ip6_output.c revision 123587
1/*	$FreeBSD: head/sys/netinet6/ip6_output.c 123587 2003-12-17 04:31:07Z suz $	*/
2/*	$KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $	*/
3
4/*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33/*
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 *	The Regents of the University of California.  All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 *    notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 *    notice, this list of conditions and the following disclaimer in the
44 *    documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 *    must display the following acknowledgement:
47 *	This product includes software developed by the University of
48 *	California, Berkeley and its contributors.
49 * 4. Neither the name of the University nor the names of its contributors
50 *    may be used to endorse or promote products derived from this software
51 *    without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
66 */
67
68#include "opt_ip6fw.h"
69#include "opt_inet.h"
70#include "opt_inet6.h"
71#include "opt_ipsec.h"
72#include "opt_pfil_hooks.h"
73#include "opt_random_ip_id.h"
74
75#include <sys/param.h>
76#include <sys/malloc.h>
77#include <sys/mbuf.h>
78#include <sys/proc.h>
79#include <sys/errno.h>
80#include <sys/protosw.h>
81#include <sys/socket.h>
82#include <sys/socketvar.h>
83#include <sys/systm.h>
84#include <sys/kernel.h>
85
86#include <net/if.h>
87#include <net/route.h>
88#ifdef PFIL_HOOKS
89#include <net/pfil.h>
90#endif
91
92#include <netinet/in.h>
93#include <netinet/in_var.h>
94#include <netinet6/in6_var.h>
95#include <netinet/ip6.h>
96#include <netinet/icmp6.h>
97#include <netinet6/ip6_var.h>
98#include <netinet/in_pcb.h>
99#include <netinet/tcp_var.h>
100#include <netinet6/nd6.h>
101
102#ifdef IPSEC
103#include <netinet6/ipsec.h>
104#ifdef INET6
105#include <netinet6/ipsec6.h>
106#endif
107#include <netkey/key.h>
108#endif /* IPSEC */
109
110#ifdef FAST_IPSEC
111#include <netipsec/ipsec.h>
112#include <netipsec/ipsec6.h>
113#include <netipsec/key.h>
114#endif /* FAST_IPSEC */
115
116#include <netinet6/ip6_fw.h>
117
118#include <net/net_osdep.h>
119
120#include <netinet6/ip6protosw.h>
121
122static MALLOC_DEFINE(M_IPMOPTS, "ip6_moptions", "internet multicast options");
123
124struct ip6_exthdrs {
125	struct mbuf *ip6e_ip6;
126	struct mbuf *ip6e_hbh;
127	struct mbuf *ip6e_dest1;
128	struct mbuf *ip6e_rthdr;
129	struct mbuf *ip6e_dest2;
130};
131
132static int ip6_pcbopt __P((int, u_char *, int, struct ip6_pktopts **,
133			   int, int));
134static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
135	struct socket *, struct sockopt *));
136static int ip6_getpcbopt __P((struct ip6_pktopts *, int, struct sockopt *));
137static int ip6_setpktoption __P((int, u_char *, int, struct ip6_pktopts *, int,
138	int, int, int));
139
140static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *));
141static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **));
142static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int));
143static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
144	struct ip6_frag **));
145static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t));
146static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *));
147static int ip6_getpmtu __P((struct route_in6 *, struct route_in6 *,
148	struct ifnet *, struct in6_addr *, u_long *, int *));
149
150
151/*
152 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
153 * header (with pri, len, nxt, hlim, src, dst).
154 * This function may modify ver and hlim only.
155 * The mbuf chain containing the packet will be freed.
156 * The mbuf opt, if present, will not be freed.
157 *
158 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
159 * nd_ifinfo.linkmtu is u_int32_t.  so we use u_long to hold largest one,
160 * which is rt_rmx.rmx_mtu.
161 */
162int
163ip6_output(m0, opt, ro, flags, im6o, ifpp, inp)
164	struct mbuf *m0;
165	struct ip6_pktopts *opt;
166	struct route_in6 *ro;
167	int flags;
168	struct ip6_moptions *im6o;
169	struct ifnet **ifpp;		/* XXX: just for statistics */
170	struct inpcb *inp;
171{
172	struct ip6_hdr *ip6, *mhip6;
173	struct ifnet *ifp, *origifp;
174	struct mbuf *m = m0;
175	int hlen, tlen, len, off;
176	struct route_in6 ip6route;
177	struct sockaddr_in6 *dst;
178	int error = 0;
179	struct in6_ifaddr *ia = NULL;
180	u_long mtu;
181	int alwaysfrag, dontfrag;
182	u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
183	struct ip6_exthdrs exthdrs;
184	struct in6_addr finaldst;
185	struct route_in6 *ro_pmtu = NULL;
186	int hdrsplit = 0;
187	int needipsec = 0;
188#ifdef FAST_IPSEC
189	int needipsectun = 0;
190	struct secpolicy *sp = NULL;
191#endif /* FAST_IPSEC */
192#ifdef IPSEC
193	int needipsectun = 0;
194	struct socket *so;
195	struct secpolicy *sp = NULL;
196
197	/* for AH processing. stupid to have "socket" variable in IP layer... */
198	so = ipsec_getsocket(m);
199	(void)ipsec_setsocket(m, NULL);
200#endif /* IPSEC */
201
202	ip6 = mtod(m, struct ip6_hdr *);
203	finaldst = ip6->ip6_dst;
204
205#define MAKE_EXTHDR(hp, mp)						\
206    do {								\
207	if (hp) {							\
208		struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
209		error = ip6_copyexthdr((mp), (caddr_t)(hp),		\
210		    ((eh)->ip6e_len + 1) << 3);				\
211		if (error)						\
212			goto freehdrs;					\
213	}								\
214    } while (/*CONSTCOND*/ 0)
215
216	bzero(&exthdrs, sizeof(exthdrs));
217
218	if (opt) {
219		/* Hop-by-Hop options header */
220		MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
221		/* Destination options header(1st part) */
222		if (opt->ip6po_rthdr) {
223			/*
224			 * Destination options header(1st part)
225			 * This only makes sence with a routing header.
226			 * See Section 9.2 of RFC 3542.
227			 * Disabling this part just for MIP6 convenience is
228			 * a bad idea.  We need to think carefully about a
229			 * way to make the advanced API coexist with MIP6
230			 * options, which might automatically be inserted in
231			 * the kernel.
232			 */
233			MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
234		}
235		/* Routing header */
236		MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
237		/* Destination options header(2nd part) */
238		MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
239	}
240
241#ifdef IPSEC
242	/* get a security policy for this packet */
243	if (so == NULL)
244		sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
245	else
246		sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
247
248	if (sp == NULL) {
249		ipsec6stat.out_inval++;
250		goto freehdrs;
251	}
252
253	error = 0;
254
255	/* check policy */
256	switch (sp->policy) {
257	case IPSEC_POLICY_DISCARD:
258		/*
259		 * This packet is just discarded.
260		 */
261		ipsec6stat.out_polvio++;
262		goto freehdrs;
263
264	case IPSEC_POLICY_BYPASS:
265	case IPSEC_POLICY_NONE:
266		/* no need to do IPsec. */
267		needipsec = 0;
268		break;
269
270	case IPSEC_POLICY_IPSEC:
271		if (sp->req == NULL) {
272			/* acquire a policy */
273			error = key_spdacquire(sp);
274			goto freehdrs;
275		}
276		needipsec = 1;
277		break;
278
279	case IPSEC_POLICY_ENTRUST:
280	default:
281		printf("ip6_output: Invalid policy found. %d\n", sp->policy);
282	}
283#endif /* IPSEC */
284#ifdef FAST_IPSEC
285	/* get a security policy for this packet */
286	if (inp == NULL)
287		sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
288	else
289		sp = ipsec_getpolicybysock(m, IPSEC_DIR_OUTBOUND, inp, &error);
290
291	if (sp == NULL) {
292		newipsecstat.ips_out_inval++;
293		goto freehdrs;
294	}
295
296	error = 0;
297
298	/* check policy */
299	switch (sp->policy) {
300	case IPSEC_POLICY_DISCARD:
301		/*
302		 * This packet is just discarded.
303		 */
304		newipsecstat.ips_out_polvio++;
305		goto freehdrs;
306
307	case IPSEC_POLICY_BYPASS:
308	case IPSEC_POLICY_NONE:
309		/* no need to do IPsec. */
310		needipsec = 0;
311		break;
312
313	case IPSEC_POLICY_IPSEC:
314		if (sp->req == NULL) {
315			/* acquire a policy */
316			error = key_spdacquire(sp);
317			goto freehdrs;
318		}
319		needipsec = 1;
320		break;
321
322	case IPSEC_POLICY_ENTRUST:
323	default:
324		printf("ip6_output: Invalid policy found. %d\n", sp->policy);
325	}
326#endif /* FAST_IPSEC */
327
328	/*
329	 * Calculate the total length of the extension header chain.
330	 * Keep the length of the unfragmentable part for fragmentation.
331	 */
332	optlen = 0;
333	if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
334	if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
335	if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
336	unfragpartlen = optlen + sizeof(struct ip6_hdr);
337	/* NOTE: we don't add AH/ESP length here. do that later. */
338	if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
339
340	/*
341	 * If we need IPsec, or there is at least one extension header,
342	 * separate IP6 header from the payload.
343	 */
344	if ((needipsec || optlen) && !hdrsplit) {
345		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
346			m = NULL;
347			goto freehdrs;
348		}
349		m = exthdrs.ip6e_ip6;
350		hdrsplit++;
351	}
352
353	/* adjust pointer */
354	ip6 = mtod(m, struct ip6_hdr *);
355
356	/* adjust mbuf packet header length */
357	m->m_pkthdr.len += optlen;
358	plen = m->m_pkthdr.len - sizeof(*ip6);
359
360	/* If this is a jumbo payload, insert a jumbo payload option. */
361	if (plen > IPV6_MAXPACKET) {
362		if (!hdrsplit) {
363			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
364				m = NULL;
365				goto freehdrs;
366			}
367			m = exthdrs.ip6e_ip6;
368			hdrsplit++;
369		}
370		/* adjust pointer */
371		ip6 = mtod(m, struct ip6_hdr *);
372		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
373			goto freehdrs;
374		ip6->ip6_plen = 0;
375	} else
376		ip6->ip6_plen = htons(plen);
377
378	/*
379	 * Concatenate headers and fill in next header fields.
380	 * Here we have, on "m"
381	 *	IPv6 payload
382	 * and we insert headers accordingly.  Finally, we should be getting:
383	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
384	 *
385	 * during the header composing process, "m" points to IPv6 header.
386	 * "mprev" points to an extension header prior to esp.
387	 */
388	{
389		u_char *nexthdrp = &ip6->ip6_nxt;
390		struct mbuf *mprev = m;
391
392		/*
393		 * we treat dest2 specially.  this makes IPsec processing
394		 * much easier.  the goal here is to make mprev point the
395		 * mbuf prior to dest2.
396		 *
397		 * result: IPv6 dest2 payload
398		 * m and mprev will point to IPv6 header.
399		 */
400		if (exthdrs.ip6e_dest2) {
401			if (!hdrsplit)
402				panic("assumption failed: hdr not split");
403			exthdrs.ip6e_dest2->m_next = m->m_next;
404			m->m_next = exthdrs.ip6e_dest2;
405			*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
406			ip6->ip6_nxt = IPPROTO_DSTOPTS;
407		}
408
409#define MAKE_CHAIN(m, mp, p, i)\
410    do {\
411	if (m) {\
412		if (!hdrsplit) \
413			panic("assumption failed: hdr not split"); \
414		*mtod((m), u_char *) = *(p);\
415		*(p) = (i);\
416		p = mtod((m), u_char *);\
417		(m)->m_next = (mp)->m_next;\
418		(mp)->m_next = (m);\
419		(mp) = (m);\
420	}\
421    } while (/*CONSTCOND*/ 0)
422		/*
423		 * result: IPv6 hbh dest1 rthdr dest2 payload
424		 * m will point to IPv6 header.  mprev will point to the
425		 * extension header prior to dest2 (rthdr in the above case).
