * other pointers need a great care too.
430	 * (IPsec routines should not mangle mbufs prior to AH/ESP)
431	 */
432	exthdrs.ip6e_dest2 = NULL;
433
434	if (exthdrs.ip6e_rthdr) {
435		rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
436		segleft_org = rh->ip6r_segleft;
437		rh->ip6r_segleft = 0;
438	}
439
440	bzero(&state, sizeof(state));
441	state.m = m;
442	error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
443				    &needipsectun);
444	m = state.m;
445	if (error == EJUSTRETURN) {
446		/*
447		 * We had a SP with a level of 'use' and no SA. We
448		 * will just continue to process the packet without
449		 * IPsec processing.
450		 */
451		;
452	} else if (error) {
453		/* mbuf is already reclaimed in ipsec6_output_trans. */
454		m = NULL;
455		switch (error) {
456		case EHOSTUNREACH:
457		case ENETUNREACH:
458		case EMSGSIZE:
459		case ENOBUFS:
460		case ENOMEM:
461			break;
462		default:
463			printf("[%s:%d] (ipsec): error code %d\n",
464			    __func__, __LINE__, error);
465			/* FALLTHROUGH */
466		case ENOENT:
467			/* don't show these error codes to the user */
468			error = 0;
469			break;
470		}
471		goto bad;
472	} else if (!needipsectun) {
473		/*
474		 * In the FAST IPSec case we have already
475		 * re-injected the packet and it has been freed
476		 * by the ipsec_done() function.  So, just clean
477		 * up after ourselves.
478		 */
479		m = NULL;
480		goto done;
481	}
482	if (exthdrs.ip6e_rthdr) {
483		/* ah6_output doesn't modify mbuf chain */
484		rh->ip6r_segleft = segleft_org;
485	}
486skip_ipsec2:;
487#endif /* IPSEC */
488
489	/*
490	 * If there is a routing header, discard the packet.
491	 */
492	if (exthdrs.ip6e_rthdr) {
493		 error = EINVAL;
494		 goto bad;
495	}
496
497	/* Source address validation */
498	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
499	    (flags & IPV6_UNSPECSRC) == 0) {
500		error = EOPNOTSUPP;
501		IP6STAT_INC(ip6s_badscope);
502		goto bad;
503	}
504	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
505		error = EOPNOTSUPP;
506		IP6STAT_INC(ip6s_badscope);
507		goto bad;
508	}
509
510	IP6STAT_INC(ip6s_localout);
511
512	/*
513	 * Route packet.
514	 */
515	if (ro == 0) {
516		ro = &ip6route;
517		bzero((caddr_t)ro, sizeof(*ro));
518	}
519	ro_pmtu = ro;
520	if (opt && opt->ip6po_rthdr)
521		ro = &opt->ip6po_route;
522	dst = (struct sockaddr_in6 *)&ro->ro_dst;
523#ifdef FLOWTABLE
524	if (ro->ro_rt == NULL) {
525		struct flentry *fle;
526
527		/*
528		 * The flow table returns route entries valid for up to 30
529		 * seconds; we rely on the remainder of ip_output() taking no
530		 * longer than that long for the stability of ro_rt.  The
531		 * flow ID assignment must have happened before this point.
532		 */
533		fle = flowtable_lookup_mbuf(V_ip6_ft, m, AF_INET6);
534		if (fle != NULL)
535			flow_to_route_in6(fle, ro);
536	}
537#endif
538again:
539	/*
540	 * if specified, try to fill in the traffic class field.
541	 * do not override if a non-zero value is already set.
542	 * we check the diffserv field and the ecn field separately.
543	 */
544	if (opt && opt->ip6po_tclass >= 0) {
545		int mask = 0;
546
547		if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
548			mask |= 0xfc;
549		if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
550			mask |= 0x03;
551		if (mask != 0)
552			ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
553	}
554
555	/* fill in or override the hop limit field, if necessary. */
556	if (opt && opt->ip6po_hlim != -1)
557		ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
558	else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
559		if (im6o != NULL)
560			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
561		else
562			ip6->ip6_hlim = V_ip6_defmcasthlim;
563	}
564
565#ifdef IPSEC
566	/*
567	 * We may re-inject packets into the stack here.
568	 */
569	if (needipsec && needipsectun) {
570		struct ipsec_output_state state;
571
572		/*
573		 * All the extension headers will become inaccessible
574		 * (since they can be encrypted).
575		 * Don't panic, we need no more updates to extension headers
576		 * on inner IPv6 packet (since they are now encapsulated).
577		 *
578		 * IPv6 [ESP|AH] IPv6 [extension headers] payload
579		 */
580		bzero(&exthdrs, sizeof(exthdrs));
581		exthdrs.ip6e_ip6 = m;
582
583		bzero(&state, sizeof(state));
584		state.m = m;
585		state.ro = (struct route *)ro;
586		state.dst = (struct sockaddr *)dst;
587
588		error = ipsec6_output_tunnel(&state, sp, flags);
589
590		m = state.m;
591		ro = (struct route_in6 *)state.ro;
592		dst = (struct sockaddr_in6 *)state.dst;
593		if (error == EJUSTRETURN) {
594			/*
595			 * We had a SP with a level of 'use' and no SA. We
596			 * will just continue to process the packet without
597			 * IPsec processing.
598			 */
599			;
600		} else if (error) {
601			/* mbuf is already reclaimed in ipsec6_output_tunnel. */
602			m0 = m = NULL;
603			m = NULL;
604			switch (error) {
605			case EHOSTUNREACH:
606			case ENETUNREACH:
607			case EMSGSIZE:
608			case ENOBUFS:
609			case ENOMEM:
610				break;
611			default:
612				printf("[%s:%d] (ipsec): error code %d\n",
613				    __func__, __LINE__, error);
614				/* FALLTHROUGH */
615			case ENOENT:
616				/* don't show these error codes to the user */
617				error = 0;
618				break;
619			}
620			goto bad;
621		} else {
622			/*
623			 * In the FAST IPSec case we have already
624			 * re-injected the packet and it has been freed
625			 * by the ipsec_done() function.  So, just clean
626			 * up after ourselves.
627			 */
628			m = NULL;
629			goto done;
630		}
631
632		exthdrs.ip6e_ip6 = m;
633	}
634#endif /* IPSEC */
635
636	/* adjust pointer */
637	ip6 = mtod(m, struct ip6_hdr *);
638
639	if (ro->ro_rt && fwd_tag == NULL) {
640		rt = ro->ro_rt;
641		ifp = ro->ro_rt->rt_ifp;
642	} else {
643		if (fwd_tag == NULL) {
644			bzero(&dst_sa, sizeof(dst_sa));
645			dst_sa.sin6_family = AF_INET6;
646			dst_sa.sin6_len = sizeof(dst_sa);
647			dst_sa.sin6_addr = ip6->ip6_dst;
648		}
649		error = in6_selectroute_fib(&dst_sa, opt, im6o, ro, &ifp,
650		    &rt, inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m));
651		if (error != 0) {
652			if (ifp != NULL)
653				in6_ifstat_inc(ifp, ifs6_out_discard);
654			goto bad;
655		}
656	}
657	if (rt == NULL) {
658		/*
659		 * If in6_selectroute() does not return a route entry,
660		 * dst may not have been updated.
661		 */
662		*dst = dst_sa;	/* XXX */
663	}
664
665	/*
666	 * then rt (for unicast) and ifp must be non-NULL valid values.
667	 */
668	if ((flags & IPV6_FORWARDING) == 0) {
669		/* XXX: the FORWARDING flag can be set for mrouting. */
670		in6_ifstat_inc(ifp, ifs6_out_request);
671	}
672	if (rt != NULL) {
673		ia = (struct in6_ifaddr *)(rt->rt_ifa);
674		rt->rt_use++;
675	}
676
677
678	/*
679	 * The outgoing interface must be in the zone of source and
680	 * destination addresses.
681	 */
682	origifp = ifp;
683
684	src0 = ip6->ip6_src;
685	if (in6_setscope(&src0, origifp, &zone))
686		goto badscope;
687	bzero(&src_sa, sizeof(src_sa));
688	src_sa.sin6_family = AF_INET6;
689	src_sa.sin6_len = sizeof(src_sa);
690	src_sa.sin6_addr = ip6->ip6_src;
691	if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
692		goto badscope;
693
694	dst0 = ip6->ip6_dst;
695	if (in6_setscope(&dst0, origifp, &zone))
696		goto badscope;
697	/* re-initialize to be sure */
698	bzero(&dst_sa, sizeof(dst_sa));
699	dst_sa.sin6_family = AF_INET6;
700	dst_sa.sin6_len = sizeof(dst_sa);
701	dst_sa.sin6_addr = ip6->ip6_dst;
702	if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) {
703		goto badscope;
704	}
705
706	/* We should use ia_ifp to support the case of
707	 * sending packets to an address of our own.
708	 */
709	if (ia != NULL && ia->ia_ifp)
710		ifp = ia->ia_ifp;
711
712	/* scope check is done. */
713	goto routefound;
714
715  badscope:
716	IP6STAT_INC(ip6s_badscope);
717	in6_ifstat_inc(origifp, ifs6_out_discard);
718	if (error == 0)
719		error = EHOSTUNREACH; /* XXX */
720	goto bad;
721
722  routefound:
723	if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
724		if (opt && opt->ip6po_nextroute.ro_rt) {
725			/*
726			 * The nexthop is explicitly specified by the
727			 * application.  We assume the next hop is an IPv6
728			 * address.
729			 */
730			dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
731		}
732		else if ((rt->rt_flags & RTF_GATEWAY))
733			dst = (struct sockaddr_in6 *)rt->rt_gateway;
734	}
735
736	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
737		m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
738	} else {
739		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
740		in6_ifstat_inc(ifp, ifs6_out_mcast);
741		/*
742		 * Confirm that the outgoing interface supports multicast.
743		 */
744		if (!(ifp->if_flags & IFF_MULTICAST)) {
745			IP6STAT_INC(ip6s_noroute);
746			in6_ifstat_inc(ifp, ifs6_out_discard);
747			error = ENETUNREACH;
748			goto bad;
749		}
750		if ((im6o == NULL && in6_mcast_loop) ||
751		    (im6o && im6o->im6o_multicast_loop)) {
752			/*
753			 * Loop back multicast datagram if not expressly
754			 * forbidden to do so, even if we have not joined
755			 * the address; protocols will filter it later,
756			 * thus deferring a hash lookup and lock acquisition
757			 * at the expense of an m_copym().
758			 */
759			ip6_mloopback(ifp, m, dst);
760		} else {
761			/*
762			 * If we are acting as a multicast router, perform
763			 * multicast forwarding as if the packet had just
764			 * arrived on the interface to which we are about
765			 * to send.  The multicast forwarding function
766			 * recursively calls this function, using the
767			 * IPV6_FORWARDING flag to prevent infinite recursion.
768			 *
769			 * Multicasts that are looped back by ip6_mloopback(),
770			 * above, will be forwarded by the ip6_input() routine,
771			 * if necessary.
772			 */
773			if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
774				/*
775				 * XXX: ip6_mforward expects that rcvif is NULL
776				 * when it is called from the originating path.
