ip6_output.c revision 191672
1/*-
2 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the project nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	$KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $
30 */
31
32/*-
33 * Copyright (c) 1982, 1986, 1988, 1990, 1993
34 *	The Regents of the University of California.  All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 *    notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 *    notice, this list of conditions and the following disclaimer in the
43 *    documentation and/or other materials provided with the distribution.
44 * 4. Neither the name of the University nor the names of its contributors
45 *    may be used to endorse or promote products derived from this software
46 *    without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
61 */
62
63#include <sys/cdefs.h>
64__FBSDID("$FreeBSD: head/sys/netinet6/ip6_output.c 191672 2009-04-29 19:19:13Z bms $");
65
66#include "opt_inet.h"
67#include "opt_inet6.h"
68#include "opt_ipsec.h"
69#include "opt_route.h"
70
71#include <sys/param.h>
72#include <sys/kernel.h>
73#include <sys/malloc.h>
74#include <sys/mbuf.h>
75#include <sys/errno.h>
76#include <sys/priv.h>
77#include <sys/proc.h>
78#include <sys/protosw.h>
79#include <sys/socket.h>
80#include <sys/socketvar.h>
81#include <sys/syslog.h>
82#include <sys/ucred.h>
83#include <sys/vimage.h>
84
85#include <net/if.h>
86#include <net/netisr.h>
87#include <net/route.h>
88#include <net/pfil.h>
89#include <net/vnet.h>
90
91#include <netinet/in.h>
92#include <netinet/in_var.h>
93#include <netinet6/in6_var.h>
94#include <netinet/ip6.h>
95#include <netinet/icmp6.h>
96#include <netinet6/ip6_var.h>
97#include <netinet/in_pcb.h>
98#include <netinet/tcp_var.h>
99#include <netinet6/nd6.h>
100#include <netinet/vinet.h>
101
102#ifdef IPSEC
103#include <netipsec/ipsec.h>
104#include <netipsec/ipsec6.h>
105#include <netipsec/key.h>
106#include <netinet6/ip6_ipsec.h>
107#endif /* IPSEC */
108
109#include <netinet6/ip6protosw.h>
110#include <netinet6/scope6_var.h>
111#include <netinet6/vinet6.h>
112
113extern int in6_mcast_loop;
114
115struct ip6_exthdrs {
116	struct mbuf *ip6e_ip6;
117	struct mbuf *ip6e_hbh;
118	struct mbuf *ip6e_dest1;
119	struct mbuf *ip6e_rthdr;
120	struct mbuf *ip6e_dest2;
121};
122
123static int ip6_pcbopt __P((int, u_char *, int, struct ip6_pktopts **,
124			   struct ucred *, int));
125static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
126	struct socket *, struct sockopt *));
127static int ip6_getpcbopt(struct ip6_pktopts *, int, struct sockopt *);
128static int ip6_setpktopt __P((int, u_char *, int, struct ip6_pktopts *,
129	struct ucred *, int, int, int));
130
131static int ip6_copyexthdr(struct mbuf **, caddr_t, int);
132static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
133	struct ip6_frag **));
134static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
135static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
136static int ip6_getpmtu __P((struct route_in6 *, struct route_in6 *,
137	struct ifnet *, struct in6_addr *, u_long *, int *));
138static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
139
140
141/*
142 * Make an extension header from option data.  hp is the source, and
143 * mp is the destination.
144 */
145#define MAKE_EXTHDR(hp, mp)						\
146    do {								\
147	if (hp) {							\
148		struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
149		error = ip6_copyexthdr((mp), (caddr_t)(hp),		\
150		    ((eh)->ip6e_len + 1) << 3);				\
151		if (error)						\
152			goto freehdrs;					\
153	}								\
154    } while (/*CONSTCOND*/ 0)
155
156/*
157 * Form a chain of extension headers.
158 * m is the extension header mbuf
159 * mp is the previous mbuf in the chain
160 * p is the next header
161 * i is the type of option.
162 */
163#define MAKE_CHAIN(m, mp, p, i)\
164    do {\
165	if (m) {\
166		if (!hdrsplit) \
167			panic("assumption failed: hdr not split"); \
168		*mtod((m), u_char *) = *(p);\
169		*(p) = (i);\
170		p = mtod((m), u_char *);\
171		(m)->m_next = (mp)->m_next;\
172		(mp)->m_next = (m);\
173		(mp) = (m);\
174	}\
175    } while (/*CONSTCOND*/ 0)
176
177/*
178 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
179 * header (with pri, len, nxt, hlim, src, dst).
180 * This function may modify ver and hlim only.
181 * The mbuf chain containing the packet will be freed.
182 * The mbuf opt, if present, will not be freed.
183 *
184 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
185 * nd_ifinfo.linkmtu is u_int32_t.  so we use u_long to hold largest one,
186 * which is rt_rmx.rmx_mtu.
187 *
188 * ifpp - XXX: just for statistics
189 */
190int
191ip6_output(struct mbuf *m0, struct ip6_pktopts *opt,
192    struct route_in6 *ro, int flags, struct ip6_moptions *im6o,
193    struct ifnet **ifpp, struct inpcb *inp)
194{
195	INIT_VNET_NET(curvnet);
196	INIT_VNET_INET6(curvnet);
197	struct ip6_hdr *ip6, *mhip6;
198	struct ifnet *ifp, *origifp;
199	struct mbuf *m = m0;
200	struct mbuf *mprev = NULL;
201	int hlen, tlen, len, off;
202	struct route_in6 ip6route;
203	struct rtentry *rt = NULL;
204	struct sockaddr_in6 *dst, src_sa, dst_sa;
205	struct in6_addr odst;
206	int error = 0;
207	struct in6_ifaddr *ia = NULL;
208	u_long mtu;
209	int alwaysfrag, dontfrag;
210	u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
211	struct ip6_exthdrs exthdrs;
212	struct in6_addr finaldst, src0, dst0;
213	u_int32_t zone;
214	struct route_in6 *ro_pmtu = NULL;
215	int hdrsplit = 0;
216	int needipsec = 0;
217#ifdef IPSEC
218	struct ipsec_output_state state;
219	struct ip6_rthdr *rh = NULL;
220	int needipsectun = 0;
221	int segleft_org = 0;
222	struct secpolicy *sp = NULL;
223#endif /* IPSEC */
224
225	ip6 = mtod(m, struct ip6_hdr *);
226	if (ip6 == NULL) {
227		printf ("ip6 is NULL");
228		goto bad;
229	}
230
231	finaldst = ip6->ip6_dst;
232
233	bzero(&exthdrs, sizeof(exthdrs));
234
235	if (opt) {
236		/* Hop-by-Hop options header */
237		MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
238		/* Destination options header(1st part) */
239		if (opt->ip6po_rthdr) {
240			/*
241			 * Destination options header(1st part)
242			 * This only makes sense with a routing header.
243			 * See Section 9.2 of RFC 3542.
244			 * Disabling this part just for MIP6 convenience is
245			 * a bad idea.  We need to think carefully about a
246			 * way to make the advanced API coexist with MIP6
247			 * options, which might automatically be inserted in
248			 * the kernel.
249			 */
250			MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
251		}
252		/* Routing header */
253		MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
254		/* Destination options header(2nd part) */
255		MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
256	}
257
258	/*
259	 * IPSec checking which handles several cases.
260	 * FAST IPSEC: We re-injected the packet.
261	 */
262#ifdef IPSEC
263	switch(ip6_ipsec_output(&m, inp, &flags, &error, &ifp, &sp))
264	{
265	case 1:                 /* Bad packet */
266		goto freehdrs;
267	case -1:                /* Do IPSec */
268		needipsec = 1;
269	case 0:                 /* No IPSec */
270	default:
271		break;
272	}
273#endif /* IPSEC */
274
275	/*
276	 * Calculate the total length of the extension header chain.
277	 * Keep the length of the unfragmentable part for fragmentation.
278	 */
279	optlen = 0;
280	if (exthdrs.ip6e_hbh)
281		optlen += exthdrs.ip6e_hbh->m_len;
282	if (exthdrs.ip6e_dest1)
283		optlen += exthdrs.ip6e_dest1->m_len;
284	if (exthdrs.ip6e_rthdr)
285		optlen += exthdrs.ip6e_rthdr->m_len;
286	unfragpartlen = optlen + sizeof(struct ip6_hdr);
287
288	/* NOTE: we don't add AH/ESP length here. do that later. */
289	if (exthdrs.ip6e_dest2)
290		optlen += exthdrs.ip6e_dest2->m_len;
291
292	/*
293	 * If we need IPsec, or there is at least one extension header,
294	 * separate IP6 header from the payload.
295	 */
296	if ((needipsec || optlen) && !hdrsplit) {
297		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
298			m = NULL;
299			goto freehdrs;
300		}
301		m = exthdrs.ip6e_ip6;
302		hdrsplit++;
303	}
304
305	/* adjust pointer */
306	ip6 = mtod(m, struct ip6_hdr *);
307
308	/* adjust mbuf packet header length */
309	m->m_pkthdr.len += optlen;
310	plen = m->m_pkthdr.len - sizeof(*ip6);
311
312	/* If this is a jumbo payload, insert a jumbo payload option. */
313	if (plen > IPV6_MAXPACKET) {
314		if (!hdrsplit) {
315			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
316				m = NULL;
317				goto freehdrs;
318			}
319			m = exthdrs.ip6e_ip6;
320			hdrsplit++;
321		}
322		/* adjust pointer */
323		ip6 = mtod(m, struct ip6_hdr *);
324		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
325			goto freehdrs;
326		ip6->ip6_plen = 0;
327	} else
328		ip6->ip6_plen = htons(plen);
329
330	/*
331	 * Concatenate headers and fill in next header fields.
332	 * Here we have, on "m"
333	 *	IPv6 payload
334	 * and we insert headers accordingly.  Finally, we should be getting:
335	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
336	 *
337	 * during the header composing process, "m" points to IPv6 header.
338	 * "mprev" points to an extension header prior to esp.
339	 */
340	u_char *nexthdrp = &ip6->ip6_nxt;
341	mprev = m;
342
343	/*
344	 * we treat dest2 specially.  this makes IPsec processing
345	 * much easier.  the goal here is to make mprev point the
346	 * mbuf prior to dest2.
347	 *
348	 * result: IPv6 dest2 payload
349	 * m and mprev will point to IPv6 header.
350	 */
351	if (exthdrs.ip6e_dest2) {
352		if (!hdrsplit)
353			panic("assumption failed: hdr not split");
354		exthdrs.ip6e_dest2->m_next = m->m_next;
355		m->m_next = exthdrs.ip6e_dest2;
356		*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
357		ip6->ip6_nxt = IPPROTO_DSTOPTS;
358	}
359
360	/*
361	 * result: IPv6 hbh dest1 rthdr dest2 payload
362	 * m will point to IPv6 header.  mprev will point to the
363	 * extension header prior to dest2 (rthdr in the above case).
364	 */
365	MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
366	MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
367		   IPPROTO_DSTOPTS);
368	MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
369		   IPPROTO_ROUTING);
370
371#ifdef IPSEC
372	if (!needipsec)
373		goto skip_ipsec2;
374
375	/*
376	 * pointers after IPsec headers are not valid any more.
377	 * other pointers need a great care too.
378	 * (IPsec routines should not mangle mbufs prior to AH/ESP)
379	 */
380	exthdrs.ip6e_dest2 = NULL;
381
382	if (exthdrs.ip6e_rthdr) {
383		rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
384		segleft_org = rh->ip6r_segleft;
385		rh->ip6r_segleft = 0;
386	}
387
388	bzero(&state, sizeof(state));
389	state.m = m;
390	error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
391				    &needipsectun);
392	m = state.m;
393	if (error == EJUSTRETURN) {
394		/*
395		 * We had a SP with a level of 'use' and no SA. We
396		 * will just continue to process the packet without
397		 * IPsec processing.
