ip6_output.c revision 193744
1/*-
2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the project nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	$KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $
30 */
31
32/*-
33 * Copyright (c) 1982, 1986, 1988, 1990, 1993
34 *	The Regents of the University of California.  All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 *    notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 *    notice, this list of conditions and the following disclaimer in the
43 *    documentation and/or other materials provided with the distribution.
44 * 4. Neither the name of the University nor the names of its contributors
45 *    may be used to endorse or promote products derived from this software
46 *    without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
61 */
62
63#include <sys/cdefs.h>
64__FBSDID("$FreeBSD: head/sys/netinet6/ip6_output.c 193744 2009-06-08 19:57:35Z bz $");
65
66#include "opt_inet.h"
67#include "opt_inet6.h"
68#include "opt_ipsec.h"
69
70#include <sys/param.h>
71#include <sys/kernel.h>
72#include <sys/malloc.h>
73#include <sys/mbuf.h>
74#include <sys/errno.h>
75#include <sys/priv.h>
76#include <sys/proc.h>
77#include <sys/protosw.h>
78#include <sys/socket.h>
79#include <sys/socketvar.h>
80#include <sys/syslog.h>
81#include <sys/ucred.h>
82#include <sys/vimage.h>
83
84#include <net/if.h>
85#include <net/netisr.h>
86#include <net/route.h>
87#include <net/pfil.h>
88#include <net/vnet.h>
89
90#include <netinet/in.h>
91#include <netinet/in_var.h>
92#include <netinet6/in6_var.h>
93#include <netinet/ip6.h>
94#include <netinet/icmp6.h>
95#include <netinet6/ip6_var.h>
96#include <netinet/in_pcb.h>
97#include <netinet/tcp_var.h>
98#include <netinet6/nd6.h>
99#include <netinet/vinet.h>
100
101#ifdef IPSEC
102#include <netipsec/ipsec.h>
103#include <netipsec/ipsec6.h>
104#include <netipsec/key.h>
105#include <netinet6/ip6_ipsec.h>
106#endif /* IPSEC */
107
108#include <netinet6/ip6protosw.h>
109#include <netinet6/scope6_var.h>
110#include <netinet6/vinet6.h>
111
112extern int in6_mcast_loop;
113
114struct ip6_exthdrs {
115	struct mbuf *ip6e_ip6;
116	struct mbuf *ip6e_hbh;
117	struct mbuf *ip6e_dest1;
118	struct mbuf *ip6e_rthdr;
119	struct mbuf *ip6e_dest2;
120};
121
122static int ip6_pcbopt __P((int, u_char *, int, struct ip6_pktopts **,
123			   struct ucred *, int));
124static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
125	struct socket *, struct sockopt *));
126static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
127static int ip6_setpktopt __P((int, u_char *, int, struct ip6_pktopts *,
128	struct ucred *, int, int, int));
129
130static int ip6_copyexthdr(struct mbuf **, caddr_t, int);
131static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
132	struct ip6_frag **));
133static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
134static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
135static int ip6_getpmtu __P((struct route_in6 *, struct route_in6 *,
136	struct ifnet *, struct in6_addr *, u_long *, int *));
137static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
138
139
140/*
141 * Make an extension header from option data.  hp is the source, and
142 * mp is the destination.
143 */
144#define MAKE_EXTHDR(hp, mp)						\
145    do {								\
146	if (hp) {							\
147		struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
148		error = ip6_copyexthdr((mp), (caddr_t)(hp),		\
149		    ((eh)->ip6e_len + 1) << 3);				\
150		if (error)						\
151			goto freehdrs;					\
152	}								\
153    } while (/*CONSTCOND*/ 0)
154
155/*
156 * Form a chain of extension headers.
157 * m is the extension header mbuf
158 * mp is the previous mbuf in the chain
159 * p is the next header
160 * i is the type of option.
161 */
162#define MAKE_CHAIN(m, mp, p, i)\
163    do {\
164	if (m) {\
165		if (!hdrsplit) \
166			panic("assumption failed: hdr not split"); \
167		*mtod((m), u_char *) = *(p);\
168		*(p) = (i);\
169		p = mtod((m), u_char *);\
170		(m)->m_next = (mp)->m_next;\
171		(mp)->m_next = (m);\
172		(mp) = (m);\
173	}\
174    } while (/*CONSTCOND*/ 0)
175
176/*
177 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
178 * header (with pri, len, nxt, hlim, src, dst).
179 * This function may modify ver and hlim only.
180 * The mbuf chain containing the packet will be freed.
181 * The mbuf opt, if present, will not be freed.
182 *
183 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
184 * nd_ifinfo.linkmtu is u_int32_t.  so we use u_long to hold largest one,
185 * which is rt_rmx.rmx_mtu.
186 *
187 * ifpp - XXX: just for statistics
188 */
189int
190ip6_output(struct mbuf *m0, struct ip6_pktopts *opt,
191    struct route_in6 *ro, int flags, struct ip6_moptions *im6o,
192    struct ifnet **ifpp, struct inpcb *inp)
193{
194	INIT_VNET_NET(curvnet);
195	INIT_VNET_INET6(curvnet);
196	struct ip6_hdr *ip6, *mhip6;
197	struct ifnet *ifp, *origifp;
198	struct mbuf *m = m0;
199	struct mbuf *mprev = NULL;
200	int hlen, tlen, len, off;
201	struct route_in6 ip6route;
202	struct rtentry *rt = NULL;
203	struct sockaddr_in6 *dst, src_sa, dst_sa;
204	struct in6_addr odst;
205	int error = 0;
206	struct in6_ifaddr *ia = NULL;
207	u_long mtu;
208	int alwaysfrag, dontfrag;
209	u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
210	struct ip6_exthdrs exthdrs;
211	struct in6_addr finaldst, src0, dst0;
212	u_int32_t zone;
213	struct route_in6 *ro_pmtu = NULL;
214	int hdrsplit = 0;
215	int needipsec = 0;
216#ifdef IPSEC
217	struct ipsec_output_state state;
218	struct ip6_rthdr *rh = NULL;
219	int needipsectun = 0;
220	int segleft_org = 0;
221	struct secpolicy *sp = NULL;
222#endif /* IPSEC */
223
224	ip6 = mtod(m, struct ip6_hdr *);
225	if (ip6 == NULL) {
226		printf ("ip6 is NULL");
227		goto bad;
228	}
229
230	finaldst = ip6->ip6_dst;
231
232	bzero(&exthdrs, sizeof(exthdrs));
233
234	if (opt) {
235		/* Hop-by-Hop options header */
236		MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
237		/* Destination options header(1st part) */
238		if (opt->ip6po_rthdr) {
239			/*
240			 * Destination options header(1st part)
241			 * This only makes sense with a routing header.
242			 * See Section 9.2 of RFC 3542.
243			 * Disabling this part just for MIP6 convenience is
244			 * a bad idea.  We need to think carefully about a
245			 * way to make the advanced API coexist with MIP6
246			 * options, which might automatically be inserted in
247			 * the kernel.
248			 */
249			MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
250		}
251		/* Routing header */
252		MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
253		/* Destination options header(2nd part) */
254		MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
255	}
256
257	/*
258	 * IPSec checking which handles several cases.
259	 * FAST IPSEC: We re-injected the packet.
260	 */
261#ifdef IPSEC
262	switch(ip6_ipsec_output(&m, inp, &flags, &error, &ifp, &sp))
263	{
264	case 1:                 /* Bad packet */
265		goto freehdrs;
266	case -1:                /* Do IPSec */
267		needipsec = 1;
268	case 0:                 /* No IPSec */
269	default:
270		break;
271	}
272#endif /* IPSEC */
273
274	/*
275	 * Calculate the total length of the extension header chain.
276	 * Keep the length of the unfragmentable part for fragmentation.
277	 */
278	optlen = 0;
279	if (exthdrs.ip6e_hbh)
280		optlen += exthdrs.ip6e_hbh->m_len;
281	if (exthdrs.ip6e_dest1)
282		optlen += exthdrs.ip6e_dest1->m_len;
283	if (exthdrs.ip6e_rthdr)
284		optlen += exthdrs.ip6e_rthdr->m_len;
285	unfragpartlen = optlen + sizeof(struct ip6_hdr);
286
287	/* NOTE: we don't add AH/ESP length here. do that later. */
288	if (exthdrs.ip6e_dest2)
289		optlen += exthdrs.ip6e_dest2->m_len;
290
291	/*
292	 * If we need IPsec, or there is at least one extension header,
293	 * separate IP6 header from the payload.
294	 */
295	if ((needipsec || optlen) && !hdrsplit) {
296		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
297			m = NULL;
298			goto freehdrs;
299		}
300		m = exthdrs.ip6e_ip6;
301		hdrsplit++;
302	}
303
304	/* adjust pointer */
305	ip6 = mtod(m, struct ip6_hdr *);
306
307	/* adjust mbuf packet header length */
308	m->m_pkthdr.len += optlen;
309	plen = m->m_pkthdr.len - sizeof(*ip6);
310
311	/* If this is a jumbo payload, insert a jumbo payload option. */
312	if (plen > IPV6_MAXPACKET) {
313		if (!hdrsplit) {
314			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
315				m = NULL;
316				goto freehdrs;
317			}
318			m = exthdrs.ip6e_ip6;
319			hdrsplit++;
320		}
321		/* adjust pointer */
322		ip6 = mtod(m, struct ip6_hdr *);
323		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
324			goto freehdrs;
325		ip6->ip6_plen = 0;
326	} else
327		ip6->ip6_plen = htons(plen);
328
329	/*
330	 * Concatenate headers and fill in next header fields.
331	 * Here we have, on "m"
332	 *	IPv6 payload
333	 * and we insert headers accordingly.  Finally, we should be getting:
334	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
335	 *
336	 * during the header composing process, "m" points to IPv6 header.
337	 * "mprev" points to an extension header prior to esp.
338	 */
339	u_char *nexthdrp = &ip6->ip6_nxt;
340	mprev = m;
341
342	/*
343	 * we treat dest2 specially.  this makes IPsec processing
344	 * much easier.  the goal here is to make mprev point the
345	 * mbuf prior to dest2.
346	 *
347	 * result: IPv6 dest2 payload
348	 * m and mprev will point to IPv6 header.
349	 */
350	if (exthdrs.ip6e_dest2) {
351		if (!hdrsplit)
352			panic("assumption failed: hdr not split");
353		exthdrs.ip6e_dest2->m_next = m->m_next;
354		m->m_next = exthdrs.ip6e_dest2;
355		*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
356		ip6->ip6_nxt = IPPROTO_DSTOPTS;
357	}
358
359	/*
360	 * result: IPv6 hbh dest1 rthdr dest2 payload
361	 * m will point to IPv6 header.  mprev will point to the
362	 * extension header prior to dest2 (rthdr in the above case).
363	 */
364	MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
365	MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
366		   IPPROTO_DSTOPTS);
367	MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
368		   IPPROTO_ROUTING);
369
370#ifdef IPSEC
371	if (!needipsec)
372		goto skip_ipsec2;
373
374	/*
375	 * pointers after IPsec headers are not valid any more.
376	 * other pointers need a great care too.
377	 * (IPsec routines should not mangle mbufs prior to AH/ESP)
378	 */
379	exthdrs.ip6e_dest2 = NULL;
380
381	if (exthdrs.ip6e_rthdr) {
382		rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
383		segleft_org = rh->ip6r_segleft;
384		rh->ip6r_segleft = 0;
385	}
386
387	bzero(&state, sizeof(state));
388	state.m = m;
389	error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
390				    &needipsectun);
391	m = state.m;
392	if (error == EJUSTRETURN) {
393		/*
394		 * We had a SP with a level of 'use' and no SA. We
395		 * will just continue to process the packet without
396		 * IPsec processing.