777				 * However, it may not always be the case.
778				 */
779				m->m_pkthdr.rcvif = NULL;
780				if (ip6_mforward(ip6, ifp, m) != 0) {
781					m_freem(m);
782					goto done;
783				}
784			}
785		}
786		/*
787		 * Multicasts with a hoplimit of zero may be looped back,
788		 * above, but must not be transmitted on a network.
789		 * Also, multicasts addressed to the loopback interface
790		 * are not sent -- the above call to ip6_mloopback() will
791		 * loop back a copy if this host actually belongs to the
792		 * destination group on the loopback interface.
793		 */
794		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
795		    IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
796			m_freem(m);
797			goto done;
798		}
799	}
800
801	/*
802	 * Fill the outgoing inteface to tell the upper layer
803	 * to increment per-interface statistics.
804	 */
805	if (ifpp)
806		*ifpp = ifp;
807
808	/* Determine path MTU. */
809	if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
810	    &alwaysfrag, inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m))) != 0)
811		goto bad;
812
813	/*
814	 * The caller of this function may specify to use the minimum MTU
815	 * in some cases.
816	 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
817	 * setting.  The logic is a bit complicated; by default, unicast
818	 * packets will follow path MTU while multicast packets will be sent at
819	 * the minimum MTU.  If IP6PO_MINMTU_ALL is specified, all packets
820	 * including unicast ones will be sent at the minimum MTU.  Multicast
821	 * packets will always be sent at the minimum MTU unless
822	 * IP6PO_MINMTU_DISABLE is explicitly specified.
823	 * See RFC 3542 for more details.
824	 */
825	if (mtu > IPV6_MMTU) {
826		if ((flags & IPV6_MINMTU))
827			mtu = IPV6_MMTU;
828		else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
829			mtu = IPV6_MMTU;
830		else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
831			 (opt == NULL ||
832			  opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
833			mtu = IPV6_MMTU;
834		}
835	}
836
837	/*
838	 * clear embedded scope identifiers if necessary.
839	 * in6_clearscope will touch the addresses only when necessary.
840	 */
841	in6_clearscope(&ip6->ip6_src);
842	in6_clearscope(&ip6->ip6_dst);
843
844	/*
845	 * If the outgoing packet contains a hop-by-hop options header,
846	 * it must be examined and processed even by the source node.
847	 * (RFC 2460, section 4.)
848	 */
849	if (exthdrs.ip6e_hbh) {
850		struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
851		u_int32_t dummy; /* XXX unused */
852		u_int32_t plen = 0; /* XXX: ip6_process will check the value */
853
854#ifdef DIAGNOSTIC
855		if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len)
856			panic("ip6e_hbh is not contiguous");
857#endif
858		/*
859		 *  XXX: if we have to send an ICMPv6 error to the sender,
860		 *       we need the M_LOOP flag since icmp6_error() expects
861		 *       the IPv6 and the hop-by-hop options header are
862		 *       contiguous unless the flag is set.
863		 */
864		m->m_flags |= M_LOOP;
865		m->m_pkthdr.rcvif = ifp;
866		if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
867		    ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
868		    &dummy, &plen) < 0) {
869			/* m was already freed at this point */
870			error = EINVAL;/* better error? */
871			goto done;
872		}
873		m->m_flags &= ~M_LOOP; /* XXX */
874		m->m_pkthdr.rcvif = NULL;
875	}
876
877	/* Jump over all PFIL processing if hooks are not active. */
878	if (!PFIL_HOOKED(&V_inet6_pfil_hook))
879		goto passout;
880
881	odst = ip6->ip6_dst;
882	/* Run through list of hooks for output packets. */
883	error = pfil_run_hooks(&V_inet6_pfil_hook, &m, ifp, PFIL_OUT, inp);
884	if (error != 0 || m == NULL)
885		goto done;
886	ip6 = mtod(m, struct ip6_hdr *);
887
888	/* See if destination IP address was changed by packet filter. */
889	if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) {
890		m->m_flags |= M_SKIP_FIREWALL;
891		/* If destination is now ourself drop to ip6_input(). */
892		if (in6_localip(&ip6->ip6_dst)) {
893			m->m_flags |= M_FASTFWD_OURS;
894			if (m->m_pkthdr.rcvif == NULL)
895				m->m_pkthdr.rcvif = V_loif;
896			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
897				m->m_pkthdr.csum_flags |=
898				    CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR;
899				m->m_pkthdr.csum_data = 0xffff;
900			}
901#ifdef SCTP
902			if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6)
903				m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
904#endif
905			error = netisr_queue(NETISR_IPV6, m);
906			goto done;
907		} else
908			goto again;	/* Redo the routing table lookup. */
909	}
910
911	/* See if local, if yes, send it to netisr. */
912	if (m->m_flags & M_FASTFWD_OURS) {
913		if (m->m_pkthdr.rcvif == NULL)
914			m->m_pkthdr.rcvif = V_loif;
915		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
916			m->m_pkthdr.csum_flags |=
917			    CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR;
918			m->m_pkthdr.csum_data = 0xffff;
919		}
920#ifdef SCTP
921		if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6)
922			m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
923#endif
924		error = netisr_queue(NETISR_IPV6, m);
925		goto done;
926	}
927	/* Or forward to some other address? */
928	if ((m->m_flags & M_IP6_NEXTHOP) &&
929	    (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
930		dst = (struct sockaddr_in6 *)&ro->ro_dst;
931		bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6));
932		m->m_flags |= M_SKIP_FIREWALL;
933		m->m_flags &= ~M_IP6_NEXTHOP;
934		m_tag_delete(m, fwd_tag);
935		goto again;
936	}
937
938passout:
939	/*
940	 * Send the packet to the outgoing interface.
941	 * If necessary, do IPv6 fragmentation before sending.
942	 *
943	 * the logic here is rather complex:
944	 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
945	 * 1-a:	send as is if tlen <= path mtu
946	 * 1-b:	fragment if tlen > path mtu
947	 *
948	 * 2: if user asks us not to fragment (dontfrag == 1)
949	 * 2-a:	send as is if tlen <= interface mtu
950	 * 2-b:	error if tlen > interface mtu
951	 *
952	 * 3: if we always need to attach fragment header (alwaysfrag == 1)
953	 *	always fragment
954	 *
955	 * 4: if dontfrag == 1 && alwaysfrag == 1
956	 *	error, as we cannot handle this conflicting request
957	 */
958	sw_csum = m->m_pkthdr.csum_flags;
959	if (!hdrsplit) {
960		tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0;
961		sw_csum &= ~ifp->if_hwassist;
962	} else
963		tso = 0;
964	/*
965	 * If we added extension headers, we will not do TSO and calculate the
966	 * checksums ourselves for now.
967	 * XXX-BZ  Need a framework to know when the NIC can handle it, even
968	 * with ext. hdrs.
969	 */
970	if (sw_csum & CSUM_DELAY_DATA_IPV6) {
971		sw_csum &= ~CSUM_DELAY_DATA_IPV6;
972		in6_delayed_cksum(m, plen, sizeof(struct ip6_hdr));
973	}
974#ifdef SCTP
975	if (sw_csum & CSUM_SCTP_IPV6) {
976		sw_csum &= ~CSUM_SCTP_IPV6;
977		sctp_delayed_cksum(m, sizeof(struct ip6_hdr));
978	}
979#endif
980	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
981	tlen = m->m_pkthdr.len;
982
983	if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso)
984		dontfrag = 1;
985	else
986		dontfrag = 0;
987	if (dontfrag && alwaysfrag) {	/* case 4 */
988		/* conflicting request - can't transmit */
989		error = EMSGSIZE;
990		goto bad;
991	}
992	if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) {	/* case 2-b */
993		/*
994		 * Even if the DONTFRAG option is specified, we cannot send the
995		 * packet when the data length is larger than the MTU of the
996		 * outgoing interface.
997		 * Notify the error by sending IPV6_PATHMTU ancillary data as
998		 * well as returning an error code (the latter is not described
999		 * in the API spec.)
1000		 */
1001		u_int32_t mtu32;
1002		struct ip6ctlparam ip6cp;
1003
1004		mtu32 = (u_int32_t)mtu;
1005		bzero(&ip6cp, sizeof(ip6cp));
1006		ip6cp.ip6c_cmdarg = (void *)&mtu32;
1007		pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
1008		    (void *)&ip6cp);
1009
1010		error = EMSGSIZE;
1011		goto bad;
1012	}
1013
1014	/*
1015	 * transmit packet without fragmentation
1016	 */
1017	if (dontfrag || (!alwaysfrag && tlen <= mtu)) {	/* case 1-a and 2-a */
1018		struct in6_ifaddr *ia6;
1019
1020		ip6 = mtod(m, struct ip6_hdr *);
1021		ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
1022		if (ia6) {
1023			/* Record statistics for this interface address. */
1024			ia6->ia_ifa.if_opackets++;
1025			ia6->ia_ifa.if_obytes += m->m_pkthdr.len;
1026			ifa_free(&ia6->ia_ifa);
1027		}
1028		error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1029		goto done;
1030	}
1031
1032	/*
1033	 * try to fragment the packet.  case 1-b and 3
1034	 */
1035	if (mtu < IPV6_MMTU) {
1036		/* path MTU cannot be less than IPV6_MMTU */
1037		error = EMSGSIZE;
1038		in6_ifstat_inc(ifp, ifs6_out_fragfail);
1039		goto bad;
1040	} else if (ip6->ip6_plen == 0) {
1041		/* jumbo payload cannot be fragmented */
1042		error = EMSGSIZE;
1043		in6_ifstat_inc(ifp, ifs6_out_fragfail);
1044		goto bad;
1045	} else {
1046		struct mbuf **mnext, *m_frgpart;
1047		struct ip6_frag *ip6f;
1048		u_int32_t id = htonl(ip6_randomid());
1049		u_char nextproto;
1050
1051		int qslots = ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len;
1052
1053		/*
1054		 * Too large for the destination or interface;
1055		 * fragment if possible.
1056		 * Must be able to put at least 8 bytes per fragment.
1057		 */
1058		hlen = unfragpartlen;
1059		if (mtu > IPV6_MAXPACKET)
1060			mtu = IPV6_MAXPACKET;
1061
1062		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
1063		if (len < 8) {
1064			error = EMSGSIZE;
1065			in6_ifstat_inc(ifp, ifs6_out_fragfail);
1066			goto bad;
1067		}
1068
1069		/*
1070		 * Verify that we have any chance at all of being able to queue
1071		 *      the packet or packet fragments
1072		 */
1073		if (qslots <= 0 || ((u_int)qslots * (mtu - hlen)
1074		    < tlen  /* - hlen */)) {
1075			error = ENOBUFS;
1076			IP6STAT_INC(ip6s_odropped);
1077			goto bad;
1078		}
1079
1080
1081		/*
1082		 * If the interface will not calculate checksums on
1083		 * fragmented packets, then do it here.
1084		 * XXX-BZ handle the hw offloading case.  Need flags.