398		 */
399		;
400	} else if (error) {
401		/* mbuf is already reclaimed in ipsec6_output_trans. */
402		m = NULL;
403		switch (error) {
404		case EHOSTUNREACH:
405		case ENETUNREACH:
406		case EMSGSIZE:
407		case ENOBUFS:
408		case ENOMEM:
409			break;
410		default:
411			printf("[%s:%d] (ipsec): error code %d\n",
412			    __func__, __LINE__, error);
413			/* FALLTHROUGH */
414		case ENOENT:
415			/* don't show these error codes to the user */
416			error = 0;
417			break;
418		}
419		goto bad;
420	} else if (!needipsectun) {
421		/*
422		 * In the FAST IPSec case we have already
423		 * re-injected the packet and it has been freed
424		 * by the ipsec_done() function.  So, just clean
425		 * up after ourselves.
426		 */
427		m = NULL;
428		goto done;
429	}
430	if (exthdrs.ip6e_rthdr) {
431		/* ah6_output doesn't modify mbuf chain */
432		rh->ip6r_segleft = segleft_org;
433	}
434skip_ipsec2:;
435#endif /* IPSEC */
436
437	/*
438	 * If there is a routing header, replace the destination address field
439	 * with the first hop of the routing header.
440	 */
441	if (exthdrs.ip6e_rthdr) {
442		struct ip6_rthdr *rh =
443			(struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
444						  struct ip6_rthdr *));
445
446		/*
447		 * While this switch may look gratuitous, leave it in
448		 * in favour of RH2 implementations, etc.
449		 */
450		switch (rh->ip6r_type) {
451#ifndef BURN_BRIDGES
452		case IPV6_RTHDR_TYPE_0:
453			/*
454			 * According to RFC 5095 we should not implement
455			 * it in any way but we may want to give the user
456			 * a hint for now.
457			 */
458			log(LOG_INFO, "[%s:%d] IPv6 Type 0 Routing Headers are "
459			    "deprecated.\n", __func__, __LINE__);
460			/* FALLTHROUGH */
461#endif
462		default:	/* is it possible? */
463			 error = EINVAL;
464			 goto bad;
465		}
466	}
467
468	/* Source address validation */
469	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
470	    (flags & IPV6_UNSPECSRC) == 0) {
471		error = EOPNOTSUPP;
472		V_ip6stat.ip6s_badscope++;
473		goto bad;
474	}
475	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
476		error = EOPNOTSUPP;
477		V_ip6stat.ip6s_badscope++;
478		goto bad;
479	}
480
481	V_ip6stat.ip6s_localout++;
482
483	/*
484	 * Route packet.
485	 */
486	if (ro == 0) {
487		ro = &ip6route;
488		bzero((caddr_t)ro, sizeof(*ro));
489	}
490	ro_pmtu = ro;
491	if (opt && opt->ip6po_rthdr)
492		ro = &opt->ip6po_route;
493	dst = (struct sockaddr_in6 *)&ro->ro_dst;
494
495again:
496	/*
497	 * if specified, try to fill in the traffic class field.
498	 * do not override if a non-zero value is already set.
499	 * we check the diffserv field and the ecn field separately.
500	 */
501	if (opt && opt->ip6po_tclass >= 0) {
502		int mask = 0;
503
504		if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
505			mask |= 0xfc;
506		if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
507			mask |= 0x03;
508		if (mask != 0)
509			ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
510	}
511
512	/* fill in or override the hop limit field, if necessary. */
513	if (opt && opt->ip6po_hlim != -1)
514		ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
515	else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
516		if (im6o != NULL)
517			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
518		else
519			ip6->ip6_hlim = V_ip6_defmcasthlim;
520	}
521
522#ifdef IPSEC
523	/*
524	 * We may re-inject packets into the stack here.
525	 */
526	if (needipsec && needipsectun) {
527		struct ipsec_output_state state;
528
529		/*
530		 * All the extension headers will become inaccessible
531		 * (since they can be encrypted).
532		 * Don't panic, we need no more updates to extension headers
533		 * on inner IPv6 packet (since they are now encapsulated).
534		 *
535		 * IPv6 [ESP|AH] IPv6 [extension headers] payload
536		 */
537		bzero(&exthdrs, sizeof(exthdrs));
538		exthdrs.ip6e_ip6 = m;
539
540		bzero(&state, sizeof(state));
541		state.m = m;
542		state.ro = (struct route *)ro;
543		state.dst = (struct sockaddr *)dst;
544
545		error = ipsec6_output_tunnel(&state, sp, flags);
546
547		m = state.m;
548		ro = (struct route_in6 *)state.ro;
549		dst = (struct sockaddr_in6 *)state.dst;
550		if (error == EJUSTRETURN) {
551			/*
552			 * We had a SP with a level of 'use' and no SA. We
553			 * will just continue to process the packet without
554			 * IPsec processing.
555			 */
556			;
557		} else if (error) {
558			/* mbuf is already reclaimed in ipsec6_output_tunnel. */
559			m0 = m = NULL;
560			m = NULL;
561			switch (error) {
562			case EHOSTUNREACH:
563			case ENETUNREACH:
564			case EMSGSIZE:
565			case ENOBUFS:
566			case ENOMEM:
567				break;
568			default:
569				printf("[%s:%d] (ipsec): error code %d\n",
570				    __func__, __LINE__, error);
571				/* FALLTHROUGH */
572			case ENOENT:
573				/* don't show these error codes to the user */
574				error = 0;
575				break;
576			}
577			goto bad;
578		} else {
579			/*
580			 * In the FAST IPSec case we have already
581			 * re-injected the packet and it has been freed
582			 * by the ipsec_done() function.  So, just clean
583			 * up after ourselves.
584			 */
585			m = NULL;
586			goto done;
587		}
588
589		exthdrs.ip6e_ip6 = m;
590	}
591#endif /* IPSEC */
592
593	/* adjust pointer */
594	ip6 = mtod(m, struct ip6_hdr *);
595
596	bzero(&dst_sa, sizeof(dst_sa));
597	dst_sa.sin6_family = AF_INET6;
598	dst_sa.sin6_len = sizeof(dst_sa);
599	dst_sa.sin6_addr = ip6->ip6_dst;
600	if ((error = in6_selectroute(&dst_sa, opt, im6o, ro,
601	    &ifp, &rt)) != 0) {
602		switch (error) {
603		case EHOSTUNREACH:
604			V_ip6stat.ip6s_noroute++;
605			break;
606		case EADDRNOTAVAIL:
607		default:
608			break; /* XXX statistics? */
609		}
610		if (ifp != NULL)
611			in6_ifstat_inc(ifp, ifs6_out_discard);
612		goto bad;
613	}
614	if (rt == NULL) {
615		/*
616		 * If in6_selectroute() does not return a route entry,
617		 * dst may not have been updated.
618		 */
619		*dst = dst_sa;	/* XXX */
620	}
621
622	/*
623	 * then rt (for unicast) and ifp must be non-NULL valid values.
624	 */
625	if ((flags & IPV6_FORWARDING) == 0) {
626		/* XXX: the FORWARDING flag can be set for mrouting. */
627		in6_ifstat_inc(ifp, ifs6_out_request);
628	}
629	if (rt != NULL) {
630		ia = (struct in6_ifaddr *)(rt->rt_ifa);
631		rt->rt_use++;
632	}
633
634	/*
635	 * The outgoing interface must be in the zone of source and
636	 * destination addresses.  We should use ia_ifp to support the
637	 * case of sending packets to an address of our own.
638	 */
639	if (ia != NULL && ia->ia_ifp)
640		origifp = ia->ia_ifp;
641	else
642		origifp = ifp;
643
644	src0 = ip6->ip6_src;
645	if (in6_setscope(&src0, origifp, &zone))
646		goto badscope;
647	bzero(&src_sa, sizeof(src_sa));
648	src_sa.sin6_family = AF_INET6;
649	src_sa.sin6_len = sizeof(src_sa);
650	src_sa.sin6_addr = ip6->ip6_src;
651	if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
652		goto badscope;
653
654	dst0 = ip6->ip6_dst;
655	if (in6_setscope(&dst0, origifp, &zone))
656		goto badscope;
657	/* re-initialize to be sure */
658	bzero(&dst_sa, sizeof(dst_sa));
659	dst_sa.sin6_family = AF_INET6;
660	dst_sa.sin6_len = sizeof(dst_sa);
661	dst_sa.sin6_addr = ip6->ip6_dst;
662	if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id) {
663		goto badscope;
664	}
665
666	/* scope check is done. */
667	goto routefound;
668
669  badscope:
670	V_ip6stat.ip6s_badscope++;
671	in6_ifstat_inc(origifp, ifs6_out_discard);
672	if (error == 0)
673		error = EHOSTUNREACH; /* XXX */
674	goto bad;
675
676  routefound:
677	if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
678		if (opt && opt->ip6po_nextroute.ro_rt) {
679			/*
680			 * The nexthop is explicitly specified by the
681			 * application.  We assume the next hop is an IPv6
682			 * address.
683			 */
684			dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
685		}
686		else if ((rt->rt_flags & RTF_GATEWAY))
687			dst = (struct sockaddr_in6 *)rt->rt_gateway;
688	}
689
690	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
691		m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
692	} else {
693		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
694		in6_ifstat_inc(ifp, ifs6_out_mcast);
695		/*
696		 * Confirm that the outgoing interface supports multicast.
697		 */
698		if (!(ifp->if_flags & IFF_MULTICAST)) {
699			V_ip6stat.ip6s_noroute++;
700			in6_ifstat_inc(ifp, ifs6_out_discard);
701			error = ENETUNREACH;
702			goto bad;
703		}
704		if ((im6o == NULL && in6_mcast_loop) ||
705		    (im6o && im6o->im6o_multicast_loop)) {
706			/*
707			 * Loop back multicast datagram if not expressly
708			 * forbidden to do so, even if we have not joined
709			 * the address; protocols will filter it later,
710			 * thus deferring a hash lookup and lock acquisition
711			 * at the expense of an m_copym().
712			 */
713			ip6_mloopback(ifp, m, dst);
714		} else {
715			/*
716			 * If we are acting as a multicast router, perform
717			 * multicast forwarding as if the packet had just
718			 * arrived on the interface to which we are about
719			 * to send.  The multicast forwarding function
720			 * recursively calls this function, using the
721			 * IPV6_FORWARDING flag to prevent infinite recursion.
722			 *
723			 * Multicasts that are looped back by ip6_mloopback(),
724			 * above, will be forwarded by the ip6_input() routine,
725			 * if necessary.
726			 */
727			if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
728				/*
729				 * XXX: ip6_mforward expects that rcvif is NULL
730				 * when it is called from the originating path.
731				 * However, it is not always the case, since
732				 * some versions of MGETHDR() does not
733				 * initialize the field.
734				 */
735				m->m_pkthdr.rcvif = NULL;
736				if (ip6_mforward(ip6, ifp, m) != 0) {
737					m_freem(m);
738					goto done;
739				}
740			}
741		}
742		/*
743		 * Multicasts with a hoplimit of zero may be looped back,
744		 * above, but must not be transmitted on a network.
745		 * Also, multicasts addressed to the loopback interface
746		 * are not sent -- the above call to ip6_mloopback() will
747		 * loop back a copy if this host actually belongs to the
748		 * destination group on the loopback interface.
749		 */
750		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
751		    IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
752			m_freem(m);
753			goto done;
754		}
755	}
756
757	/*
758	 * Fill the outgoing inteface to tell the upper layer
759	 * to increment per-interface statistics.
760	 */
761	if (ifpp)
762		*ifpp = ifp;
763
764	/* Determine path MTU. */
765	if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
766	    &alwaysfrag)) != 0)
767		goto bad;
768
769	/*
770	 * The caller of this function may specify to use the minimum MTU
771	 * in some cases.
772	 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
773	 * setting.  The logic is a bit complicated; by default, unicast
774	 * packets will follow path MTU while multicast packets will be sent at
775	 * the minimum MTU.  If IP6PO_MINMTU_ALL is specified, all packets
776	 * including unicast ones will be sent at the minimum MTU.  Multicast
777	 * packets will always be sent at the minimum MTU unless
778	 * IP6PO_MINMTU_DISABLE is explicitly specified.