397		 */
398		;
399	} else if (error) {
400		/* mbuf is already reclaimed in ipsec6_output_trans. */
401		m = NULL;
402		switch (error) {
403		case EHOSTUNREACH:
404		case ENETUNREACH:
405		case EMSGSIZE:
406		case ENOBUFS:
407		case ENOMEM:
408			break;
409		default:
410			printf("[%s:%d] (ipsec): error code %d\n",
411			    __func__, __LINE__, error);
412			/* FALLTHROUGH */
413		case ENOENT:
414			/* don't show these error codes to the user */
415			error = 0;
416			break;
417		}
418		goto bad;
419	} else if (!needipsectun) {
420		/*
421		 * In the FAST IPSec case we have already
422		 * re-injected the packet and it has been freed
423		 * by the ipsec_done() function.  So, just clean
424		 * up after ourselves.
425		 */
426		m = NULL;
427		goto done;
428	}
429	if (exthdrs.ip6e_rthdr) {
430		/* ah6_output doesn't modify mbuf chain */
431		rh->ip6r_segleft = segleft_org;
432	}
433skip_ipsec2:;
434#endif /* IPSEC */
435
436	/*
437	 * If there is a routing header, discard the packet.
438	 */
439	if (exthdrs.ip6e_rthdr) {
440		 error = EINVAL;
441		 goto bad;
442	}
443
444	/* Source address validation */
445	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
446	    (flags & IPV6_UNSPECSRC) == 0) {
447		error = EOPNOTSUPP;
448		V_ip6stat.ip6s_badscope++;
449		goto bad;
450	}
451	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
452		error = EOPNOTSUPP;
453		V_ip6stat.ip6s_badscope++;
454		goto bad;
455	}
456
457	V_ip6stat.ip6s_localout++;
458
459	/*
460	 * Route packet.
461	 */
462	if (ro == 0) {
463		ro = &ip6route;
464		bzero((caddr_t)ro, sizeof(*ro));
465	}
466	ro_pmtu = ro;
467	if (opt && opt->ip6po_rthdr)
468		ro = &opt->ip6po_route;
469	dst = (struct sockaddr_in6 *)&ro->ro_dst;
470
471again:
472	/*
473	 * if specified, try to fill in the traffic class field.
474	 * do not override if a non-zero value is already set.
475	 * we check the diffserv field and the ecn field separately.
476	 */
477	if (opt && opt->ip6po_tclass >= 0) {
478		int mask = 0;
479
480		if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
481			mask |= 0xfc;
482		if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
483			mask |= 0x03;
484		if (mask != 0)
485			ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
486	}
487
488	/* fill in or override the hop limit field, if necessary. */
489	if (opt && opt->ip6po_hlim != -1)
490		ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
491	else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
492		if (im6o != NULL)
493			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
494		else
495			ip6->ip6_hlim = V_ip6_defmcasthlim;
496	}
497
498#ifdef IPSEC
499	/*
500	 * We may re-inject packets into the stack here.
501	 */
502	if (needipsec && needipsectun) {
503		struct ipsec_output_state state;
504
505		/*
506		 * All the extension headers will become inaccessible
507		 * (since they can be encrypted).
508		 * Don't panic, we need no more updates to extension headers
509		 * on inner IPv6 packet (since they are now encapsulated).
510		 *
511		 * IPv6 [ESP|AH] IPv6 [extension headers] payload
512		 */
513		bzero(&exthdrs, sizeof(exthdrs));
514		exthdrs.ip6e_ip6 = m;
515
516		bzero(&state, sizeof(state));
517		state.m = m;
518		state.ro = (struct route *)ro;
519		state.dst = (struct sockaddr *)dst;
520
521		error = ipsec6_output_tunnel(&state, sp, flags);
522
523		m = state.m;
524		ro = (struct route_in6 *)state.ro;
525		dst = (struct sockaddr_in6 *)state.dst;
526		if (error == EJUSTRETURN) {
527			/*
528			 * We had a SP with a level of 'use' and no SA. We
529			 * will just continue to process the packet without
530			 * IPsec processing.
531			 */
532			;
533		} else if (error) {
534			/* mbuf is already reclaimed in ipsec6_output_tunnel. */
535			m0 = m = NULL;
536			m = NULL;
537			switch (error) {
538			case EHOSTUNREACH:
539			case ENETUNREACH:
540			case EMSGSIZE:
541			case ENOBUFS:
542			case ENOMEM:
543				break;
544			default:
545				printf("[%s:%d] (ipsec): error code %d\n",
546				    __func__, __LINE__, error);
547				/* FALLTHROUGH */
548			case ENOENT:
549				/* don't show these error codes to the user */
550				error = 0;
551				break;
552			}
553			goto bad;
554		} else {
555			/*
556			 * In the FAST IPSec case we have already
557			 * re-injected the packet and it has been freed
558			 * by the ipsec_done() function.  So, just clean
559			 * up after ourselves.
560			 */
561			m = NULL;
562			goto done;
563		}
564
565		exthdrs.ip6e_ip6 = m;
566	}
567#endif /* IPSEC */
568
569	/* adjust pointer */
570	ip6 = mtod(m, struct ip6_hdr *);
571
572	bzero(&dst_sa, sizeof(dst_sa));
573	dst_sa.sin6_family = AF_INET6;
574	dst_sa.sin6_len = sizeof(dst_sa);
575	dst_sa.sin6_addr = ip6->ip6_dst;
576	if ((error = in6_selectroute(&dst_sa, opt, im6o, ro,
577	    &ifp, &rt)) != 0) {
578		switch (error) {
579		case EHOSTUNREACH:
580			V_ip6stat.ip6s_noroute++;
581			break;
582		case EADDRNOTAVAIL:
583		default:
584			break; /* XXX statistics? */
585		}
586		if (ifp != NULL)
587			in6_ifstat_inc(ifp, ifs6_out_discard);
588		goto bad;
589	}
590	if (rt == NULL) {
591		/*
592		 * If in6_selectroute() does not return a route entry,
593		 * dst may not have been updated.
594		 */
595		*dst = dst_sa;	/* XXX */
596	}
597
598	/*
599	 * then rt (for unicast) and ifp must be non-NULL valid values.
600	 */
601	if ((flags & IPV6_FORWARDING) == 0) {
602		/* XXX: the FORWARDING flag can be set for mrouting. */
603		in6_ifstat_inc(ifp, ifs6_out_request);
604	}
605	if (rt != NULL) {
606		ia = (struct in6_ifaddr *)(rt->rt_ifa);
607		rt->rt_use++;
608	}
609
610	/*
611	 * The outgoing interface must be in the zone of source and
612	 * destination addresses.  We should use ia_ifp to support the
613	 * case of sending packets to an address of our own.
614	 */
615	if (ia != NULL && ia->ia_ifp)
616		origifp = ia->ia_ifp;
617	else
618		origifp = ifp;
619
620	src0 = ip6->ip6_src;
621	if (in6_setscope(&src0, origifp, &zone))
622		goto badscope;
623	bzero(&src_sa, sizeof(src_sa));
624	src_sa.sin6_family = AF_INET6;
625	src_sa.sin6_len = sizeof(src_sa);
626	src_sa.sin6_addr = ip6->ip6_src;
627	if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
628		goto badscope;
629
630	dst0 = ip6->ip6_dst;
631	if (in6_setscope(&dst0, origifp, &zone))
632		goto badscope;
633	/* re-initialize to be sure */
634	bzero(&dst_sa, sizeof(dst_sa));
635	dst_sa.sin6_family = AF_INET6;
636	dst_sa.sin6_len = sizeof(dst_sa);
637	dst_sa.sin6_addr = ip6->ip6_dst;
638	if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) {
639		goto badscope;
640	}
641
642	/* scope check is done. */
643	goto routefound;
644
645  badscope:
646	V_ip6stat.ip6s_badscope++;
647	in6_ifstat_inc(origifp, ifs6_out_discard);
648	if (error == 0)
649		error = EHOSTUNREACH; /* XXX */
650	goto bad;
651
652  routefound:
653	if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
654		if (opt && opt->ip6po_nextroute.ro_rt) {
655			/*
656			 * The nexthop is explicitly specified by the
657			 * application.  We assume the next hop is an IPv6
658			 * address.
659			 */
660			dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
661		}
662		else if ((rt->rt_flags & RTF_GATEWAY))
663			dst = (struct sockaddr_in6 *)rt->rt_gateway;
664	}
665
666	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
667		m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
668	} else {
669		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
670		in6_ifstat_inc(ifp, ifs6_out_mcast);
671		/*
672		 * Confirm that the outgoing interface supports multicast.
673		 */
674		if (!(ifp->if_flags & IFF_MULTICAST)) {
675			V_ip6stat.ip6s_noroute++;
676			in6_ifstat_inc(ifp, ifs6_out_discard);
677			error = ENETUNREACH;
678			goto bad;
679		}
680		if ((im6o == NULL && in6_mcast_loop) ||
681		    (im6o && im6o->im6o_multicast_loop)) {
682			/*
683			 * Loop back multicast datagram if not expressly
684			 * forbidden to do so, even if we have not joined
685			 * the address; protocols will filter it later,
686			 * thus deferring a hash lookup and lock acquisition
687			 * at the expense of an m_copym().
688			 */
689			ip6_mloopback(ifp, m, dst);
690		} else {
691			/*
692			 * If we are acting as a multicast router, perform
693			 * multicast forwarding as if the packet had just
694			 * arrived on the interface to which we are about
695			 * to send.  The multicast forwarding function
696			 * recursively calls this function, using the
697			 * IPV6_FORWARDING flag to prevent infinite recursion.
698			 *
699			 * Multicasts that are looped back by ip6_mloopback(),
700			 * above, will be forwarded by the ip6_input() routine,
701			 * if necessary.
702			 */
703			if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
704				/*
705				 * XXX: ip6_mforward expects that rcvif is NULL
706				 * when it is called from the originating path.
707				 * However, it is not always the case, since
708				 * some versions of MGETHDR() does not
709				 * initialize the field.
710				 */
711				m->m_pkthdr.rcvif = NULL;
712				if (ip6_mforward(ip6, ifp, m) != 0) {
713					m_freem(m);
714					goto done;
715				}
716			}
717		}
718		/*
719		 * Multicasts with a hoplimit of zero may be looped back,
720		 * above, but must not be transmitted on a network.
721		 * Also, multicasts addressed to the loopback interface
722		 * are not sent -- the above call to ip6_mloopback() will
723		 * loop back a copy if this host actually belongs to the
724		 * destination group on the loopback interface.
725		 */
726		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
727		    IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
728			m_freem(m);
729			goto done;
730		}
731	}
732
733	/*
734	 * Fill the outgoing inteface to tell the upper layer
735	 * to increment per-interface statistics.
736	 */
737	if (ifpp)
738		*ifpp = ifp;
739
740	/* Determine path MTU. */
741	if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
742	    &alwaysfrag)) != 0)
743		goto bad;
744
745	/*
746	 * The caller of this function may specify to use the minimum MTU
747	 * in some cases.
748	 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
749	 * setting.  The logic is a bit complicated; by default, unicast
750	 * packets will follow path MTU while multicast packets will be sent at
751	 * the minimum MTU.  If IP6PO_MINMTU_ALL is specified, all packets
752	 * including unicast ones will be sent at the minimum MTU.  Multicast
753	 * packets will always be sent at the minimum MTU unless
754	 * IP6PO_MINMTU_DISABLE is explicitly specified.
755	 * See RFC 3542 for more details.
756	 */
757	if (mtu > IPV6_MMTU) {
758		if ((flags & IPV6_MINMTU))
759			mtu = IPV6_MMTU;
760		else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
761			mtu = IPV6_MMTU;
762		else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
763			 (opt == NULL ||
764			  opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
765			mtu = IPV6_MMTU;
766		}
767	}
768
769	/*
770	 * clear embedded scope identifiers if necessary.
771	 * in6_clearscope will touch the addresses only when necessary.