426		 */
427		MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
428		MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
429		    IPPROTO_DSTOPTS);
430		MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
431		    IPPROTO_ROUTING);
432
433#if defined(IPSEC) || defined(FAST_IPSEC)
434		if (!needipsec)
435			goto skip_ipsec2;
436
437		/*
438		 * pointers after IPsec headers are not valid any more.
439		 * other pointers need a great care too.
440		 * (IPsec routines should not mangle mbufs prior to AH/ESP)
441		 */
442		exthdrs.ip6e_dest2 = NULL;
443
444	    {
445		struct ip6_rthdr *rh = NULL;
446		int segleft_org = 0;
447		struct ipsec_output_state state;
448
449		if (exthdrs.ip6e_rthdr) {
450			rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
451			segleft_org = rh->ip6r_segleft;
452			rh->ip6r_segleft = 0;
453		}
454
455		bzero(&state, sizeof(state));
456		state.m = m;
457		error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
458		    &needipsectun);
459		m = state.m;
460		if (error) {
461			/* mbuf is already reclaimed in ipsec6_output_trans. */
462			m = NULL;
463			switch (error) {
464			case EHOSTUNREACH:
465			case ENETUNREACH:
466			case EMSGSIZE:
467			case ENOBUFS:
468			case ENOMEM:
469				break;
470			default:
471				printf("ip6_output (ipsec): error code %d\n", error);
472				/* FALLTHROUGH */
473			case ENOENT:
474				/* don't show these error codes to the user */
475				error = 0;
476				break;
477			}
478			goto bad;
479		}
480		if (exthdrs.ip6e_rthdr) {
481			/* ah6_output doesn't modify mbuf chain */
482			rh->ip6r_segleft = segleft_org;
483		}
484	    }
485skip_ipsec2:;
486#endif
487	}
488
489	/*
490	 * If there is a routing header, replace the destination address field
491	 * with the first hop of the routing header.
492	 */
493	if (exthdrs.ip6e_rthdr) {
494		struct ip6_rthdr *rh =
495			(struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
496						  struct ip6_rthdr *));
497		struct ip6_rthdr0 *rh0;
498		struct in6_addr *addrs;
499
500		switch (rh->ip6r_type) {
501		case IPV6_RTHDR_TYPE_0:
502			 rh0 = (struct ip6_rthdr0 *)rh;
503			 addrs = (struct in6_addr *)(rh + 1);
504
505			 ip6->ip6_dst = *addrs;
506			 bcopy((caddr_t)(addrs + 1), (caddr_t)addrs,
507			       sizeof(struct in6_addr)*(rh0->ip6r0_segleft - 1)
508				 );
509			 *(addrs + rh0->ip6r0_segleft - 1) = finaldst;
510			 break;
511		default:	/* is it possible? */
512			 error = EINVAL;
513			 goto bad;
514		}
515	}
516
517	/* Source address validation */
518	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
519	    (flags & IPV6_DADOUTPUT) == 0) {
520		error = EOPNOTSUPP;
521		ip6stat.ip6s_badscope++;
522		goto bad;
523	}
524	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
525		error = EOPNOTSUPP;
526		ip6stat.ip6s_badscope++;
527		goto bad;
528	}
529
530	ip6stat.ip6s_localout++;
531
532	/*
533	 * Route packet.
534	 */
535	if (ro == 0) {
536		ro = &ip6route;
537		bzero((caddr_t)ro, sizeof(*ro));
538	}
539	ro_pmtu = ro;
540	if (opt && opt->ip6po_rthdr)
541		ro = &opt->ip6po_route;
542	dst = (struct sockaddr_in6 *)&ro->ro_dst;
543
544	/*
545	 * If there is a cached route,
546	 * check that it is to the same destination
547	 * and is still up. If not, free it and try again.
548	 */
549	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
550			 dst->sin6_family != AF_INET6 ||
551			 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) {
552		RTFREE(ro->ro_rt);
553		ro->ro_rt = (struct rtentry *)0;
554	}
555	if (ro->ro_rt == 0) {
556		bzero(dst, sizeof(*dst));
557		dst->sin6_family = AF_INET6;
558		dst->sin6_len = sizeof(struct sockaddr_in6);
559		dst->sin6_addr = ip6->ip6_dst;
560	}
561
562 	/*
563	 * if specified, try to fill in the traffic class field.
564	 * do not override if a non-zero value is already set.
565	 * we check the diffserv field and the ecn field separately.
566	 */
567	if (opt && opt->ip6po_tclass >= 0) {
568		int mask = 0;
569
570		if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
571			mask |= 0xfc;
572		if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
573			mask |= 0x03;
574		if (mask != 0)
575			ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
576	}
577
578	/* fill in or override the hop limit field, if necessary. */
579	if (opt && opt->ip6po_hlim != -1)
580		ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
581	else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
582		if (im6o != NULL)
583			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
584		else
585			ip6->ip6_hlim = ip6_defmcasthlim;
586	}
587
588#if defined(IPSEC) || defined(FAST_IPSEC)
589	if (needipsec && needipsectun) {
590		struct ipsec_output_state state;
591
592		/*
593		 * All the extension headers will become inaccessible
594		 * (since they can be encrypted).
595		 * Don't panic, we need no more updates to extension headers
596		 * on inner IPv6 packet (since they are now encapsulated).
597		 *
598		 * IPv6 [ESP|AH] IPv6 [extension headers] payload
599		 */
600		bzero(&exthdrs, sizeof(exthdrs));
601		exthdrs.ip6e_ip6 = m;
602
603		bzero(&state, sizeof(state));
604		state.m = m;
605		state.ro = (struct route *)ro;
606		state.dst = (struct sockaddr *)dst;
607
608		error = ipsec6_output_tunnel(&state, sp, flags);
609
610		m = state.m;
611		ro = (struct route_in6 *)state.ro;
612		dst = (struct sockaddr_in6 *)state.dst;
613		if (error) {
614			/* mbuf is already reclaimed in ipsec6_output_tunnel. */
615			m0 = m = NULL;
616			m = NULL;
617			switch (error) {
618			case EHOSTUNREACH:
619			case ENETUNREACH:
620			case EMSGSIZE:
621			case ENOBUFS:
622			case ENOMEM:
623				break;
624			default:
625				printf("ip6_output (ipsec): error code %d\n", error);
626				/* FALLTHROUGH */
627			case ENOENT:
628				/* don't show these error codes to the user */
629				error = 0;
630				break;
631			}
632			goto bad;
633		}
634
635		exthdrs.ip6e_ip6 = m;
636	}
637#endif /* IPSEC */
638
639	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
640		/* Unicast */
641
642#define ifatoia6(ifa)	((struct in6_ifaddr *)(ifa))
643#define sin6tosa(sin6)	((struct sockaddr *)(sin6))
644		/* xxx
645		 * interface selection comes here
646		 * if an interface is specified from an upper layer,
647		 * ifp must point it.
648		 */
649		if (ro->ro_rt == 0) {
650			/*
651			 * non-bsdi always clone routes, if parent is
652			 * PRF_CLONING.
653			 */
654			rtalloc((struct route *)ro);
655		}
656		if (ro->ro_rt == 0) {
657			ip6stat.ip6s_noroute++;
658			error = EHOSTUNREACH;
659			/* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */
660			goto bad;
661		}
662		/* XXX rt not locked */
663		ia = ifatoia6(ro->ro_rt->rt_ifa);
664		ifp = ro->ro_rt->rt_ifp;
665		ro->ro_rt->rt_rmx.rmx_pksent++;
666		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
667			dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway;
668		m->m_flags &= ~(M_BCAST | M_MCAST);	/* just in case */
669
670		in6_ifstat_inc(ifp, ifs6_out_request);
671
672		/*
673		 * Check if the outgoing interface conflicts with
674		 * the interface specified by ifi6_ifindex (if specified).
675		 * Note that loopback interface is always okay.
676		 * (this may happen when we are sending a packet to one of
677		 *  our own addresses.)
678		 */
679		if (opt && opt->ip6po_pktinfo
680		 && opt->ip6po_pktinfo->ipi6_ifindex) {
681			if (!(ifp->if_flags & IFF_LOOPBACK)
682			 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) {
683				ip6stat.ip6s_noroute++;
684				in6_ifstat_inc(ifp, ifs6_out_discard);
685				error = EHOSTUNREACH;
686				goto bad;
687			}
688		}
689
690		if (opt && opt->ip6po_hlim != -1)
691			ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
692	} else {
693		/* Multicast */
694		struct	in6_multi *in6m;
695
696		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
697
698		/*
699		 * See if the caller provided any multicast options
700		 */
701		ifp = NULL;
702		if (im6o != NULL) {
703			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
704			if (im6o->im6o_multicast_ifp != NULL)
705				ifp = im6o->im6o_multicast_ifp;
706		} else
707			ip6->ip6_hlim = ip6_defmcasthlim;
708
709		/*
710		 * See if the caller provided the outgoing interface
711		 * as an ancillary data.
712		 * Boundary check for ifindex is assumed to be already done.
713		 */
714		if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex)
715			ifp = ifnet_byindex(opt->ip6po_pktinfo->ipi6_ifindex);
716
717		/*
718		 * If the destination is a node-local scope multicast,
719		 * the packet should be loop-backed only.
720		 */
721		if (IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
722			/*
723			 * If the outgoing interface is already specified,
724			 * it should be a loopback interface.
725			 */
726			if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) {
727				ip6stat.ip6s_badscope++;
728				error = ENETUNREACH; /* XXX: better error? */
729				/* XXX correct ifp? */
730				in6_ifstat_inc(ifp, ifs6_out_discard);
731				goto bad;
732			} else {
733				ifp = &loif[0];
734			}
735		}
736
737		if (opt && opt->ip6po_hlim != -1)
738			ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
739
740		/*
741		 * If caller did not provide an interface lookup a
742		 * default in the routing table.  This is either a
743		 * default for the speicfied group (i.e. a host
744		 * route), or a multicast default (a route for the
745		 * ``net'' ff00::/8).
746		 */
747		if (ifp == NULL) {
748			if (ro->ro_rt == 0)
749				ro->ro_rt = rtalloc1((struct sockaddr *)
750						&ro->ro_dst, 0, 0UL);
751			else
752				RT_LOCK(ro->ro_rt);
753			if (ro->ro_rt == 0) {
754				ip6stat.ip6s_noroute++;
755				error = EHOSTUNREACH;
756				/* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */
757				goto bad;
758			}
759			ia = ifatoia6(ro->ro_rt->rt_ifa);
760			ifp = ro->ro_rt->rt_ifp;
761			ro->ro_rt->rt_rmx.rmx_pksent++;
762			RT_UNLOCK(ro->ro_rt);
763		}
764
765		if ((flags & IPV6_FORWARDING) == 0)
766			in6_ifstat_inc(ifp, ifs6_out_request);
767		in6_ifstat_inc(ifp, ifs6_out_mcast);
768
769		/*
770		 * Confirm that the outgoing interface supports multicast.
771		 */
772		if ((ifp->if_flags & IFF_MULTICAST) == 0) {
773			ip6stat.ip6s_noroute++;
774			in6_ifstat_inc(ifp, ifs6_out_discard);
775			error = ENETUNREACH;
776			goto bad;
777		}
778		IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
779		if (in6m != NULL &&
780		   (im6o == NULL || im6o->im6o_multicast_loop)) {
781			/*
782			 * If we belong to the destination multicast group
783			 * on the outgoing interface, and the caller did not
784			 * forbid loopback, loop back a copy.