779	 * See RFC 3542 for more details.
780	 */
781	if (mtu > IPV6_MMTU) {
782		if ((flags & IPV6_MINMTU))
783			mtu = IPV6_MMTU;
784		else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
785			mtu = IPV6_MMTU;
786		else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
787			 (opt == NULL ||
788			  opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
789			mtu = IPV6_MMTU;
790		}
791	}
792
793	/*
794	 * clear embedded scope identifiers if necessary.
795	 * in6_clearscope will touch the addresses only when necessary.
796	 */
797	in6_clearscope(&ip6->ip6_src);
798	in6_clearscope(&ip6->ip6_dst);
799
800	/*
801	 * If the outgoing packet contains a hop-by-hop options header,
802	 * it must be examined and processed even by the source node.
803	 * (RFC 2460, section 4.)
804	 */
805	if (exthdrs.ip6e_hbh) {
806		struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
807		u_int32_t dummy; /* XXX unused */
808		u_int32_t plen = 0; /* XXX: ip6_process will check the value */
809
810#ifdef DIAGNOSTIC
811		if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len)
812			panic("ip6e_hbh is not continuous");
813#endif
814		/*
815		 *  XXX: if we have to send an ICMPv6 error to the sender,
816		 *       we need the M_LOOP flag since icmp6_error() expects
817		 *       the IPv6 and the hop-by-hop options header are
818		 *       continuous unless the flag is set.
819		 */
820		m->m_flags |= M_LOOP;
821		m->m_pkthdr.rcvif = ifp;
822		if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
823		    ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
824		    &dummy, &plen) < 0) {
825			/* m was already freed at this point */
826			error = EINVAL;/* better error? */
827			goto done;
828		}
829		m->m_flags &= ~M_LOOP; /* XXX */
830		m->m_pkthdr.rcvif = NULL;
831	}
832
833	/* Jump over all PFIL processing if hooks are not active. */
834	if (!PFIL_HOOKED(&inet6_pfil_hook))
835		goto passout;
836
837	odst = ip6->ip6_dst;
838	/* Run through list of hooks for output packets. */
839	error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT, inp);
840	if (error != 0 || m == NULL)
841		goto done;
842	ip6 = mtod(m, struct ip6_hdr *);
843
844	/* See if destination IP address was changed by packet filter. */
845	if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) {
846		m->m_flags |= M_SKIP_FIREWALL;
847		/* If destination is now ourself drop to ip6_input(). */
848		if (in6_localaddr(&ip6->ip6_dst)) {
849			if (m->m_pkthdr.rcvif == NULL)
850				m->m_pkthdr.rcvif = V_loif;
851			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
852				m->m_pkthdr.csum_flags |=
853				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
854				m->m_pkthdr.csum_data = 0xffff;
855			}
856			m->m_pkthdr.csum_flags |=
857			    CSUM_IP_CHECKED | CSUM_IP_VALID;
858			error = netisr_queue(NETISR_IPV6, m);
859			goto done;
860		} else
861			goto again;	/* Redo the routing table lookup. */
862	}
863
864	/* XXX: IPFIREWALL_FORWARD */
865
866passout:
867	/*
868	 * Send the packet to the outgoing interface.
869	 * If necessary, do IPv6 fragmentation before sending.
870	 *
871	 * the logic here is rather complex:
872	 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
873	 * 1-a:	send as is if tlen <= path mtu
874	 * 1-b:	fragment if tlen > path mtu
875	 *
876	 * 2: if user asks us not to fragment (dontfrag == 1)
877	 * 2-a:	send as is if tlen <= interface mtu
878	 * 2-b:	error if tlen > interface mtu
879	 *
880	 * 3: if we always need to attach fragment header (alwaysfrag == 1)
881	 *	always fragment
882	 *
883	 * 4: if dontfrag == 1 && alwaysfrag == 1
884	 *	error, as we cannot handle this conflicting request
885	 */
886	tlen = m->m_pkthdr.len;
887
888	if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
889		dontfrag = 1;
890	else
891		dontfrag = 0;
892	if (dontfrag && alwaysfrag) {	/* case 4 */
893		/* conflicting request - can't transmit */
894		error = EMSGSIZE;
895		goto bad;
896	}
897	if (dontfrag && tlen > IN6_LINKMTU(ifp)) {	/* case 2-b */
898		/*
899		 * Even if the DONTFRAG option is specified, we cannot send the
900		 * packet when the data length is larger than the MTU of the
901		 * outgoing interface.
902		 * Notify the error by sending IPV6_PATHMTU ancillary data as
903		 * well as returning an error code (the latter is not described
904		 * in the API spec.)
905		 */
906		u_int32_t mtu32;
907		struct ip6ctlparam ip6cp;
908
909		mtu32 = (u_int32_t)mtu;
910		bzero(&ip6cp, sizeof(ip6cp));
911		ip6cp.ip6c_cmdarg = (void *)&mtu32;
912		pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
913		    (void *)&ip6cp);
914
915		error = EMSGSIZE;
916		goto bad;
917	}
918
919	/*
920	 * transmit packet without fragmentation
921	 */
922	if (dontfrag || (!alwaysfrag && tlen <= mtu)) {	/* case 1-a and 2-a */
923		struct in6_ifaddr *ia6;
924
925		ip6 = mtod(m, struct ip6_hdr *);
926		ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
927		if (ia6) {
928			/* Record statistics for this interface address. */
929			ia6->ia_ifa.if_opackets++;
930			ia6->ia_ifa.if_obytes += m->m_pkthdr.len;
931		}
932		error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
933		goto done;
934	}
935
936	/*
937	 * try to fragment the packet.  case 1-b and 3
938	 */
939	if (mtu < IPV6_MMTU) {
940		/* path MTU cannot be less than IPV6_MMTU */
941		error = EMSGSIZE;
942		in6_ifstat_inc(ifp, ifs6_out_fragfail);
943		goto bad;
944	} else if (ip6->ip6_plen == 0) {
945		/* jumbo payload cannot be fragmented */
946		error = EMSGSIZE;
947		in6_ifstat_inc(ifp, ifs6_out_fragfail);
948		goto bad;
949	} else {
950		struct mbuf **mnext, *m_frgpart;
951		struct ip6_frag *ip6f;
952		u_int32_t id = htonl(ip6_randomid());
953		u_char nextproto;
954
955		int qslots = ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len;
956
957		/*
958		 * Too large for the destination or interface;
959		 * fragment if possible.
960		 * Must be able to put at least 8 bytes per fragment.
961		 */
962		hlen = unfragpartlen;
963		if (mtu > IPV6_MAXPACKET)
964			mtu = IPV6_MAXPACKET;
965
966		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
967		if (len < 8) {
968			error = EMSGSIZE;
969			in6_ifstat_inc(ifp, ifs6_out_fragfail);
970			goto bad;
971		}
972
973		/*
974		 * Verify that we have any chance at all of being able to queue
975		 *      the packet or packet fragments
976		 */
977		if (qslots <= 0 || ((u_int)qslots * (mtu - hlen)
978		    < tlen  /* - hlen */)) {
979			error = ENOBUFS;
980			V_ip6stat.ip6s_odropped++;
981			goto bad;
982		}
983
984		mnext = &m->m_nextpkt;
985
986		/*
987		 * Change the next header field of the last header in the
988		 * unfragmentable part.
989		 */
990		if (exthdrs.ip6e_rthdr) {
991			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
992			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
993		} else if (exthdrs.ip6e_dest1) {
994			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
995			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
996		} else if (exthdrs.ip6e_hbh) {
997			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
998			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
999		} else {
1000			nextproto = ip6->ip6_nxt;
1001			ip6->ip6_nxt = IPPROTO_FRAGMENT;
1002		}
1003
1004		/*
1005		 * Loop through length of segment after first fragment,
1006		 * make new header and copy data of each part and link onto
1007		 * chain.
1008		 */
1009		m0 = m;
1010		for (off = hlen; off < tlen; off += len) {
1011			MGETHDR(m, M_DONTWAIT, MT_HEADER);
1012			if (!m) {
1013				error = ENOBUFS;
1014				V_ip6stat.ip6s_odropped++;
1015				goto sendorfree;
1016			}
1017			m->m_pkthdr.rcvif = NULL;
1018			m->m_flags = m0->m_flags & M_COPYFLAGS;
1019			*mnext = m;
1020			mnext = &m->m_nextpkt;
1021			m->m_data += max_linkhdr;
1022			mhip6 = mtod(m, struct ip6_hdr *);
1023			*mhip6 = *ip6;
1024			m->m_len = sizeof(*mhip6);
1025			error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
1026			if (error) {
1027				V_ip6stat.ip6s_odropped++;
1028				goto sendorfree;
1029			}
1030			ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
1031			if (off + len >= tlen)
1032				len = tlen - off;
1033			else
1034				ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
1035			mhip6->ip6_plen = htons((u_short)(len + hlen +
1036			    sizeof(*ip6f) - sizeof(struct ip6_hdr)));
1037			if ((m_frgpart = m_copy(m0, off, len)) == 0) {
1038				error = ENOBUFS;
1039				V_ip6stat.ip6s_odropped++;
1040				goto sendorfree;
1041			}
1042			m_cat(m, m_frgpart);
1043			m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
1044			m->m_pkthdr.rcvif = NULL;
1045			ip6f->ip6f_reserved = 0;
1046			ip6f->ip6f_ident = id;
1047			ip6f->ip6f_nxt = nextproto;
1048			V_ip6stat.ip6s_ofragments++;
1049			in6_ifstat_inc(ifp, ifs6_out_fragcreat);
1050		}
1051
1052		in6_ifstat_inc(ifp, ifs6_out_fragok);
1053	}
1054
1055	/*
1056	 * Remove leading garbages.
1057	 */
1058sendorfree:
1059	m = m0->m_nextpkt;
1060	m0->m_nextpkt = 0;
1061	m_freem(m0);
1062	for (m0 = m; m; m = m0) {
1063		m0 = m->m_nextpkt;
1064		m->m_nextpkt = 0;
1065		if (error == 0) {
1066			/* Record statistics for this interface address. */
1067			if (ia) {
1068				ia->ia_ifa.if_opackets++;
1069				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1070			}
1071			error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1072		} else
1073			m_freem(m);
1074	}
1075
1076	if (error == 0)
1077		V_ip6stat.ip6s_fragmented++;
1078
1079done:
1080	if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
1081		RTFREE(ro->ro_rt);
1082	} else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
1083		RTFREE(ro_pmtu->ro_rt);
1084	}
1085#ifdef IPSEC
1086	if (sp != NULL)
1087		KEY_FREESP(&sp);
1088#endif
1089
1090	return (error);
1091
1092freehdrs:
1093	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
1094	m_freem(exthdrs.ip6e_dest1);
1095	m_freem(exthdrs.ip6e_rthdr);
1096	m_freem(exthdrs.ip6e_dest2);
1097	/* FALLTHROUGH */
1098bad:
1099	if (m)
1100		m_freem(m);
1101	goto done;
1102}
1103
1104static int
1105ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen)
1106{
1107	struct mbuf *m;
1108
1109	if (hlen > MCLBYTES)
1110		return (ENOBUFS); /* XXX */
1111
1112	MGET(m, M_DONTWAIT, MT_DATA);
1113	if (!m)
1114		return (ENOBUFS);
1115
1116	if (hlen > MLEN) {
1117		MCLGET(m, M_DONTWAIT);
1118		if ((m->m_flags & M_EXT) == 0) {
1119			m_free(m);
1120			return (ENOBUFS);
1121		}
1122	}
1123	m->m_len = hlen;
1124	if (hdr)
1125		bcopy(hdr, mtod(m, caddr_t), hlen);
1126
1127	*mp = m;
1128	return (0);
1129}
1130
1131/*
1132 * Insert jumbo payload option.