772	 */
773	in6_clearscope(&ip6->ip6_src);
774	in6_clearscope(&ip6->ip6_dst);
775
776	/*
777	 * If the outgoing packet contains a hop-by-hop options header,
778	 * it must be examined and processed even by the source node.
779	 * (RFC 2460, section 4.)
780	 */
781	if (exthdrs.ip6e_hbh) {
782		struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
783		u_int32_t dummy; /* XXX unused */
784		u_int32_t plen = 0; /* XXX: ip6_process will check the value */
785
786#ifdef DIAGNOSTIC
787		if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len)
788			panic("ip6e_hbh is not continuous");
789#endif
790		/*
791		 *  XXX: if we have to send an ICMPv6 error to the sender,
792		 *       we need the M_LOOP flag since icmp6_error() expects
793		 *       the IPv6 and the hop-by-hop options header are
794		 *       continuous unless the flag is set.
795		 */
796		m->m_flags |= M_LOOP;
797		m->m_pkthdr.rcvif = ifp;
798		if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
799		    ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
800		    &dummy, &plen) < 0) {
801			/* m was already freed at this point */
802			error = EINVAL;/* better error? */
803			goto done;
804		}
805		m->m_flags &= ~M_LOOP; /* XXX */
806		m->m_pkthdr.rcvif = NULL;
807	}
808
809	/* Jump over all PFIL processing if hooks are not active. */
810	if (!PFIL_HOOKED(&inet6_pfil_hook))
811		goto passout;
812
813	odst = ip6->ip6_dst;
814	/* Run through list of hooks for output packets. */
815	error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT, inp);
816	if (error != 0 || m == NULL)
817		goto done;
818	ip6 = mtod(m, struct ip6_hdr *);
819
820	/* See if destination IP address was changed by packet filter. */
821	if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) {
822		m->m_flags |= M_SKIP_FIREWALL;
823		/* If destination is now ourself drop to ip6_input(). */
824		if (in6_localaddr(&ip6->ip6_dst)) {
825			if (m->m_pkthdr.rcvif == NULL)
826				m->m_pkthdr.rcvif = V_loif;
827			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
828				m->m_pkthdr.csum_flags |=
829				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
830				m->m_pkthdr.csum_data = 0xffff;
831			}
832			m->m_pkthdr.csum_flags |=
833			    CSUM_IP_CHECKED | CSUM_IP_VALID;
834			error = netisr_queue(NETISR_IPV6, m);
835			goto done;
836		} else
837			goto again;	/* Redo the routing table lookup. */
838	}
839
840	/* XXX: IPFIREWALL_FORWARD */
841
842passout:
843	/*
844	 * Send the packet to the outgoing interface.
845	 * If necessary, do IPv6 fragmentation before sending.
846	 *
847	 * the logic here is rather complex:
848	 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
849	 * 1-a:	send as is if tlen <= path mtu
850	 * 1-b:	fragment if tlen > path mtu
851	 *
852	 * 2: if user asks us not to fragment (dontfrag == 1)
853	 * 2-a:	send as is if tlen <= interface mtu
854	 * 2-b:	error if tlen > interface mtu
855	 *
856	 * 3: if we always need to attach fragment header (alwaysfrag == 1)
857	 *	always fragment
858	 *
859	 * 4: if dontfrag == 1 && alwaysfrag == 1
860	 *	error, as we cannot handle this conflicting request
861	 */
862	tlen = m->m_pkthdr.len;
863
864	if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
865		dontfrag = 1;
866	else
867		dontfrag = 0;
868	if (dontfrag && alwaysfrag) {	/* case 4 */
869		/* conflicting request - can't transmit */
870		error = EMSGSIZE;
871		goto bad;
872	}
873	if (dontfrag && tlen > IN6_LINKMTU(ifp)) {	/* case 2-b */
874		/*
875		 * Even if the DONTFRAG option is specified, we cannot send the
876		 * packet when the data length is larger than the MTU of the
877		 * outgoing interface.
878		 * Notify the error by sending IPV6_PATHMTU ancillary data as
879		 * well as returning an error code (the latter is not described
880		 * in the API spec.)
881		 */
882		u_int32_t mtu32;
883		struct ip6ctlparam ip6cp;
884
885		mtu32 = (u_int32_t)mtu;
886		bzero(&ip6cp, sizeof(ip6cp));
887		ip6cp.ip6c_cmdarg = (void *)&mtu32;
888		pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
889		    (void *)&ip6cp);
890
891		error = EMSGSIZE;
892		goto bad;
893	}
894
895	/*
896	 * transmit packet without fragmentation
897	 */
898	if (dontfrag || (!alwaysfrag && tlen <= mtu)) {	/* case 1-a and 2-a */
899		struct in6_ifaddr *ia6;
900
901		ip6 = mtod(m, struct ip6_hdr *);
902		ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
903		if (ia6) {
904			/* Record statistics for this interface address. */
905			ia6->ia_ifa.if_opackets++;
906			ia6->ia_ifa.if_obytes += m->m_pkthdr.len;
907		}
908		error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
909		goto done;
910	}
911
912	/*
913	 * try to fragment the packet.  case 1-b and 3
914	 */
915	if (mtu < IPV6_MMTU) {
916		/* path MTU cannot be less than IPV6_MMTU */
917		error = EMSGSIZE;
918		in6_ifstat_inc(ifp, ifs6_out_fragfail);
919		goto bad;
920	} else if (ip6->ip6_plen == 0) {
921		/* jumbo payload cannot be fragmented */
922		error = EMSGSIZE;
923		in6_ifstat_inc(ifp, ifs6_out_fragfail);
924		goto bad;
925	} else {
926		struct mbuf **mnext, *m_frgpart;
927		struct ip6_frag *ip6f;
928		u_int32_t id = htonl(ip6_randomid());
929		u_char nextproto;
930
931		int qslots = ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len;
932
933		/*
934		 * Too large for the destination or interface;
935		 * fragment if possible.
936		 * Must be able to put at least 8 bytes per fragment.
937		 */
938		hlen = unfragpartlen;
939		if (mtu > IPV6_MAXPACKET)
940			mtu = IPV6_MAXPACKET;
941
942		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
943		if (len < 8) {
944			error = EMSGSIZE;
945			in6_ifstat_inc(ifp, ifs6_out_fragfail);
946			goto bad;
947		}
948
949		/*
950		 * Verify that we have any chance at all of being able to queue
951		 *      the packet or packet fragments
952		 */
953		if (qslots <= 0 || ((u_int)qslots * (mtu - hlen)
954		    < tlen  /* - hlen */)) {
955			error = ENOBUFS;
956			V_ip6stat.ip6s_odropped++;
957			goto bad;
958		}
959
960		mnext = &m->m_nextpkt;
961
962		/*
963		 * Change the next header field of the last header in the
964		 * unfragmentable part.
965		 */
966		if (exthdrs.ip6e_rthdr) {
967			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
968			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
969		} else if (exthdrs.ip6e_dest1) {
970			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
971			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
972		} else if (exthdrs.ip6e_hbh) {
973			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
974			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
975		} else {
976			nextproto = ip6->ip6_nxt;
977			ip6->ip6_nxt = IPPROTO_FRAGMENT;
978		}
979
980		/*
981		 * Loop through length of segment after first fragment,
982		 * make new header and copy data of each part and link onto
983		 * chain.
984		 */
985		m0 = m;
986		for (off = hlen; off < tlen; off += len) {
987			MGETHDR(m, M_DONTWAIT, MT_HEADER);
988			if (!m) {
989				error = ENOBUFS;
990				V_ip6stat.ip6s_odropped++;
991				goto sendorfree;
992			}
993			m->m_pkthdr.rcvif = NULL;
994			m->m_flags = m0->m_flags & M_COPYFLAGS;
995			*mnext = m;
996			mnext = &m->m_nextpkt;
997			m->m_data += max_linkhdr;
998			mhip6 = mtod(m, struct ip6_hdr *);
999			*mhip6 = *ip6;
1000			m->m_len = sizeof(*mhip6);
1001			error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
1002			if (error) {
1003				V_ip6stat.ip6s_odropped++;
1004				goto sendorfree;
1005			}
1006			ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
1007			if (off + len >= tlen)
1008				len = tlen - off;
1009			else
1010				ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
1011			mhip6->ip6_plen = htons((u_short)(len + hlen +
1012			    sizeof(*ip6f) - sizeof(struct ip6_hdr)));
1013			if ((m_frgpart = m_copy(m0, off, len)) == 0) {
1014				error = ENOBUFS;
1015				V_ip6stat.ip6s_odropped++;
1016				goto sendorfree;
1017			}
1018			m_cat(m, m_frgpart);
1019			m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
1020			m->m_pkthdr.rcvif = NULL;
1021			ip6f->ip6f_reserved = 0;
1022			ip6f->ip6f_ident = id;
1023			ip6f->ip6f_nxt = nextproto;
1024			V_ip6stat.ip6s_ofragments++;
1025			in6_ifstat_inc(ifp, ifs6_out_fragcreat);
1026		}
1027
1028		in6_ifstat_inc(ifp, ifs6_out_fragok);
1029	}
1030
1031	/*
1032	 * Remove leading garbages.
1033	 */
1034sendorfree:
1035	m = m0->m_nextpkt;
1036	m0->m_nextpkt = 0;
1037	m_freem(m0);
1038	for (m0 = m; m; m = m0) {
1039		m0 = m->m_nextpkt;
1040		m->m_nextpkt = 0;
1041		if (error == 0) {
1042			/* Record statistics for this interface address. */
1043			if (ia) {
1044				ia->ia_ifa.if_opackets++;
1045				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1046			}
1047			error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1048		} else
1049			m_freem(m);
1050	}
1051
1052	if (error == 0)
1053		V_ip6stat.ip6s_fragmented++;
1054
1055done:
1056	if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
1057		RTFREE(ro->ro_rt);
1058	} else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
1059		RTFREE(ro_pmtu->ro_rt);
1060	}
1061#ifdef IPSEC
1062	if (sp != NULL)
1063		KEY_FREESP(&sp);
1064#endif
1065
1066	return (error);
1067
1068freehdrs:
1069	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
1070	m_freem(exthdrs.ip6e_dest1);
1071	m_freem(exthdrs.ip6e_rthdr);
1072	m_freem(exthdrs.ip6e_dest2);
1073	/* FALLTHROUGH */
1074bad:
1075	if (m)
1076		m_freem(m);
1077	goto done;
1078}
1079
1080static int
1081ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen)
1082{
1083	struct mbuf *m;
1084
1085	if (hlen > MCLBYTES)
1086		return (ENOBUFS); /* XXX */
1087
1088	MGET(m, M_DONTWAIT, MT_DATA);
1089	if (!m)
1090		return (ENOBUFS);
1091
1092	if (hlen > MLEN) {
1093		MCLGET(m, M_DONTWAIT);
1094		if ((m->m_flags & M_EXT) == 0) {
1095			m_free(m);
1096			return (ENOBUFS);
1097		}
1098	}
1099	m->m_len = hlen;
1100	if (hdr)
1101		bcopy(hdr, mtod(m, caddr_t), hlen);
1102
1103	*mp = m;
1104	return (0);
1105}
1106
1107/*
1108 * Insert jumbo payload option.
1109 */
1110static int
1111ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1112{
1113	struct mbuf *mopt;
1114	u_char *optbuf;
1115	u_int32_t v;
1116
1117#define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
1118
1119	/*
1120	 * If there is no hop-by-hop options header, allocate new one.
1121	 * If there is one but it doesn't have enough space to store the
1122	 * jumbo payload option, allocate a cluster to store the whole options.
1123	 * Otherwise, use it to store the options.
1124	 */
1125	if (exthdrs->ip6e_hbh == 0) {
1126		MGET(mopt, M_DONTWAIT, MT_DATA);
1127		if (mopt == 0)
1128			return (ENOBUFS);
1129		mopt->m_len = JUMBOOPTLEN;
1130		optbuf = mtod(mopt, u_char *);
1131		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
1132		exthdrs->ip6e_hbh = mopt;
1133	} else {
1134		struct ip6_hbh *hbh;
1135
1136		mopt = exthdrs->ip6e_hbh;
1137		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1138			/*
1139			 * XXX assumption:
1140			 * - exthdrs->ip6e_hbh is not referenced from places
1141			 *   other than exthdrs.