785			 */
786			ip6_mloopback(ifp, m, dst);
787		} else {
788			/*
789			 * If we are acting as a multicast router, perform
790			 * multicast forwarding as if the packet had just
791			 * arrived on the interface to which we are about
792			 * to send.  The multicast forwarding function
793			 * recursively calls this function, using the
794			 * IPV6_FORWARDING flag to prevent infinite recursion.
795			 *
796			 * Multicasts that are looped back by ip6_mloopback(),
797			 * above, will be forwarded by the ip6_input() routine,
798			 * if necessary.
799			 */
800			if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
801				if (ip6_mforward(ip6, ifp, m) != 0) {
802					m_freem(m);
803					goto done;
804				}
805			}
806		}
807		/*
808		 * Multicasts with a hoplimit of zero may be looped back,
809		 * above, but must not be transmitted on a network.
810		 * Also, multicasts addressed to the loopback interface
811		 * are not sent -- the above call to ip6_mloopback() will
812		 * loop back a copy if this host actually belongs to the
813		 * destination group on the loopback interface.
814		 */
815		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
816		    IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
817			m_freem(m);
818			goto done;
819		}
820	}
821
822	/*
823	 * Fill the outgoing inteface to tell the upper layer
824	 * to increment per-interface statistics.
825	 */
826	if (ifpp)
827		*ifpp = ifp;
828
829	/* Determine path MTU. */
830	if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
831	    &alwaysfrag)) != 0)
832		goto bad;
833
834	/*
835	 * advanced API (IPV6_USE_MIN_MTU) overrides mtu setting
836	 */
837	if ((flags & IPV6_MINMTU) != 0 && mtu > IPV6_MMTU)
838		mtu = IPV6_MMTU;
839
840	/* Fake scoped addresses */
841	if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
842		/*
843		 * If source or destination address is a scoped address, and
844		 * the packet is going to be sent to a loopback interface,
845		 * we should keep the original interface.
846		 */
847
848		/*
849		 * XXX: this is a very experimental and temporary solution.
850		 * We eventually have sockaddr_in6 and use the sin6_scope_id
851		 * field of the structure here.
852		 * We rely on the consistency between two scope zone ids
853		 * of source and destination, which should already be assured.
854		 * Larger scopes than link will be supported in the future.
855		 */
856		origifp = NULL;
857		if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
858			origifp = ifnet_byindex(ntohs(ip6->ip6_src.s6_addr16[1]));
859		else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
860			origifp = ifnet_byindex(ntohs(ip6->ip6_dst.s6_addr16[1]));
861		/*
862		 * XXX: origifp can be NULL even in those two cases above.
863		 * For example, if we remove the (only) link-local address
864		 * from the loopback interface, and try to send a link-local
865		 * address without link-id information.  Then the source
866		 * address is ::1, and the destination address is the
867		 * link-local address with its s6_addr16[1] being zero.
868		 * What is worse, if the packet goes to the loopback interface
869		 * by a default rejected route, the null pointer would be
870		 * passed to looutput, and the kernel would hang.
871		 * The following last resort would prevent such disaster.
872		 */
873		if (origifp == NULL)
874			origifp = ifp;
875	}
876	else
877		origifp = ifp;
878	/*
879	 * clear embedded scope identifiers if necessary.
880	 * in6_clearscope will touch the addresses only when necessary.
881	 */
882	in6_clearscope(&ip6->ip6_src);
883	in6_clearscope(&ip6->ip6_dst);
884
885	/*
886	 * Check with the firewall...
887	 */
888	if (ip6_fw_enable && ip6_fw_chk_ptr) {
889		u_short port = 0;
890		m->m_pkthdr.rcvif = NULL;	/* XXX */
891		/* If ipfw says divert, we have to just drop packet */
892		if ((*ip6_fw_chk_ptr)(&ip6, ifp, &port, &m)) {
893			m_freem(m);
894			goto done;
895		}
896		if (!m) {
897			error = EACCES;
898			goto done;
899		}
900	}
901
902	/*
903	 * If the outgoing packet contains a hop-by-hop options header,
904	 * it must be examined and processed even by the source node.
905	 * (RFC 2460, section 4.)
906	 */
907	if (exthdrs.ip6e_hbh) {
908		struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
909		u_int32_t dummy1; /* XXX unused */
910		u_int32_t dummy2; /* XXX unused */
911
912#ifdef DIAGNOSTIC
913		if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len)
914			panic("ip6e_hbh is not continuous");
915#endif
916		/*
917		 *  XXX: if we have to send an ICMPv6 error to the sender,
918		 *       we need the M_LOOP flag since icmp6_error() expects
919		 *       the IPv6 and the hop-by-hop options header are
920		 *       continuous unless the flag is set.
921		 */
922		m->m_flags |= M_LOOP;
923		m->m_pkthdr.rcvif = ifp;
924		if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
925		    ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
926		    &dummy1, &dummy2) < 0) {
927			/* m was already freed at this point */
928			error = EINVAL;/* better error? */
929			goto done;
930		}
931		m->m_flags &= ~M_LOOP; /* XXX */
932		m->m_pkthdr.rcvif = NULL;
933	}
934
935#ifdef PFIL_HOOKS
936	/*
937	 * Run through list of hooks for output packets.
938	 */
939	error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT);
940	if (error != 0 || m == NULL)
941		goto done;
942	ip6 = mtod(m, struct ip6_hdr *);
943#endif /* PFIL_HOOKS */
944
945	/*
946	 * Send the packet to the outgoing interface.
947	 * If necessary, do IPv6 fragmentation before sending.
948	 *
949	 * the logic here is rather complex:
950	 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
951	 * 1-a:	send as is if tlen <= path mtu
952	 * 1-b:	fragment if tlen > path mtu
953	 *
954	 * 2: if user asks us not to fragment (dontfrag == 1)
955	 * 2-a:	send as is if tlen <= interface mtu
956	 * 2-b:	error if tlen > interface mtu
957	 *
958	 * 3: if we always need to attach fragment header (alwaysfrag == 1)
959	 *	always fragment
960	 *
961	 * 4: if dontfrag == 1 && alwaysfrag == 1
962	 *	error, as we cannot handle this conflicting request
963	 */
964	tlen = m->m_pkthdr.len;
965
966	if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
967		dontfrag = 1;
968	else
969		dontfrag = 0;
970	if (dontfrag && alwaysfrag) {	/* case 4 */
971		/* conflicting request - can't transmit */
972		error = EMSGSIZE;
973		goto bad;
974	}
975	if (dontfrag && tlen > IN6_LINKMTU(ifp)) {	/* case 2-b */
976		/*
977		 * Even if the DONTFRAG option is specified, we cannot send the
978		 * packet when the data length is larger than the MTU of the
979		 * outgoing interface.
980		 * Notify the error by sending IPV6_PATHMTU ancillary data as
981		 * well as returning an error code (the latter is not described
982		 * in the API spec.)
983		 */
984		u_int32_t mtu32;
985		struct ip6ctlparam ip6cp;
986
987		mtu32 = (u_int32_t)mtu;
988		bzero(&ip6cp, sizeof(ip6cp));
989		ip6cp.ip6c_cmdarg = (void *)&mtu32;
990		pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
991		    (void *)&ip6cp);
992
993		error = EMSGSIZE;
994		goto bad;
995	}
996
997	/*
998	 * transmit packet without fragmentation
999	 */
1000	if (dontfrag || (!alwaysfrag && tlen <= mtu)) {	/* case 1-a and 2-a */
1001		struct in6_ifaddr *ia6;
1002
1003		ip6 = mtod(m, struct ip6_hdr *);
1004		ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
1005		if (ia6) {
1006			/* Record statistics for this interface address. */
1007			ia6->ia_ifa.if_opackets++;
1008			ia6->ia_ifa.if_obytes += m->m_pkthdr.len;
1009		}
1010#ifdef IPSEC
1011		/* clean ipsec history once it goes out of the node */
1012		ipsec_delaux(m);
1013#endif
1014		error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1015		goto done;
1016	}
1017
1018	/*
1019	 * try to fragment the packet.  case 1-b and 3
1020	 */
1021	if (mtu < IPV6_MMTU) {
1022		/* path MTU cannot be less than IPV6_MMTU */
1023		error = EMSGSIZE;
1024		in6_ifstat_inc(ifp, ifs6_out_fragfail);
1025		goto bad;
1026	} else if (ip6->ip6_plen == 0) {
1027		/* jumbo payload cannot be fragmented */
1028		error = EMSGSIZE;
1029		in6_ifstat_inc(ifp, ifs6_out_fragfail);
1030		goto bad;
1031	} else {
1032		struct mbuf **mnext, *m_frgpart;
1033		struct ip6_frag *ip6f;
1034#ifdef RANDOM_IP_ID
1035		u_int32_t id = htonl(ip6_randomid());
1036#else
1037		u_int32_t id = htonl(ip6_id++);
1038#endif
1039		u_char nextproto;
1040
1041		/*
1042		 * Too large for the destination or interface;
1043		 * fragment if possible.
1044		 * Must be able to put at least 8 bytes per fragment.
1045		 */
1046		hlen = unfragpartlen;
1047		if (mtu > IPV6_MAXPACKET)
1048			mtu = IPV6_MAXPACKET;
1049
1050		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
1051		if (len < 8) {
1052			error = EMSGSIZE;
1053			in6_ifstat_inc(ifp, ifs6_out_fragfail);
1054			goto bad;
1055		}
1056
1057		mnext = &m->m_nextpkt;
1058
1059		/*
1060		 * Change the next header field of the last header in the
1061		 * unfragmentable part.
1062		 */
1063		if (exthdrs.ip6e_rthdr) {
1064			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
1065			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
1066		} else if (exthdrs.ip6e_dest1) {
1067			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
1068			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
1069		} else if (exthdrs.ip6e_hbh) {
1070			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
1071			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
1072		} else {
1073			nextproto = ip6->ip6_nxt;
1074			ip6->ip6_nxt = IPPROTO_FRAGMENT;
1075		}
1076
1077		/*
1078		 * Loop through length of segment after first fragment,
1079		 * make new header and copy data of each part and link onto
1080		 * chain.
1081		 */
1082		m0 = m;
1083		for (off = hlen; off < tlen; off += len) {
1084			MGETHDR(m, M_DONTWAIT, MT_HEADER);
1085			if (!m) {
1086				error = ENOBUFS;
1087				ip6stat.ip6s_odropped++;
1088				goto sendorfree;
1089			}
1090			m->m_pkthdr.rcvif = NULL;
1091			m->m_flags = m0->m_flags & M_COPYFLAGS;
1092			*mnext = m;
1093			mnext = &m->m_nextpkt;
1094			m->m_data += max_linkhdr;
1095			mhip6 = mtod(m, struct ip6_hdr *);
1096			*mhip6 = *ip6;
1097			m->m_len = sizeof(*mhip6);
1098			error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
1099			if (error) {
1100				ip6stat.ip6s_odropped++;
1101				goto sendorfree;
1102			}
1103			ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
1104			if (off + len >= tlen)
1105				len = tlen - off;
1106			else
1107				ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
1108			mhip6->ip6_plen = htons((u_short)(len + hlen +
1109			    sizeof(*ip6f) - sizeof(struct ip6_hdr)));
1110			if ((m_frgpart = m_copy(m0, off, len)) == 0) {
1111				error = ENOBUFS;
1112				ip6stat.ip6s_odropped++;
1113				goto sendorfree;
1114			}
1115			m_cat(m, m_frgpart);
1116			m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
1117			m->m_pkthdr.rcvif = (struct ifnet *)0;
1118			ip6f->ip6f_reserved = 0;
1119			ip6f->ip6f_ident = id;
1120			ip6f->ip6f_nxt = nextproto;
1121			ip6stat.ip6s_ofragments++;
1122			in6_ifstat_inc(ifp, ifs6_out_fragcreat);
1123		}
1124
1125		in6_ifstat_inc(ifp, ifs6_out_fragok);
1126	}
1127
1128	/*
1129	 * Remove leading garbages.