1133 */
1134static int
1135ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1136{
1137	struct mbuf *mopt;
1138	u_char *optbuf;
1139	u_int32_t v;
1140
1141#define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
1142
1143	/*
1144	 * If there is no hop-by-hop options header, allocate new one.
1145	 * If there is one but it doesn't have enough space to store the
1146	 * jumbo payload option, allocate a cluster to store the whole options.
1147	 * Otherwise, use it to store the options.
1148	 */
1149	if (exthdrs->ip6e_hbh == 0) {
1150		MGET(mopt, M_DONTWAIT, MT_DATA);
1151		if (mopt == 0)
1152			return (ENOBUFS);
1153		mopt->m_len = JUMBOOPTLEN;
1154		optbuf = mtod(mopt, u_char *);
1155		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
1156		exthdrs->ip6e_hbh = mopt;
1157	} else {
1158		struct ip6_hbh *hbh;
1159
1160		mopt = exthdrs->ip6e_hbh;
1161		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1162			/*
1163			 * XXX assumption:
1164			 * - exthdrs->ip6e_hbh is not referenced from places
1165			 *   other than exthdrs.
1166			 * - exthdrs->ip6e_hbh is not an mbuf chain.
1167			 */
1168			int oldoptlen = mopt->m_len;
1169			struct mbuf *n;
1170
1171			/*
1172			 * XXX: give up if the whole (new) hbh header does
1173			 * not fit even in an mbuf cluster.
1174			 */
1175			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1176				return (ENOBUFS);
1177
1178			/*
1179			 * As a consequence, we must always prepare a cluster
1180			 * at this point.
1181			 */
1182			MGET(n, M_DONTWAIT, MT_DATA);
1183			if (n) {
1184				MCLGET(n, M_DONTWAIT);
1185				if ((n->m_flags & M_EXT) == 0) {
1186					m_freem(n);
1187					n = NULL;
1188				}
1189			}
1190			if (!n)
1191				return (ENOBUFS);
1192			n->m_len = oldoptlen + JUMBOOPTLEN;
1193			bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1194			    oldoptlen);
1195			optbuf = mtod(n, caddr_t) + oldoptlen;
1196			m_freem(mopt);
1197			mopt = exthdrs->ip6e_hbh = n;
1198		} else {
1199			optbuf = mtod(mopt, u_char *) + mopt->m_len;
1200			mopt->m_len += JUMBOOPTLEN;
1201		}
1202		optbuf[0] = IP6OPT_PADN;
1203		optbuf[1] = 1;
1204
1205		/*
1206		 * Adjust the header length according to the pad and
1207		 * the jumbo payload option.
1208		 */
1209		hbh = mtod(mopt, struct ip6_hbh *);
1210		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1211	}
1212
1213	/* fill in the option. */
1214	optbuf[2] = IP6OPT_JUMBO;
1215	optbuf[3] = 4;
1216	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1217	bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1218
1219	/* finally, adjust the packet header length */
1220	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1221
1222	return (0);
1223#undef JUMBOOPTLEN
1224}
1225
1226/*
1227 * Insert fragment header and copy unfragmentable header portions.
1228 */
1229static int
1230ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1231    struct ip6_frag **frghdrp)
1232{
1233	struct mbuf *n, *mlast;
1234
1235	if (hlen > sizeof(struct ip6_hdr)) {
1236		n = m_copym(m0, sizeof(struct ip6_hdr),
1237		    hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1238		if (n == 0)
1239			return (ENOBUFS);
1240		m->m_next = n;
1241	} else
1242		n = m;
1243
1244	/* Search for the last mbuf of unfragmentable part. */
1245	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1246		;
1247
1248	if ((mlast->m_flags & M_EXT) == 0 &&
1249	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1250		/* use the trailing space of the last mbuf for the fragment hdr */
1251		*frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) +
1252		    mlast->m_len);
1253		mlast->m_len += sizeof(struct ip6_frag);
1254		m->m_pkthdr.len += sizeof(struct ip6_frag);
1255	} else {
1256		/* allocate a new mbuf for the fragment header */
1257		struct mbuf *mfrg;
1258
1259		MGET(mfrg, M_DONTWAIT, MT_DATA);
1260		if (mfrg == 0)
1261			return (ENOBUFS);
1262		mfrg->m_len = sizeof(struct ip6_frag);
1263		*frghdrp = mtod(mfrg, struct ip6_frag *);
1264		mlast->m_next = mfrg;
1265	}
1266
1267	return (0);
1268}
1269
1270static int
1271ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro,
1272    struct ifnet *ifp, struct in6_addr *dst, u_long *mtup,
1273    int *alwaysfragp)
1274{
1275	u_int32_t mtu = 0;
1276	int alwaysfrag = 0;
1277	int error = 0;
1278
1279	if (ro_pmtu != ro) {
1280		/* The first hop and the final destination may differ. */
1281		struct sockaddr_in6 *sa6_dst =
1282		    (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
1283		if (ro_pmtu->ro_rt &&
1284		    ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 ||
1285		     !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) {
1286			RTFREE(ro_pmtu->ro_rt);
1287			ro_pmtu->ro_rt = (struct rtentry *)NULL;
1288		}
1289		if (ro_pmtu->ro_rt == NULL) {
1290			bzero(sa6_dst, sizeof(*sa6_dst));
1291			sa6_dst->sin6_family = AF_INET6;
1292			sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
1293			sa6_dst->sin6_addr = *dst;
1294
1295			rtalloc((struct route *)ro_pmtu);
1296		}
1297	}
1298	if (ro_pmtu->ro_rt) {
1299		u_int32_t ifmtu;
1300		struct in_conninfo inc;
1301
1302		bzero(&inc, sizeof(inc));
1303		inc.inc_flags |= INC_ISIPV6;
1304		inc.inc6_faddr = *dst;
1305
1306		if (ifp == NULL)
1307			ifp = ro_pmtu->ro_rt->rt_ifp;
1308		ifmtu = IN6_LINKMTU(ifp);
1309		mtu = tcp_hc_getmtu(&inc);
1310		if (mtu)
1311			mtu = min(mtu, ro_pmtu->ro_rt->rt_rmx.rmx_mtu);
1312		else
1313			mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
1314		if (mtu == 0)
1315			mtu = ifmtu;
1316		else if (mtu < IPV6_MMTU) {
1317			/*
1318			 * RFC2460 section 5, last paragraph:
1319			 * if we record ICMPv6 too big message with
1320			 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1321			 * or smaller, with framgent header attached.
1322			 * (fragment header is needed regardless from the
1323			 * packet size, for translators to identify packets)
1324			 */
1325			alwaysfrag = 1;
1326			mtu = IPV6_MMTU;
1327		} else if (mtu > ifmtu) {
1328			/*
1329			 * The MTU on the route is larger than the MTU on
1330			 * the interface!  This shouldn't happen, unless the
1331			 * MTU of the interface has been changed after the
1332			 * interface was brought up.  Change the MTU in the
1333			 * route to match the interface MTU (as long as the
1334			 * field isn't locked).
1335			 */
1336			mtu = ifmtu;
1337			ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu;
1338		}
1339	} else if (ifp) {
1340		mtu = IN6_LINKMTU(ifp);
1341	} else
1342		error = EHOSTUNREACH; /* XXX */
1343
1344	*mtup = mtu;
1345	if (alwaysfragp)
1346		*alwaysfragp = alwaysfrag;
1347	return (error);
1348}
1349
1350/*
1351 * IP6 socket option processing.
1352 */
1353int
1354ip6_ctloutput(struct socket *so, struct sockopt *sopt)
1355{
1356	int optdatalen, uproto;
1357	void *optdata;
1358	struct inpcb *in6p = sotoinpcb(so);
1359	int error, optval;
1360	int level, op, optname;
1361	int optlen;
1362	struct thread *td;
1363
1364	level = sopt->sopt_level;
1365	op = sopt->sopt_dir;
1366	optname = sopt->sopt_name;
1367	optlen = sopt->sopt_valsize;
1368	td = sopt->sopt_td;
1369	error = 0;
1370	optval = 0;
1371	uproto = (int)so->so_proto->pr_protocol;
1372
1373	if (level == IPPROTO_IPV6) {
1374		switch (op) {
1375
1376		case SOPT_SET:
1377			switch (optname) {
1378			case IPV6_2292PKTOPTIONS:
1379#ifdef IPV6_PKTOPTIONS
1380			case IPV6_PKTOPTIONS:
1381#endif
1382			{
1383				struct mbuf *m;
1384
1385				error = soopt_getm(sopt, &m); /* XXX */
1386				if (error != 0)
1387					break;
1388				error = soopt_mcopyin(sopt, m); /* XXX */
1389				if (error != 0)
1390					break;
1391				error = ip6_pcbopts(&in6p->in6p_outputopts,
1392						    m, so, sopt);
1393				m_freem(m); /* XXX */
1394				break;
1395			}
1396
1397			/*
1398			 * Use of some Hop-by-Hop options or some
1399			 * Destination options, might require special
1400			 * privilege.  That is, normal applications
1401			 * (without special privilege) might be forbidden
1402			 * from setting certain options in outgoing packets,
1403			 * and might never see certain options in received
1404			 * packets. [RFC 2292 Section 6]
1405			 * KAME specific note:
1406			 *  KAME prevents non-privileged users from sending or
1407			 *  receiving ANY hbh/dst options in order to avoid
1408			 *  overhead of parsing options in the kernel.
1409			 */
1410			case IPV6_RECVHOPOPTS:
1411			case IPV6_RECVDSTOPTS:
1412			case IPV6_RECVRTHDRDSTOPTS:
1413				if (td != NULL) {
1414					error = priv_check(td,
1415					    PRIV_NETINET_SETHDROPTS);
1416					if (error)
1417						break;
1418				}
1419				/* FALLTHROUGH */
1420			case IPV6_UNICAST_HOPS:
1421			case IPV6_HOPLIMIT:
1422			case IPV6_FAITH:
1423
1424			case IPV6_RECVPKTINFO:
1425			case IPV6_RECVHOPLIMIT:
1426			case IPV6_RECVRTHDR:
1427			case IPV6_RECVPATHMTU:
1428			case IPV6_RECVTCLASS:
1429			case IPV6_V6ONLY:
1430			case IPV6_AUTOFLOWLABEL:
1431				if (optlen != sizeof(int)) {
1432					error = EINVAL;
1433					break;
1434				}
1435				error = sooptcopyin(sopt, &optval,
1436					sizeof optval, sizeof optval);
1437				if (error)
1438					break;
1439				switch (optname) {
1440
1441				case IPV6_UNICAST_HOPS:
1442					if (optval < -1 || optval >= 256)
1443						error = EINVAL;
1444					else {
1445						/* -1 = kernel default */
1446						in6p->in6p_hops = optval;
1447						if ((in6p->inp_vflag &
1448						     INP_IPV4) != 0)
1449							in6p->inp_ip_ttl = optval;
1450					}
1451					break;
1452#define OPTSET(bit) \
1453do { \
1454	if (optval) \
1455		in6p->inp_flags |= (bit); \
1456	else \
1457		in6p->inp_flags &= ~(bit); \
1458} while (/*CONSTCOND*/ 0)
1459#define OPTSET2292(bit) \
1460do { \
1461	in6p->inp_flags |= IN6P_RFC2292; \
1462	if (optval) \
1463		in6p->inp_flags |= (bit); \
1464	else \
1465		in6p->inp_flags &= ~(bit); \
1466} while (/*CONSTCOND*/ 0)
1467#define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0)
1468
1469				case IPV6_RECVPKTINFO:
1470					/* cannot mix with RFC2292 */
1471					if (OPTBIT(IN6P_RFC2292)) {
1472						error = EINVAL;
1473						break;
1474					}
1475					OPTSET(IN6P_PKTINFO);
1476					break;
1477
1478				case IPV6_HOPLIMIT:
1479				{
1480					struct ip6_pktopts **optp;
1481
1482					/* cannot mix with RFC2292 */
1483					if (OPTBIT(IN6P_RFC2292)) {
1484						error = EINVAL;
1485						break;
1486					}
1487					optp = &in6p->in6p_outputopts;
1488					error = ip6_pcbopt(IPV6_HOPLIMIT,
1489					    (u_char *)&optval, sizeof(optval),
1490					    optp, (td != NULL) ? td->td_ucred :
1491					    NULL, uproto);
1492					break;
1493				}
1494
1495				case IPV6_RECVHOPLIMIT:
1496					/* cannot mix with RFC2292 */
1497					if (OPTBIT(IN6P_RFC2292)) {
1498						error = EINVAL;
1499						break;
1500					}
1501					OPTSET(IN6P_HOPLIMIT);
1502					break;
1503
1504				case IPV6_RECVHOPOPTS:
1505					/* cannot mix with RFC2292 */
1506					if (OPTBIT(IN6P_RFC2292)) {
1507						error = EINVAL;
1508						break;
1509					}
1510					OPTSET(IN6P_HOPOPTS);
1511					break;
1512
1513				case IPV6_RECVDSTOPTS:
1514					/* cannot mix with RFC2292 */
1515					if (OPTBIT(IN6P_RFC2292)) {
1516						error = EINVAL;
1517						break;
1518					}
1519					OPTSET(IN6P_DSTOPTS);
1520					break;
1521
1522				case IPV6_RECVRTHDRDSTOPTS:
1523					/* cannot mix with RFC2292 */
1524					if (OPTBIT(IN6P_RFC2292)) {
1525						error = EINVAL;
1526						break;
1527					}
1528					OPTSET(IN6P_RTHDRDSTOPTS);
1529					break;
1530
1531				case IPV6_RECVRTHDR:
1532					/* cannot mix with RFC2292 */
1533					if (OPTBIT(IN6P_RFC2292)) {
1534						error = EINVAL;
1535						break;
1536					}
1537					OPTSET(IN6P_RTHDR);
1538					break;
1539
1540				case IPV6_FAITH:
1541					OPTSET(INP_FAITH);
1542					break;
1543
1544				case IPV6_RECVPATHMTU:
1545					/*
1546					 * We ignore this option for TCP
1547					 * sockets.