1142			 * - exthdrs->ip6e_hbh is not an mbuf chain.
1143			 */
1144			int oldoptlen = mopt->m_len;
1145			struct mbuf *n;
1146
1147			/*
1148			 * XXX: give up if the whole (new) hbh header does
1149			 * not fit even in an mbuf cluster.
1150			 */
1151			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1152				return (ENOBUFS);
1153
1154			/*
1155			 * As a consequence, we must always prepare a cluster
1156			 * at this point.
1157			 */
1158			MGET(n, M_DONTWAIT, MT_DATA);
1159			if (n) {
1160				MCLGET(n, M_DONTWAIT);
1161				if ((n->m_flags & M_EXT) == 0) {
1162					m_freem(n);
1163					n = NULL;
1164				}
1165			}
1166			if (!n)
1167				return (ENOBUFS);
1168			n->m_len = oldoptlen + JUMBOOPTLEN;
1169			bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1170			    oldoptlen);
1171			optbuf = mtod(n, caddr_t) + oldoptlen;
1172			m_freem(mopt);
1173			mopt = exthdrs->ip6e_hbh = n;
1174		} else {
1175			optbuf = mtod(mopt, u_char *) + mopt->m_len;
1176			mopt->m_len += JUMBOOPTLEN;
1177		}
1178		optbuf[0] = IP6OPT_PADN;
1179		optbuf[1] = 1;
1180
1181		/*
1182		 * Adjust the header length according to the pad and
1183		 * the jumbo payload option.
1184		 */
1185		hbh = mtod(mopt, struct ip6_hbh *);
1186		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1187	}
1188
1189	/* fill in the option. */
1190	optbuf[2] = IP6OPT_JUMBO;
1191	optbuf[3] = 4;
1192	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1193	bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1194
1195	/* finally, adjust the packet header length */
1196	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1197
1198	return (0);
1199#undef JUMBOOPTLEN
1200}
1201
1202/*
1203 * Insert fragment header and copy unfragmentable header portions.
1204 */
1205static int
1206ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1207    struct ip6_frag **frghdrp)
1208{
1209	struct mbuf *n, *mlast;
1210
1211	if (hlen > sizeof(struct ip6_hdr)) {
1212		n = m_copym(m0, sizeof(struct ip6_hdr),
1213		    hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1214		if (n == 0)
1215			return (ENOBUFS);
1216		m->m_next = n;
1217	} else
1218		n = m;
1219
1220	/* Search for the last mbuf of unfragmentable part. */
1221	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1222		;
1223
1224	if ((mlast->m_flags & M_EXT) == 0 &&
1225	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1226		/* use the trailing space of the last mbuf for the fragment hdr */
1227		*frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) +
1228		    mlast->m_len);
1229		mlast->m_len += sizeof(struct ip6_frag);
1230		m->m_pkthdr.len += sizeof(struct ip6_frag);
1231	} else {
1232		/* allocate a new mbuf for the fragment header */
1233		struct mbuf *mfrg;
1234
1235		MGET(mfrg, M_DONTWAIT, MT_DATA);
1236		if (mfrg == 0)
1237			return (ENOBUFS);
1238		mfrg->m_len = sizeof(struct ip6_frag);
1239		*frghdrp = mtod(mfrg, struct ip6_frag *);
1240		mlast->m_next = mfrg;
1241	}
1242
1243	return (0);
1244}
1245
1246static int
1247ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro,
1248    struct ifnet *ifp, struct in6_addr *dst, u_long *mtup,
1249    int *alwaysfragp)
1250{
1251	u_int32_t mtu = 0;
1252	int alwaysfrag = 0;
1253	int error = 0;
1254
1255	if (ro_pmtu != ro) {
1256		/* The first hop and the final destination may differ. */
1257		struct sockaddr_in6 *sa6_dst =
1258		    (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
1259		if (ro_pmtu->ro_rt &&
1260		    ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 ||
1261		     !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) {
1262			RTFREE(ro_pmtu->ro_rt);
1263			ro_pmtu->ro_rt = (struct rtentry *)NULL;
1264		}
1265		if (ro_pmtu->ro_rt == NULL) {
1266			bzero(sa6_dst, sizeof(*sa6_dst));
1267			sa6_dst->sin6_family = AF_INET6;
1268			sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
1269			sa6_dst->sin6_addr = *dst;
1270
1271			rtalloc((struct route *)ro_pmtu);
1272		}
1273	}
1274	if (ro_pmtu->ro_rt) {
1275		u_int32_t ifmtu;
1276		struct in_conninfo inc;
1277
1278		bzero(&inc, sizeof(inc));
1279		inc.inc_flags |= INC_ISIPV6;
1280		inc.inc6_faddr = *dst;
1281
1282		if (ifp == NULL)
1283			ifp = ro_pmtu->ro_rt->rt_ifp;
1284		ifmtu = IN6_LINKMTU(ifp);
1285		mtu = tcp_hc_getmtu(&inc);
1286		if (mtu)
1287			mtu = min(mtu, ro_pmtu->ro_rt->rt_rmx.rmx_mtu);
1288		else
1289			mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
1290		if (mtu == 0)
1291			mtu = ifmtu;
1292		else if (mtu < IPV6_MMTU) {
1293			/*
1294			 * RFC2460 section 5, last paragraph:
1295			 * if we record ICMPv6 too big message with
1296			 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1297			 * or smaller, with framgent header attached.
1298			 * (fragment header is needed regardless from the
1299			 * packet size, for translators to identify packets)
1300			 */
1301			alwaysfrag = 1;
1302			mtu = IPV6_MMTU;
1303		} else if (mtu > ifmtu) {
1304			/*
1305			 * The MTU on the route is larger than the MTU on
1306			 * the interface!  This shouldn't happen, unless the
1307			 * MTU of the interface has been changed after the
1308			 * interface was brought up.  Change the MTU in the
1309			 * route to match the interface MTU (as long as the
1310			 * field isn't locked).
1311			 */
1312			mtu = ifmtu;
1313			ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu;
1314		}
1315	} else if (ifp) {
1316		mtu = IN6_LINKMTU(ifp);
1317	} else
1318		error = EHOSTUNREACH; /* XXX */
1319
1320	*mtup = mtu;
1321	if (alwaysfragp)
1322		*alwaysfragp = alwaysfrag;
1323	return (error);
1324}
1325
1326/*
1327 * IP6 socket option processing.
1328 */
1329int
1330ip6_ctloutput(struct socket *so, struct sockopt *sopt)
1331{
1332	int optdatalen, uproto;
1333	void *optdata;
1334	struct inpcb *in6p = sotoinpcb(so);
1335	int error, optval;
1336	int level, op, optname;
1337	int optlen;
1338	struct thread *td;
1339
1340	level = sopt->sopt_level;
1341	op = sopt->sopt_dir;
1342	optname = sopt->sopt_name;
1343	optlen = sopt->sopt_valsize;
1344	td = sopt->sopt_td;
1345	error = 0;
1346	optval = 0;
1347	uproto = (int)so->so_proto->pr_protocol;
1348
1349	if (level == IPPROTO_IPV6) {
1350		switch (op) {
1351
1352		case SOPT_SET:
1353			switch (optname) {
1354			case IPV6_2292PKTOPTIONS:
1355#ifdef IPV6_PKTOPTIONS
1356			case IPV6_PKTOPTIONS:
1357#endif
1358			{
1359				struct mbuf *m;
1360
1361				error = soopt_getm(sopt, &m); /* XXX */
1362				if (error != 0)
1363					break;
1364				error = soopt_mcopyin(sopt, m); /* XXX */
1365				if (error != 0)
1366					break;
1367				error = ip6_pcbopts(&in6p->in6p_outputopts,
1368						    m, so, sopt);
1369				m_freem(m); /* XXX */
1370				break;
1371			}
1372
1373			/*
1374			 * Use of some Hop-by-Hop options or some
1375			 * Destination options, might require special
1376			 * privilege.  That is, normal applications
1377			 * (without special privilege) might be forbidden
1378			 * from setting certain options in outgoing packets,
1379			 * and might never see certain options in received
1380			 * packets. [RFC 2292 Section 6]
1381			 * KAME specific note:
1382			 *  KAME prevents non-privileged users from sending or
1383			 *  receiving ANY hbh/dst options in order to avoid
1384			 *  overhead of parsing options in the kernel.
1385			 */
1386			case IPV6_RECVHOPOPTS:
1387			case IPV6_RECVDSTOPTS:
1388			case IPV6_RECVRTHDRDSTOPTS:
1389				if (td != NULL) {
1390					error = priv_check(td,
1391					    PRIV_NETINET_SETHDROPTS);
1392					if (error)
1393						break;
1394				}
1395				/* FALLTHROUGH */
1396			case IPV6_UNICAST_HOPS:
1397			case IPV6_HOPLIMIT:
1398			case IPV6_FAITH:
1399
1400			case IPV6_RECVPKTINFO:
1401			case IPV6_RECVHOPLIMIT:
1402			case IPV6_RECVRTHDR:
1403			case IPV6_RECVPATHMTU:
1404			case IPV6_RECVTCLASS:
1405			case IPV6_V6ONLY:
1406			case IPV6_AUTOFLOWLABEL:
1407			case IPV6_BINDANY:
1408				if (optname == IPV6_BINDANY && td != NULL) {
1409					error = priv_check(td,
1410					    PRIV_NETINET_BINDANY);
1411					if (error)
1412						break;
1413				}
1414
1415				if (optlen != sizeof(int)) {
1416					error = EINVAL;
1417					break;
1418				}
1419				error = sooptcopyin(sopt, &optval,
1420					sizeof optval, sizeof optval);
1421				if (error)
1422					break;
1423				switch (optname) {
1424
1425				case IPV6_UNICAST_HOPS:
1426					if (optval < -1 || optval >= 256)
1427						error = EINVAL;
1428					else {
1429						/* -1 = kernel default */
1430						in6p->in6p_hops = optval;
1431						if ((in6p->inp_vflag &
1432						     INP_IPV4) != 0)
1433							in6p->inp_ip_ttl = optval;
1434					}
1435					break;
1436#define OPTSET(bit) \
1437do { \
1438	if (optval) \
1439		in6p->inp_flags |= (bit); \
1440	else \
1441		in6p->inp_flags &= ~(bit); \
1442} while (/*CONSTCOND*/ 0)
1443#define OPTSET2292(bit) \
1444do { \
1445	in6p->inp_flags |= IN6P_RFC2292; \
1446	if (optval) \
1447		in6p->inp_flags |= (bit); \
1448	else \
1449		in6p->inp_flags &= ~(bit); \
1450} while (/*CONSTCOND*/ 0)
1451#define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0)
1452
1453				case IPV6_RECVPKTINFO:
1454					/* cannot mix with RFC2292 */
1455					if (OPTBIT(IN6P_RFC2292)) {
1456						error = EINVAL;
1457						break;
1458					}
1459					OPTSET(IN6P_PKTINFO);
1460					break;
1461
1462				case IPV6_HOPLIMIT:
1463				{
1464					struct ip6_pktopts **optp;
1465
1466					/* cannot mix with RFC2292 */
1467					if (OPTBIT(IN6P_RFC2292)) {
1468						error = EINVAL;
1469						break;
1470					}
1471					optp = &in6p->in6p_outputopts;
1472					error = ip6_pcbopt(IPV6_HOPLIMIT,
1473					    (u_char *)&optval, sizeof(optval),
1474					    optp, (td != NULL) ? td->td_ucred :
1475					    NULL, uproto);
1476					break;
1477				}
1478
1479				case IPV6_RECVHOPLIMIT:
1480					/* cannot mix with RFC2292 */
1481					if (OPTBIT(IN6P_RFC2292)) {
1482						error = EINVAL;
1483						break;
1484					}
1485					OPTSET(IN6P_HOPLIMIT);
1486					break;
1487
1488				case IPV6_RECVHOPOPTS:
1489					/* cannot mix with RFC2292 */
1490					if (OPTBIT(IN6P_RFC2292)) {
1491						error = EINVAL;
1492						break;
1493					}
1494					OPTSET(IN6P_HOPOPTS);
1495					break;
1496
1497				case IPV6_RECVDSTOPTS:
1498					/* cannot mix with RFC2292 */
1499					if (OPTBIT(IN6P_RFC2292)) {
1500						error = EINVAL;
1501						break;
1502					}
1503					OPTSET(IN6P_DSTOPTS);
1504					break;
1505
1506				case IPV6_RECVRTHDRDSTOPTS:
1507					/* cannot mix with RFC2292 */
1508					if (OPTBIT(IN6P_RFC2292)) {
1509						error = EINVAL;
1510						break;
1511					}
1512					OPTSET(IN6P_RTHDRDSTOPTS);
1513					break;
1514
1515				case IPV6_RECVRTHDR:
1516					/* cannot mix with RFC2292 */
1517					if (OPTBIT(IN6P_RFC2292)) {
1518						error = EINVAL;
1519						break;
1520					}
1521					OPTSET(IN6P_RTHDR);
1522					break;
1523
1524				case IPV6_FAITH:
1525					OPTSET(INP_FAITH);
1526					break;
1527
1528				case IPV6_RECVPATHMTU:
1529					/*
1530					 * We ignore this option for TCP
1531					 * sockets.