1085		 */
1086		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
1087			in6_delayed_cksum(m, plen, hlen);
1088			m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6;
1089		}
1090#ifdef SCTP
1091		if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) {
1092			sctp_delayed_cksum(m, hlen);
1093			m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6;
1094		}
1095#endif
1096		mnext = &m->m_nextpkt;
1097
1098		/*
1099		 * Change the next header field of the last header in the
1100		 * unfragmentable part.
1101		 */
1102		if (exthdrs.ip6e_rthdr) {
1103			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
1104			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
1105		} else if (exthdrs.ip6e_dest1) {
1106			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
1107			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
1108		} else if (exthdrs.ip6e_hbh) {
1109			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
1110			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
1111		} else {
1112			nextproto = ip6->ip6_nxt;
1113			ip6->ip6_nxt = IPPROTO_FRAGMENT;
1114		}
1115
1116		/*
1117		 * Loop through length of segment after first fragment,
1118		 * make new header and copy data of each part and link onto
1119		 * chain.
1120		 */
1121		m0 = m;
1122		for (off = hlen; off < tlen; off += len) {
1123			m = m_gethdr(M_NOWAIT, MT_DATA);
1124			if (!m) {
1125				error = ENOBUFS;
1126				IP6STAT_INC(ip6s_odropped);
1127				goto sendorfree;
1128			}
1129			m->m_flags = m0->m_flags & M_COPYFLAGS;
1130			*mnext = m;
1131			mnext = &m->m_nextpkt;
1132			m->m_data += max_linkhdr;
1133			mhip6 = mtod(m, struct ip6_hdr *);
1134			*mhip6 = *ip6;
1135			m->m_len = sizeof(*mhip6);
1136			error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
1137			if (error) {
1138				IP6STAT_INC(ip6s_odropped);
1139				goto sendorfree;
1140			}
1141			ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
1142			if (off + len >= tlen)
1143				len = tlen - off;
1144			else
1145				ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
1146			mhip6->ip6_plen = htons((u_short)(len + hlen +
1147			    sizeof(*ip6f) - sizeof(struct ip6_hdr)));
1148			if ((m_frgpart = m_copy(m0, off, len)) == 0) {
1149				error = ENOBUFS;
1150				IP6STAT_INC(ip6s_odropped);
1151				goto sendorfree;
1152			}
1153			m_cat(m, m_frgpart);
1154			m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
1155			m->m_pkthdr.fibnum = m0->m_pkthdr.fibnum;
1156			m->m_pkthdr.rcvif = NULL;
1157			ip6f->ip6f_reserved = 0;
1158			ip6f->ip6f_ident = id;
1159			ip6f->ip6f_nxt = nextproto;
1160			IP6STAT_INC(ip6s_ofragments);
1161			in6_ifstat_inc(ifp, ifs6_out_fragcreat);
1162		}
1163
1164		in6_ifstat_inc(ifp, ifs6_out_fragok);
1165	}
1166
1167	/*
1168	 * Remove leading garbages.
1169	 */
1170sendorfree:
1171	m = m0->m_nextpkt;
1172	m0->m_nextpkt = 0;
1173	m_freem(m0);
1174	for (m0 = m; m; m = m0) {
1175		m0 = m->m_nextpkt;
1176		m->m_nextpkt = 0;
1177		if (error == 0) {
1178			/* Record statistics for this interface address. */
1179			if (ia) {
1180				ia->ia_ifa.if_opackets++;
1181				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1182			}
1183			error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1184		} else
1185			m_freem(m);
1186	}
1187
1188	if (error == 0)
1189		IP6STAT_INC(ip6s_fragmented);
1190
1191done:
1192	if (ro == &ip6route)
1193		RO_RTFREE(ro);
1194	if (ro_pmtu == &ip6route)
1195		RO_RTFREE(ro_pmtu);
1196#ifdef IPSEC
1197	if (sp != NULL)
1198		KEY_FREESP(&sp);
1199#endif
1200
1201	return (error);
1202
1203freehdrs:
1204	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
1205	m_freem(exthdrs.ip6e_dest1);
1206	m_freem(exthdrs.ip6e_rthdr);
1207	m_freem(exthdrs.ip6e_dest2);
1208	/* FALLTHROUGH */
1209bad:
1210	if (m)
1211		m_freem(m);
1212	goto done;
1213}
1214
1215static int
1216ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen)
1217{
1218	struct mbuf *m;
1219
1220	if (hlen > MCLBYTES)
1221		return (ENOBUFS); /* XXX */
1222
1223	if (hlen > MLEN)
1224		m = m_getcl(M_NOWAIT, MT_DATA, 0);
1225	else
1226		m = m_get(M_NOWAIT, MT_DATA);
1227	if (m == NULL)
1228		return (ENOBUFS);
1229	m->m_len = hlen;
1230	if (hdr)
1231		bcopy(hdr, mtod(m, caddr_t), hlen);
1232
1233	*mp = m;
1234	return (0);
1235}
1236
1237/*
1238 * Insert jumbo payload option.
1239 */
1240static int
1241ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1242{
1243	struct mbuf *mopt;
1244	u_char *optbuf;
1245	u_int32_t v;
1246
1247#define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
1248
1249	/*
1250	 * If there is no hop-by-hop options header, allocate new one.
1251	 * If there is one but it doesn't have enough space to store the
1252	 * jumbo payload option, allocate a cluster to store the whole options.
1253	 * Otherwise, use it to store the options.
1254	 */
1255	if (exthdrs->ip6e_hbh == 0) {
1256		mopt = m_get(M_NOWAIT, MT_DATA);
1257		if (mopt == NULL)
1258			return (ENOBUFS);
1259		mopt->m_len = JUMBOOPTLEN;
1260		optbuf = mtod(mopt, u_char *);
1261		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
1262		exthdrs->ip6e_hbh = mopt;
1263	} else {
1264		struct ip6_hbh *hbh;
1265
1266		mopt = exthdrs->ip6e_hbh;
1267		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1268			/*
1269			 * XXX assumption:
1270			 * - exthdrs->ip6e_hbh is not referenced from places
1271			 *   other than exthdrs.
1272			 * - exthdrs->ip6e_hbh is not an mbuf chain.
1273			 */
1274			int oldoptlen = mopt->m_len;
1275			struct mbuf *n;
1276
1277			/*
1278			 * XXX: give up if the whole (new) hbh header does
1279			 * not fit even in an mbuf cluster.
1280			 */
1281			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1282				return (ENOBUFS);
1283
1284			/*
1285			 * As a consequence, we must always prepare a cluster
1286			 * at this point.
1287			 */
1288			n = m_getcl(M_NOWAIT, MT_DATA, 0);
1289			if (n == NULL)
1290				return (ENOBUFS);
1291			n->m_len = oldoptlen + JUMBOOPTLEN;
1292			bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1293			    oldoptlen);
1294			optbuf = mtod(n, caddr_t) + oldoptlen;
1295			m_freem(mopt);
1296			mopt = exthdrs->ip6e_hbh = n;
1297		} else {
1298			optbuf = mtod(mopt, u_char *) + mopt->m_len;
1299			mopt->m_len += JUMBOOPTLEN;
1300		}
1301		optbuf[0] = IP6OPT_PADN;
1302		optbuf[1] = 1;
1303
1304		/*
1305		 * Adjust the header length according to the pad and
1306		 * the jumbo payload option.
1307		 */
1308		hbh = mtod(mopt, struct ip6_hbh *);
1309		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1310	}
1311
1312	/* fill in the option. */
1313	optbuf[2] = IP6OPT_JUMBO;
1314	optbuf[3] = 4;
1315	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1316	bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1317
1318	/* finally, adjust the packet header length */
1319	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1320
1321	return (0);
1322#undef JUMBOOPTLEN
1323}
1324
1325/*
1326 * Insert fragment header and copy unfragmentable header portions.
1327 */
1328static int
1329ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1330    struct ip6_frag **frghdrp)
1331{
1332	struct mbuf *n, *mlast;
1333
1334	if (hlen > sizeof(struct ip6_hdr)) {
1335		n = m_copym(m0, sizeof(struct ip6_hdr),
1336		    hlen - sizeof(struct ip6_hdr), M_NOWAIT);
1337		if (n == 0)
1338			return (ENOBUFS);
1339		m->m_next = n;
1340	} else
1341		n = m;
1342
1343	/* Search for the last mbuf of unfragmentable part. */
1344	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1345		;
1346
1347	if ((mlast->m_flags & M_EXT) == 0 &&
1348	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1349		/* use the trailing space of the last mbuf for the fragment hdr */
1350		*frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) +
1351		    mlast->m_len);
1352		mlast->m_len += sizeof(struct ip6_frag);
1353		m->m_pkthdr.len += sizeof(struct ip6_frag);
1354	} else {
1355		/* allocate a new mbuf for the fragment header */
1356		struct mbuf *mfrg;
1357
1358		mfrg = m_get(M_NOWAIT, MT_DATA);
1359		if (mfrg == NULL)
1360			return (ENOBUFS);
1361		mfrg->m_len = sizeof(struct ip6_frag);
1362		*frghdrp = mtod(mfrg, struct ip6_frag *);
1363		mlast->m_next = mfrg;
1364	}
1365
1366	return (0);
1367}
1368
1369static int
1370ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro,
1371    struct ifnet *ifp, struct in6_addr *dst, u_long *mtup,
1372    int *alwaysfragp, u_int fibnum)
1373{
1374	u_int32_t mtu = 0;
1375	int alwaysfrag = 0;
1376	int error = 0;
1377
1378	if (ro_pmtu != ro) {
1379		/* The first hop and the final destination may differ. */
1380		struct sockaddr_in6 *sa6_dst =
1381		    (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
1382		if (ro_pmtu->ro_rt &&
1383		    ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 ||
1384		     !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) {
1385			RTFREE(ro_pmtu->ro_rt);
1386			ro_pmtu->ro_rt = (struct rtentry *)NULL;
1387		}
1388		if (ro_pmtu->ro_rt == NULL) {
1389			bzero(sa6_dst, sizeof(*sa6_dst));
1390			sa6_dst->sin6_family = AF_INET6;
1391			sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
1392			sa6_dst->sin6_addr = *dst;
1393
1394			in6_rtalloc(ro_pmtu, fibnum);
1395		}
1396	}
1397	if (ro_pmtu->ro_rt) {
1398		u_int32_t ifmtu;
1399		struct in_conninfo inc;
1400
1401		bzero(&inc, sizeof(inc));
1402		inc.inc_flags |= INC_ISIPV6;
1403		inc.inc6_faddr = *dst;
1404
1405		if (ifp == NULL)
1406			ifp = ro_pmtu->ro_rt->rt_ifp;
1407		ifmtu = IN6_LINKMTU(ifp);
1408		mtu = tcp_hc_getmtu(&inc);
1409		if (mtu)
1410			mtu = min(mtu, ro_pmtu->ro_rt->rt_rmx.rmx_mtu);
1411		else
1412			mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
1413		if (mtu == 0)
1414			mtu = ifmtu;
1415		else if (mtu < IPV6_MMTU) {
1416			/*
1417			 * RFC2460 section 5, last paragraph:
1418			 * if we record ICMPv6 too big message with
1419			 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1420			 * or smaller, with framgent header attached.