1548					 * (RFC3542 leaves this case
1549					 * unspecified.)
1550					 */
1551					if (uproto != IPPROTO_TCP)
1552						OPTSET(IN6P_MTU);
1553					break;
1554
1555				case IPV6_V6ONLY:
1556					/*
1557					 * make setsockopt(IPV6_V6ONLY)
1558					 * available only prior to bind(2).
1559					 * see ipng mailing list, Jun 22 2001.
1560					 */
1561					if (in6p->inp_lport ||
1562					    !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1563						error = EINVAL;
1564						break;
1565					}
1566					OPTSET(IN6P_IPV6_V6ONLY);
1567					if (optval)
1568						in6p->inp_vflag &= ~INP_IPV4;
1569					else
1570						in6p->inp_vflag |= INP_IPV4;
1571					break;
1572				case IPV6_RECVTCLASS:
1573					/* cannot mix with RFC2292 XXX */
1574					if (OPTBIT(IN6P_RFC2292)) {
1575						error = EINVAL;
1576						break;
1577					}
1578					OPTSET(IN6P_TCLASS);
1579					break;
1580				case IPV6_AUTOFLOWLABEL:
1581					OPTSET(IN6P_AUTOFLOWLABEL);
1582					break;
1583
1584				}
1585				break;
1586
1587			case IPV6_TCLASS:
1588			case IPV6_DONTFRAG:
1589			case IPV6_USE_MIN_MTU:
1590			case IPV6_PREFER_TEMPADDR:
1591				if (optlen != sizeof(optval)) {
1592					error = EINVAL;
1593					break;
1594				}
1595				error = sooptcopyin(sopt, &optval,
1596					sizeof optval, sizeof optval);
1597				if (error)
1598					break;
1599				{
1600					struct ip6_pktopts **optp;
1601					optp = &in6p->in6p_outputopts;
1602					error = ip6_pcbopt(optname,
1603					    (u_char *)&optval, sizeof(optval),
1604					    optp, (td != NULL) ? td->td_ucred :
1605					    NULL, uproto);
1606					break;
1607				}
1608
1609			case IPV6_2292PKTINFO:
1610			case IPV6_2292HOPLIMIT:
1611			case IPV6_2292HOPOPTS:
1612			case IPV6_2292DSTOPTS:
1613			case IPV6_2292RTHDR:
1614				/* RFC 2292 */
1615				if (optlen != sizeof(int)) {
1616					error = EINVAL;
1617					break;
1618				}
1619				error = sooptcopyin(sopt, &optval,
1620					sizeof optval, sizeof optval);
1621				if (error)
1622					break;
1623				switch (optname) {
1624				case IPV6_2292PKTINFO:
1625					OPTSET2292(IN6P_PKTINFO);
1626					break;
1627				case IPV6_2292HOPLIMIT:
1628					OPTSET2292(IN6P_HOPLIMIT);
1629					break;
1630				case IPV6_2292HOPOPTS:
1631					/*
1632					 * Check super-user privilege.
1633					 * See comments for IPV6_RECVHOPOPTS.
1634					 */
1635					if (td != NULL) {
1636						error = priv_check(td,
1637						    PRIV_NETINET_SETHDROPTS);
1638						if (error)
1639							return (error);
1640					}
1641					OPTSET2292(IN6P_HOPOPTS);
1642					break;
1643				case IPV6_2292DSTOPTS:
1644					if (td != NULL) {
1645						error = priv_check(td,
1646						    PRIV_NETINET_SETHDROPTS);
1647						if (error)
1648							return (error);
1649					}
1650					OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1651					break;
1652				case IPV6_2292RTHDR:
1653					OPTSET2292(IN6P_RTHDR);
1654					break;
1655				}
1656				break;
1657			case IPV6_PKTINFO:
1658			case IPV6_HOPOPTS:
1659			case IPV6_RTHDR:
1660			case IPV6_DSTOPTS:
1661			case IPV6_RTHDRDSTOPTS:
1662			case IPV6_NEXTHOP:
1663			{
1664				/* new advanced API (RFC3542) */
1665				u_char *optbuf;
1666				u_char optbuf_storage[MCLBYTES];
1667				int optlen;
1668				struct ip6_pktopts **optp;
1669
1670				/* cannot mix with RFC2292 */
1671				if (OPTBIT(IN6P_RFC2292)) {
1672					error = EINVAL;
1673					break;
1674				}
1675
1676				/*
1677				 * We only ensure valsize is not too large
1678				 * here.  Further validation will be done
1679				 * later.
1680				 */
1681				error = sooptcopyin(sopt, optbuf_storage,
1682				    sizeof(optbuf_storage), 0);
1683				if (error)
1684					break;
1685				optlen = sopt->sopt_valsize;
1686				optbuf = optbuf_storage;
1687				optp = &in6p->in6p_outputopts;
1688				error = ip6_pcbopt(optname, optbuf, optlen,
1689				    optp, (td != NULL) ? td->td_ucred : NULL,
1690				    uproto);
1691				break;
1692			}
1693#undef OPTSET
1694
1695			case IPV6_MULTICAST_IF:
1696			case IPV6_MULTICAST_HOPS:
1697			case IPV6_MULTICAST_LOOP:
1698			case IPV6_JOIN_GROUP:
1699			case IPV6_LEAVE_GROUP:
1700			case IPV6_MSFILTER:
1701			case MCAST_BLOCK_SOURCE:
1702			case MCAST_UNBLOCK_SOURCE:
1703			case MCAST_JOIN_GROUP:
1704			case MCAST_LEAVE_GROUP:
1705			case MCAST_JOIN_SOURCE_GROUP:
1706			case MCAST_LEAVE_SOURCE_GROUP:
1707				error = ip6_setmoptions(in6p, sopt);
1708				break;
1709
1710			case IPV6_PORTRANGE:
1711				error = sooptcopyin(sopt, &optval,
1712				    sizeof optval, sizeof optval);
1713				if (error)
1714					break;
1715
1716				switch (optval) {
1717				case IPV6_PORTRANGE_DEFAULT:
1718					in6p->inp_flags &= ~(INP_LOWPORT);
1719					in6p->inp_flags &= ~(INP_HIGHPORT);
1720					break;
1721
1722				case IPV6_PORTRANGE_HIGH:
1723					in6p->inp_flags &= ~(INP_LOWPORT);
1724					in6p->inp_flags |= INP_HIGHPORT;
1725					break;
1726
1727				case IPV6_PORTRANGE_LOW:
1728					in6p->inp_flags &= ~(INP_HIGHPORT);
1729					in6p->inp_flags |= INP_LOWPORT;
1730					break;
1731
1732				default:
1733					error = EINVAL;
1734					break;
1735				}
1736				break;
1737
1738#ifdef IPSEC
1739			case IPV6_IPSEC_POLICY:
1740			{
1741				caddr_t req;
1742				struct mbuf *m;
1743
1744				if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1745					break;
1746				if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1747					break;
1748				req = mtod(m, caddr_t);
1749				error = ipsec_set_policy(in6p, optname, req,
1750				    m->m_len, (sopt->sopt_td != NULL) ?
1751				    sopt->sopt_td->td_ucred : NULL);
1752				m_freem(m);
1753				break;
1754			}
1755#endif /* IPSEC */
1756
1757			default:
1758				error = ENOPROTOOPT;
1759				break;
1760			}
1761			break;
1762
1763		case SOPT_GET:
1764			switch (optname) {
1765
1766			case IPV6_2292PKTOPTIONS:
1767#ifdef IPV6_PKTOPTIONS
1768			case IPV6_PKTOPTIONS:
1769#endif
1770				/*
1771				 * RFC3542 (effectively) deprecated the
1772				 * semantics of the 2292-style pktoptions.
1773				 * Since it was not reliable in nature (i.e.,
1774				 * applications had to expect the lack of some
1775				 * information after all), it would make sense
1776				 * to simplify this part by always returning
1777				 * empty data.
1778				 */
1779				sopt->sopt_valsize = 0;
1780				break;
1781
1782			case IPV6_RECVHOPOPTS:
1783			case IPV6_RECVDSTOPTS:
1784			case IPV6_RECVRTHDRDSTOPTS:
1785			case IPV6_UNICAST_HOPS:
1786			case IPV6_RECVPKTINFO:
1787			case IPV6_RECVHOPLIMIT:
1788			case IPV6_RECVRTHDR:
1789			case IPV6_RECVPATHMTU:
1790
1791			case IPV6_FAITH:
1792			case IPV6_V6ONLY:
1793			case IPV6_PORTRANGE:
1794			case IPV6_RECVTCLASS:
1795			case IPV6_AUTOFLOWLABEL:
1796				switch (optname) {
1797
1798				case IPV6_RECVHOPOPTS:
1799					optval = OPTBIT(IN6P_HOPOPTS);
1800					break;
1801
1802				case IPV6_RECVDSTOPTS:
1803					optval = OPTBIT(IN6P_DSTOPTS);
1804					break;
1805
1806				case IPV6_RECVRTHDRDSTOPTS:
1807					optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1808					break;
1809
1810				case IPV6_UNICAST_HOPS:
1811					optval = in6p->in6p_hops;
1812					break;
1813
1814				case IPV6_RECVPKTINFO:
1815					optval = OPTBIT(IN6P_PKTINFO);
1816					break;
1817
1818				case IPV6_RECVHOPLIMIT:
1819					optval = OPTBIT(IN6P_HOPLIMIT);
1820					break;
1821
1822				case IPV6_RECVRTHDR:
1823					optval = OPTBIT(IN6P_RTHDR);
1824					break;
1825
1826				case IPV6_RECVPATHMTU:
1827					optval = OPTBIT(IN6P_MTU);
1828					break;
1829
1830				case IPV6_FAITH:
1831					optval = OPTBIT(INP_FAITH);
1832					break;
1833
1834				case IPV6_V6ONLY:
1835					optval = OPTBIT(IN6P_IPV6_V6ONLY);
1836					break;
1837
1838				case IPV6_PORTRANGE:
1839				    {
1840					int flags;
1841					flags = in6p->inp_flags;
1842					if (flags & INP_HIGHPORT)
1843						optval = IPV6_PORTRANGE_HIGH;
1844					else if (flags & INP_LOWPORT)
1845						optval = IPV6_PORTRANGE_LOW;
1846					else
1847						optval = 0;
1848					break;
1849				    }
1850				case IPV6_RECVTCLASS:
1851					optval = OPTBIT(IN6P_TCLASS);
1852					break;
1853
1854				case IPV6_AUTOFLOWLABEL:
1855					optval = OPTBIT(IN6P_AUTOFLOWLABEL);
1856					break;
1857				}
1858				if (error)
1859					break;
1860				error = sooptcopyout(sopt, &optval,
1861					sizeof optval);
1862				break;
1863
1864			case IPV6_PATHMTU:
1865			{
1866				u_long pmtu = 0;
1867				struct ip6_mtuinfo mtuinfo;
1868				struct route_in6 sro;
1869
1870				bzero(&sro, sizeof(sro));
1871
1872				if (!(so->so_state & SS_ISCONNECTED))
1873					return (ENOTCONN);
1874				/*
1875				 * XXX: we dot not consider the case of source
1876				 * routing, or optional information to specify
1877				 * the outgoing interface.