1130	 */
1131sendorfree:
1132	m = m0->m_nextpkt;
1133	m0->m_nextpkt = 0;
1134	m_freem(m0);
1135	for (m0 = m; m; m = m0) {
1136		m0 = m->m_nextpkt;
1137		m->m_nextpkt = 0;
1138		if (error == 0) {
1139 			/* Record statistics for this interface address. */
1140 			if (ia) {
1141 				ia->ia_ifa.if_opackets++;
1142 				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1143 			}
1144#ifdef IPSEC
1145			/* clean ipsec history once it goes out of the node */
1146			ipsec_delaux(m);
1147#endif
1148			error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1149		} else
1150			m_freem(m);
1151	}
1152
1153	if (error == 0)
1154		ip6stat.ip6s_fragmented++;
1155
1156done:
1157	if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
1158		RTFREE(ro->ro_rt);
1159	} else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
1160		RTFREE(ro_pmtu->ro_rt);
1161	}
1162
1163#ifdef IPSEC
1164	if (sp != NULL)
1165		key_freesp(sp);
1166#endif /* IPSEC */
1167#ifdef FAST_IPSEC
1168	if (sp != NULL)
1169		KEY_FREESP(&sp);
1170#endif /* FAST_IPSEC */
1171
1172	return (error);
1173
1174freehdrs:
1175	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
1176	m_freem(exthdrs.ip6e_dest1);
1177	m_freem(exthdrs.ip6e_rthdr);
1178	m_freem(exthdrs.ip6e_dest2);
1179	/* FALLTHROUGH */
1180bad:
1181	m_freem(m);
1182	goto done;
1183}
1184
1185static int
1186ip6_copyexthdr(mp, hdr, hlen)
1187	struct mbuf **mp;
1188	caddr_t hdr;
1189	int hlen;
1190{
1191	struct mbuf *m;
1192
1193	if (hlen > MCLBYTES)
1194		return (ENOBUFS); /* XXX */
1195
1196	MGET(m, M_DONTWAIT, MT_DATA);
1197	if (!m)
1198		return (ENOBUFS);
1199
1200	if (hlen > MLEN) {
1201		MCLGET(m, M_DONTWAIT);
1202		if ((m->m_flags & M_EXT) == 0) {
1203			m_free(m);
1204			return (ENOBUFS);
1205		}
1206	}
1207	m->m_len = hlen;
1208	if (hdr)
1209		bcopy(hdr, mtod(m, caddr_t), hlen);
1210
1211	*mp = m;
1212	return (0);
1213}
1214
1215/*
1216 * Insert jumbo payload option.
1217 */
1218static int
1219ip6_insert_jumboopt(exthdrs, plen)
1220	struct ip6_exthdrs *exthdrs;
1221	u_int32_t plen;
1222{
1223	struct mbuf *mopt;
1224	u_char *optbuf;
1225	u_int32_t v;
1226
1227#define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
1228
1229	/*
1230	 * If there is no hop-by-hop options header, allocate new one.
1231	 * If there is one but it doesn't have enough space to store the
1232	 * jumbo payload option, allocate a cluster to store the whole options.
1233	 * Otherwise, use it to store the options.
1234	 */
1235	if (exthdrs->ip6e_hbh == 0) {
1236		MGET(mopt, M_DONTWAIT, MT_DATA);
1237		if (mopt == 0)
1238			return (ENOBUFS);
1239		mopt->m_len = JUMBOOPTLEN;
1240		optbuf = mtod(mopt, u_char *);
1241		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
1242		exthdrs->ip6e_hbh = mopt;
1243	} else {
1244		struct ip6_hbh *hbh;
1245
1246		mopt = exthdrs->ip6e_hbh;
1247		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1248			/*
1249			 * XXX assumption:
1250			 * - exthdrs->ip6e_hbh is not referenced from places
1251			 *   other than exthdrs.
1252			 * - exthdrs->ip6e_hbh is not an mbuf chain.
1253			 */
1254			int oldoptlen = mopt->m_len;
1255			struct mbuf *n;
1256
1257			/*
1258			 * XXX: give up if the whole (new) hbh header does
1259			 * not fit even in an mbuf cluster.
1260			 */
1261			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1262				return (ENOBUFS);
1263
1264			/*
1265			 * As a consequence, we must always prepare a cluster
1266			 * at this point.
1267			 */
1268			MGET(n, M_DONTWAIT, MT_DATA);
1269			if (n) {
1270				MCLGET(n, M_DONTWAIT);
1271				if ((n->m_flags & M_EXT) == 0) {
1272					m_freem(n);
1273					n = NULL;
1274				}
1275			}
1276			if (!n)
1277				return (ENOBUFS);
1278			n->m_len = oldoptlen + JUMBOOPTLEN;
1279			bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1280			    oldoptlen);
1281			optbuf = mtod(n, caddr_t) + oldoptlen;
1282			m_freem(mopt);
1283			mopt = exthdrs->ip6e_hbh = n;
1284		} else {
1285			optbuf = mtod(mopt, u_char *) + mopt->m_len;
1286			mopt->m_len += JUMBOOPTLEN;
1287		}
1288		optbuf[0] = IP6OPT_PADN;
1289		optbuf[1] = 1;
1290
1291		/*
1292		 * Adjust the header length according to the pad and
1293		 * the jumbo payload option.
1294		 */
1295		hbh = mtod(mopt, struct ip6_hbh *);
1296		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1297	}
1298
1299	/* fill in the option. */
1300	optbuf[2] = IP6OPT_JUMBO;
1301	optbuf[3] = 4;
1302	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1303	bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1304
1305	/* finally, adjust the packet header length */
1306	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1307
1308	return (0);
1309#undef JUMBOOPTLEN
1310}
1311
1312/*
1313 * Insert fragment header and copy unfragmentable header portions.
1314 */
1315static int
1316ip6_insertfraghdr(m0, m, hlen, frghdrp)
1317	struct mbuf *m0, *m;
1318	int hlen;
1319	struct ip6_frag **frghdrp;
1320{
1321	struct mbuf *n, *mlast;
1322
1323	if (hlen > sizeof(struct ip6_hdr)) {
1324		n = m_copym(m0, sizeof(struct ip6_hdr),
1325		    hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1326		if (n == 0)
1327			return (ENOBUFS);
1328		m->m_next = n;
1329	} else
1330		n = m;
1331
1332	/* Search for the last mbuf of unfragmentable part. */
1333	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1334		;
1335
1336	if ((mlast->m_flags & M_EXT) == 0 &&
1337	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1338		/* use the trailing space of the last mbuf for the fragment hdr */
1339		*frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) +
1340		    mlast->m_len);
1341		mlast->m_len += sizeof(struct ip6_frag);
1342		m->m_pkthdr.len += sizeof(struct ip6_frag);
1343	} else {
1344		/* allocate a new mbuf for the fragment header */
1345		struct mbuf *mfrg;
1346
1347		MGET(mfrg, M_DONTWAIT, MT_DATA);
1348		if (mfrg == 0)
1349			return (ENOBUFS);
1350		mfrg->m_len = sizeof(struct ip6_frag);
1351		*frghdrp = mtod(mfrg, struct ip6_frag *);
1352		mlast->m_next = mfrg;
1353	}
1354
1355	return (0);
1356}
1357
1358static int
1359ip6_getpmtu(ro_pmtu, ro, ifp, dst, mtup, alwaysfragp)
1360	struct route_in6 *ro_pmtu, *ro;
1361	struct ifnet *ifp;
1362	struct in6_addr *dst;
1363	u_long *mtup;
1364	int *alwaysfragp;
1365{
1366	u_int32_t mtu = 0;
1367	int alwaysfrag = 0;
1368	int error = 0;
1369
1370	if (ro_pmtu != ro) {
1371		/* The first hop and the final destination may differ. */
1372		struct sockaddr_in6 *sa6_dst =
1373		    (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
1374		if (ro_pmtu->ro_rt &&
1375		    ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 ||
1376		     !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) {
1377			RTFREE(ro_pmtu->ro_rt);
1378			ro_pmtu->ro_rt = (struct rtentry *)NULL;
1379		}
1380		if (ro_pmtu->ro_rt == NULL) {
1381			bzero(sa6_dst, sizeof(*sa6_dst));
1382			sa6_dst->sin6_family = AF_INET6;
1383			sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
1384			sa6_dst->sin6_addr = *dst;
1385
1386			rtalloc((struct route *)ro_pmtu);
1387		}
1388	}
1389	if (ro_pmtu->ro_rt) {
1390		u_int32_t ifmtu;
1391		struct in_conninfo inc;
1392
1393		bzero(&inc, sizeof(inc));
1394		inc.inc_flags = 1; /* IPv6 */
1395		inc.inc6_faddr = *dst;
1396
1397		if (ifp == NULL)
1398			ifp = ro_pmtu->ro_rt->rt_ifp;
1399		ifmtu = IN6_LINKMTU(ifp);
1400		mtu = tcp_hc_getmtu(&inc);
1401		if (mtu)
1402			mtu = min(mtu, ro_pmtu->ro_rt->rt_rmx.rmx_mtu);
1403		else
1404			mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
1405		if (mtu == 0)
1406			mtu = ifmtu;
1407		else if (mtu < IPV6_MMTU) {
1408			/*
1409			 * RFC2460 section 5, last paragraph:
1410			 * if we record ICMPv6 too big message with
1411			 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1412			 * or smaller, with framgent header attached.
1413			 * (fragment header is needed regardless from the
1414			 * packet size, for translators to identify packets)
1415			 */
1416			alwaysfrag = 1;
1417			mtu = IPV6_MMTU;
1418		} else if (mtu > ifmtu) {
1419			/*
1420			 * The MTU on the route is larger than the MTU on
1421			 * the interface!  This shouldn't happen, unless the
1422			 * MTU of the interface has been changed after the
1423			 * interface was brought up.  Change the MTU in the
1424			 * route to match the interface MTU (as long as the
1425			 * field isn't locked).
1426			 */
1427			mtu = ifmtu;
1428			ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu;
1429		}
1430	} else if (ifp) {
1431		mtu = IN6_LINKMTU(ifp);
1432	} else
1433		error = EHOSTUNREACH; /* XXX */
1434
1435	*mtup = mtu;
1436	if (alwaysfragp)
1437		*alwaysfragp = alwaysfrag;
1438	return (error);
1439}
1440
1441/*
1442 * IP6 socket option processing.