1421			 * (fragment header is needed regardless from the
1422			 * packet size, for translators to identify packets)
1423			 */
1424			alwaysfrag = 1;
1425			mtu = IPV6_MMTU;
1426		} else if (mtu > ifmtu) {
1427			/*
1428			 * The MTU on the route is larger than the MTU on
1429			 * the interface!  This shouldn't happen, unless the
1430			 * MTU of the interface has been changed after the
1431			 * interface was brought up.  Change the MTU in the
1432			 * route to match the interface MTU (as long as the
1433			 * field isn't locked).
1434			 */
1435			mtu = ifmtu;
1436			ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu;
1437		}
1438	} else if (ifp) {
1439		mtu = IN6_LINKMTU(ifp);
1440	} else
1441		error = EHOSTUNREACH; /* XXX */
1442
1443	*mtup = mtu;
1444	if (alwaysfragp)
1445		*alwaysfragp = alwaysfrag;
1446	return (error);
1447}
1448
1449/*
1450 * IP6 socket option processing.
1451 */
1452int
1453ip6_ctloutput(struct socket *so, struct sockopt *sopt)
1454{
1455	int optdatalen, uproto;
1456	void *optdata;
1457	struct inpcb *in6p = sotoinpcb(so);
1458	int error, optval;
1459	int level, op, optname;
1460	int optlen;
1461	struct thread *td;
1462
1463	level = sopt->sopt_level;
1464	op = sopt->sopt_dir;
1465	optname = sopt->sopt_name;
1466	optlen = sopt->sopt_valsize;
1467	td = sopt->sopt_td;
1468	error = 0;
1469	optval = 0;
1470	uproto = (int)so->so_proto->pr_protocol;
1471
1472	if (level != IPPROTO_IPV6) {
1473		error = EINVAL;
1474
1475		if (sopt->sopt_level == SOL_SOCKET &&
1476		    sopt->sopt_dir == SOPT_SET) {
1477			switch (sopt->sopt_name) {
1478			case SO_REUSEADDR:
1479				INP_WLOCK(in6p);
1480				if ((so->so_options & SO_REUSEADDR) != 0)
1481					in6p->inp_flags2 |= INP_REUSEADDR;
1482				else
1483					in6p->inp_flags2 &= ~INP_REUSEADDR;
1484				INP_WUNLOCK(in6p);
1485				error = 0;
1486				break;
1487			case SO_REUSEPORT:
1488				INP_WLOCK(in6p);
1489				if ((so->so_options & SO_REUSEPORT) != 0)
1490					in6p->inp_flags2 |= INP_REUSEPORT;
1491				else
1492					in6p->inp_flags2 &= ~INP_REUSEPORT;
1493				INP_WUNLOCK(in6p);
1494				error = 0;
1495				break;
1496			case SO_SETFIB:
1497				INP_WLOCK(in6p);
1498				in6p->inp_inc.inc_fibnum = so->so_fibnum;
1499				INP_WUNLOCK(in6p);
1500				error = 0;
1501				break;
1502			default:
1503				break;
1504			}
1505		}
1506	} else {		/* level == IPPROTO_IPV6 */
1507		switch (op) {
1508
1509		case SOPT_SET:
1510			switch (optname) {
1511			case IPV6_2292PKTOPTIONS:
1512#ifdef IPV6_PKTOPTIONS
1513			case IPV6_PKTOPTIONS:
1514#endif
1515			{
1516				struct mbuf *m;
1517
1518				error = soopt_getm(sopt, &m); /* XXX */
1519				if (error != 0)
1520					break;
1521				error = soopt_mcopyin(sopt, m); /* XXX */
1522				if (error != 0)
1523					break;
1524				error = ip6_pcbopts(&in6p->in6p_outputopts,
1525						    m, so, sopt);
1526				m_freem(m); /* XXX */
1527				break;
1528			}
1529
1530			/*
1531			 * Use of some Hop-by-Hop options or some
1532			 * Destination options, might require special
1533			 * privilege.  That is, normal applications
1534			 * (without special privilege) might be forbidden
1535			 * from setting certain options in outgoing packets,
1536			 * and might never see certain options in received
1537			 * packets. [RFC 2292 Section 6]
1538			 * KAME specific note:
1539			 *  KAME prevents non-privileged users from sending or
1540			 *  receiving ANY hbh/dst options in order to avoid
1541			 *  overhead of parsing options in the kernel.
1542			 */
1543			case IPV6_RECVHOPOPTS:
1544			case IPV6_RECVDSTOPTS:
1545			case IPV6_RECVRTHDRDSTOPTS:
1546				if (td != NULL) {
1547					error = priv_check(td,
1548					    PRIV_NETINET_SETHDROPTS);
1549					if (error)
1550						break;
1551				}
1552				/* FALLTHROUGH */
1553			case IPV6_UNICAST_HOPS:
1554			case IPV6_HOPLIMIT:
1555			case IPV6_FAITH:
1556
1557			case IPV6_RECVPKTINFO:
1558			case IPV6_RECVHOPLIMIT:
1559			case IPV6_RECVRTHDR:
1560			case IPV6_RECVPATHMTU:
1561			case IPV6_RECVTCLASS:
1562			case IPV6_V6ONLY:
1563			case IPV6_AUTOFLOWLABEL:
1564			case IPV6_BINDANY:
1565				if (optname == IPV6_BINDANY && td != NULL) {
1566					error = priv_check(td,
1567					    PRIV_NETINET_BINDANY);
1568					if (error)
1569						break;
1570				}
1571
1572				if (optlen != sizeof(int)) {
1573					error = EINVAL;
1574					break;
1575				}
1576				error = sooptcopyin(sopt, &optval,
1577					sizeof optval, sizeof optval);
1578				if (error)
1579					break;
1580				switch (optname) {
1581
1582				case IPV6_UNICAST_HOPS:
1583					if (optval < -1 || optval >= 256)
1584						error = EINVAL;
1585					else {
1586						/* -1 = kernel default */
1587						in6p->in6p_hops = optval;
1588						if ((in6p->inp_vflag &
1589						     INP_IPV4) != 0)
1590							in6p->inp_ip_ttl = optval;
1591					}
1592					break;
1593#define OPTSET(bit) \
1594do { \
1595	INP_WLOCK(in6p); \
1596	if (optval) \
1597		in6p->inp_flags |= (bit); \
1598	else \
1599		in6p->inp_flags &= ~(bit); \
1600	INP_WUNLOCK(in6p); \
1601} while (/*CONSTCOND*/ 0)
1602#define OPTSET2292(bit) \
1603do { \
1604	INP_WLOCK(in6p); \
1605	in6p->inp_flags |= IN6P_RFC2292; \
1606	if (optval) \
1607		in6p->inp_flags |= (bit); \
1608	else \
1609		in6p->inp_flags &= ~(bit); \
1610	INP_WUNLOCK(in6p); \
1611} while (/*CONSTCOND*/ 0)
1612#define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0)
1613
1614				case IPV6_RECVPKTINFO:
1615					/* cannot mix with RFC2292 */
1616					if (OPTBIT(IN6P_RFC2292)) {
1617						error = EINVAL;
1618						break;
1619					}
1620					OPTSET(IN6P_PKTINFO);
1621					break;
1622
1623				case IPV6_HOPLIMIT:
1624				{
1625					struct ip6_pktopts **optp;
1626
1627					/* cannot mix with RFC2292 */
1628					if (OPTBIT(IN6P_RFC2292)) {
1629						error = EINVAL;
1630						break;
1631					}
1632					optp = &in6p->in6p_outputopts;
1633					error = ip6_pcbopt(IPV6_HOPLIMIT,
1634					    (u_char *)&optval, sizeof(optval),
1635					    optp, (td != NULL) ? td->td_ucred :
1636					    NULL, uproto);
1637					break;
1638				}
1639
1640				case IPV6_RECVHOPLIMIT:
1641					/* cannot mix with RFC2292 */
1642					if (OPTBIT(IN6P_RFC2292)) {
1643						error = EINVAL;
1644						break;
1645					}
1646					OPTSET(IN6P_HOPLIMIT);
1647					break;
1648
1649				case IPV6_RECVHOPOPTS:
1650					/* cannot mix with RFC2292 */
1651					if (OPTBIT(IN6P_RFC2292)) {
1652						error = EINVAL;
1653						break;
1654					}
1655					OPTSET(IN6P_HOPOPTS);
1656					break;
1657
1658				case IPV6_RECVDSTOPTS:
1659					/* cannot mix with RFC2292 */
1660					if (OPTBIT(IN6P_RFC2292)) {
1661						error = EINVAL;
1662						break;
1663					}
1664					OPTSET(IN6P_DSTOPTS);
1665					break;
1666
1667				case IPV6_RECVRTHDRDSTOPTS:
1668					/* cannot mix with RFC2292 */
1669					if (OPTBIT(IN6P_RFC2292)) {
1670						error = EINVAL;
1671						break;
1672					}
1673					OPTSET(IN6P_RTHDRDSTOPTS);
1674					break;
1675
1676				case IPV6_RECVRTHDR:
1677					/* cannot mix with RFC2292 */
1678					if (OPTBIT(IN6P_RFC2292)) {
1679						error = EINVAL;
1680						break;
1681					}
1682					OPTSET(IN6P_RTHDR);
1683					break;
1684
1685				case IPV6_FAITH:
1686					OPTSET(INP_FAITH);
1687					break;
1688
1689				case IPV6_RECVPATHMTU:
1690					/*
1691					 * We ignore this option for TCP
1692					 * sockets.
1693					 * (RFC3542 leaves this case
1694					 * unspecified.)
1695					 */
1696					if (uproto != IPPROTO_TCP)
1697						OPTSET(IN6P_MTU);
1698					break;
1699
1700				case IPV6_V6ONLY:
1701					/*
1702					 * make setsockopt(IPV6_V6ONLY)
1703					 * available only prior to bind(2).
1704					 * see ipng mailing list, Jun 22 2001.