1532					 * (RFC3542 leaves this case
1533					 * unspecified.)
1534					 */
1535					if (uproto != IPPROTO_TCP)
1536						OPTSET(IN6P_MTU);
1537					break;
1538
1539				case IPV6_V6ONLY:
1540					/*
1541					 * make setsockopt(IPV6_V6ONLY)
1542					 * available only prior to bind(2).
1543					 * see ipng mailing list, Jun 22 2001.
1544					 */
1545					if (in6p->inp_lport ||
1546					    !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1547						error = EINVAL;
1548						break;
1549					}
1550					OPTSET(IN6P_IPV6_V6ONLY);
1551					if (optval)
1552						in6p->inp_vflag &= ~INP_IPV4;
1553					else
1554						in6p->inp_vflag |= INP_IPV4;
1555					break;
1556				case IPV6_RECVTCLASS:
1557					/* cannot mix with RFC2292 XXX */
1558					if (OPTBIT(IN6P_RFC2292)) {
1559						error = EINVAL;
1560						break;
1561					}
1562					OPTSET(IN6P_TCLASS);
1563					break;
1564				case IPV6_AUTOFLOWLABEL:
1565					OPTSET(IN6P_AUTOFLOWLABEL);
1566					break;
1567
1568				case IPV6_BINDANY:
1569					OPTSET(INP_BINDANY);
1570					break;
1571				}
1572				break;
1573
1574			case IPV6_TCLASS:
1575			case IPV6_DONTFRAG:
1576			case IPV6_USE_MIN_MTU:
1577			case IPV6_PREFER_TEMPADDR:
1578				if (optlen != sizeof(optval)) {
1579					error = EINVAL;
1580					break;
1581				}
1582				error = sooptcopyin(sopt, &optval,
1583					sizeof optval, sizeof optval);
1584				if (error)
1585					break;
1586				{
1587					struct ip6_pktopts **optp;
1588					optp = &in6p->in6p_outputopts;
1589					error = ip6_pcbopt(optname,
1590					    (u_char *)&optval, sizeof(optval),
1591					    optp, (td != NULL) ? td->td_ucred :
1592					    NULL, uproto);
1593					break;
1594				}
1595
1596			case IPV6_2292PKTINFO:
1597			case IPV6_2292HOPLIMIT:
1598			case IPV6_2292HOPOPTS:
1599			case IPV6_2292DSTOPTS:
1600			case IPV6_2292RTHDR:
1601				/* RFC 2292 */
1602				if (optlen != sizeof(int)) {
1603					error = EINVAL;
1604					break;
1605				}
1606				error = sooptcopyin(sopt, &optval,
1607					sizeof optval, sizeof optval);
1608				if (error)
1609					break;
1610				switch (optname) {
1611				case IPV6_2292PKTINFO:
1612					OPTSET2292(IN6P_PKTINFO);
1613					break;
1614				case IPV6_2292HOPLIMIT:
1615					OPTSET2292(IN6P_HOPLIMIT);
1616					break;
1617				case IPV6_2292HOPOPTS:
1618					/*
1619					 * Check super-user privilege.
1620					 * See comments for IPV6_RECVHOPOPTS.
1621					 */
1622					if (td != NULL) {
1623						error = priv_check(td,
1624						    PRIV_NETINET_SETHDROPTS);
1625						if (error)
1626							return (error);
1627					}
1628					OPTSET2292(IN6P_HOPOPTS);
1629					break;
1630				case IPV6_2292DSTOPTS:
1631					if (td != NULL) {
1632						error = priv_check(td,
1633						    PRIV_NETINET_SETHDROPTS);
1634						if (error)
1635							return (error);
1636					}
1637					OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1638					break;
1639				case IPV6_2292RTHDR:
1640					OPTSET2292(IN6P_RTHDR);
1641					break;
1642				}
1643				break;
1644			case IPV6_PKTINFO:
1645			case IPV6_HOPOPTS:
1646			case IPV6_RTHDR:
1647			case IPV6_DSTOPTS:
1648			case IPV6_RTHDRDSTOPTS:
1649			case IPV6_NEXTHOP:
1650			{
1651				/* new advanced API (RFC3542) */
1652				u_char *optbuf;
1653				u_char optbuf_storage[MCLBYTES];
1654				int optlen;
1655				struct ip6_pktopts **optp;
1656
1657				/* cannot mix with RFC2292 */
1658				if (OPTBIT(IN6P_RFC2292)) {
1659					error = EINVAL;
1660					break;
1661				}
1662
1663				/*
1664				 * We only ensure valsize is not too large
1665				 * here.  Further validation will be done
1666				 * later.
1667				 */
1668				error = sooptcopyin(sopt, optbuf_storage,
1669				    sizeof(optbuf_storage), 0);
1670				if (error)
1671					break;
1672				optlen = sopt->sopt_valsize;
1673				optbuf = optbuf_storage;
1674				optp = &in6p->in6p_outputopts;
1675				error = ip6_pcbopt(optname, optbuf, optlen,
1676				    optp, (td != NULL) ? td->td_ucred : NULL,
1677				    uproto);
1678				break;
1679			}
1680#undef OPTSET
1681
1682			case IPV6_MULTICAST_IF:
1683			case IPV6_MULTICAST_HOPS:
1684			case IPV6_MULTICAST_LOOP:
1685			case IPV6_JOIN_GROUP:
1686			case IPV6_LEAVE_GROUP:
1687			case IPV6_MSFILTER:
1688			case MCAST_BLOCK_SOURCE:
1689			case MCAST_UNBLOCK_SOURCE:
1690			case MCAST_JOIN_GROUP:
1691			case MCAST_LEAVE_GROUP:
1692			case MCAST_JOIN_SOURCE_GROUP:
1693			case MCAST_LEAVE_SOURCE_GROUP:
1694				error = ip6_setmoptions(in6p, sopt);
1695				break;
1696
1697			case IPV6_PORTRANGE:
1698				error = sooptcopyin(sopt, &optval,
1699				    sizeof optval, sizeof optval);
1700				if (error)
1701					break;
1702
1703				switch (optval) {
1704				case IPV6_PORTRANGE_DEFAULT:
1705					in6p->inp_flags &= ~(INP_LOWPORT);
1706					in6p->inp_flags &= ~(INP_HIGHPORT);
1707					break;
1708
1709				case IPV6_PORTRANGE_HIGH:
1710					in6p->inp_flags &= ~(INP_LOWPORT);
1711					in6p->inp_flags |= INP_HIGHPORT;
1712					break;
1713
1714				case IPV6_PORTRANGE_LOW:
1715					in6p->inp_flags &= ~(INP_HIGHPORT);
1716					in6p->inp_flags |= INP_LOWPORT;
1717					break;
1718
1719				default:
1720					error = EINVAL;
1721					break;
1722				}
1723				break;
1724
1725#ifdef IPSEC
1726			case IPV6_IPSEC_POLICY:
1727			{
1728				caddr_t req;
1729				struct mbuf *m;
1730
1731				if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1732					break;
1733				if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1734					break;
1735				req = mtod(m, caddr_t);
1736				error = ipsec_set_policy(in6p, optname, req,
1737				    m->m_len, (sopt->sopt_td != NULL) ?
1738				    sopt->sopt_td->td_ucred : NULL);
1739				m_freem(m);
1740				break;
1741			}
1742#endif /* IPSEC */
1743
1744			default:
1745				error = ENOPROTOOPT;
1746				break;
1747			}
1748			break;
1749
1750		case SOPT_GET:
1751			switch (optname) {
1752
1753			case IPV6_2292PKTOPTIONS:
1754#ifdef IPV6_PKTOPTIONS
1755			case IPV6_PKTOPTIONS:
1756#endif
1757				/*
1758				 * RFC3542 (effectively) deprecated the
1759				 * semantics of the 2292-style pktoptions.
1760				 * Since it was not reliable in nature (i.e.,
1761				 * applications had to expect the lack of some
1762				 * information after all), it would make sense
1763				 * to simplify this part by always returning
1764				 * empty data.
1765				 */
1766				sopt->sopt_valsize = 0;
1767				break;
1768
1769			case IPV6_RECVHOPOPTS:
1770			case IPV6_RECVDSTOPTS:
1771			case IPV6_RECVRTHDRDSTOPTS:
1772			case IPV6_UNICAST_HOPS:
1773			case IPV6_RECVPKTINFO:
1774			case IPV6_RECVHOPLIMIT:
1775			case IPV6_RECVRTHDR:
1776			case IPV6_RECVPATHMTU:
1777
1778			case IPV6_FAITH:
1779			case IPV6_V6ONLY:
1780			case IPV6_PORTRANGE:
1781			case IPV6_RECVTCLASS:
1782			case IPV6_AUTOFLOWLABEL:
1783				switch (optname) {
1784
1785				case IPV6_RECVHOPOPTS:
1786					optval = OPTBIT(IN6P_HOPOPTS);
1787					break;
1788
1789				case IPV6_RECVDSTOPTS:
1790					optval = OPTBIT(IN6P_DSTOPTS);
1791					break;
1792
1793				case IPV6_RECVRTHDRDSTOPTS:
1794					optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1795					break;
1796
1797				case IPV6_UNICAST_HOPS:
1798					optval = in6p->in6p_hops;
1799					break;
1800
1801				case IPV6_RECVPKTINFO:
1802					optval = OPTBIT(IN6P_PKTINFO);
1803					break;
1804
1805				case IPV6_RECVHOPLIMIT:
1806					optval = OPTBIT(IN6P_HOPLIMIT);
1807					break;
1808
1809				case IPV6_RECVRTHDR:
1810					optval = OPTBIT(IN6P_RTHDR);
1811					break;
1812
1813				case IPV6_RECVPATHMTU:
1814					optval = OPTBIT(IN6P_MTU);
1815					break;
1816
1817				case IPV6_FAITH:
1818					optval = OPTBIT(INP_FAITH);
1819					break;
1820
1821				case IPV6_V6ONLY:
1822					optval = OPTBIT(IN6P_IPV6_V6ONLY);
1823					break;
1824
1825				case IPV6_PORTRANGE:
1826				    {
1827					int flags;
1828					flags = in6p->inp_flags;
1829					if (flags & INP_HIGHPORT)
1830						optval = IPV6_PORTRANGE_HIGH;
1831					else if (flags & INP_LOWPORT)
1832						optval = IPV6_PORTRANGE_LOW;
1833					else
1834						optval = 0;
1835					break;
1836				    }
1837				case IPV6_RECVTCLASS:
1838					optval = OPTBIT(IN6P_TCLASS);
1839					break;
1840
1841				case IPV6_AUTOFLOWLABEL:
1842					optval = OPTBIT(IN6P_AUTOFLOWLABEL);
1843					break;
1844
1845				case IPV6_BINDANY:
1846					optval = OPTBIT(INP_BINDANY);
1847					break;
1848				}
1849				if (error)
1850					break;
1851				error = sooptcopyout(sopt, &optval,
1852					sizeof optval);
1853				break;
1854
1855			case IPV6_PATHMTU:
1856			{
1857				u_long pmtu = 0;
1858				struct ip6_mtuinfo mtuinfo;
1859				struct route_in6 sro;
1860
1861				bzero(&sro, sizeof(sro));
1862
1863				if (!(so->so_state & SS_ISCONNECTED))
1864					return (ENOTCONN);
1865				/*
1866				 * XXX: we dot not consider the case of source
1867				 * routing, or optional information to specify
1868				 * the outgoing interface.