1443 */
1444int
1445ip6_ctloutput(so, sopt)
1446	struct socket *so;
1447	struct sockopt *sopt;
1448{
1449	int privileged, optdatalen, uproto;
1450	void *optdata;
1451	struct inpcb *in6p = sotoinpcb(so);
1452	int error, optval;
1453	int level, op, optname;
1454	int optlen;
1455	struct thread *td;
1456
1457	if (sopt) {
1458		level = sopt->sopt_level;
1459		op = sopt->sopt_dir;
1460		optname = sopt->sopt_name;
1461		optlen = sopt->sopt_valsize;
1462		td = sopt->sopt_td;
1463	} else {
1464		panic("ip6_ctloutput: arg soopt is NULL");
1465	}
1466	error = optval = 0;
1467
1468	privileged = (td == 0 || suser(td)) ? 0 : 1;
1469	uproto = (int)so->so_proto->pr_protocol;
1470
1471	if (level == IPPROTO_IPV6) {
1472		switch (op) {
1473
1474		case SOPT_SET:
1475			switch (optname) {
1476			case IPV6_2292PKTOPTIONS:
1477#ifdef IPV6_PKTOPTIONS
1478			case IPV6_PKTOPTIONS:
1479#endif
1480			{
1481				struct mbuf *m;
1482
1483				error = soopt_getm(sopt, &m); /* XXX */
1484				if (error != NULL)
1485					break;
1486				error = soopt_mcopyin(sopt, m); /* XXX */
1487				if (error != NULL)
1488					break;
1489				error = ip6_pcbopts(&in6p->in6p_outputopts,
1490						    m, so, sopt);
1491				m_freem(m); /* XXX */
1492				break;
1493			}
1494
1495			/*
1496			 * Use of some Hop-by-Hop options or some
1497			 * Destination options, might require special
1498			 * privilege.  That is, normal applications
1499			 * (without special privilege) might be forbidden
1500			 * from setting certain options in outgoing packets,
1501			 * and might never see certain options in received
1502			 * packets. [RFC 2292 Section 6]
1503			 * KAME specific note:
1504			 *  KAME prevents non-privileged users from sending or
1505			 *  receiving ANY hbh/dst options in order to avoid
1506			 *  overhead of parsing options in the kernel.
1507			 */
1508			case IPV6_RECVHOPOPTS:
1509			case IPV6_RECVDSTOPTS:
1510			case IPV6_RECVRTHDRDSTOPTS:
1511				if (!privileged) {
1512					error = EPERM;
1513					break;
1514				}
1515				/* FALLTHROUGH */
1516			case IPV6_UNICAST_HOPS:
1517			case IPV6_HOPLIMIT:
1518			case IPV6_FAITH:
1519
1520			case IPV6_RECVPKTINFO:
1521			case IPV6_RECVHOPLIMIT:
1522			case IPV6_RECVRTHDR:
1523			case IPV6_RECVPATHMTU:
1524			case IPV6_RECVTCLASS:
1525			case IPV6_V6ONLY:
1526			case IPV6_AUTOFLOWLABEL:
1527				if (optlen != sizeof(int)) {
1528					error = EINVAL;
1529					break;
1530				}
1531				error = sooptcopyin(sopt, &optval,
1532					sizeof optval, sizeof optval);
1533				if (error)
1534					break;
1535				switch (optname) {
1536
1537				case IPV6_UNICAST_HOPS:
1538					if (optval < -1 || optval >= 256)
1539						error = EINVAL;
1540					else {
1541						/* -1 = kernel default */
1542						in6p->in6p_hops = optval;
1543						if ((in6p->in6p_vflag &
1544						     INP_IPV4) != 0)
1545							in6p->inp_ip_ttl = optval;
1546					}
1547					break;
1548#define OPTSET(bit) \
1549do { \
1550	if (optval) \
1551		in6p->in6p_flags |= (bit); \
1552	else \
1553		in6p->in6p_flags &= ~(bit); \
1554} while (/*CONSTCOND*/ 0)
1555#define OPTSET2292(bit) \
1556do { \
1557	in6p->in6p_flags |= IN6P_RFC2292; \
1558	if (optval) \
1559		in6p->in6p_flags |= (bit); \
1560	else \
1561		in6p->in6p_flags &= ~(bit); \
1562} while (/*CONSTCOND*/ 0)
1563#define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
1564
1565				case IPV6_RECVPKTINFO:
1566					/* cannot mix with RFC2292 */
1567					if (OPTBIT(IN6P_RFC2292)) {
1568						error = EINVAL;
1569						break;
1570					}
1571					OPTSET(IN6P_PKTINFO);
1572					break;
1573
1574				case IPV6_HOPLIMIT:
1575				{
1576					struct ip6_pktopts **optp;
1577
1578					/* cannot mix with RFC2292 */
1579					if (OPTBIT(IN6P_RFC2292)) {
1580						error = EINVAL;
1581						break;
1582					}
1583					optp = &in6p->in6p_outputopts;
1584					error = ip6_pcbopt(IPV6_HOPLIMIT,
1585							   (u_char *)&optval,
1586							   sizeof(optval),
1587							   optp,
1588							   privileged, uproto);
1589					break;
1590				}
1591
1592				case IPV6_RECVHOPLIMIT:
1593					/* cannot mix with RFC2292 */
1594					if (OPTBIT(IN6P_RFC2292)) {
1595						error = EINVAL;
1596						break;
1597					}
1598					OPTSET(IN6P_HOPLIMIT);
1599					break;
1600
1601				case IPV6_RECVHOPOPTS:
1602					/* cannot mix with RFC2292 */
1603					if (OPTBIT(IN6P_RFC2292)) {
1604						error = EINVAL;
1605						break;
1606					}
1607					OPTSET(IN6P_HOPOPTS);
1608					break;
1609
1610				case IPV6_RECVDSTOPTS:
1611					/* cannot mix with RFC2292 */
1612					if (OPTBIT(IN6P_RFC2292)) {
1613						error = EINVAL;
1614						break;
1615					}
1616					OPTSET(IN6P_DSTOPTS);
1617					break;
1618
1619				case IPV6_RECVRTHDRDSTOPTS:
1620					/* cannot mix with RFC2292 */
1621					if (OPTBIT(IN6P_RFC2292)) {
1622						error = EINVAL;
1623						break;
1624					}
1625					OPTSET(IN6P_RTHDRDSTOPTS);
1626					break;
1627
1628				case IPV6_RECVRTHDR:
1629					/* cannot mix with RFC2292 */
1630					if (OPTBIT(IN6P_RFC2292)) {
1631						error = EINVAL;
1632						break;
1633					}
1634					OPTSET(IN6P_RTHDR);
1635					break;
1636
1637				case IPV6_FAITH:
1638					OPTSET(IN6P_FAITH);
1639					break;
1640
1641				case IPV6_RECVPATHMTU:
1642					/*
1643					 * We ignore this option for TCP
1644					 * sockets.
1645					 * (rfc2292bis leaves this case
1646					 * unspecified.)
1647					 */
1648					if (uproto != IPPROTO_TCP)
1649						OPTSET(IN6P_MTU);
1650					break;
1651
1652				case IPV6_V6ONLY:
1653					/*
1654					 * make setsockopt(IPV6_V6ONLY)
1655					 * available only prior to bind(2).
1656					 * see ipng mailing list, Jun 22 2001.
1657					 */
1658					if (in6p->in6p_lport ||
1659					    !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1660						error = EINVAL;
1661						break;
1662					}
1663					OPTSET(IN6P_IPV6_V6ONLY);
1664					if (optval)
1665						in6p->in6p_vflag &= ~INP_IPV4;
1666					else
1667						in6p->in6p_vflag |= INP_IPV4;
1668					break;
1669				case IPV6_RECVTCLASS:
1670					/* cannot mix with RFC2292 XXX */
1671					if (OPTBIT(IN6P_RFC2292)) {
1672						error = EINVAL;
1673						break;
1674					}
1675					OPTSET(IN6P_TCLASS);
1676					break;
1677				case IPV6_AUTOFLOWLABEL:
1678					OPTSET(IN6P_AUTOFLOWLABEL);
1679					break;
1680
1681				}
1682				break;
1683
1684			case IPV6_TCLASS:
1685			case IPV6_DONTFRAG:
1686			case IPV6_USE_MIN_MTU:
1687			case IPV6_PREFER_TEMPADDR:
1688				if (optlen != sizeof(optval)) {
1689					error = EINVAL;
1690					break;
1691				}
1692				error = sooptcopyin(sopt, &optval,
1693					sizeof optval, sizeof optval);
1694				if (error)
1695					break;
1696				{
1697					struct ip6_pktopts **optp;
1698					optp = &in6p->in6p_outputopts;
1699					error = ip6_pcbopt(optname,
1700							   (u_char *)&optval,
1701							   sizeof(optval),
1702							   optp,
1703							   privileged, uproto);
1704					break;
1705				}
1706
1707			case IPV6_2292PKTINFO:
1708			case IPV6_2292HOPLIMIT:
1709			case IPV6_2292HOPOPTS:
1710			case IPV6_2292DSTOPTS:
1711			case IPV6_2292RTHDR:
1712				/* RFC 2292 */
1713				if (optlen != sizeof(int)) {
1714					error = EINVAL;
1715					break;
1716				}
1717				error = sooptcopyin(sopt, &optval,
1718					sizeof optval, sizeof optval);
1719				if (error)
1720					break;
1721				switch (optname) {
1722				case IPV6_2292PKTINFO:
1723					OPTSET2292(IN6P_PKTINFO);
1724					break;
1725				case IPV6_2292HOPLIMIT:
1726					OPTSET2292(IN6P_HOPLIMIT);
1727					break;
1728				case IPV6_2292HOPOPTS:
1729					/*
1730					 * Check super-user privilege.
1731					 * See comments for IPV6_RECVHOPOPTS.
1732					 */
1733					if (!privileged)
1734						return (EPERM);
1735					OPTSET2292(IN6P_HOPOPTS);
1736					break;
1737				case IPV6_2292DSTOPTS:
1738					if (!privileged)
1739						return (EPERM);
1740					OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1741					break;
1742				case IPV6_2292RTHDR:
1743					OPTSET2292(IN6P_RTHDR);
1744					break;
1745				}
1746				break;
1747			case IPV6_PKTINFO:
1748			case IPV6_HOPOPTS:
1749			case IPV6_RTHDR:
1750			case IPV6_DSTOPTS:
1751			case IPV6_RTHDRDSTOPTS:
1752			case IPV6_NEXTHOP:
1753			{
1754				/* new advanced API (2292bis) */
1755				u_char *optbuf;
1756				int optlen;
1757				struct ip6_pktopts **optp;
1758
1759				/* cannot mix with RFC2292 */
1760				if (OPTBIT(IN6P_RFC2292)) {
1761					error = EINVAL;
1762					break;
1763				}
1764
1765				optbuf = sopt->sopt_val;
1766				optlen = sopt->sopt_valsize;
1767				optp = &in6p->in6p_outputopts;
1768				error = ip6_pcbopt(optname,
1769						   optbuf, optlen,
1770						   optp, privileged, uproto);
1771				break;
1772			}
1773#undef OPTSET
1774
1775			case IPV6_MULTICAST_IF:
1776			case IPV6_MULTICAST_HOPS:
1777			case IPV6_MULTICAST_LOOP:
1778			case IPV6_JOIN_GROUP:
1779			case IPV6_LEAVE_GROUP:
1780			    {
1781				if (sopt->sopt_valsize > MLEN) {
1782					error = EMSGSIZE;
1783					break;
1784				}
1785				/* XXX */
1786			    }
1787			    /* FALLTHROUGH */
1788			    {
1789				struct mbuf *m;
1790
1791				if (sopt->sopt_valsize > MCLBYTES) {
1792					error = EMSGSIZE;
1793					break;
1794				}
1795				/* XXX */
1796				MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_HEADER);
1797				if (m == 0) {
1798					error = ENOBUFS;
1799					break;
1800				}
1801				if (sopt->sopt_valsize > MLEN) {
1802					MCLGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT);
1803					if ((m->m_flags & M_EXT) == 0) {
1804						m_free(m);
1805						error = ENOBUFS;
1806						break;
1807					}
1808				}
1809				m->m_len = sopt->sopt_valsize;
1810				error = sooptcopyin(sopt, mtod(m, char *),
1811						    m->m_len, m->m_len);
1812				if (error) {
1813					(void)m_free(m);
1814					break;
1815				}
1816				error =	ip6_setmoptions(sopt->sopt_name,
1817							&in6p->in6p_moptions,
1818							m);
1819				(void)m_free(m);
1820			    }
1821				break;
1822
1823			case IPV6_PORTRANGE:
1824				error = sooptcopyin(sopt, &optval,
1825				    sizeof optval, sizeof optval);
1826				if (error)
1827					break;
1828
1829				switch (optval) {
1830				case IPV6_PORTRANGE_DEFAULT:
1831					in6p->in6p_flags &= ~(IN6P_LOWPORT);
1832					in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1833					break;
1834
1835				case IPV6_PORTRANGE_HIGH:
1836					in6p->in6p_flags &= ~(IN6P_LOWPORT);
1837					in6p->in6p_flags |= IN6P_HIGHPORT;
1838					break;
1839
1840				case IPV6_PORTRANGE_LOW:
1841					in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1842					in6p->in6p_flags |= IN6P_LOWPORT;
1843					break;
1844
1845				default:
1846					error = EINVAL;
1847					break;
1848				}
1849				break;
1850
1851#if defined(IPSEC) || defined(FAST_IPSEC)
1852			case IPV6_IPSEC_POLICY:
1853			    {
1854				caddr_t req = NULL;
1855				size_t len = 0;
1856				struct mbuf *m;
1857
1858				if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1859					break;
1860				if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1861					break;
1862				if (m) {
1863					req = mtod(m, caddr_t);
1864					len = m->m_len;
1865				}
1866				error = ipsec6_set_policy(in6p, optname, req,
1867							  len, privileged);
1868				m_freem(m);
1869			    }
1870				break;
1871#endif /* KAME IPSEC */
1872
1873			case IPV6_FW_ADD:
1874			case IPV6_FW_DEL:
1875			case IPV6_FW_FLUSH:
1876			case IPV6_FW_ZERO:
1877			    {
1878				struct mbuf *m;
1879				struct mbuf **mp = &m;
1880
1881				if (ip6_fw_ctl_ptr == NULL)
1882					return EINVAL;
1883				/* XXX */
1884				if ((error = soopt_getm(sopt, &m)) != 0)
1885					break;
1886				/* XXX */
1887				if ((error = soopt_mcopyin(sopt, m)) != 0)
1888					break;
1889				error = (*ip6_fw_ctl_ptr)(optname, mp);
1890				m = *mp;
1891			    }
1892				break;
1893
1894			default:
1895				error = ENOPROTOOPT;
1896				break;
1897			}
1898			break;
1899
1900		case SOPT_GET:
1901			switch (optname) {
1902
1903			case IPV6_2292PKTOPTIONS:
1904#ifdef IPV6_PKTOPTIONS
1905			case IPV6_PKTOPTIONS:
1906#endif
1907				/*
1908				 * RFC3542 (effectively) deprecated the
1909				 * semantics of the 2292-style pktoptions.