1705					 */
1706					if (in6p->inp_lport ||
1707					    !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1708						error = EINVAL;
1709						break;
1710					}
1711					OPTSET(IN6P_IPV6_V6ONLY);
1712					if (optval)
1713						in6p->inp_vflag &= ~INP_IPV4;
1714					else
1715						in6p->inp_vflag |= INP_IPV4;
1716					break;
1717				case IPV6_RECVTCLASS:
1718					/* cannot mix with RFC2292 XXX */
1719					if (OPTBIT(IN6P_RFC2292)) {
1720						error = EINVAL;
1721						break;
1722					}
1723					OPTSET(IN6P_TCLASS);
1724					break;
1725				case IPV6_AUTOFLOWLABEL:
1726					OPTSET(IN6P_AUTOFLOWLABEL);
1727					break;
1728
1729				case IPV6_BINDANY:
1730					OPTSET(INP_BINDANY);
1731					break;
1732				}
1733				break;
1734
1735			case IPV6_TCLASS:
1736			case IPV6_DONTFRAG:
1737			case IPV6_USE_MIN_MTU:
1738			case IPV6_PREFER_TEMPADDR:
1739				if (optlen != sizeof(optval)) {
1740					error = EINVAL;
1741					break;
1742				}
1743				error = sooptcopyin(sopt, &optval,
1744					sizeof optval, sizeof optval);
1745				if (error)
1746					break;
1747				{
1748					struct ip6_pktopts **optp;
1749					optp = &in6p->in6p_outputopts;
1750					error = ip6_pcbopt(optname,
1751					    (u_char *)&optval, sizeof(optval),
1752					    optp, (td != NULL) ? td->td_ucred :
1753					    NULL, uproto);
1754					break;
1755				}
1756
1757			case IPV6_2292PKTINFO:
1758			case IPV6_2292HOPLIMIT:
1759			case IPV6_2292HOPOPTS:
1760			case IPV6_2292DSTOPTS:
1761			case IPV6_2292RTHDR:
1762				/* RFC 2292 */
1763				if (optlen != sizeof(int)) {
1764					error = EINVAL;
1765					break;
1766				}
1767				error = sooptcopyin(sopt, &optval,
1768					sizeof optval, sizeof optval);
1769				if (error)
1770					break;
1771				switch (optname) {
1772				case IPV6_2292PKTINFO:
1773					OPTSET2292(IN6P_PKTINFO);
1774					break;
1775				case IPV6_2292HOPLIMIT:
1776					OPTSET2292(IN6P_HOPLIMIT);
1777					break;
1778				case IPV6_2292HOPOPTS:
1779					/*
1780					 * Check super-user privilege.
1781					 * See comments for IPV6_RECVHOPOPTS.
1782					 */
1783					if (td != NULL) {
1784						error = priv_check(td,
1785						    PRIV_NETINET_SETHDROPTS);
1786						if (error)
1787							return (error);
1788					}
1789					OPTSET2292(IN6P_HOPOPTS);
1790					break;
1791				case IPV6_2292DSTOPTS:
1792					if (td != NULL) {
1793						error = priv_check(td,
1794						    PRIV_NETINET_SETHDROPTS);
1795						if (error)
1796							return (error);
1797					}
1798					OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1799					break;
1800				case IPV6_2292RTHDR:
1801					OPTSET2292(IN6P_RTHDR);
1802					break;
1803				}
1804				break;
1805			case IPV6_PKTINFO:
1806			case IPV6_HOPOPTS:
1807			case IPV6_RTHDR:
1808			case IPV6_DSTOPTS:
1809			case IPV6_RTHDRDSTOPTS:
1810			case IPV6_NEXTHOP:
1811			{
1812				/* new advanced API (RFC3542) */
1813				u_char *optbuf;
1814				u_char optbuf_storage[MCLBYTES];
1815				int optlen;
1816				struct ip6_pktopts **optp;
1817
1818				/* cannot mix with RFC2292 */
1819				if (OPTBIT(IN6P_RFC2292)) {
1820					error = EINVAL;
1821					break;
1822				}
1823
1824				/*
1825				 * We only ensure valsize is not too large
1826				 * here.  Further validation will be done
1827				 * later.
1828				 */
1829				error = sooptcopyin(sopt, optbuf_storage,
1830				    sizeof(optbuf_storage), 0);
1831				if (error)
1832					break;
1833				optlen = sopt->sopt_valsize;
1834				optbuf = optbuf_storage;
1835				optp = &in6p->in6p_outputopts;
1836				error = ip6_pcbopt(optname, optbuf, optlen,
1837				    optp, (td != NULL) ? td->td_ucred : NULL,
1838				    uproto);
1839				break;
1840			}
1841#undef OPTSET
1842
1843			case IPV6_MULTICAST_IF:
1844			case IPV6_MULTICAST_HOPS:
1845			case IPV6_MULTICAST_LOOP:
1846			case IPV6_JOIN_GROUP:
1847			case IPV6_LEAVE_GROUP:
1848			case IPV6_MSFILTER:
1849			case MCAST_BLOCK_SOURCE:
1850			case MCAST_UNBLOCK_SOURCE:
1851			case MCAST_JOIN_GROUP:
1852			case MCAST_LEAVE_GROUP:
1853			case MCAST_JOIN_SOURCE_GROUP:
1854			case MCAST_LEAVE_SOURCE_GROUP:
1855				error = ip6_setmoptions(in6p, sopt);
1856				break;
1857
1858			case IPV6_PORTRANGE:
1859				error = sooptcopyin(sopt, &optval,
1860				    sizeof optval, sizeof optval);
1861				if (error)
1862					break;
1863
1864				INP_WLOCK(in6p);
1865				switch (optval) {
1866				case IPV6_PORTRANGE_DEFAULT:
1867					in6p->inp_flags &= ~(INP_LOWPORT);
1868					in6p->inp_flags &= ~(INP_HIGHPORT);
1869					break;
1870
1871				case IPV6_PORTRANGE_HIGH:
1872					in6p->inp_flags &= ~(INP_LOWPORT);
1873					in6p->inp_flags |= INP_HIGHPORT;
1874					break;
1875
1876				case IPV6_PORTRANGE_LOW:
1877					in6p->inp_flags &= ~(INP_HIGHPORT);
1878					in6p->inp_flags |= INP_LOWPORT;
1879					break;
1880
1881				default:
1882					error = EINVAL;
1883					break;
1884				}
1885				INP_WUNLOCK(in6p);
1886				break;
1887
1888#ifdef IPSEC
1889			case IPV6_IPSEC_POLICY:
1890			{
1891				caddr_t req;
1892				struct mbuf *m;
1893
1894				if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1895					break;
1896				if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1897					break;
1898				req = mtod(m, caddr_t);
1899				error = ipsec_set_policy(in6p, optname, req,
1900				    m->m_len, (sopt->sopt_td != NULL) ?
1901				    sopt->sopt_td->td_ucred : NULL);
1902				m_freem(m);
1903				break;
1904			}
1905#endif /* IPSEC */
1906
1907			default:
1908				error = ENOPROTOOPT;
1909				break;
1910			}
1911			break;
1912
1913		case SOPT_GET:
1914			switch (optname) {
1915
1916			case IPV6_2292PKTOPTIONS:
1917#ifdef IPV6_PKTOPTIONS
1918			case IPV6_PKTOPTIONS:
1919#endif
1920				/*
1921				 * RFC3542 (effectively) deprecated the
1922				 * semantics of the 2292-style pktoptions.
1923				 * Since it was not reliable in nature (i.e.,
1924				 * applications had to expect the lack of some
1925				 * information after all), it would make sense
1926				 * to simplify this part by always returning
1927				 * empty data.
1928				 */
1929				sopt->sopt_valsize = 0;
1930				break;
1931
1932			case IPV6_RECVHOPOPTS:
1933			case IPV6_RECVDSTOPTS:
1934			case IPV6_RECVRTHDRDSTOPTS:
1935			case IPV6_UNICAST_HOPS:
1936			case IPV6_RECVPKTINFO:
1937			case IPV6_RECVHOPLIMIT:
1938			case IPV6_RECVRTHDR:
1939			case IPV6_RECVPATHMTU:
1940
1941			case IPV6_FAITH:
1942			case IPV6_V6ONLY:
1943			case IPV6_PORTRANGE:
1944			case IPV6_RECVTCLASS:
1945			case IPV6_AUTOFLOWLABEL:
1946			case IPV6_BINDANY:
1947				switch (optname) {
1948
1949				case IPV6_RECVHOPOPTS:
1950					optval = OPTBIT(IN6P_HOPOPTS);
1951					break;
1952
1953				case IPV6_RECVDSTOPTS:
1954					optval = OPTBIT(IN6P_DSTOPTS);
1955					break;
1956
1957				case IPV6_RECVRTHDRDSTOPTS:
1958					optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1959					break;
1960
1961				case IPV6_UNICAST_HOPS:
1962					optval = in6p->in6p_hops;
1963					break;
1964
1965				case IPV6_RECVPKTINFO:
1966					optval = OPTBIT(IN6P_PKTINFO);
1967					break;
1968
1969				case IPV6_RECVHOPLIMIT:
1970					optval = OPTBIT(IN6P_HOPLIMIT);
1971					break;
1972
1973				case IPV6_RECVRTHDR:
1974					optval = OPTBIT(IN6P_RTHDR);
1975					break;
1976
1977				case IPV6_RECVPATHMTU:
1978					optval = OPTBIT(IN6P_MTU);
1979					break;
1980
1981				case IPV6_FAITH:
1982					optval = OPTBIT(INP_FAITH);
1983					break;
1984
1985				case IPV6_V6ONLY:
1986					optval = OPTBIT(IN6P_IPV6_V6ONLY);
1987					break;
1988
1989				case IPV6_PORTRANGE:
1990				    {
1991					int flags;
1992					flags = in6p->inp_flags;
1993					if (flags & INP_HIGHPORT)
1994						optval = IPV6_PORTRANGE_HIGH;
1995					else if (flags & INP_LOWPORT)
1996						optval = IPV6_PORTRANGE_LOW;
1997					else
1998						optval = 0;
1999					break;
2000				    }
2001				case IPV6_RECVTCLASS:
2002					optval = OPTBIT(IN6P_TCLASS);
2003					break;
2004
2005				case IPV6_AUTOFLOWLABEL:
2006					optval = OPTBIT(IN6P_AUTOFLOWLABEL);
2007					break;
2008
2009				case IPV6_BINDANY:
2010					optval = OPTBIT(INP_BINDANY);
2011					break;
2012				}
2013				if (error)
2014					break;
2015				error = sooptcopyout(sopt, &optval,
2016					sizeof optval);
2017				break;
2018
2019			case IPV6_PATHMTU:
2020			{
2021				u_long pmtu = 0;
2022				struct ip6_mtuinfo mtuinfo;
2023				struct route_in6 sro;
2024
2025				bzero(&sro, sizeof(sro));
2026
2027				if (!(so->so_state & SS_ISCONNECTED))
2028					return (ENOTCONN);
2029				/*
2030				 * XXX: we dot not consider the case of source
2031				 * routing, or optional information to specify
2032				 * the outgoing interface.