1869				 */
1870				error = ip6_getpmtu(&sro, NULL, NULL,
1871				    &in6p->in6p_faddr, &pmtu, NULL);
1872				if (sro.ro_rt)
1873					RTFREE(sro.ro_rt);
1874				if (error)
1875					break;
1876				if (pmtu > IPV6_MAXPACKET)
1877					pmtu = IPV6_MAXPACKET;
1878
1879				bzero(&mtuinfo, sizeof(mtuinfo));
1880				mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
1881				optdata = (void *)&mtuinfo;
1882				optdatalen = sizeof(mtuinfo);
1883				error = sooptcopyout(sopt, optdata,
1884				    optdatalen);
1885				break;
1886			}
1887
1888			case IPV6_2292PKTINFO:
1889			case IPV6_2292HOPLIMIT:
1890			case IPV6_2292HOPOPTS:
1891			case IPV6_2292RTHDR:
1892			case IPV6_2292DSTOPTS:
1893				switch (optname) {
1894				case IPV6_2292PKTINFO:
1895					optval = OPTBIT(IN6P_PKTINFO);
1896					break;
1897				case IPV6_2292HOPLIMIT:
1898					optval = OPTBIT(IN6P_HOPLIMIT);
1899					break;
1900				case IPV6_2292HOPOPTS:
1901					optval = OPTBIT(IN6P_HOPOPTS);
1902					break;
1903				case IPV6_2292RTHDR:
1904					optval = OPTBIT(IN6P_RTHDR);
1905					break;
1906				case IPV6_2292DSTOPTS:
1907					optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
1908					break;
1909				}
1910				error = sooptcopyout(sopt, &optval,
1911				    sizeof optval);
1912				break;
1913			case IPV6_PKTINFO:
1914			case IPV6_HOPOPTS:
1915			case IPV6_RTHDR:
1916			case IPV6_DSTOPTS:
1917			case IPV6_RTHDRDSTOPTS:
1918			case IPV6_NEXTHOP:
1919			case IPV6_TCLASS:
1920			case IPV6_DONTFRAG:
1921			case IPV6_USE_MIN_MTU:
1922			case IPV6_PREFER_TEMPADDR:
1923				error = ip6_getpcbopt(in6p->in6p_outputopts,
1924				    optname, sopt);
1925				break;
1926
1927			case IPV6_MULTICAST_IF:
1928			case IPV6_MULTICAST_HOPS:
1929			case IPV6_MULTICAST_LOOP:
1930			case IPV6_MSFILTER:
1931				error = ip6_getmoptions(in6p, sopt);
1932				break;
1933
1934#ifdef IPSEC
1935			case IPV6_IPSEC_POLICY:
1936			  {
1937				caddr_t req = NULL;
1938				size_t len = 0;
1939				struct mbuf *m = NULL;
1940				struct mbuf **mp = &m;
1941				size_t ovalsize = sopt->sopt_valsize;
1942				caddr_t oval = (caddr_t)sopt->sopt_val;
1943
1944				error = soopt_getm(sopt, &m); /* XXX */
1945				if (error != 0)
1946					break;
1947				error = soopt_mcopyin(sopt, m); /* XXX */
1948				if (error != 0)
1949					break;
1950				sopt->sopt_valsize = ovalsize;
1951				sopt->sopt_val = oval;
1952				if (m) {
1953					req = mtod(m, caddr_t);
1954					len = m->m_len;
1955				}
1956				error = ipsec_get_policy(in6p, req, len, mp);
1957				if (error == 0)
1958					error = soopt_mcopyout(sopt, m); /* XXX */
1959				if (error == 0 && m)
1960					m_freem(m);
1961				break;
1962			  }
1963#endif /* IPSEC */
1964
1965			default:
1966				error = ENOPROTOOPT;
1967				break;
1968			}
1969			break;
1970		}
1971	} else {		/* level != IPPROTO_IPV6 */
1972		error = EINVAL;
1973	}
1974	return (error);
1975}
1976
1977int
1978ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt)
1979{
1980	int error = 0, optval, optlen;
1981	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
1982	struct inpcb *in6p = sotoinpcb(so);
1983	int level, op, optname;
1984
1985	level = sopt->sopt_level;
1986	op = sopt->sopt_dir;
1987	optname = sopt->sopt_name;
1988	optlen = sopt->sopt_valsize;
1989
1990	if (level != IPPROTO_IPV6) {
1991		return (EINVAL);
1992	}
1993
1994	switch (optname) {
1995	case IPV6_CHECKSUM:
1996		/*
1997		 * For ICMPv6 sockets, no modification allowed for checksum
1998		 * offset, permit "no change" values to help existing apps.
1999		 *
2000		 * RFC3542 says: "An attempt to set IPV6_CHECKSUM
2001		 * for an ICMPv6 socket will fail."
2002		 * The current behavior does not meet RFC3542.
2003		 */
2004		switch (op) {
2005		case SOPT_SET:
2006			if (optlen != sizeof(int)) {
2007				error = EINVAL;
2008				break;
2009			}
2010			error = sooptcopyin(sopt, &optval, sizeof(optval),
2011					    sizeof(optval));
2012			if (error)
2013				break;
2014			if ((optval % 2) != 0) {
2015				/* the API assumes even offset values */
2016				error = EINVAL;
2017			} else if (so->so_proto->pr_protocol ==
2018			    IPPROTO_ICMPV6) {
2019				if (optval != icmp6off)
2020					error = EINVAL;
2021			} else
2022				in6p->in6p_cksum = optval;
2023			break;
2024
2025		case SOPT_GET:
2026			if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
2027				optval = icmp6off;
2028			else
2029				optval = in6p->in6p_cksum;
2030
2031			error = sooptcopyout(sopt, &optval, sizeof(optval));
2032			break;
2033
2034		default:
2035			error = EINVAL;
2036			break;
2037		}
2038		break;
2039
2040	default:
2041		error = ENOPROTOOPT;
2042		break;
2043	}
2044
2045	return (error);
2046}
2047
2048/*
2049 * Set up IP6 options in pcb for insertion in output packets or
2050 * specifying behavior of outgoing packets.
2051 */
2052static int
2053ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m,
2054    struct socket *so, struct sockopt *sopt)
2055{
2056	struct ip6_pktopts *opt = *pktopt;
2057	int error = 0;
2058	struct thread *td = sopt->sopt_td;
2059
2060	/* turn off any old options. */
2061	if (opt) {
2062#ifdef DIAGNOSTIC
2063		if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
2064		    opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
2065		    opt->ip6po_rhinfo.ip6po_rhi_rthdr)
2066			printf("ip6_pcbopts: all specified options are cleared.\n");
2067#endif
2068		ip6_clearpktopts(opt, -1);
2069	} else
2070		opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
2071	*pktopt = NULL;
2072
2073	if (!m || m->m_len == 0) {
2074		/*
2075		 * Only turning off any previous options, regardless of
2076		 * whether the opt is just created or given.
2077		 */
2078		free(opt, M_IP6OPT);
2079		return (0);
2080	}
2081
2082	/*  set options specified by user. */
2083	if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ?
2084	    td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) {
2085		ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2086		free(opt, M_IP6OPT);
2087		return (error);
2088	}
2089	*pktopt = opt;
2090	return (0);
2091}
2092
2093/*
2094 * initialize ip6_pktopts.  beware that there are non-zero default values in
2095 * the struct.