1910				 * Since it was not reliable in nature (i.e.,
1911				 * applications had to expect the lack of some
1912				 * information after all), it would make sense
1913				 * to simplify this part by always returning
1914				 * empty data.
1915				 */
1916				sopt->sopt_valsize = 0;
1917				break;
1918
1919			case IPV6_RECVHOPOPTS:
1920			case IPV6_RECVDSTOPTS:
1921			case IPV6_RECVRTHDRDSTOPTS:
1922			case IPV6_UNICAST_HOPS:
1923			case IPV6_RECVPKTINFO:
1924			case IPV6_RECVHOPLIMIT:
1925			case IPV6_RECVRTHDR:
1926			case IPV6_RECVPATHMTU:
1927
1928			case IPV6_FAITH:
1929			case IPV6_V6ONLY:
1930			case IPV6_PORTRANGE:
1931			case IPV6_RECVTCLASS:
1932			case IPV6_AUTOFLOWLABEL:
1933				switch (optname) {
1934
1935				case IPV6_RECVHOPOPTS:
1936					optval = OPTBIT(IN6P_HOPOPTS);
1937					break;
1938
1939				case IPV6_RECVDSTOPTS:
1940					optval = OPTBIT(IN6P_DSTOPTS);
1941					break;
1942
1943				case IPV6_RECVRTHDRDSTOPTS:
1944					optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1945					break;
1946
1947				case IPV6_UNICAST_HOPS:
1948					optval = in6p->in6p_hops;
1949					break;
1950
1951				case IPV6_RECVPKTINFO:
1952					optval = OPTBIT(IN6P_PKTINFO);
1953					break;
1954
1955				case IPV6_RECVHOPLIMIT:
1956					optval = OPTBIT(IN6P_HOPLIMIT);
1957					break;
1958
1959				case IPV6_RECVRTHDR:
1960					optval = OPTBIT(IN6P_RTHDR);
1961					break;
1962
1963				case IPV6_RECVPATHMTU:
1964					optval = OPTBIT(IN6P_MTU);
1965					break;
1966
1967				case IPV6_FAITH:
1968					optval = OPTBIT(IN6P_FAITH);
1969					break;
1970
1971				case IPV6_V6ONLY:
1972					optval = OPTBIT(IN6P_IPV6_V6ONLY);
1973					break;
1974
1975				case IPV6_PORTRANGE:
1976				    {
1977					int flags;
1978					flags = in6p->in6p_flags;
1979					if (flags & IN6P_HIGHPORT)
1980						optval = IPV6_PORTRANGE_HIGH;
1981					else if (flags & IN6P_LOWPORT)
1982						optval = IPV6_PORTRANGE_LOW;
1983					else
1984						optval = 0;
1985					break;
1986				    }
1987				case IPV6_RECVTCLASS:
1988					optval = OPTBIT(IN6P_TCLASS);
1989					break;
1990
1991				case IPV6_AUTOFLOWLABEL:
1992					optval = OPTBIT(IN6P_AUTOFLOWLABEL);
1993					break;
1994				}
1995				if (error)
1996					break;
1997				error = sooptcopyout(sopt, &optval,
1998					sizeof optval);
1999				break;
2000
2001			case IPV6_PATHMTU:
2002			{
2003				u_long pmtu = 0;
2004				struct ip6_mtuinfo mtuinfo;
2005				struct route_in6 sro;
2006
2007				bzero(&sro, sizeof(sro));
2008
2009				if (!(so->so_state & SS_ISCONNECTED))
2010					return (ENOTCONN);
2011				/*
2012				 * XXX: we dot not consider the case of source
2013				 * routing, or optional information to specify
2014				 * the outgoing interface.
2015				 */
2016				error = ip6_getpmtu(&sro, NULL, NULL,
2017				    &in6p->in6p_faddr, &pmtu, NULL);
2018				if (sro.ro_rt)
2019					RTFREE(sro.ro_rt);
2020				if (error)
2021					break;
2022				if (pmtu > IPV6_MAXPACKET)
2023					pmtu = IPV6_MAXPACKET;
2024
2025				bzero(&mtuinfo, sizeof(mtuinfo));
2026				mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
2027				optdata = (void *)&mtuinfo;
2028				optdatalen = sizeof(mtuinfo);
2029				error = sooptcopyout(sopt, optdata,
2030				    optdatalen);
2031				break;
2032			}
2033
2034			case IPV6_2292PKTINFO:
2035			case IPV6_2292HOPLIMIT:
2036			case IPV6_2292HOPOPTS:
2037			case IPV6_2292RTHDR:
2038			case IPV6_2292DSTOPTS:
2039				switch (optname) {
2040				case IPV6_2292PKTINFO:
2041					optval = OPTBIT(IN6P_PKTINFO);
2042					break;
2043				case IPV6_2292HOPLIMIT:
2044					optval = OPTBIT(IN6P_HOPLIMIT);
2045					break;
2046				case IPV6_2292HOPOPTS:
2047					optval = OPTBIT(IN6P_HOPOPTS);
2048					break;
2049				case IPV6_2292RTHDR:
2050					optval = OPTBIT(IN6P_RTHDR);
2051					break;
2052				case IPV6_2292DSTOPTS:
2053					optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
2054					break;
2055				}
2056				error = sooptcopyout(sopt, &optval,
2057				    sizeof optval);
2058				break;
2059			case IPV6_PKTINFO:
2060			case IPV6_HOPOPTS:
2061			case IPV6_RTHDR:
2062			case IPV6_DSTOPTS:
2063			case IPV6_RTHDRDSTOPTS:
2064			case IPV6_NEXTHOP:
2065			case IPV6_TCLASS:
2066			case IPV6_DONTFRAG:
2067			case IPV6_USE_MIN_MTU:
2068			case IPV6_PREFER_TEMPADDR:
2069				error = ip6_getpcbopt(in6p->in6p_outputopts,
2070				    optname, sopt);
2071				break;
2072
2073			case IPV6_MULTICAST_IF:
2074			case IPV6_MULTICAST_HOPS:
2075			case IPV6_MULTICAST_LOOP:
2076			case IPV6_JOIN_GROUP:
2077			case IPV6_LEAVE_GROUP:
2078			    {
2079				struct mbuf *m;
2080				error = ip6_getmoptions(sopt->sopt_name,
2081				    in6p->in6p_moptions, &m);
2082				if (error == 0)
2083					error = sooptcopyout(sopt,
2084					    mtod(m, char *), m->m_len);
2085				m_freem(m);
2086			    }
2087				break;
2088
2089#if defined(IPSEC) || defined(FAST_IPSEC)
2090			case IPV6_IPSEC_POLICY:
2091			  {
2092				caddr_t req = NULL;
2093				size_t len = 0;
2094				struct mbuf *m = NULL;
2095				struct mbuf **mp = &m;
2096				size_t ovalsize = sopt->sopt_valsize;
2097				caddr_t oval = (caddr_t)sopt->sopt_val;
2098
2099				error = soopt_getm(sopt, &m); /* XXX */
2100				if (error != NULL)
2101					break;
2102				error = soopt_mcopyin(sopt, m); /* XXX */
2103				if (error != NULL)
2104					break;
2105				sopt->sopt_valsize = ovalsize;
2106				sopt->sopt_val = oval;
2107				if (m) {
2108					req = mtod(m, caddr_t);
2109					len = m->m_len;
2110				}
2111				error = ipsec6_get_policy(in6p, req, len, mp);
2112				if (error == 0)
2113					error = soopt_mcopyout(sopt, m); /* XXX */
2114				if (error == 0 && m)
2115					m_freem(m);
2116				break;
2117			  }
2118#endif /* KAME IPSEC */
2119
2120			case IPV6_FW_GET:
2121			  {
2122				struct mbuf *m;
2123				struct mbuf **mp = &m;
2124
2125				if (ip6_fw_ctl_ptr == NULL)
2126			        {
2127					return EINVAL;
2128				}
2129				error = (*ip6_fw_ctl_ptr)(optname, mp);
2130				if (error == 0)
2131					error = soopt_mcopyout(sopt, m); /* XXX */
2132				if (error == 0 && m)
2133					m_freem(m);
2134			  }
2135				break;
2136
2137			default:
2138				error = ENOPROTOOPT;
2139				break;
2140			}
2141			break;
2142		}
2143	} else {		/* level != IPPROTO_IPV6 */
2144		error = EINVAL;
2145	}
2146	return (error);
2147}
2148
2149int
2150ip6_raw_ctloutput(so, sopt)
2151	struct socket *so;
2152	struct sockopt *sopt;
2153{
2154	int error = 0, optval, optlen;
2155	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
2156	struct in6pcb *in6p = sotoin6pcb(so);
2157	int level, op, optname;
2158
2159	if (sopt) {
2160		level = sopt->sopt_level;
2161		op = sopt->sopt_dir;
2162		optname = sopt->sopt_name;
2163		optlen = sopt->sopt_valsize;
2164	} else
2165		panic("ip6_raw_ctloutput: arg soopt is NULL");
2166
2167	if (level != IPPROTO_IPV6) {
2168		return (EINVAL);
2169	}
2170
2171	switch (optname) {
2172	case IPV6_CHECKSUM:
2173		/*
2174		 * For ICMPv6 sockets, no modification allowed for checksum
2175		 * offset, permit "no change" values to help existing apps.