2033				 */
2034				error = ip6_getpmtu(&sro, NULL, NULL,
2035				    &in6p->in6p_faddr, &pmtu, NULL,
2036				    so->so_fibnum);
2037				if (sro.ro_rt)
2038					RTFREE(sro.ro_rt);
2039				if (error)
2040					break;
2041				if (pmtu > IPV6_MAXPACKET)
2042					pmtu = IPV6_MAXPACKET;
2043
2044				bzero(&mtuinfo, sizeof(mtuinfo));
2045				mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
2046				optdata = (void *)&mtuinfo;
2047				optdatalen = sizeof(mtuinfo);
2048				error = sooptcopyout(sopt, optdata,
2049				    optdatalen);
2050				break;
2051			}
2052
2053			case IPV6_2292PKTINFO:
2054			case IPV6_2292HOPLIMIT:
2055			case IPV6_2292HOPOPTS:
2056			case IPV6_2292RTHDR:
2057			case IPV6_2292DSTOPTS:
2058				switch (optname) {
2059				case IPV6_2292PKTINFO:
2060					optval = OPTBIT(IN6P_PKTINFO);
2061					break;
2062				case IPV6_2292HOPLIMIT:
2063					optval = OPTBIT(IN6P_HOPLIMIT);
2064					break;
2065				case IPV6_2292HOPOPTS:
2066					optval = OPTBIT(IN6P_HOPOPTS);
2067					break;
2068				case IPV6_2292RTHDR:
2069					optval = OPTBIT(IN6P_RTHDR);
2070					break;
2071				case IPV6_2292DSTOPTS:
2072					optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
2073					break;
2074				}
2075				error = sooptcopyout(sopt, &optval,
2076				    sizeof optval);
2077				break;
2078			case IPV6_PKTINFO:
2079			case IPV6_HOPOPTS:
2080			case IPV6_RTHDR:
2081			case IPV6_DSTOPTS:
2082			case IPV6_RTHDRDSTOPTS:
2083			case IPV6_NEXTHOP:
2084			case IPV6_TCLASS:
2085			case IPV6_DONTFRAG:
2086			case IPV6_USE_MIN_MTU:
2087			case IPV6_PREFER_TEMPADDR:
2088				error = ip6_getpcbopt(in6p->in6p_outputopts,
2089				    optname, sopt);
2090				break;
2091
2092			case IPV6_MULTICAST_IF:
2093			case IPV6_MULTICAST_HOPS:
2094			case IPV6_MULTICAST_LOOP:
2095			case IPV6_MSFILTER:
2096				error = ip6_getmoptions(in6p, sopt);
2097				break;
2098
2099#ifdef IPSEC
2100			case IPV6_IPSEC_POLICY:
2101			  {
2102				caddr_t req = NULL;
2103				size_t len = 0;
2104				struct mbuf *m = NULL;
2105				struct mbuf **mp = &m;
2106				size_t ovalsize = sopt->sopt_valsize;
2107				caddr_t oval = (caddr_t)sopt->sopt_val;
2108
2109				error = soopt_getm(sopt, &m); /* XXX */
2110				if (error != 0)
2111					break;
2112				error = soopt_mcopyin(sopt, m); /* XXX */
2113				if (error != 0)
2114					break;
2115				sopt->sopt_valsize = ovalsize;
2116				sopt->sopt_val = oval;
2117				if (m) {
2118					req = mtod(m, caddr_t);
2119					len = m->m_len;
2120				}
2121				error = ipsec_get_policy(in6p, req, len, mp);
2122				if (error == 0)
2123					error = soopt_mcopyout(sopt, m); /* XXX */
2124				if (error == 0 && m)
2125					m_freem(m);
2126				break;
2127			  }
2128#endif /* IPSEC */
2129
2130			default:
2131				error = ENOPROTOOPT;
2132				break;
2133			}
2134			break;
2135		}
2136	}
2137	return (error);
2138}
2139
2140int
2141ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt)
2142{
2143	int error = 0, optval, optlen;
2144	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
2145	struct inpcb *in6p = sotoinpcb(so);
2146	int level, op, optname;
2147
2148	level = sopt->sopt_level;
2149	op = sopt->sopt_dir;
2150	optname = sopt->sopt_name;
2151	optlen = sopt->sopt_valsize;
2152
2153	if (level != IPPROTO_IPV6) {
2154		return (EINVAL);
2155	}
2156
2157	switch (optname) {
2158	case IPV6_CHECKSUM:
2159		/*
2160		 * For ICMPv6 sockets, no modification allowed for checksum
2161		 * offset, permit "no change" values to help existing apps.
2162		 *
2163		 * RFC3542 says: "An attempt to set IPV6_CHECKSUM
2164		 * for an ICMPv6 socket will fail."
2165		 * The current behavior does not meet RFC3542.
2166		 */
2167		switch (op) {
2168		case SOPT_SET:
2169			if (optlen != sizeof(int)) {
2170				error = EINVAL;
2171				break;
2172			}
2173			error = sooptcopyin(sopt, &optval, sizeof(optval),
2174					    sizeof(optval));
2175			if (error)
2176				break;
2177			if ((optval % 2) != 0) {
2178				/* the API assumes even offset values */
2179				error = EINVAL;
2180			} else if (so->so_proto->pr_protocol ==
2181			    IPPROTO_ICMPV6) {
2182				if (optval != icmp6off)
2183					error = EINVAL;
2184			} else
2185				in6p->in6p_cksum = optval;
2186			break;
2187
2188		case SOPT_GET:
2189			if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
2190				optval = icmp6off;
2191			else
2192				optval = in6p->in6p_cksum;
2193
2194			error = sooptcopyout(sopt, &optval, sizeof(optval));
2195			break;
2196
2197		default:
2198			error = EINVAL;
2199			break;
2200		}
2201		break;
2202
2203	default:
2204		error = ENOPROTOOPT;
2205		break;
2206	}
2207
2208	return (error);
2209}
2210
2211/*
2212 * Set up IP6 options in pcb for insertion in output packets or
2213 * specifying behavior of outgoing packets.
2214 */
2215static int
2216ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m,
2217    struct socket *so, struct sockopt *sopt)
2218{
2219	struct ip6_pktopts *opt = *pktopt;
2220	int error = 0;
2221	struct thread *td = sopt->sopt_td;
2222
2223	/* turn off any old options. */
2224	if (opt) {
2225#ifdef DIAGNOSTIC
2226		if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
2227		    opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
2228		    opt->ip6po_rhinfo.ip6po_rhi_rthdr)
2229			printf("ip6_pcbopts: all specified options are cleared.\n");
2230#endif
2231		ip6_clearpktopts(opt, -1);
2232	} else
2233		opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
2234	*pktopt = NULL;
2235
2236	if (!m || m->m_len == 0) {
2237		/*
2238		 * Only turning off any previous options, regardless of
2239		 * whether the opt is just created or given.
2240		 */
2241		free(opt, M_IP6OPT);
2242		return (0);
2243	}
2244
2245	/*  set options specified by user. */
2246	if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ?
2247	    td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) {
2248		ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2249		free(opt, M_IP6OPT);
2250		return (error);
2251	}
2252	*pktopt = opt;
2253	return (0);
2254}
2255
2256/*
2257 * initialize ip6_pktopts.  beware that there are non-zero default values in
2258 * the struct.
2259 */
2260void
2261ip6_initpktopts(struct ip6_pktopts *opt)
2262{
2263
2264	bzero(opt, sizeof(*opt));
2265	opt->ip6po_hlim = -1;	/* -1 means default hop limit */
2266	opt->ip6po_tclass = -1;	/* -1 means default traffic class */
2267	opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2268	opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
2269}
2270
2271static int
2272ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2273    struct ucred *cred, int uproto)
2274{
2275	struct ip6_pktopts *opt;
2276
2277	if (*pktopt == NULL) {
2278		*pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2279		    M_WAITOK);
2280		ip6_initpktopts(*pktopt);
2281	}
2282	opt = *pktopt;
2283
2284	return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
2285}
2286
2287static int
2288ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
2289{
2290	void *optdata = NULL;
2291	int optdatalen = 0;
2292	struct ip6_ext *ip6e;
2293	int error = 0;
2294	struct in6_pktinfo null_pktinfo;
2295	int deftclass = 0, on;
2296	int defminmtu = IP6PO_MINMTU_MCASTONLY;
2297	int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
2298
2299	switch (optname) {
2300	case IPV6_PKTINFO:
2301		if (pktopt && pktopt->ip6po_pktinfo)
2302			optdata = (void *)pktopt->ip6po_pktinfo;
2303		else {
2304			/* XXX: we don't have to do this every time... */
2305			bzero(&null_pktinfo, sizeof(null_pktinfo));
2306			optdata = (void *)&null_pktinfo;
2307		}
2308		optdatalen = sizeof(struct in6_pktinfo);
2309		break;
2310	case IPV6_TCLASS:
2311		if (pktopt && pktopt->ip6po_tclass >= 0)
2312			optdata = (void *)&pktopt->ip6po_tclass;
2313		else
2314			optdata = (void *)&deftclass;
2315		optdatalen = sizeof(int);
2316		break;
2317	case IPV6_HOPOPTS:
2318		if (pktopt && pktopt->ip6po_hbh) {
2319			optdata = (void *)pktopt->ip6po_hbh;
2320			ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
2321			optdatalen = (ip6e->ip6e_len + 1) << 3;
2322		}
2323		break;
2324	case IPV6_RTHDR:
2325		if (pktopt && pktopt->ip6po_rthdr) {
2326			optdata = (void *)pktopt->ip6po_rthdr;
2327			ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
2328			optdatalen = (ip6e->ip6e_len + 1) << 3;
2329		}
2330		break;
2331	case IPV6_RTHDRDSTOPTS:
2332		if (pktopt && pktopt->ip6po_dest1) {
2333			optdata = (void *)pktopt->ip6po_dest1;
2334			ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
2335			optdatalen = (ip6e->ip6e_len + 1) << 3;
2336		}
2337		break;
2338	case IPV6_DSTOPTS:
2339		if (pktopt && pktopt->ip6po_dest2) {
2340			optdata = (void *)pktopt->ip6po_dest2;
2341			ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
2342			optdatalen = (ip6e->ip6e_len + 1) << 3;
2343		}
2344		break;
2345	case IPV6_NEXTHOP:
2346		if (pktopt && pktopt->ip6po_nexthop) {
2347			optdata = (void *)pktopt->ip6po_nexthop;
2348			optdatalen = pktopt->ip6po_nexthop->sa_len;
2349		}
2350		break;
2351	case IPV6_USE_MIN_MTU:
2352		if (pktopt)
2353			optdata = (void *)&pktopt->ip6po_minmtu;
2354		else
2355			optdata = (void *)&defminmtu;
2356		optdatalen = sizeof(int);
2357		break;
2358	case IPV6_DONTFRAG:
2359		if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2360			on = 1;
2361		else
2362			on = 0;
2363		optdata = (void *)&on;
2364		optdatalen = sizeof(on);
2365		break;
2366	case IPV6_PREFER_TEMPADDR:
2367		if (pktopt)
2368			optdata = (void *)&pktopt->ip6po_prefer_tempaddr;
2369		else
2370			optdata = (void *)&defpreftemp;
2371		optdatalen = sizeof(int);
2372		break;
2373	default:		/* should not happen */
2374#ifdef DIAGNOSTIC