1878				 */
1879				error = ip6_getpmtu(&sro, NULL, NULL,
1880				    &in6p->in6p_faddr, &pmtu, NULL);
1881				if (sro.ro_rt)
1882					RTFREE(sro.ro_rt);
1883				if (error)
1884					break;
1885				if (pmtu > IPV6_MAXPACKET)
1886					pmtu = IPV6_MAXPACKET;
1887
1888				bzero(&mtuinfo, sizeof(mtuinfo));
1889				mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
1890				optdata = (void *)&mtuinfo;
1891				optdatalen = sizeof(mtuinfo);
1892				error = sooptcopyout(sopt, optdata,
1893				    optdatalen);
1894				break;
1895			}
1896
1897			case IPV6_2292PKTINFO:
1898			case IPV6_2292HOPLIMIT:
1899			case IPV6_2292HOPOPTS:
1900			case IPV6_2292RTHDR:
1901			case IPV6_2292DSTOPTS:
1902				switch (optname) {
1903				case IPV6_2292PKTINFO:
1904					optval = OPTBIT(IN6P_PKTINFO);
1905					break;
1906				case IPV6_2292HOPLIMIT:
1907					optval = OPTBIT(IN6P_HOPLIMIT);
1908					break;
1909				case IPV6_2292HOPOPTS:
1910					optval = OPTBIT(IN6P_HOPOPTS);
1911					break;
1912				case IPV6_2292RTHDR:
1913					optval = OPTBIT(IN6P_RTHDR);
1914					break;
1915				case IPV6_2292DSTOPTS:
1916					optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
1917					break;
1918				}
1919				error = sooptcopyout(sopt, &optval,
1920				    sizeof optval);
1921				break;
1922			case IPV6_PKTINFO:
1923			case IPV6_HOPOPTS:
1924			case IPV6_RTHDR:
1925			case IPV6_DSTOPTS:
1926			case IPV6_RTHDRDSTOPTS:
1927			case IPV6_NEXTHOP:
1928			case IPV6_TCLASS:
1929			case IPV6_DONTFRAG:
1930			case IPV6_USE_MIN_MTU:
1931			case IPV6_PREFER_TEMPADDR:
1932				error = ip6_getpcbopt(in6p->in6p_outputopts,
1933				    optname, sopt);
1934				break;
1935
1936			case IPV6_MULTICAST_IF:
1937			case IPV6_MULTICAST_HOPS:
1938			case IPV6_MULTICAST_LOOP:
1939			case IPV6_MSFILTER:
1940				error = ip6_getmoptions(in6p, sopt);
1941				break;
1942
1943#ifdef IPSEC
1944			case IPV6_IPSEC_POLICY:
1945			  {
1946				caddr_t req = NULL;
1947				size_t len = 0;
1948				struct mbuf *m = NULL;
1949				struct mbuf **mp = &m;
1950				size_t ovalsize = sopt->sopt_valsize;
1951				caddr_t oval = (caddr_t)sopt->sopt_val;
1952
1953				error = soopt_getm(sopt, &m); /* XXX */
1954				if (error != 0)
1955					break;
1956				error = soopt_mcopyin(sopt, m); /* XXX */
1957				if (error != 0)
1958					break;
1959				sopt->sopt_valsize = ovalsize;
1960				sopt->sopt_val = oval;
1961				if (m) {
1962					req = mtod(m, caddr_t);
1963					len = m->m_len;
1964				}
1965				error = ipsec_get_policy(in6p, req, len, mp);
1966				if (error == 0)
1967					error = soopt_mcopyout(sopt, m); /* XXX */
1968				if (error == 0 && m)
1969					m_freem(m);
1970				break;
1971			  }
1972#endif /* IPSEC */
1973
1974			default:
1975				error = ENOPROTOOPT;
1976				break;
1977			}
1978			break;
1979		}
1980	} else {		/* level != IPPROTO_IPV6 */
1981		error = EINVAL;
1982	}
1983	return (error);
1984}
1985
1986int
1987ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt)
1988{
1989	int error = 0, optval, optlen;
1990	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
1991	struct inpcb *in6p = sotoinpcb(so);
1992	int level, op, optname;
1993
1994	level = sopt->sopt_level;
1995	op = sopt->sopt_dir;
1996	optname = sopt->sopt_name;
1997	optlen = sopt->sopt_valsize;
1998
1999	if (level != IPPROTO_IPV6) {
2000		return (EINVAL);
2001	}
2002
2003	switch (optname) {
2004	case IPV6_CHECKSUM:
2005		/*
2006		 * For ICMPv6 sockets, no modification allowed for checksum
2007		 * offset, permit "no change" values to help existing apps.
2008		 *
2009		 * RFC3542 says: "An attempt to set IPV6_CHECKSUM
2010		 * for an ICMPv6 socket will fail."
2011		 * The current behavior does not meet RFC3542.
2012		 */
2013		switch (op) {
2014		case SOPT_SET:
2015			if (optlen != sizeof(int)) {
2016				error = EINVAL;
2017				break;
2018			}
2019			error = sooptcopyin(sopt, &optval, sizeof(optval),
2020					    sizeof(optval));
2021			if (error)
2022				break;
2023			if ((optval % 2) != 0) {
2024				/* the API assumes even offset values */
2025				error = EINVAL;
2026			} else if (so->so_proto->pr_protocol ==
2027			    IPPROTO_ICMPV6) {
2028				if (optval != icmp6off)
2029					error = EINVAL;
2030			} else
2031				in6p->in6p_cksum = optval;
2032			break;
2033
2034		case SOPT_GET:
2035			if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
2036				optval = icmp6off;
2037			else
2038				optval = in6p->in6p_cksum;
2039
2040			error = sooptcopyout(sopt, &optval, sizeof(optval));
2041			break;
2042
2043		default:
2044			error = EINVAL;
2045			break;
2046		}
2047		break;
2048
2049	default:
2050		error = ENOPROTOOPT;
2051		break;
2052	}
2053
2054	return (error);
2055}
2056
2057/*
2058 * Set up IP6 options in pcb for insertion in output packets or
2059 * specifying behavior of outgoing packets.
2060 */
2061static int
2062ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m,
2063    struct socket *so, struct sockopt *sopt)
2064{
2065	struct ip6_pktopts *opt = *pktopt;
2066	int error = 0;
2067	struct thread *td = sopt->sopt_td;
2068
2069	/* turn off any old options. */
2070	if (opt) {
2071#ifdef DIAGNOSTIC
2072		if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
2073		    opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
2074		    opt->ip6po_rhinfo.ip6po_rhi_rthdr)
2075			printf("ip6_pcbopts: all specified options are cleared.\n");
2076#endif
2077		ip6_clearpktopts(opt, -1);
2078	} else
2079		opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
2080	*pktopt = NULL;
2081
2082	if (!m || m->m_len == 0) {
2083		/*
2084		 * Only turning off any previous options, regardless of
2085		 * whether the opt is just created or given.
2086		 */
2087		free(opt, M_IP6OPT);
2088		return (0);
2089	}
2090
2091	/*  set options specified by user. */
2092	if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ?
2093	    td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) {
2094		ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2095		free(opt, M_IP6OPT);
2096		return (error);
2097	}
2098	*pktopt = opt;
2099	return (0);
2100}
2101
2102/*
2103 * initialize ip6_pktopts.  beware that there are non-zero default values in
2104 * the struct.