2096 */
2097void
2098ip6_initpktopts(struct ip6_pktopts *opt)
2099{
2100
2101	bzero(opt, sizeof(*opt));
2102	opt->ip6po_hlim = -1;	/* -1 means default hop limit */
2103	opt->ip6po_tclass = -1;	/* -1 means default traffic class */
2104	opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2105	opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
2106}
2107
2108static int
2109ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2110    struct ucred *cred, int uproto)
2111{
2112	struct ip6_pktopts *opt;
2113
2114	if (*pktopt == NULL) {
2115		*pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2116		    M_WAITOK);
2117		ip6_initpktopts(*pktopt);
2118	}
2119	opt = *pktopt;
2120
2121	return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
2122}
2123
2124static int
2125ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
2126{
2127	void *optdata = NULL;
2128	int optdatalen = 0;
2129	struct ip6_ext *ip6e;
2130	int error = 0;
2131	struct in6_pktinfo null_pktinfo;
2132	int deftclass = 0, on;
2133	int defminmtu = IP6PO_MINMTU_MCASTONLY;
2134	int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
2135
2136	switch (optname) {
2137	case IPV6_PKTINFO:
2138		if (pktopt && pktopt->ip6po_pktinfo)
2139			optdata = (void *)pktopt->ip6po_pktinfo;
2140		else {
2141			/* XXX: we don't have to do this every time... */
2142			bzero(&null_pktinfo, sizeof(null_pktinfo));
2143			optdata = (void *)&null_pktinfo;
2144		}
2145		optdatalen = sizeof(struct in6_pktinfo);
2146		break;
2147	case IPV6_TCLASS:
2148		if (pktopt && pktopt->ip6po_tclass >= 0)
2149			optdata = (void *)&pktopt->ip6po_tclass;
2150		else
2151			optdata = (void *)&deftclass;
2152		optdatalen = sizeof(int);
2153		break;
2154	case IPV6_HOPOPTS:
2155		if (pktopt && pktopt->ip6po_hbh) {
2156			optdata = (void *)pktopt->ip6po_hbh;
2157			ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
2158			optdatalen = (ip6e->ip6e_len + 1) << 3;
2159		}
2160		break;
2161	case IPV6_RTHDR:
2162		if (pktopt && pktopt->ip6po_rthdr) {
2163			optdata = (void *)pktopt->ip6po_rthdr;
2164			ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
2165			optdatalen = (ip6e->ip6e_len + 1) << 3;
2166		}
2167		break;
2168	case IPV6_RTHDRDSTOPTS:
2169		if (pktopt && pktopt->ip6po_dest1) {
2170			optdata = (void *)pktopt->ip6po_dest1;
2171			ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
2172			optdatalen = (ip6e->ip6e_len + 1) << 3;
2173		}
2174		break;
2175	case IPV6_DSTOPTS:
2176		if (pktopt && pktopt->ip6po_dest2) {
2177			optdata = (void *)pktopt->ip6po_dest2;
2178			ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
2179			optdatalen = (ip6e->ip6e_len + 1) << 3;
2180		}
2181		break;
2182	case IPV6_NEXTHOP:
2183		if (pktopt && pktopt->ip6po_nexthop) {
2184			optdata = (void *)pktopt->ip6po_nexthop;
2185			optdatalen = pktopt->ip6po_nexthop->sa_len;
2186		}
2187		break;
2188	case IPV6_USE_MIN_MTU:
2189		if (pktopt)
2190			optdata = (void *)&pktopt->ip6po_minmtu;
2191		else
2192			optdata = (void *)&defminmtu;
2193		optdatalen = sizeof(int);
2194		break;
2195	case IPV6_DONTFRAG:
2196		if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2197			on = 1;
2198		else
2199			on = 0;
2200		optdata = (void *)&on;
2201		optdatalen = sizeof(on);
2202		break;
2203	case IPV6_PREFER_TEMPADDR:
2204		if (pktopt)
2205			optdata = (void *)&pktopt->ip6po_prefer_tempaddr;
2206		else
2207			optdata = (void *)&defpreftemp;
2208		optdatalen = sizeof(int);
2209		break;
2210	default:		/* should not happen */
2211#ifdef DIAGNOSTIC
2212		panic("ip6_getpcbopt: unexpected option\n");
2213#endif
2214		return (ENOPROTOOPT);
2215	}
2216
2217	error = sooptcopyout(sopt, optdata, optdatalen);
2218
2219	return (error);
2220}
2221
2222void
2223ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2224{
2225	if (pktopt == NULL)
2226		return;
2227
2228	if (optname == -1 || optname == IPV6_PKTINFO) {
2229		if (pktopt->ip6po_pktinfo)
2230			free(pktopt->ip6po_pktinfo, M_IP6OPT);
2231		pktopt->ip6po_pktinfo = NULL;
2232	}
2233	if (optname == -1 || optname == IPV6_HOPLIMIT)
2234		pktopt->ip6po_hlim = -1;
2235	if (optname == -1 || optname == IPV6_TCLASS)
2236		pktopt->ip6po_tclass = -1;
2237	if (optname == -1 || optname == IPV6_NEXTHOP) {
2238		if (pktopt->ip6po_nextroute.ro_rt) {
2239			RTFREE(pktopt->ip6po_nextroute.ro_rt);
2240			pktopt->ip6po_nextroute.ro_rt = NULL;
2241		}
2242		if (pktopt->ip6po_nexthop)
2243			free(pktopt->ip6po_nexthop, M_IP6OPT);
2244		pktopt->ip6po_nexthop = NULL;
2245	}
2246	if (optname == -1 || optname == IPV6_HOPOPTS) {
2247		if (pktopt->ip6po_hbh)
2248			free(pktopt->ip6po_hbh, M_IP6OPT);
2249		pktopt->ip6po_hbh = NULL;
2250	}
2251	if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2252		if (pktopt->ip6po_dest1)
2253			free(pktopt->ip6po_dest1, M_IP6OPT);
2254		pktopt->ip6po_dest1 = NULL;
2255	}
2256	if (optname == -1 || optname == IPV6_RTHDR) {
2257		if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2258			free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2259		pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2260		if (pktopt->ip6po_route.ro_rt) {
2261			RTFREE(pktopt->ip6po_route.ro_rt);
2262			pktopt->ip6po_route.ro_rt = NULL;
2263		}
2264	}
2265	if (optname == -1 || optname == IPV6_DSTOPTS) {
2266		if (pktopt->ip6po_dest2)
2267			free(pktopt->ip6po_dest2, M_IP6OPT);
2268		pktopt->ip6po_dest2 = NULL;
2269	}
2270}
2271
2272#define PKTOPT_EXTHDRCPY(type) \
2273do {\
2274	if (src->type) {\
2275		int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2276		dst->type = malloc(hlen, M_IP6OPT, canwait);\
2277		if (dst->type == NULL && canwait == M_NOWAIT)\
2278			goto bad;\
2279		bcopy(src->type, dst->type, hlen);\
2280	}\
2281} while (/*CONSTCOND*/ 0)
2282
2283static int
2284copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2285{
2286	if (dst == NULL || src == NULL)  {
2287		printf("ip6_clearpktopts: invalid argument\n");
2288		return (EINVAL);
2289	}
2290
2291	dst->ip6po_hlim = src->ip6po_hlim;
2292	dst->ip6po_tclass = src->ip6po_tclass;
2293	dst->ip6po_flags = src->ip6po_flags;
2294	if (src->ip6po_pktinfo) {
2295		dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2296		    M_IP6OPT, canwait);
2297		if (dst->ip6po_pktinfo == NULL)
2298			goto bad;
2299		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2300	}
2301	if (src->ip6po_nexthop) {
2302		dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2303		    M_IP6OPT, canwait);
2304		if (dst->ip6po_nexthop == NULL)
2305			goto bad;
2306		bcopy(src->ip6po_nexthop, dst->ip6po_nexthop,
2307		    src->ip6po_nexthop->sa_len);
2308	}
2309	PKTOPT_EXTHDRCPY(ip6po_hbh);
2310	PKTOPT_EXTHDRCPY(ip6po_dest1);
2311	PKTOPT_EXTHDRCPY(ip6po_dest2);
2312	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2313	return (0);
2314
2315  bad:
2316	ip6_clearpktopts(dst, -1);
2317	return (ENOBUFS);
2318}
2319#undef PKTOPT_EXTHDRCPY
2320
2321struct ip6_pktopts *
2322ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2323{
2324	int error;
2325	struct ip6_pktopts *dst;
2326
2327	dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2328	if (dst == NULL)
2329		return (NULL);
2330	ip6_initpktopts(dst);
2331
2332	if ((error = copypktopts(dst, src, canwait)) != 0) {
2333		free(dst, M_IP6OPT);
2334		return (NULL);
2335	}
2336
2337	return (dst);
2338}
2339
2340void
2341ip6_freepcbopts(struct ip6_pktopts *pktopt)
2342{
2343	if (pktopt == NULL)
2344		return;
2345
2346	ip6_clearpktopts(pktopt, -1);
2347
2348	free(pktopt, M_IP6OPT);
2349}
2350
2351/*
2352 * Set IPv6 outgoing packet options based on advanced API.
2353 */
2354int
2355ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2356    struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto)
2357{
2358	struct cmsghdr *cm = 0;
2359
2360	if (control == NULL || opt == NULL)
2361		return (EINVAL);
2362
2363	ip6_initpktopts(opt);
2364	if (stickyopt) {
2365		int error;
2366
2367		/*
2368		 * If stickyopt is provided, make a local copy of the options
2369		 * for this particular packet, then override them by ancillary
2370		 * objects.
2371		 * XXX: copypktopts() does not copy the cached route to a next
2372		 * hop (if any).  This is not very good in terms of efficiency,
2373		 * but we can allow this since this option should be rarely
2374		 * used.
2375		 */
2376		if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2377			return (error);
2378	}
2379
2380	/*
2381	 * XXX: Currently, we assume all the optional information is stored
2382	 * in a single mbuf.
2383	 */
2384	if (control->m_next)
2385		return (EINVAL);
2386
2387	for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2388	    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2389		int error;
2390
2391		if (control->m_len < CMSG_LEN(0))
2392			return (EINVAL);
2393
2394		cm = mtod(control, struct cmsghdr *);
2395		if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2396			return (EINVAL);
2397		if (cm->cmsg_level != IPPROTO_IPV6)
2398			continue;
2399
2400		error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2401		    cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
2402		if (error)
2403			return (error);
2404	}
2405
2406	return (0);
2407}
2408
2409/*
2410 * Set a particular packet option, as a sticky option or an ancillary data
2411 * item.  "len" can be 0 only when it's a sticky option.
2412 * We have 4 cases of combination of "sticky" and "cmsg":
2413 * "sticky=0, cmsg=0": impossible
2414 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2415 * "sticky=1, cmsg=0": RFC3542 socket option
2416 * "sticky=1, cmsg=1": RFC2292 socket option
2417 */
2418static int
2419ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2420    struct ucred *cred, int sticky, int cmsg, int uproto)
2421{
2422	INIT_VNET_NET(curvnet);
2423	INIT_VNET_INET6(curvnet);
2424	int minmtupolicy, preftemp;
2425	int error;
2426
2427	if (!sticky && !cmsg) {
2428#ifdef DIAGNOSTIC
2429		printf("ip6_setpktopt: impossible case\n");
2430#endif
2431		return (EINVAL);
2432	}
2433
2434	/*
2435	 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2436	 * not be specified in the context of RFC3542.  Conversely,
2437	 * RFC3542 types should not be specified in the context of RFC2292.
2438	 */
2439	if (!cmsg) {
2440		switch (optname) {
2441		case IPV6_2292PKTINFO:
2442		case IPV6_2292HOPLIMIT:
2443		case IPV6_2292NEXTHOP:
2444		case IPV6_2292HOPOPTS:
2445		case IPV6_2292DSTOPTS:
2446		case IPV6_2292RTHDR:
2447		case IPV6_2292PKTOPTIONS:
2448			return (ENOPROTOOPT);
2449		}
2450	}
2451	if (sticky && cmsg) {
2452		switch (optname) {
2453		case IPV6_PKTINFO:
2454		case IPV6_HOPLIMIT:
2455		case IPV6_NEXTHOP:
2456		case IPV6_HOPOPTS:
2457		case IPV6_DSTOPTS:
2458		case IPV6_RTHDRDSTOPTS:
2459		case IPV6_RTHDR:
2460		case IPV6_USE_MIN_MTU:
2461		case IPV6_DONTFRAG:
2462		case IPV6_TCLASS:
2463		case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */
2464			return (ENOPROTOOPT);
2465		}
2466	}
2467
2468	switch (optname) {
2469	case IPV6_2292PKTINFO:
2470	case IPV6_PKTINFO:
2471	{
2472		struct ifnet *ifp = NULL;
2473		struct in6_pktinfo *pktinfo;
2474
2475		if (len != sizeof(struct in6_pktinfo))
2476			return (EINVAL);
2477
2478		pktinfo = (struct in6_pktinfo *)buf;
2479
2480		/*
2481		 * An application can clear any sticky IPV6_PKTINFO option by
2482		 * doing a "regular" setsockopt with ipi6_addr being
2483		 * in6addr_any and ipi6_ifindex being zero.
2484		 * [RFC 3542, Section 6]
2485		 */
2486		if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2487		    pktinfo->ipi6_ifindex == 0 &&
2488		    IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2489			ip6_clearpktopts(opt, optname);
2490			break;
2491		}
2492
2493		if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2494		    sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2495			return (EINVAL);
2496		}
2497
2498		/* validate the interface index if specified. */
2499		if (pktinfo->ipi6_ifindex > V_if_index ||
2500		    pktinfo->ipi6_ifindex < 0) {
2501			 return (ENXIO);
2502		}
2503		if (pktinfo->ipi6_ifindex) {
2504			ifp = ifnet_byindex(pktinfo->ipi6_ifindex);
2505			if (ifp == NULL)
2506				return (ENXIO);
2507		}
2508
2509		/*
2510		 * We store the address anyway, and let in6_selectsrc()
2511		 * validate the specified address.  This is because ipi6_addr
2512		 * may not have enough information about its scope zone, and
2513		 * we may need additional information (such as outgoing
2514		 * interface or the scope zone of a destination address) to
2515		 * disambiguate the scope.
2516		 * XXX: the delay of the validation may confuse the
2517		 * application when it is used as a sticky option.
2518		 */
2519		if (opt->ip6po_pktinfo == NULL) {
2520			opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2521			    M_IP6OPT, M_NOWAIT);
2522			if (opt->ip6po_pktinfo == NULL)
2523				return (ENOBUFS);
2524		}
2525		bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo));
2526		break;
2527	}
2528
2529	case IPV6_2292HOPLIMIT:
2530	case IPV6_HOPLIMIT:
2531	{
2532		int *hlimp;
2533
2534		/*
2535		 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2536		 * to simplify the ordering among hoplimit options.