2375		panic("ip6_getpcbopt: unexpected option\n");
2376#endif
2377		return (ENOPROTOOPT);
2378	}
2379
2380	error = sooptcopyout(sopt, optdata, optdatalen);
2381
2382	return (error);
2383}
2384
2385void
2386ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2387{
2388	if (pktopt == NULL)
2389		return;
2390
2391	if (optname == -1 || optname == IPV6_PKTINFO) {
2392		if (pktopt->ip6po_pktinfo)
2393			free(pktopt->ip6po_pktinfo, M_IP6OPT);
2394		pktopt->ip6po_pktinfo = NULL;
2395	}
2396	if (optname == -1 || optname == IPV6_HOPLIMIT)
2397		pktopt->ip6po_hlim = -1;
2398	if (optname == -1 || optname == IPV6_TCLASS)
2399		pktopt->ip6po_tclass = -1;
2400	if (optname == -1 || optname == IPV6_NEXTHOP) {
2401		if (pktopt->ip6po_nextroute.ro_rt) {
2402			RTFREE(pktopt->ip6po_nextroute.ro_rt);
2403			pktopt->ip6po_nextroute.ro_rt = NULL;
2404		}
2405		if (pktopt->ip6po_nexthop)
2406			free(pktopt->ip6po_nexthop, M_IP6OPT);
2407		pktopt->ip6po_nexthop = NULL;
2408	}
2409	if (optname == -1 || optname == IPV6_HOPOPTS) {
2410		if (pktopt->ip6po_hbh)
2411			free(pktopt->ip6po_hbh, M_IP6OPT);
2412		pktopt->ip6po_hbh = NULL;
2413	}
2414	if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2415		if (pktopt->ip6po_dest1)
2416			free(pktopt->ip6po_dest1, M_IP6OPT);
2417		pktopt->ip6po_dest1 = NULL;
2418	}
2419	if (optname == -1 || optname == IPV6_RTHDR) {
2420		if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2421			free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2422		pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2423		if (pktopt->ip6po_route.ro_rt) {
2424			RTFREE(pktopt->ip6po_route.ro_rt);
2425			pktopt->ip6po_route.ro_rt = NULL;
2426		}
2427	}
2428	if (optname == -1 || optname == IPV6_DSTOPTS) {
2429		if (pktopt->ip6po_dest2)
2430			free(pktopt->ip6po_dest2, M_IP6OPT);
2431		pktopt->ip6po_dest2 = NULL;
2432	}
2433}
2434
2435#define PKTOPT_EXTHDRCPY(type) \
2436do {\
2437	if (src->type) {\
2438		int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2439		dst->type = malloc(hlen, M_IP6OPT, canwait);\
2440		if (dst->type == NULL && canwait == M_NOWAIT)\
2441			goto bad;\
2442		bcopy(src->type, dst->type, hlen);\
2443	}\
2444} while (/*CONSTCOND*/ 0)
2445
2446static int
2447copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2448{
2449	if (dst == NULL || src == NULL)  {
2450		printf("ip6_clearpktopts: invalid argument\n");
2451		return (EINVAL);
2452	}
2453
2454	dst->ip6po_hlim = src->ip6po_hlim;
2455	dst->ip6po_tclass = src->ip6po_tclass;
2456	dst->ip6po_flags = src->ip6po_flags;
2457	dst->ip6po_minmtu = src->ip6po_minmtu;
2458	dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr;
2459	if (src->ip6po_pktinfo) {
2460		dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2461		    M_IP6OPT, canwait);
2462		if (dst->ip6po_pktinfo == NULL)
2463			goto bad;
2464		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2465	}
2466	if (src->ip6po_nexthop) {
2467		dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2468		    M_IP6OPT, canwait);
2469		if (dst->ip6po_nexthop == NULL)
2470			goto bad;
2471		bcopy(src->ip6po_nexthop, dst->ip6po_nexthop,
2472		    src->ip6po_nexthop->sa_len);
2473	}
2474	PKTOPT_EXTHDRCPY(ip6po_hbh);
2475	PKTOPT_EXTHDRCPY(ip6po_dest1);
2476	PKTOPT_EXTHDRCPY(ip6po_dest2);
2477	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2478	return (0);
2479
2480  bad:
2481	ip6_clearpktopts(dst, -1);
2482	return (ENOBUFS);
2483}
2484#undef PKTOPT_EXTHDRCPY
2485
2486struct ip6_pktopts *
2487ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2488{
2489	int error;
2490	struct ip6_pktopts *dst;
2491
2492	dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2493	if (dst == NULL)
2494		return (NULL);
2495	ip6_initpktopts(dst);
2496
2497	if ((error = copypktopts(dst, src, canwait)) != 0) {
2498		free(dst, M_IP6OPT);
2499		return (NULL);
2500	}
2501
2502	return (dst);
2503}
2504
2505void
2506ip6_freepcbopts(struct ip6_pktopts *pktopt)
2507{
2508	if (pktopt == NULL)
2509		return;
2510
2511	ip6_clearpktopts(pktopt, -1);
2512
2513	free(pktopt, M_IP6OPT);
2514}
2515
2516/*
2517 * Set IPv6 outgoing packet options based on advanced API.
2518 */
2519int
2520ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2521    struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto)
2522{
2523	struct cmsghdr *cm = 0;
2524
2525	if (control == NULL || opt == NULL)
2526		return (EINVAL);
2527
2528	ip6_initpktopts(opt);
2529	if (stickyopt) {
2530		int error;
2531
2532		/*
2533		 * If stickyopt is provided, make a local copy of the options
2534		 * for this particular packet, then override them by ancillary
2535		 * objects.
2536		 * XXX: copypktopts() does not copy the cached route to a next
2537		 * hop (if any).  This is not very good in terms of efficiency,
2538		 * but we can allow this since this option should be rarely
2539		 * used.
2540		 */
2541		if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2542			return (error);
2543	}
2544
2545	/*
2546	 * XXX: Currently, we assume all the optional information is stored
2547	 * in a single mbuf.
2548	 */
2549	if (control->m_next)
2550		return (EINVAL);
2551
2552	for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2553	    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2554		int error;
2555
2556		if (control->m_len < CMSG_LEN(0))
2557			return (EINVAL);
2558
2559		cm = mtod(control, struct cmsghdr *);
2560		if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2561			return (EINVAL);
2562		if (cm->cmsg_level != IPPROTO_IPV6)
2563			continue;
2564
2565		error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2566		    cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
2567		if (error)
2568			return (error);
2569	}
2570
2571	return (0);
2572}
2573
2574/*
2575 * Set a particular packet option, as a sticky option or an ancillary data
2576 * item.  "len" can be 0 only when it's a sticky option.
2577 * We have 4 cases of combination of "sticky" and "cmsg":
2578 * "sticky=0, cmsg=0": impossible
2579 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2580 * "sticky=1, cmsg=0": RFC3542 socket option
2581 * "sticky=1, cmsg=1": RFC2292 socket option
2582 */
2583static int
2584ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2585    struct ucred *cred, int sticky, int cmsg, int uproto)
2586{
2587	int minmtupolicy, preftemp;
2588	int error;
2589
2590	if (!sticky && !cmsg) {
2591#ifdef DIAGNOSTIC
2592		printf("ip6_setpktopt: impossible case\n");
2593#endif
2594		return (EINVAL);
2595	}
2596
2597	/*
2598	 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2599	 * not be specified in the context of RFC3542.  Conversely,
2600	 * RFC3542 types should not be specified in the context of RFC2292.
2601	 */
2602	if (!cmsg) {
2603		switch (optname) {
2604		case IPV6_2292PKTINFO:
2605		case IPV6_2292HOPLIMIT:
2606		case IPV6_2292NEXTHOP:
2607		case IPV6_2292HOPOPTS:
2608		case IPV6_2292DSTOPTS:
2609		case IPV6_2292RTHDR:
2610		case IPV6_2292PKTOPTIONS:
2611			return (ENOPROTOOPT);
2612		}
2613	}
2614	if (sticky && cmsg) {
2615		switch (optname) {
2616		case IPV6_PKTINFO:
2617		case IPV6_HOPLIMIT:
2618		case IPV6_NEXTHOP:
2619		case IPV6_HOPOPTS:
2620		case IPV6_DSTOPTS:
2621		case IPV6_RTHDRDSTOPTS:
2622		case IPV6_RTHDR:
2623		case IPV6_USE_MIN_MTU:
2624		case IPV6_DONTFRAG:
2625		case IPV6_TCLASS:
2626		case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */
2627			return (ENOPROTOOPT);
2628		}
2629	}
2630
2631	switch (optname) {
2632	case IPV6_2292PKTINFO:
2633	case IPV6_PKTINFO:
2634	{
2635		struct ifnet *ifp = NULL;
2636		struct in6_pktinfo *pktinfo;
2637
2638		if (len != sizeof(struct in6_pktinfo))
2639			return (EINVAL);
2640
2641		pktinfo = (struct in6_pktinfo *)buf;
2642
2643		/*
2644		 * An application can clear any sticky IPV6_PKTINFO option by
2645		 * doing a "regular" setsockopt with ipi6_addr being
2646		 * in6addr_any and ipi6_ifindex being zero.
2647		 * [RFC 3542, Section 6]
2648		 */
2649		if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2650		    pktinfo->ipi6_ifindex == 0 &&
2651		    IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2652			ip6_clearpktopts(opt, optname);
2653			break;
2654		}
2655
2656		if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2657		    sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2658			return (EINVAL);
2659		}
2660
2661		/* validate the interface index if specified. */
2662		if (pktinfo->ipi6_ifindex > V_if_index ||
2663		    pktinfo->ipi6_ifindex < 0) {
2664			 return (ENXIO);
2665		}
2666		if (pktinfo->ipi6_ifindex) {
2667			ifp = ifnet_byindex(pktinfo->ipi6_ifindex);
2668			if (ifp == NULL)
2669				return (ENXIO);
2670		}
2671
2672		/*
2673		 * We store the address anyway, and let in6_selectsrc()
2674		 * validate the specified address.  This is because ipi6_addr
2675		 * may not have enough information about its scope zone, and
2676		 * we may need additional information (such as outgoing
2677		 * interface or the scope zone of a destination address) to
2678		 * disambiguate the scope.
2679		 * XXX: the delay of the validation may confuse the
2680		 * application when it is used as a sticky option.
2681		 */
2682		if (opt->ip6po_pktinfo == NULL) {
2683			opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2684			    M_IP6OPT, M_NOWAIT);
2685			if (opt->ip6po_pktinfo == NULL)
2686				return (ENOBUFS);
2687		}
2688		bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo));
2689		break;
2690	}
2691
2692	case IPV6_2292HOPLIMIT:
2693	case IPV6_HOPLIMIT:
2694	{
2695		int *hlimp;
2696
2697		/*
2698		 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2699		 * to simplify the ordering among hoplimit options.