2105 */
2106void
2107ip6_initpktopts(struct ip6_pktopts *opt)
2108{
2109
2110	bzero(opt, sizeof(*opt));
2111	opt->ip6po_hlim = -1;	/* -1 means default hop limit */
2112	opt->ip6po_tclass = -1;	/* -1 means default traffic class */
2113	opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2114	opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
2115}
2116
2117static int
2118ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2119    struct ucred *cred, int uproto)
2120{
2121	struct ip6_pktopts *opt;
2122
2123	if (*pktopt == NULL) {
2124		*pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2125		    M_WAITOK);
2126		ip6_initpktopts(*pktopt);
2127	}
2128	opt = *pktopt;
2129
2130	return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
2131}
2132
2133static int
2134ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct sockopt *sopt)
2135{
2136	void *optdata = NULL;
2137	int optdatalen = 0;
2138	struct ip6_ext *ip6e;
2139	int error = 0;
2140	struct in6_pktinfo null_pktinfo;
2141	int deftclass = 0, on;
2142	int defminmtu = IP6PO_MINMTU_MCASTONLY;
2143	int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
2144
2145	switch (optname) {
2146	case IPV6_PKTINFO:
2147		if (pktopt && pktopt->ip6po_pktinfo)
2148			optdata = (void *)pktopt->ip6po_pktinfo;
2149		else {
2150			/* XXX: we don't have to do this every time... */
2151			bzero(&null_pktinfo, sizeof(null_pktinfo));
2152			optdata = (void *)&null_pktinfo;
2153		}
2154		optdatalen = sizeof(struct in6_pktinfo);
2155		break;
2156	case IPV6_TCLASS:
2157		if (pktopt && pktopt->ip6po_tclass >= 0)
2158			optdata = (void *)&pktopt->ip6po_tclass;
2159		else
2160			optdata = (void *)&deftclass;
2161		optdatalen = sizeof(int);
2162		break;
2163	case IPV6_HOPOPTS:
2164		if (pktopt && pktopt->ip6po_hbh) {
2165			optdata = (void *)pktopt->ip6po_hbh;
2166			ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
2167			optdatalen = (ip6e->ip6e_len + 1) << 3;
2168		}
2169		break;
2170	case IPV6_RTHDR:
2171		if (pktopt && pktopt->ip6po_rthdr) {
2172			optdata = (void *)pktopt->ip6po_rthdr;
2173			ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
2174			optdatalen = (ip6e->ip6e_len + 1) << 3;
2175		}
2176		break;
2177	case IPV6_RTHDRDSTOPTS:
2178		if (pktopt && pktopt->ip6po_dest1) {
2179			optdata = (void *)pktopt->ip6po_dest1;
2180			ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
2181			optdatalen = (ip6e->ip6e_len + 1) << 3;
2182		}
2183		break;
2184	case IPV6_DSTOPTS:
2185		if (pktopt && pktopt->ip6po_dest2) {
2186			optdata = (void *)pktopt->ip6po_dest2;
2187			ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
2188			optdatalen = (ip6e->ip6e_len + 1) << 3;
2189		}
2190		break;
2191	case IPV6_NEXTHOP:
2192		if (pktopt && pktopt->ip6po_nexthop) {
2193			optdata = (void *)pktopt->ip6po_nexthop;
2194			optdatalen = pktopt->ip6po_nexthop->sa_len;
2195		}
2196		break;
2197	case IPV6_USE_MIN_MTU:
2198		if (pktopt)
2199			optdata = (void *)&pktopt->ip6po_minmtu;
2200		else
2201			optdata = (void *)&defminmtu;
2202		optdatalen = sizeof(int);
2203		break;
2204	case IPV6_DONTFRAG:
2205		if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2206			on = 1;
2207		else
2208			on = 0;
2209		optdata = (void *)&on;
2210		optdatalen = sizeof(on);
2211		break;
2212	case IPV6_PREFER_TEMPADDR:
2213		if (pktopt)
2214			optdata = (void *)&pktopt->ip6po_prefer_tempaddr;
2215		else
2216			optdata = (void *)&defpreftemp;
2217		optdatalen = sizeof(int);
2218		break;
2219	default:		/* should not happen */
2220#ifdef DIAGNOSTIC
2221		panic("ip6_getpcbopt: unexpected option\n");
2222#endif
2223		return (ENOPROTOOPT);
2224	}
2225
2226	error = sooptcopyout(sopt, optdata, optdatalen);
2227
2228	return (error);
2229}
2230
2231void
2232ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2233{
2234	if (pktopt == NULL)
2235		return;
2236
2237	if (optname == -1 || optname == IPV6_PKTINFO) {
2238		if (pktopt->ip6po_pktinfo)
2239			free(pktopt->ip6po_pktinfo, M_IP6OPT);
2240		pktopt->ip6po_pktinfo = NULL;
2241	}
2242	if (optname == -1 || optname == IPV6_HOPLIMIT)
2243		pktopt->ip6po_hlim = -1;
2244	if (optname == -1 || optname == IPV6_TCLASS)
2245		pktopt->ip6po_tclass = -1;
2246	if (optname == -1 || optname == IPV6_NEXTHOP) {
2247		if (pktopt->ip6po_nextroute.ro_rt) {
2248			RTFREE(pktopt->ip6po_nextroute.ro_rt);
2249			pktopt->ip6po_nextroute.ro_rt = NULL;
2250		}
2251		if (pktopt->ip6po_nexthop)
2252			free(pktopt->ip6po_nexthop, M_IP6OPT);
2253		pktopt->ip6po_nexthop = NULL;
2254	}
2255	if (optname == -1 || optname == IPV6_HOPOPTS) {
2256		if (pktopt->ip6po_hbh)
2257			free(pktopt->ip6po_hbh, M_IP6OPT);
2258		pktopt->ip6po_hbh = NULL;
2259	}
2260	if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2261		if (pktopt->ip6po_dest1)
2262			free(pktopt->ip6po_dest1, M_IP6OPT);
2263		pktopt->ip6po_dest1 = NULL;
2264	}
2265	if (optname == -1 || optname == IPV6_RTHDR) {
2266		if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2267			free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2268		pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2269		if (pktopt->ip6po_route.ro_rt) {
2270			RTFREE(pktopt->ip6po_route.ro_rt);
2271			pktopt->ip6po_route.ro_rt = NULL;
2272		}
2273	}
2274	if (optname == -1 || optname == IPV6_DSTOPTS) {
2275		if (pktopt->ip6po_dest2)
2276			free(pktopt->ip6po_dest2, M_IP6OPT);
2277		pktopt->ip6po_dest2 = NULL;
2278	}
2279}
2280
2281#define PKTOPT_EXTHDRCPY(type) \
2282do {\
2283	if (src->type) {\
2284		int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2285		dst->type = malloc(hlen, M_IP6OPT, canwait);\
2286		if (dst->type == NULL && canwait == M_NOWAIT)\
2287			goto bad;\
2288		bcopy(src->type, dst->type, hlen);\
2289	}\
2290} while (/*CONSTCOND*/ 0)
2291
2292static int
2293copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2294{
2295	if (dst == NULL || src == NULL)  {
2296		printf("ip6_clearpktopts: invalid argument\n");
2297		return (EINVAL);
2298	}
2299
2300	dst->ip6po_hlim = src->ip6po_hlim;
2301	dst->ip6po_tclass = src->ip6po_tclass;
2302	dst->ip6po_flags = src->ip6po_flags;
2303	if (src->ip6po_pktinfo) {
2304		dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2305		    M_IP6OPT, canwait);
2306		if (dst->ip6po_pktinfo == NULL)
2307			goto bad;
2308		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2309	}
2310	if (src->ip6po_nexthop) {
2311		dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2312		    M_IP6OPT, canwait);
2313		if (dst->ip6po_nexthop == NULL)
2314			goto bad;
2315		bcopy(src->ip6po_nexthop, dst->ip6po_nexthop,
2316		    src->ip6po_nexthop->sa_len);
2317	}
2318	PKTOPT_EXTHDRCPY(ip6po_hbh);
2319	PKTOPT_EXTHDRCPY(ip6po_dest1);
2320	PKTOPT_EXTHDRCPY(ip6po_dest2);
2321	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2322	return (0);
2323
2324  bad:
2325	ip6_clearpktopts(dst, -1);
2326	return (ENOBUFS);
2327}
2328#undef PKTOPT_EXTHDRCPY
2329
2330struct ip6_pktopts *
2331ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2332{
2333	int error;
2334	struct ip6_pktopts *dst;
2335
2336	dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2337	if (dst == NULL)
2338		return (NULL);
2339	ip6_initpktopts(dst);
2340
2341	if ((error = copypktopts(dst, src, canwait)) != 0) {
2342		free(dst, M_IP6OPT);
2343		return (NULL);
2344	}
2345
2346	return (dst);
2347}
2348
2349void
2350ip6_freepcbopts(struct ip6_pktopts *pktopt)
2351{
2352	if (pktopt == NULL)
2353		return;
2354
2355	ip6_clearpktopts(pktopt, -1);
2356
2357	free(pktopt, M_IP6OPT);
2358}
2359
2360/*
2361 * Set IPv6 outgoing packet options based on advanced API.
2362 */
2363int
2364ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2365    struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto)
2366{
2367	struct cmsghdr *cm = 0;
2368
2369	if (control == NULL || opt == NULL)
2370		return (EINVAL);
2371
2372	ip6_initpktopts(opt);
2373	if (stickyopt) {
2374		int error;
2375
2376		/*
2377		 * If stickyopt is provided, make a local copy of the options
2378		 * for this particular packet, then override them by ancillary
2379		 * objects.
2380		 * XXX: copypktopts() does not copy the cached route to a next
2381		 * hop (if any).  This is not very good in terms of efficiency,
2382		 * but we can allow this since this option should be rarely
2383		 * used.
2384		 */
2385		if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2386			return (error);
2387	}
2388
2389	/*
2390	 * XXX: Currently, we assume all the optional information is stored
2391	 * in a single mbuf.
2392	 */
2393	if (control->m_next)
2394		return (EINVAL);
2395
2396	for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2397	    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2398		int error;
2399
2400		if (control->m_len < CMSG_LEN(0))
2401			return (EINVAL);
2402
2403		cm = mtod(control, struct cmsghdr *);
2404		if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2405			return (EINVAL);
2406		if (cm->cmsg_level != IPPROTO_IPV6)
2407			continue;
2408
2409		error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2410		    cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
2411		if (error)
2412			return (error);
2413	}
2414
2415	return (0);
2416}
2417
2418/*
2419 * Set a particular packet option, as a sticky option or an ancillary data
2420 * item.  "len" can be 0 only when it's a sticky option.
2421 * We have 4 cases of combination of "sticky" and "cmsg":
2422 * "sticky=0, cmsg=0": impossible
2423 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2424 * "sticky=1, cmsg=0": RFC3542 socket option
2425 * "sticky=1, cmsg=1": RFC2292 socket option
2426 */
2427static int
2428ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2429    struct ucred *cred, int sticky, int cmsg, int uproto)
2430{
2431	INIT_VNET_NET(curvnet);
2432	INIT_VNET_INET6(curvnet);
2433	int minmtupolicy, preftemp;
2434	int error;
2435
2436	if (!sticky && !cmsg) {
2437#ifdef DIAGNOSTIC
2438		printf("ip6_setpktopt: impossible case\n");
2439#endif
2440		return (EINVAL);
2441	}
2442
2443	/*
2444	 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2445	 * not be specified in the context of RFC3542.  Conversely,
2446	 * RFC3542 types should not be specified in the context of RFC2292.
2447	 */
2448	if (!cmsg) {
2449		switch (optname) {
2450		case IPV6_2292PKTINFO:
2451		case IPV6_2292HOPLIMIT:
2452		case IPV6_2292NEXTHOP:
2453		case IPV6_2292HOPOPTS:
2454		case IPV6_2292DSTOPTS:
2455		case IPV6_2292RTHDR:
2456		case IPV6_2292PKTOPTIONS:
2457			return (ENOPROTOOPT);
2458		}
2459	}
2460	if (sticky && cmsg) {
2461		switch (optname) {
2462		case IPV6_PKTINFO:
2463		case IPV6_HOPLIMIT:
2464		case IPV6_NEXTHOP:
2465		case IPV6_HOPOPTS:
2466		case IPV6_DSTOPTS:
2467		case IPV6_RTHDRDSTOPTS:
2468		case IPV6_RTHDR:
2469		case IPV6_USE_MIN_MTU:
2470		case IPV6_DONTFRAG:
2471		case IPV6_TCLASS:
2472		case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */
2473			return (ENOPROTOOPT);
2474		}
2475	}
2476
2477	switch (optname) {
2478	case IPV6_2292PKTINFO:
2479	case IPV6_PKTINFO:
2480	{
2481		struct ifnet *ifp = NULL;
2482		struct in6_pktinfo *pktinfo;
2483
2484		if (len != sizeof(struct in6_pktinfo))
2485			return (EINVAL);
2486
2487		pktinfo = (struct in6_pktinfo *)buf;
2488
2489		/*
2490		 * An application can clear any sticky IPV6_PKTINFO option by
2491		 * doing a "regular" setsockopt with ipi6_addr being
2492		 * in6addr_any and ipi6_ifindex being zero.
2493		 * [RFC 3542, Section 6]
2494		 */
2495		if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2496		    pktinfo->ipi6_ifindex == 0 &&
2497		    IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2498			ip6_clearpktopts(opt, optname);
2499			break;
2500		}
2501
2502		if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2503		    sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2504			return (EINVAL);
2505		}
2506
2507		/* validate the interface index if specified. */
2508		if (pktinfo->ipi6_ifindex > V_if_index ||
2509		    pktinfo->ipi6_ifindex < 0) {
2510			 return (ENXIO);
2511		}
2512		if (pktinfo->ipi6_ifindex) {
2513			ifp = ifnet_byindex(pktinfo->ipi6_ifindex);
2514			if (ifp == NULL)
2515				return (ENXIO);
2516		}
2517
2518		/*
2519		 * We store the address anyway, and let in6_selectsrc()
2520		 * validate the specified address.  This is because ipi6_addr
2521		 * may not have enough information about its scope zone, and
2522		 * we may need additional information (such as outgoing
2523		 * interface or the scope zone of a destination address) to
2524		 * disambiguate the scope.
2525		 * XXX: the delay of the validation may confuse the
2526		 * application when it is used as a sticky option.
2527		 */
2528		if (opt->ip6po_pktinfo == NULL) {
2529			opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2530			    M_IP6OPT, M_NOWAIT);
2531			if (opt->ip6po_pktinfo == NULL)
2532				return (ENOBUFS);
2533		}
2534		bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo));
2535		break;
2536	}
2537
2538	case IPV6_2292HOPLIMIT:
2539	case IPV6_HOPLIMIT:
2540	{
2541		int *hlimp;
2542
2543		/*
2544		 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2545		 * to simplify the ordering among hoplimit options.