2537		 */
2538		if (optname == IPV6_HOPLIMIT && sticky)
2539			return (ENOPROTOOPT);
2540
2541		if (len != sizeof(int))
2542			return (EINVAL);
2543		hlimp = (int *)buf;
2544		if (*hlimp < -1 || *hlimp > 255)
2545			return (EINVAL);
2546
2547		opt->ip6po_hlim = *hlimp;
2548		break;
2549	}
2550
2551	case IPV6_TCLASS:
2552	{
2553		int tclass;
2554
2555		if (len != sizeof(int))
2556			return (EINVAL);
2557		tclass = *(int *)buf;
2558		if (tclass < -1 || tclass > 255)
2559			return (EINVAL);
2560
2561		opt->ip6po_tclass = tclass;
2562		break;
2563	}
2564
2565	case IPV6_2292NEXTHOP:
2566	case IPV6_NEXTHOP:
2567		if (cred != NULL) {
2568			error = priv_check_cred(cred,
2569			    PRIV_NETINET_SETHDROPTS, 0);
2570			if (error)
2571				return (error);
2572		}
2573
2574		if (len == 0) {	/* just remove the option */
2575			ip6_clearpktopts(opt, IPV6_NEXTHOP);
2576			break;
2577		}
2578
2579		/* check if cmsg_len is large enough for sa_len */
2580		if (len < sizeof(struct sockaddr) || len < *buf)
2581			return (EINVAL);
2582
2583		switch (((struct sockaddr *)buf)->sa_family) {
2584		case AF_INET6:
2585		{
2586			struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
2587			int error;
2588
2589			if (sa6->sin6_len != sizeof(struct sockaddr_in6))
2590				return (EINVAL);
2591
2592			if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
2593			    IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
2594				return (EINVAL);
2595			}
2596			if ((error = sa6_embedscope(sa6, V_ip6_use_defzone))
2597			    != 0) {
2598				return (error);
2599			}
2600			break;
2601		}
2602		case AF_LINK:	/* should eventually be supported */
2603		default:
2604			return (EAFNOSUPPORT);
2605		}
2606
2607		/* turn off the previous option, then set the new option. */
2608		ip6_clearpktopts(opt, IPV6_NEXTHOP);
2609		opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
2610		if (opt->ip6po_nexthop == NULL)
2611			return (ENOBUFS);
2612		bcopy(buf, opt->ip6po_nexthop, *buf);
2613		break;
2614
2615	case IPV6_2292HOPOPTS:
2616	case IPV6_HOPOPTS:
2617	{
2618		struct ip6_hbh *hbh;
2619		int hbhlen;
2620
2621		/*
2622		 * XXX: We don't allow a non-privileged user to set ANY HbH
2623		 * options, since per-option restriction has too much
2624		 * overhead.
2625		 */
2626		if (cred != NULL) {
2627			error = priv_check_cred(cred,
2628			    PRIV_NETINET_SETHDROPTS, 0);
2629			if (error)
2630				return (error);
2631		}
2632
2633		if (len == 0) {
2634			ip6_clearpktopts(opt, IPV6_HOPOPTS);
2635			break;	/* just remove the option */
2636		}
2637
2638		/* message length validation */
2639		if (len < sizeof(struct ip6_hbh))
2640			return (EINVAL);
2641		hbh = (struct ip6_hbh *)buf;
2642		hbhlen = (hbh->ip6h_len + 1) << 3;
2643		if (len != hbhlen)
2644			return (EINVAL);
2645
2646		/* turn off the previous option, then set the new option. */
2647		ip6_clearpktopts(opt, IPV6_HOPOPTS);
2648		opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
2649		if (opt->ip6po_hbh == NULL)
2650			return (ENOBUFS);
2651		bcopy(hbh, opt->ip6po_hbh, hbhlen);
2652
2653		break;
2654	}
2655
2656	case IPV6_2292DSTOPTS:
2657	case IPV6_DSTOPTS:
2658	case IPV6_RTHDRDSTOPTS:
2659	{
2660		struct ip6_dest *dest, **newdest = NULL;
2661		int destlen;
2662
2663		if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */
2664			error = priv_check_cred(cred,
2665			    PRIV_NETINET_SETHDROPTS, 0);
2666			if (error)
2667				return (error);
2668		}
2669
2670		if (len == 0) {
2671			ip6_clearpktopts(opt, optname);
2672			break;	/* just remove the option */
2673		}
2674
2675		/* message length validation */
2676		if (len < sizeof(struct ip6_dest))
2677			return (EINVAL);
2678		dest = (struct ip6_dest *)buf;
2679		destlen = (dest->ip6d_len + 1) << 3;
2680		if (len != destlen)
2681			return (EINVAL);
2682
2683		/*
2684		 * Determine the position that the destination options header
2685		 * should be inserted; before or after the routing header.
2686		 */
2687		switch (optname) {
2688		case IPV6_2292DSTOPTS:
2689			/*
2690			 * The old advacned API is ambiguous on this point.
2691			 * Our approach is to determine the position based
2692			 * according to the existence of a routing header.
2693			 * Note, however, that this depends on the order of the
2694			 * extension headers in the ancillary data; the 1st
2695			 * part of the destination options header must appear
2696			 * before the routing header in the ancillary data,
2697			 * too.
2698			 * RFC3542 solved the ambiguity by introducing
2699			 * separate ancillary data or option types.
2700			 */
2701			if (opt->ip6po_rthdr == NULL)
2702				newdest = &opt->ip6po_dest1;
2703			else
2704				newdest = &opt->ip6po_dest2;
2705			break;
2706		case IPV6_RTHDRDSTOPTS:
2707			newdest = &opt->ip6po_dest1;
2708			break;
2709		case IPV6_DSTOPTS:
2710			newdest = &opt->ip6po_dest2;
2711			break;
2712		}
2713
2714		/* turn off the previous option, then set the new option. */
2715		ip6_clearpktopts(opt, optname);
2716		*newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
2717		if (*newdest == NULL)
2718			return (ENOBUFS);
2719		bcopy(dest, *newdest, destlen);
2720
2721		break;
2722	}
2723
2724	case IPV6_2292RTHDR:
2725	case IPV6_RTHDR:
2726	{
2727		struct ip6_rthdr *rth;
2728		int rthlen;
2729
2730		if (len == 0) {
2731			ip6_clearpktopts(opt, IPV6_RTHDR);
2732			break;	/* just remove the option */
2733		}
2734
2735		/* message length validation */
2736		if (len < sizeof(struct ip6_rthdr))
2737			return (EINVAL);
2738		rth = (struct ip6_rthdr *)buf;
2739		rthlen = (rth->ip6r_len + 1) << 3;
2740		if (len != rthlen)
2741			return (EINVAL);
2742
2743		switch (rth->ip6r_type) {
2744		case IPV6_RTHDR_TYPE_0:
2745			if (rth->ip6r_len == 0)	/* must contain one addr */
2746				return (EINVAL);
2747			if (rth->ip6r_len % 2) /* length must be even */
2748				return (EINVAL);
2749			if (rth->ip6r_len / 2 != rth->ip6r_segleft)
2750				return (EINVAL);
2751			break;
2752		default:
2753			return (EINVAL);	/* not supported */
2754		}
2755
2756		/* turn off the previous option */
2757		ip6_clearpktopts(opt, IPV6_RTHDR);
2758		opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
2759		if (opt->ip6po_rthdr == NULL)
2760			return (ENOBUFS);
2761		bcopy(rth, opt->ip6po_rthdr, rthlen);
2762
2763		break;
2764	}
2765
2766	case IPV6_USE_MIN_MTU:
2767		if (len != sizeof(int))
2768			return (EINVAL);
2769		minmtupolicy = *(int *)buf;
2770		if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
2771		    minmtupolicy != IP6PO_MINMTU_DISABLE &&
2772		    minmtupolicy != IP6PO_MINMTU_ALL) {
2773			return (EINVAL);
2774		}
2775		opt->ip6po_minmtu = minmtupolicy;
2776		break;
2777
2778	case IPV6_DONTFRAG:
2779		if (len != sizeof(int))
2780			return (EINVAL);
2781
2782		if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
2783			/*
2784			 * we ignore this option for TCP sockets.
2785			 * (RFC3542 leaves this case unspecified.)
2786			 */
2787			opt->ip6po_flags &= ~IP6PO_DONTFRAG;
2788		} else
2789			opt->ip6po_flags |= IP6PO_DONTFRAG;
2790		break;
2791
2792	case IPV6_PREFER_TEMPADDR:
2793		if (len != sizeof(int))
2794			return (EINVAL);
2795		preftemp = *(int *)buf;
2796		if (preftemp != IP6PO_TEMPADDR_SYSTEM &&
2797		    preftemp != IP6PO_TEMPADDR_NOTPREFER &&
2798		    preftemp != IP6PO_TEMPADDR_PREFER) {
2799			return (EINVAL);
2800		}
2801		opt->ip6po_prefer_tempaddr = preftemp;
2802		break;
2803
2804	default:
2805		return (ENOPROTOOPT);
2806	} /* end of switch */
2807
2808	return (0);
2809}
2810
2811/*
2812 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
2813 * packet to the input queue of a specified interface.  Note that this
2814 * calls the output routine of the loopback "driver", but with an interface
2815 * pointer that might NOT be &loif -- easier than replicating that code here.
2816 */
2817void
2818ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst)
2819{
2820	struct mbuf *copym;
2821	struct ip6_hdr *ip6;
2822
2823	copym = m_copy(m, 0, M_COPYALL);
2824	if (copym == NULL)
2825		return;
2826
2827	/*
2828	 * Make sure to deep-copy IPv6 header portion in case the data
2829	 * is in an mbuf cluster, so that we can safely override the IPv6
2830	 * header portion later.
2831	 */
2832	if ((copym->m_flags & M_EXT) != 0 ||
2833	    copym->m_len < sizeof(struct ip6_hdr)) {
2834		copym = m_pullup(copym, sizeof(struct ip6_hdr));
2835		if (copym == NULL)
2836			return;
2837	}
2838
2839#ifdef DIAGNOSTIC
2840	if (copym->m_len < sizeof(*ip6)) {
2841		m_freem(copym);
2842		return;
2843	}
2844#endif
2845
2846	ip6 = mtod(copym, struct ip6_hdr *);
2847	/*
2848	 * clear embedded scope identifiers if necessary.
2849	 * in6_clearscope will touch the addresses only when necessary.
2850	 */
2851	in6_clearscope(&ip6->ip6_src);
2852	in6_clearscope(&ip6->ip6_dst);
2853
2854	(void)if_simloop(ifp, copym, dst->sin6_family, 0);
2855}
2856
2857/*
2858 * Chop IPv6 header off from the payload.
2859 */
2860static int
2861ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
2862{
2863	struct mbuf *mh;
2864	struct ip6_hdr *ip6;
2865
2866	ip6 = mtod(m, struct ip6_hdr *);
2867	if (m->m_len > sizeof(*ip6)) {
2868		MGETHDR(mh, M_DONTWAIT, MT_HEADER);
2869		if (mh == 0) {
2870			m_freem(m);
2871			return ENOBUFS;
2872		}
2873		M_MOVE_PKTHDR(mh, m);
2874		MH_ALIGN(mh, sizeof(*ip6));
2875		m->m_len -= sizeof(*ip6);
2876		m->m_data += sizeof(*ip6);
2877		mh->m_next = m;
2878		m = mh;
2879		m->m_len = sizeof(*ip6);
2880		bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
2881	}
2882	exthdrs->ip6e_ip6 = m;
2883	return 0;
2884}
2885
2886/*
2887 * Compute IPv6 extension header length.
2888 */
2889int
2890ip6_optlen(struct inpcb *in6p)
2891{
2892	int len;
2893
2894	if (!in6p->in6p_outputopts)
2895		return 0;
2896
2897	len = 0;
2898#define elen(x) \
2899    (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
2900
2901	len += elen(in6p->in6p_outputopts->ip6po_hbh);
2902	if (in6p->in6p_outputopts->ip6po_rthdr)
2903		/* dest1 is valid with rthdr only */
2904		len += elen(in6p->in6p_outputopts->ip6po_dest1);
2905	len += elen(in6p->in6p_outputopts->ip6po_rthdr);
2906	len += elen(in6p->in6p_outputopts->ip6po_dest2);
2907	return len;
2908#undef elen
2909}
2910