2700		 */
2701		if (optname == IPV6_HOPLIMIT && sticky)
2702			return (ENOPROTOOPT);
2703
2704		if (len != sizeof(int))
2705			return (EINVAL);
2706		hlimp = (int *)buf;
2707		if (*hlimp < -1 || *hlimp > 255)
2708			return (EINVAL);
2709
2710		opt->ip6po_hlim = *hlimp;
2711		break;
2712	}
2713
2714	case IPV6_TCLASS:
2715	{
2716		int tclass;
2717
2718		if (len != sizeof(int))
2719			return (EINVAL);
2720		tclass = *(int *)buf;
2721		if (tclass < -1 || tclass > 255)
2722			return (EINVAL);
2723
2724		opt->ip6po_tclass = tclass;
2725		break;
2726	}
2727
2728	case IPV6_2292NEXTHOP:
2729	case IPV6_NEXTHOP:
2730		if (cred != NULL) {
2731			error = priv_check_cred(cred,
2732			    PRIV_NETINET_SETHDROPTS, 0);
2733			if (error)
2734				return (error);
2735		}
2736
2737		if (len == 0) {	/* just remove the option */
2738			ip6_clearpktopts(opt, IPV6_NEXTHOP);
2739			break;
2740		}
2741
2742		/* check if cmsg_len is large enough for sa_len */
2743		if (len < sizeof(struct sockaddr) || len < *buf)
2744			return (EINVAL);
2745
2746		switch (((struct sockaddr *)buf)->sa_family) {
2747		case AF_INET6:
2748		{
2749			struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
2750			int error;
2751
2752			if (sa6->sin6_len != sizeof(struct sockaddr_in6))
2753				return (EINVAL);
2754
2755			if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
2756			    IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
2757				return (EINVAL);
2758			}
2759			if ((error = sa6_embedscope(sa6, V_ip6_use_defzone))
2760			    != 0) {
2761				return (error);
2762			}
2763			break;
2764		}
2765		case AF_LINK:	/* should eventually be supported */
2766		default:
2767			return (EAFNOSUPPORT);
2768		}
2769
2770		/* turn off the previous option, then set the new option. */
2771		ip6_clearpktopts(opt, IPV6_NEXTHOP);
2772		opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
2773		if (opt->ip6po_nexthop == NULL)
2774			return (ENOBUFS);
2775		bcopy(buf, opt->ip6po_nexthop, *buf);
2776		break;
2777
2778	case IPV6_2292HOPOPTS:
2779	case IPV6_HOPOPTS:
2780	{
2781		struct ip6_hbh *hbh;
2782		int hbhlen;
2783
2784		/*
2785		 * XXX: We don't allow a non-privileged user to set ANY HbH
2786		 * options, since per-option restriction has too much
2787		 * overhead.
2788		 */
2789		if (cred != NULL) {
2790			error = priv_check_cred(cred,
2791			    PRIV_NETINET_SETHDROPTS, 0);
2792			if (error)
2793				return (error);
2794		}
2795
2796		if (len == 0) {
2797			ip6_clearpktopts(opt, IPV6_HOPOPTS);
2798			break;	/* just remove the option */
2799		}
2800
2801		/* message length validation */
2802		if (len < sizeof(struct ip6_hbh))
2803			return (EINVAL);
2804		hbh = (struct ip6_hbh *)buf;
2805		hbhlen = (hbh->ip6h_len + 1) << 3;
2806		if (len != hbhlen)
2807			return (EINVAL);
2808
2809		/* turn off the previous option, then set the new option. */
2810		ip6_clearpktopts(opt, IPV6_HOPOPTS);
2811		opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
2812		if (opt->ip6po_hbh == NULL)
2813			return (ENOBUFS);
2814		bcopy(hbh, opt->ip6po_hbh, hbhlen);
2815
2816		break;
2817	}
2818
2819	case IPV6_2292DSTOPTS:
2820	case IPV6_DSTOPTS:
2821	case IPV6_RTHDRDSTOPTS:
2822	{
2823		struct ip6_dest *dest, **newdest = NULL;
2824		int destlen;
2825
2826		if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */
2827			error = priv_check_cred(cred,
2828			    PRIV_NETINET_SETHDROPTS, 0);
2829			if (error)
2830				return (error);
2831		}
2832
2833		if (len == 0) {
2834			ip6_clearpktopts(opt, optname);
2835			break;	/* just remove the option */
2836		}
2837
2838		/* message length validation */
2839		if (len < sizeof(struct ip6_dest))
2840			return (EINVAL);
2841		dest = (struct ip6_dest *)buf;
2842		destlen = (dest->ip6d_len + 1) << 3;
2843		if (len != destlen)
2844			return (EINVAL);
2845
2846		/*
2847		 * Determine the position that the destination options header
2848		 * should be inserted; before or after the routing header.
2849		 */
2850		switch (optname) {
2851		case IPV6_2292DSTOPTS:
2852			/*
2853			 * The old advacned API is ambiguous on this point.
2854			 * Our approach is to determine the position based
2855			 * according to the existence of a routing header.
2856			 * Note, however, that this depends on the order of the
2857			 * extension headers in the ancillary data; the 1st
2858			 * part of the destination options header must appear
2859			 * before the routing header in the ancillary data,
2860			 * too.
2861			 * RFC3542 solved the ambiguity by introducing
2862			 * separate ancillary data or option types.
2863			 */
2864			if (opt->ip6po_rthdr == NULL)
2865				newdest = &opt->ip6po_dest1;
2866			else
2867				newdest = &opt->ip6po_dest2;
2868			break;
2869		case IPV6_RTHDRDSTOPTS:
2870			newdest = &opt->ip6po_dest1;
2871			break;
2872		case IPV6_DSTOPTS:
2873			newdest = &opt->ip6po_dest2;
2874			break;
2875		}
2876
2877		/* turn off the previous option, then set the new option. */
2878		ip6_clearpktopts(opt, optname);
2879		*newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
2880		if (*newdest == NULL)
2881			return (ENOBUFS);
2882		bcopy(dest, *newdest, destlen);
2883
2884		break;
2885	}
2886
2887	case IPV6_2292RTHDR:
2888	case IPV6_RTHDR:
2889	{
2890		struct ip6_rthdr *rth;
2891		int rthlen;
2892
2893		if (len == 0) {
2894			ip6_clearpktopts(opt, IPV6_RTHDR);
2895			break;	/* just remove the option */
2896		}
2897
2898		/* message length validation */
2899		if (len < sizeof(struct ip6_rthdr))
2900			return (EINVAL);
2901		rth = (struct ip6_rthdr *)buf;
2902		rthlen = (rth->ip6r_len + 1) << 3;
2903		if (len != rthlen)
2904			return (EINVAL);
2905
2906		switch (rth->ip6r_type) {
2907		case IPV6_RTHDR_TYPE_0:
2908			if (rth->ip6r_len == 0)	/* must contain one addr */
2909				return (EINVAL);
2910			if (rth->ip6r_len % 2) /* length must be even */
2911				return (EINVAL);
2912			if (rth->ip6r_len / 2 != rth->ip6r_segleft)
2913				return (EINVAL);
2914			break;
2915		default:
2916			return (EINVAL);	/* not supported */
2917		}
2918
2919		/* turn off the previous option */
2920		ip6_clearpktopts(opt, IPV6_RTHDR);
2921		opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
2922		if (opt->ip6po_rthdr == NULL)
2923			return (ENOBUFS);
2924		bcopy(rth, opt->ip6po_rthdr, rthlen);
2925
2926		break;
2927	}
2928
2929	case IPV6_USE_MIN_MTU:
2930		if (len != sizeof(int))
2931			return (EINVAL);
2932		minmtupolicy = *(int *)buf;
2933		if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
2934		    minmtupolicy != IP6PO_MINMTU_DISABLE &&
2935		    minmtupolicy != IP6PO_MINMTU_ALL) {
2936			return (EINVAL);
2937		}
2938		opt->ip6po_minmtu = minmtupolicy;
2939		break;
2940
2941	case IPV6_DONTFRAG:
2942		if (len != sizeof(int))
2943			return (EINVAL);
2944
2945		if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
2946			/*
2947			 * we ignore this option for TCP sockets.
2948			 * (RFC3542 leaves this case unspecified.)
2949			 */
2950			opt->ip6po_flags &= ~IP6PO_DONTFRAG;
2951		} else
2952			opt->ip6po_flags |= IP6PO_DONTFRAG;
2953		break;
2954
2955	case IPV6_PREFER_TEMPADDR:
2956		if (len != sizeof(int))
2957			return (EINVAL);
2958		preftemp = *(int *)buf;
2959		if (preftemp != IP6PO_TEMPADDR_SYSTEM &&
2960		    preftemp != IP6PO_TEMPADDR_NOTPREFER &&
2961		    preftemp != IP6PO_TEMPADDR_PREFER) {
2962			return (EINVAL);
2963		}
2964		opt->ip6po_prefer_tempaddr = preftemp;
2965		break;
2966
2967	default:
2968		return (ENOPROTOOPT);
2969	} /* end of switch */
2970
2971	return (0);
2972}
2973
2974/*
2975 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
2976 * packet to the input queue of a specified interface.  Note that this
2977 * calls the output routine of the loopback "driver", but with an interface
2978 * pointer that might NOT be &loif -- easier than replicating that code here.
2979 */
2980void
2981ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst)
2982{
2983	struct mbuf *copym;
2984	struct ip6_hdr *ip6;
2985
2986	copym = m_copy(m, 0, M_COPYALL);
2987	if (copym == NULL)
2988		return;
2989
2990	/*
2991	 * Make sure to deep-copy IPv6 header portion in case the data
2992	 * is in an mbuf cluster, so that we can safely override the IPv6
2993	 * header portion later.
2994	 */
2995	if ((copym->m_flags & M_EXT) != 0 ||
2996	    copym->m_len < sizeof(struct ip6_hdr)) {
2997		copym = m_pullup(copym, sizeof(struct ip6_hdr));
2998		if (copym == NULL)
2999			return;
3000	}
3001
3002#ifdef DIAGNOSTIC
3003	if (copym->m_len < sizeof(*ip6)) {
3004		m_freem(copym);
3005		return;
3006	}
3007#endif
3008
3009	ip6 = mtod(copym, struct ip6_hdr *);
3010	/*
3011	 * clear embedded scope identifiers if necessary.
3012	 * in6_clearscope will touch the addresses only when necessary.
3013	 */
3014	in6_clearscope(&ip6->ip6_src);
3015	in6_clearscope(&ip6->ip6_dst);
3016
3017	(void)if_simloop(ifp, copym, dst->sin6_family, 0);
3018}
3019
3020/*
3021 * Chop IPv6 header off from the payload.
3022 */
3023static int
3024ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
3025{
3026	struct mbuf *mh;
3027	struct ip6_hdr *ip6;
3028
3029	ip6 = mtod(m, struct ip6_hdr *);
3030	if (m->m_len > sizeof(*ip6)) {
3031		mh = m_gethdr(M_NOWAIT, MT_DATA);
3032		if (mh == NULL) {
3033			m_freem(m);
3034			return ENOBUFS;
3035		}
3036		m_move_pkthdr(mh, m);
3037		MH_ALIGN(mh, sizeof(*ip6));
3038		m->m_len -= sizeof(*ip6);
3039		m->m_data += sizeof(*ip6);
3040		mh->m_next = m;
3041		m = mh;
3042		m->m_len = sizeof(*ip6);
3043		bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
3044	}
3045	exthdrs->ip6e_ip6 = m;
3046	return 0;
3047}
3048
3049/*
3050 * Compute IPv6 extension header length.
3051 */
3052int
3053ip6_optlen(struct inpcb *in6p)
3054{
3055	int len;
3056
3057	if (!in6p->in6p_outputopts)
3058		return 0;
3059
3060	len = 0;
3061#define elen(x) \
3062    (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3063
3064	len += elen(in6p->in6p_outputopts->ip6po_hbh);
3065	if (in6p->in6p_outputopts->ip6po_rthdr)
3066		/* dest1 is valid with rthdr only */
3067		len += elen(in6p->in6p_outputopts->ip6po_dest1);
3068	len += elen(in6p->in6p_outputopts->ip6po_rthdr);
3069	len += elen(in6p->in6p_outputopts->ip6po_dest2);
3070	return len;
3071#undef elen
3072}
3073