2176		 *
2177		 * XXX 2292bis says: "An attempt to set IPV6_CHECKSUM
2178		 * for an ICMPv6 socket will fail."
2179		 * The current behavior does not meet 2292bis.
2180		 */
2181		switch (op) {
2182		case SOPT_SET:
2183			if (optlen != sizeof(int)) {
2184				error = EINVAL;
2185				break;
2186			}
2187			error = sooptcopyin(sopt, &optval, sizeof(optval),
2188					    sizeof(optval));
2189			if (error)
2190				break;
2191			if ((optval % 2) != 0) {
2192				/* the API assumes even offset values */
2193				error = EINVAL;
2194			} else if (so->so_proto->pr_protocol ==
2195			    IPPROTO_ICMPV6) {
2196				if (optval != icmp6off)
2197					error = EINVAL;
2198			} else
2199				in6p->in6p_cksum = optval;
2200			break;
2201
2202		case SOPT_GET:
2203			if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
2204				optval = icmp6off;
2205			else
2206				optval = in6p->in6p_cksum;
2207
2208			error = sooptcopyout(sopt, &optval, sizeof(optval));
2209			break;
2210
2211		default:
2212			error = EINVAL;
2213			break;
2214		}
2215		break;
2216
2217	default:
2218		error = ENOPROTOOPT;
2219		break;
2220	}
2221
2222	return (error);
2223}
2224
2225/*
2226 * Set up IP6 options in pcb for insertion in output packets or
2227 * specifying behavior of outgoing packets.
2228 */
2229static int
2230ip6_pcbopts(pktopt, m, so, sopt)
2231	struct ip6_pktopts **pktopt;
2232	struct mbuf *m;
2233	struct socket *so;
2234	struct sockopt *sopt;
2235{
2236	struct ip6_pktopts *opt = *pktopt;
2237	int error = 0;
2238	struct thread *td = sopt->sopt_td;
2239	int priv = 0;
2240
2241	/* turn off any old options. */
2242	if (opt) {
2243#ifdef DIAGNOSTIC
2244		if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
2245		    opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
2246		    opt->ip6po_rhinfo.ip6po_rhi_rthdr)
2247			printf("ip6_pcbopts: all specified options are cleared.\n");
2248#endif
2249		ip6_clearpktopts(opt, -1);
2250	} else
2251		opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
2252	*pktopt = NULL;
2253
2254	if (!m || m->m_len == 0) {
2255		/*
2256		 * Only turning off any previous options, regardless of
2257		 * whether the opt is just created or given.
2258		 */
2259		free(opt, M_IP6OPT);
2260		return (0);
2261	}
2262
2263	/*  set options specified by user. */
2264	if (td && !suser(td))
2265		priv = 1;
2266	if ((error = ip6_setpktoptions(m, opt, NULL, priv, 1,
2267	    so->so_proto->pr_protocol)) != 0) {
2268		ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2269		free(opt, M_IP6OPT);
2270		return (error);
2271	}
2272	*pktopt = opt;
2273	return (0);
2274}
2275
2276/*
2277 * initialize ip6_pktopts.  beware that there are non-zero default values in
2278 * the struct.
2279 */
2280void
2281init_ip6pktopts(opt)
2282	struct ip6_pktopts *opt;
2283{
2284
2285	bzero(opt, sizeof(*opt));
2286	opt->ip6po_hlim = -1;	/* -1 means default hop limit */
2287	opt->ip6po_tclass = -1;	/* -1 means default traffic class */
2288	opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2289	opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
2290}
2291
2292static int
2293ip6_pcbopt(optname, buf, len, pktopt, priv, uproto)
2294	int optname, len, priv;
2295	u_char *buf;
2296	struct ip6_pktopts **pktopt;
2297	int uproto;
2298{
2299	struct ip6_pktopts *opt;
2300
2301	if (*pktopt == NULL) {
2302		*pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2303		    M_WAITOK);
2304		init_ip6pktopts(*pktopt);
2305		(*pktopt)->needfree = 1;
2306	}
2307	opt = *pktopt;
2308
2309	return (ip6_setpktoption(optname, buf, len, opt, priv, 1, 0, uproto));
2310}
2311
2312static int
2313ip6_getpcbopt(pktopt, optname, sopt)
2314	struct ip6_pktopts *pktopt;
2315	struct sockopt *sopt;
2316	int optname;
2317{
2318	void *optdata = NULL;
2319	int optdatalen = 0;
2320	struct ip6_ext *ip6e;
2321	int error = 0;
2322	struct in6_pktinfo null_pktinfo;
2323	int deftclass = 0, on;
2324	int defminmtu = IP6PO_MINMTU_MCASTONLY;
2325	int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
2326
2327	switch (optname) {
2328	case IPV6_PKTINFO:
2329		if (pktopt && pktopt->ip6po_pktinfo)
2330			optdata = (void *)pktopt->ip6po_pktinfo;
2331		else {
2332			/* XXX: we don't have to do this every time... */
2333			bzero(&null_pktinfo, sizeof(null_pktinfo));
2334			optdata = (void *)&null_pktinfo;
2335		}
2336		optdatalen = sizeof(struct in6_pktinfo);
2337		break;
2338	case IPV6_TCLASS:
2339		if (pktopt && pktopt->ip6po_tclass >= 0)
2340			optdata = (void *)&pktopt->ip6po_tclass;
2341		else
2342			optdata = (void *)&deftclass;
2343		optdatalen = sizeof(int);
2344		break;
2345	case IPV6_HOPOPTS:
2346		if (pktopt && pktopt->ip6po_hbh) {
2347			optdata = (void *)pktopt->ip6po_hbh;
2348			ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
2349			optdatalen = (ip6e->ip6e_len + 1) << 3;
2350		}
2351		break;
2352	case IPV6_RTHDR:
2353		if (pktopt && pktopt->ip6po_rthdr) {
2354			optdata = (void *)pktopt->ip6po_rthdr;
2355			ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
2356			optdatalen = (ip6e->ip6e_len + 1) << 3;
2357		}
2358		break;
2359	case IPV6_RTHDRDSTOPTS:
2360		if (pktopt && pktopt->ip6po_dest1) {
2361			optdata = (void *)pktopt->ip6po_dest1;
2362			ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
2363			optdatalen = (ip6e->ip6e_len + 1) << 3;
2364		}
2365		break;
2366	case IPV6_DSTOPTS:
2367		if (pktopt && pktopt->ip6po_dest2) {
2368			optdata = (void *)pktopt->ip6po_dest2;
2369			ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
2370			optdatalen = (ip6e->ip6e_len + 1) << 3;
2371		}
2372		break;
2373	case IPV6_NEXTHOP:
2374		if (pktopt && pktopt->ip6po_nexthop) {
2375			optdata = (void *)pktopt->ip6po_nexthop;
2376			optdatalen = pktopt->ip6po_nexthop->sa_len;
2377		}
2378		break;
2379	case IPV6_USE_MIN_MTU:
2380		if (pktopt)
2381			optdata = (void *)&pktopt->ip6po_minmtu;
2382		else
2383			optdata = (void *)&defminmtu;
2384		optdatalen = sizeof(int);
2385		break;
2386	case IPV6_DONTFRAG:
2387		if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2388			on = 1;
2389		else
2390			on = 0;
2391		optdata = (void *)&on;
2392		optdatalen = sizeof(on);
2393		break;
2394	case IPV6_PREFER_TEMPADDR:
2395		if (pktopt)
2396			optdata = (void *)&pktopt->ip6po_prefer_tempaddr;
2397		else
2398			optdata = (void *)&defpreftemp;
2399		optdatalen = sizeof(int);
2400		break;
2401	default:		/* should not happen */
2402#ifdef DIAGNOSTIC
2403		panic("ip6_getpcbopt: unexpected option\n");
2404#endif
2405		return (ENOPROTOOPT);
2406	}
2407
2408	error = sooptcopyout(sopt, optdata, optdatalen);
2409
2410	return (error);
2411}
2412
2413void
2414ip6_clearpktopts(pktopt, optname)
2415	struct ip6_pktopts *pktopt;
2416	int optname;
2417{
2418	int needfree;
2419
2420	if (pktopt == NULL)
2421		return;
2422
2423	needfree = pktopt->needfree;
2424
2425	if (optname == -1 || optname == IPV6_PKTINFO) {
2426		if (needfree && pktopt->ip6po_pktinfo)
2427			free(pktopt->ip6po_pktinfo, M_IP6OPT);
2428		pktopt->ip6po_pktinfo = NULL;
2429	}
2430	if (optname == -1 || optname == IPV6_HOPLIMIT)
2431		pktopt->ip6po_hlim = -1;
2432	if (optname == -1 || optname == IPV6_TCLASS)
2433		pktopt->ip6po_tclass = -1;
2434	if (optname == -1 || optname == IPV6_NEXTHOP) {
2435		if (pktopt->ip6po_nextroute.ro_rt) {
2436			RTFREE(pktopt->ip6po_nextroute.ro_rt);
2437			pktopt->ip6po_nextroute.ro_rt = NULL;
2438		}
2439		if (needfree && pktopt->ip6po_nexthop)
2440			free(pktopt->ip6po_nexthop, M_IP6OPT);
2441		pktopt->ip6po_nexthop = NULL;
2442	}
2443	if (optname == -1 || optname == IPV6_HOPOPTS) {
2444		if (needfree && pktopt->ip6po_hbh)
2445			free(pktopt->ip6po_hbh, M_IP6OPT);
2446		pktopt->ip6po_hbh = NULL;
2447	}
2448	if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2449		if (needfree && pktopt->ip6po_dest1)
2450			free(pktopt->ip6po_dest1, M_IP6OPT);
2451		pktopt->ip6po_dest1 = NULL;
2452	}
2453	if (optname == -1 || optname == IPV6_RTHDR) {
2454		if (needfree && pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2455			free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2456		pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2457		if (pktopt->ip6po_route.ro_rt) {
2458			RTFREE(pktopt->ip6po_route.ro_rt);
2459			pktopt->ip6po_route.ro_rt = NULL;
2460		}
2461	}
2462	if (optname == -1 || optname == IPV6_DSTOPTS) {
2463		if (needfree && pktopt->ip6po_dest2)
2464			free(pktopt->ip6po_dest2, M_IP6OPT);
2465		pktopt->ip6po_dest2 = NULL;
2466	}
2467}
2468
2469#define PKTOPT_EXTHDRCPY(type) \
2470do {\
2471	if (src->type) {\
2472		int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2473		dst->type = malloc(hlen, M_IP6OPT, canwait);\
2474		if (dst->type == NULL && canwait == M_NOWAIT)\
2475			goto bad;\
2476		bcopy(src->type, dst->type, hlen);\
2477	}\
2478} while (/*CONSTCOND*/ 0)
2479
2480struct ip6_pktopts *
2481ip6_copypktopts(src, canwait)
2482	struct ip6_pktopts *src;
2483	int canwait;
2484{
2485	struct ip6_pktopts *dst;
2486
2487	if (src == NULL) {
2488		printf("ip6_clearpktopts: invalid argument\n");
2489		return (NULL);
2490	}
2491
2492	dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2493	if (dst == NULL && canwait == M_NOWAIT)
2494		return (NULL);
2495	bzero(dst, sizeof(*dst));
2496	dst->needfree = 1;
2497
2498	dst->ip6po_hlim = src->ip6po_hlim;
2499	dst->ip6po_tclass = src->ip6po_tclass;
2500	dst->ip6po_flags = src->ip6po_flags;
2501	if (src->ip6po_pktinfo) {
2502		dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2503		    M_IP6OPT, canwait);
2504		if (dst->ip6po_pktinfo == NULL && canwait == M_NOWAIT)
2505			goto bad;
2506		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2507	}
2508	if (src->ip6po_nexthop) {
2509		dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2510		    M_IP6OPT, canwait);
2511		if (dst->ip6po_nexthop == NULL && canwait == M_NOWAIT)
2512			goto bad;
2513		bcopy(src->ip6po_nexthop, dst->ip6po_nexthop,
2514		    src->ip6po_nexthop->sa_len);
2515	}
2516	PKTOPT_EXTHDRCPY(ip6po_hbh);
2517	PKTOPT_EXTHDRCPY(ip6po_dest1);
2518	PKTOPT_EXTHDRCPY(ip6po_dest2);
2519	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2520	return (dst);
2521
2522  bad:
2523	if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT);
2524	if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT);
2525	if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT);
2526	if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT);
2527	if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT);
2528	if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT);
2529	free(dst, M_IP6OPT);
2530	return (NULL);
2531}
2532#undef PKTOPT_EXTHDRCPY
2533
2534void
2535ip6_freepcbopts(pktopt)
2536	struct ip6_pktopts *pktopt;
2537{
2538	if (pktopt == NULL)
2539		return;
2540
2541	ip6_clearpktopts(pktopt, -1);
2542
2543	free(pktopt, M_IP6OPT);
2544}
2545
2546/*
2547 * Set the IP6 multicast options in response to user setsockopt().