2546		 */
2547		if (optname == IPV6_HOPLIMIT && sticky)
2548			return (ENOPROTOOPT);
2549
2550		if (len != sizeof(int))
2551			return (EINVAL);
2552		hlimp = (int *)buf;
2553		if (*hlimp < -1 || *hlimp > 255)
2554			return (EINVAL);
2555
2556		opt->ip6po_hlim = *hlimp;
2557		break;
2558	}
2559
2560	case IPV6_TCLASS:
2561	{
2562		int tclass;
2563
2564		if (len != sizeof(int))
2565			return (EINVAL);
2566		tclass = *(int *)buf;
2567		if (tclass < -1 || tclass > 255)
2568			return (EINVAL);
2569
2570		opt->ip6po_tclass = tclass;
2571		break;
2572	}
2573
2574	case IPV6_2292NEXTHOP:
2575	case IPV6_NEXTHOP:
2576		if (cred != NULL) {
2577			error = priv_check_cred(cred,
2578			    PRIV_NETINET_SETHDROPTS, 0);
2579			if (error)
2580				return (error);
2581		}
2582
2583		if (len == 0) {	/* just remove the option */
2584			ip6_clearpktopts(opt, IPV6_NEXTHOP);
2585			break;
2586		}
2587
2588		/* check if cmsg_len is large enough for sa_len */
2589		if (len < sizeof(struct sockaddr) || len < *buf)
2590			return (EINVAL);
2591
2592		switch (((struct sockaddr *)buf)->sa_family) {
2593		case AF_INET6:
2594		{
2595			struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
2596			int error;
2597
2598			if (sa6->sin6_len != sizeof(struct sockaddr_in6))
2599				return (EINVAL);
2600
2601			if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
2602			    IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
2603				return (EINVAL);
2604			}
2605			if ((error = sa6_embedscope(sa6, V_ip6_use_defzone))
2606			    != 0) {
2607				return (error);
2608			}
2609			break;
2610		}
2611		case AF_LINK:	/* should eventually be supported */
2612		default:
2613			return (EAFNOSUPPORT);
2614		}
2615
2616		/* turn off the previous option, then set the new option. */
2617		ip6_clearpktopts(opt, IPV6_NEXTHOP);
2618		opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
2619		if (opt->ip6po_nexthop == NULL)
2620			return (ENOBUFS);
2621		bcopy(buf, opt->ip6po_nexthop, *buf);
2622		break;
2623
2624	case IPV6_2292HOPOPTS:
2625	case IPV6_HOPOPTS:
2626	{
2627		struct ip6_hbh *hbh;
2628		int hbhlen;
2629
2630		/*
2631		 * XXX: We don't allow a non-privileged user to set ANY HbH
2632		 * options, since per-option restriction has too much
2633		 * overhead.
2634		 */
2635		if (cred != NULL) {
2636			error = priv_check_cred(cred,
2637			    PRIV_NETINET_SETHDROPTS, 0);
2638			if (error)
2639				return (error);
2640		}
2641
2642		if (len == 0) {
2643			ip6_clearpktopts(opt, IPV6_HOPOPTS);
2644			break;	/* just remove the option */
2645		}
2646
2647		/* message length validation */
2648		if (len < sizeof(struct ip6_hbh))
2649			return (EINVAL);
2650		hbh = (struct ip6_hbh *)buf;
2651		hbhlen = (hbh->ip6h_len + 1) << 3;
2652		if (len != hbhlen)
2653			return (EINVAL);
2654
2655		/* turn off the previous option, then set the new option. */
2656		ip6_clearpktopts(opt, IPV6_HOPOPTS);
2657		opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
2658		if (opt->ip6po_hbh == NULL)
2659			return (ENOBUFS);
2660		bcopy(hbh, opt->ip6po_hbh, hbhlen);
2661
2662		break;
2663	}
2664
2665	case IPV6_2292DSTOPTS:
2666	case IPV6_DSTOPTS:
2667	case IPV6_RTHDRDSTOPTS:
2668	{
2669		struct ip6_dest *dest, **newdest = NULL;
2670		int destlen;
2671
2672		if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */
2673			error = priv_check_cred(cred,
2674			    PRIV_NETINET_SETHDROPTS, 0);
2675			if (error)
2676				return (error);
2677		}
2678
2679		if (len == 0) {
2680			ip6_clearpktopts(opt, optname);
2681			break;	/* just remove the option */
2682		}
2683
2684		/* message length validation */
2685		if (len < sizeof(struct ip6_dest))
2686			return (EINVAL);
2687		dest = (struct ip6_dest *)buf;
2688		destlen = (dest->ip6d_len + 1) << 3;
2689		if (len != destlen)
2690			return (EINVAL);
2691
2692		/*
2693		 * Determine the position that the destination options header
2694		 * should be inserted; before or after the routing header.
2695		 */
2696		switch (optname) {
2697		case IPV6_2292DSTOPTS:
2698			/*
2699			 * The old advacned API is ambiguous on this point.
2700			 * Our approach is to determine the position based
2701			 * according to the existence of a routing header.
2702			 * Note, however, that this depends on the order of the
2703			 * extension headers in the ancillary data; the 1st
2704			 * part of the destination options header must appear
2705			 * before the routing header in the ancillary data,
2706			 * too.
2707			 * RFC3542 solved the ambiguity by introducing
2708			 * separate ancillary data or option types.
2709			 */
2710			if (opt->ip6po_rthdr == NULL)
2711				newdest = &opt->ip6po_dest1;
2712			else
2713				newdest = &opt->ip6po_dest2;
2714			break;
2715		case IPV6_RTHDRDSTOPTS:
2716			newdest = &opt->ip6po_dest1;
2717			break;
2718		case IPV6_DSTOPTS:
2719			newdest = &opt->ip6po_dest2;
2720			break;
2721		}
2722
2723		/* turn off the previous option, then set the new option. */
2724		ip6_clearpktopts(opt, optname);
2725		*newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
2726		if (*newdest == NULL)
2727			return (ENOBUFS);
2728		bcopy(dest, *newdest, destlen);
2729
2730		break;
2731	}
2732
2733	case IPV6_2292RTHDR:
2734	case IPV6_RTHDR:
2735	{
2736		struct ip6_rthdr *rth;
2737		int rthlen;
2738
2739		if (len == 0) {
2740			ip6_clearpktopts(opt, IPV6_RTHDR);
2741			break;	/* just remove the option */
2742		}
2743
2744		/* message length validation */
2745		if (len < sizeof(struct ip6_rthdr))
2746			return (EINVAL);
2747		rth = (struct ip6_rthdr *)buf;
2748		rthlen = (rth->ip6r_len + 1) << 3;
2749		if (len != rthlen)
2750			return (EINVAL);
2751
2752		switch (rth->ip6r_type) {
2753		case IPV6_RTHDR_TYPE_0:
2754			if (rth->ip6r_len == 0)	/* must contain one addr */
2755				return (EINVAL);
2756			if (rth->ip6r_len % 2) /* length must be even */
2757				return (EINVAL);
2758			if (rth->ip6r_len / 2 != rth->ip6r_segleft)
2759				return (EINVAL);
2760			break;
2761		default:
2762			return (EINVAL);	/* not supported */
2763		}
2764
2765		/* turn off the previous option */
2766		ip6_clearpktopts(opt, IPV6_RTHDR);
2767		opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
2768		if (opt->ip6po_rthdr == NULL)
2769			return (ENOBUFS);
2770		bcopy(rth, opt->ip6po_rthdr, rthlen);
2771
2772		break;
2773	}
2774
2775	case IPV6_USE_MIN_MTU:
2776		if (len != sizeof(int))
2777			return (EINVAL);
2778		minmtupolicy = *(int *)buf;
2779		if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
2780		    minmtupolicy != IP6PO_MINMTU_DISABLE &&
2781		    minmtupolicy != IP6PO_MINMTU_ALL) {
2782			return (EINVAL);
2783		}
2784		opt->ip6po_minmtu = minmtupolicy;
2785		break;
2786
2787	case IPV6_DONTFRAG:
2788		if (len != sizeof(int))
2789			return (EINVAL);
2790
2791		if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
2792			/*
2793			 * we ignore this option for TCP sockets.
2794			 * (RFC3542 leaves this case unspecified.)
2795			 */
2796			opt->ip6po_flags &= ~IP6PO_DONTFRAG;
2797		} else
2798			opt->ip6po_flags |= IP6PO_DONTFRAG;
2799		break;
2800
2801	case IPV6_PREFER_TEMPADDR:
2802		if (len != sizeof(int))
2803			return (EINVAL);
2804		preftemp = *(int *)buf;
2805		if (preftemp != IP6PO_TEMPADDR_SYSTEM &&
2806		    preftemp != IP6PO_TEMPADDR_NOTPREFER &&
2807		    preftemp != IP6PO_TEMPADDR_PREFER) {
2808			return (EINVAL);
2809		}
2810		opt->ip6po_prefer_tempaddr = preftemp;
2811		break;
2812
2813	default:
2814		return (ENOPROTOOPT);
2815	} /* end of switch */
2816
2817	return (0);
2818}
2819
2820/*
2821 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
2822 * packet to the input queue of a specified interface.  Note that this
2823 * calls the output routine of the loopback "driver", but with an interface
2824 * pointer that might NOT be &loif -- easier than replicating that code here.
2825 */
2826void
2827ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst)
2828{
2829	struct mbuf *copym;
2830	struct ip6_hdr *ip6;
2831
2832	copym = m_copy(m, 0, M_COPYALL);
2833	if (copym == NULL)
2834		return;
2835
2836	/*
2837	 * Make sure to deep-copy IPv6 header portion in case the data
2838	 * is in an mbuf cluster, so that we can safely override the IPv6
2839	 * header portion later.
2840	 */
2841	if ((copym->m_flags & M_EXT) != 0 ||
2842	    copym->m_len < sizeof(struct ip6_hdr)) {
2843		copym = m_pullup(copym, sizeof(struct ip6_hdr));
2844		if (copym == NULL)
2845			return;
2846	}
2847
2848#ifdef DIAGNOSTIC
2849	if (copym->m_len < sizeof(*ip6)) {
2850		m_freem(copym);
2851		return;
2852	}
2853#endif
2854
2855	ip6 = mtod(copym, struct ip6_hdr *);
2856	/*
2857	 * clear embedded scope identifiers if necessary.
2858	 * in6_clearscope will touch the addresses only when necessary.
2859	 */
2860	in6_clearscope(&ip6->ip6_src);
2861	in6_clearscope(&ip6->ip6_dst);
2862
2863	(void)if_simloop(ifp, copym, dst->sin6_family, 0);
2864}
2865
2866/*
2867 * Chop IPv6 header off from the payload.
2868 */
2869static int
2870ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
2871{
2872	struct mbuf *mh;
2873	struct ip6_hdr *ip6;
2874
2875	ip6 = mtod(m, struct ip6_hdr *);
2876	if (m->m_len > sizeof(*ip6)) {
2877		MGETHDR(mh, M_DONTWAIT, MT_HEADER);
2878		if (mh == 0) {
2879			m_freem(m);
2880			return ENOBUFS;
2881		}
2882		M_MOVE_PKTHDR(mh, m);
2883		MH_ALIGN(mh, sizeof(*ip6));
2884		m->m_len -= sizeof(*ip6);
2885		m->m_data += sizeof(*ip6);
2886		mh->m_next = m;
2887		m = mh;
2888		m->m_len = sizeof(*ip6);
2889		bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
2890	}
2891	exthdrs->ip6e_ip6 = m;
2892	return 0;
2893}
2894
2895/*
2896 * Compute IPv6 extension header length.
2897 */
2898int
2899ip6_optlen(struct inpcb *in6p)
2900{
2901	int len;
2902
2903	if (!in6p->in6p_outputopts)
2904		return 0;
2905
2906	len = 0;
2907#define elen(x) \
2908    (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
2909
2910	len += elen(in6p->in6p_outputopts->ip6po_hbh);
2911	if (in6p->in6p_outputopts->ip6po_rthdr)
2912		/* dest1 is valid with rthdr only */
2913		len += elen(in6p->in6p_outputopts->ip6po_dest1);
2914	len += elen(in6p->in6p_outputopts->ip6po_rthdr);
2915	len += elen(in6p->in6p_outputopts->ip6po_dest2);
2916	return len;
2917#undef elen
2918}
2919