2548 */
2549static int
2550ip6_setmoptions(optname, im6op, m)
2551	int optname;
2552	struct ip6_moptions **im6op;
2553	struct mbuf *m;
2554{
2555	int error = 0;
2556	u_int loop, ifindex;
2557	struct ipv6_mreq *mreq;
2558	struct ifnet *ifp;
2559	struct ip6_moptions *im6o = *im6op;
2560	struct route_in6 ro;
2561	struct sockaddr_in6 *dst;
2562	struct in6_multi_mship *imm;
2563	struct thread *td = curthread;
2564
2565	if (im6o == NULL) {
2566		/*
2567		 * No multicast option buffer attached to the pcb;
2568		 * allocate one and initialize to default values.
2569		 */
2570		im6o = (struct ip6_moptions *)
2571			malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
2572
2573		if (im6o == NULL)
2574			return (ENOBUFS);
2575		*im6op = im6o;
2576		im6o->im6o_multicast_ifp = NULL;
2577		im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2578		im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
2579		LIST_INIT(&im6o->im6o_memberships);
2580	}
2581
2582	switch (optname) {
2583
2584	case IPV6_MULTICAST_IF:
2585		/*
2586		 * Select the interface for outgoing multicast packets.
2587		 */
2588		if (m == NULL || m->m_len != sizeof(u_int)) {
2589			error = EINVAL;
2590			break;
2591		}
2592		bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
2593		if (ifindex < 0 || if_index < ifindex) {
2594			error = ENXIO;	/* XXX EINVAL? */
2595			break;
2596		}
2597		ifp = ifnet_byindex(ifindex);
2598		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2599			error = EADDRNOTAVAIL;
2600			break;
2601		}
2602		im6o->im6o_multicast_ifp = ifp;
2603		break;
2604
2605	case IPV6_MULTICAST_HOPS:
2606	    {
2607		/*
2608		 * Set the IP6 hoplimit for outgoing multicast packets.
2609		 */
2610		int optval;
2611		if (m == NULL || m->m_len != sizeof(int)) {
2612			error = EINVAL;
2613			break;
2614		}
2615		bcopy(mtod(m, u_int *), &optval, sizeof(optval));
2616		if (optval < -1 || optval >= 256)
2617			error = EINVAL;
2618		else if (optval == -1)
2619			im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2620		else
2621			im6o->im6o_multicast_hlim = optval;
2622		break;
2623	    }
2624
2625	case IPV6_MULTICAST_LOOP:
2626		/*
2627		 * Set the loopback flag for outgoing multicast packets.
2628		 * Must be zero or one.
2629		 */
2630		if (m == NULL || m->m_len != sizeof(u_int)) {
2631			error = EINVAL;
2632			break;
2633		}
2634		bcopy(mtod(m, u_int *), &loop, sizeof(loop));
2635		if (loop > 1) {
2636			error = EINVAL;
2637			break;
2638		}
2639		im6o->im6o_multicast_loop = loop;
2640		break;
2641
2642	case IPV6_JOIN_GROUP:
2643		/*
2644		 * Add a multicast group membership.
2645		 * Group must be a valid IP6 multicast address.
2646		 */
2647		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
2648			error = EINVAL;
2649			break;
2650		}
2651		mreq = mtod(m, struct ipv6_mreq *);
2652		if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
2653			/*
2654			 * We use the unspecified address to specify to accept
2655			 * all multicast addresses. Only super user is allowed
2656			 * to do this.
2657			 */
2658			if (suser(td)) {
2659				error = EACCES;
2660				break;
2661			}
2662		} else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
2663			error = EINVAL;
2664			break;
2665		}
2666
2667		/*
2668		 * If the interface is specified, validate it.
2669		 */
2670		if (mreq->ipv6mr_interface < 0 ||
2671		    if_index < mreq->ipv6mr_interface) {
2672			error = ENXIO;	/* XXX EINVAL? */
2673			break;
2674		}
2675		/*
2676		 * If no interface was explicitly specified, choose an
2677		 * appropriate one according to the given multicast address.
2678		 */
2679		if (mreq->ipv6mr_interface == 0) {
2680			/*
2681			 * If the multicast address is in node-local scope,
2682			 * the interface should be a loopback interface.
2683			 * Otherwise, look up the routing table for the
2684			 * address, and choose the outgoing interface.
2685			 *   XXX: is it a good approach?
2686			 */
2687			if (IN6_IS_ADDR_MC_INTFACELOCAL(&mreq->ipv6mr_multiaddr)) {
2688				ifp = &loif[0];
2689			} else {
2690				ro.ro_rt = NULL;
2691				dst = (struct sockaddr_in6 *)&ro.ro_dst;
2692				bzero(dst, sizeof(*dst));
2693				dst->sin6_len = sizeof(struct sockaddr_in6);
2694				dst->sin6_family = AF_INET6;
2695				dst->sin6_addr = mreq->ipv6mr_multiaddr;
2696				rtalloc((struct route *)&ro);
2697				if (ro.ro_rt == NULL) {
2698					error = EADDRNOTAVAIL;
2699					break;
2700				}
2701				ifp = ro.ro_rt->rt_ifp;
2702				RTFREE(ro.ro_rt);
2703			}
2704		} else
2705			ifp = ifnet_byindex(mreq->ipv6mr_interface);
2706
2707		/*
2708		 * See if we found an interface, and confirm that it
2709		 * supports multicast
2710		 */
2711		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2712			error = EADDRNOTAVAIL;
2713			break;
2714		}
2715		/*
2716		 * Put interface index into the multicast address,
2717		 * if the address has link-local scope.
2718		 */
2719		if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
2720			mreq->ipv6mr_multiaddr.s6_addr16[1] =
2721			    htons(ifp->if_index);
2722		}
2723		/*
2724		 * See if the membership already exists.
2725		 */
2726		for (imm = im6o->im6o_memberships.lh_first;
2727		     imm != NULL; imm = imm->i6mm_chain.le_next)
2728			if (imm->i6mm_maddr->in6m_ifp == ifp &&
2729			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2730					       &mreq->ipv6mr_multiaddr))
2731				break;
2732		if (imm != NULL) {
2733			error = EADDRINUSE;
2734			break;
2735		}
2736		/*
2737		 * Everything looks good; add a new record to the multicast
2738		 * address list for the given interface.
2739		 */
2740		imm = malloc(sizeof(*imm), M_IPMADDR, M_WAITOK);
2741		if (imm == NULL) {
2742			error = ENOBUFS;
2743			break;
2744		}
2745		if ((imm->i6mm_maddr =
2746		     in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) {
2747			free(imm, M_IPMADDR);
2748			break;
2749		}
2750		LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
2751		break;
2752
2753	case IPV6_LEAVE_GROUP:
2754		/*
2755		 * Drop a multicast group membership.
2756		 * Group must be a valid IP6 multicast address.
2757		 */
2758		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
2759			error = EINVAL;
2760			break;
2761		}
2762		mreq = mtod(m, struct ipv6_mreq *);
2763		if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
2764			if (suser(td)) {
2765				error = EACCES;
2766				break;
2767			}
2768		} else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
2769			error = EINVAL;
2770			break;
2771		}
2772		/*
2773		 * If an interface address was specified, get a pointer
2774		 * to its ifnet structure.
2775		 */
2776		if (mreq->ipv6mr_interface < 0
2777		 || if_index < mreq->ipv6mr_interface) {
2778			error = ENXIO;	/* XXX EINVAL? */
2779			break;
2780		}
2781		ifp = ifnet_byindex(mreq->ipv6mr_interface);
2782		/*
2783		 * Put interface index into the multicast address,
2784		 * if the address has link-local scope.
2785		 */
2786		if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
2787			mreq->ipv6mr_multiaddr.s6_addr16[1]
2788				= htons(mreq->ipv6mr_interface);
2789		}
2790
2791		/*
2792		 * Find the membership in the membership list.
2793		 */
2794		for (imm = im6o->im6o_memberships.lh_first;
2795		     imm != NULL; imm = imm->i6mm_chain.le_next) {
2796			if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
2797			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2798			    &mreq->ipv6mr_multiaddr))
2799				break;
2800		}
2801		if (imm == NULL) {
2802			/* Unable to resolve interface */
2803			error = EADDRNOTAVAIL;
2804			break;
2805		}
2806		/*
2807		 * Give up the multicast address record to which the
2808		 * membership points.
2809		 */
2810		LIST_REMOVE(imm, i6mm_chain);
2811		in6_delmulti(imm->i6mm_maddr);
2812		free(imm, M_IPMADDR);
2813		break;
2814
2815	default:
2816		error = EOPNOTSUPP;
2817		break;
2818	}
2819
2820	/*
2821	 * If all options have default values, no need to keep the mbuf.
2822	 */
2823	if (im6o->im6o_multicast_ifp == NULL &&
2824	    im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
2825	    im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2826	    im6o->im6o_memberships.lh_first == NULL) {
2827		free(*im6op, M_IPMOPTS);
2828		*im6op = NULL;
2829	}
2830
2831	return (error);
2832}
2833
2834/*
2835 * Return the IP6 multicast options in response to user getsockopt().
2836 */
2837static int
2838ip6_getmoptions(optname, im6o, mp)
2839	int optname;
2840	struct ip6_moptions *im6o;
2841	struct mbuf **mp;
2842{
2843	u_int *hlim, *loop, *ifindex;
2844
2845	*mp = m_get(M_TRYWAIT, MT_HEADER);		/* XXX */
2846
2847	switch (optname) {
2848
2849	case IPV6_MULTICAST_IF:
2850		ifindex = mtod(*mp, u_int *);
2851		(*mp)->m_len = sizeof(u_int);
2852		if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
2853			*ifindex = 0;
2854		else
2855			*ifindex = im6o->im6o_multicast_ifp->if_index;
2856		return (0);
2857
2858	case IPV6_MULTICAST_HOPS:
2859		hlim = mtod(*mp, u_int *);
2860		(*mp)->m_len = sizeof(u_int);
2861		if (im6o == NULL)
2862			*hlim = ip6_defmcasthlim;
2863		else
2864			*hlim = im6o->im6o_multicast_hlim;
2865		return (0);
2866
2867	case IPV6_MULTICAST_LOOP:
2868		loop = mtod(*mp, u_int *);
2869		(*mp)->m_len = sizeof(u_int);
2870		if (im6o == NULL)
2871			*loop = ip6_defmcasthlim;
2872		else
2873			*loop = im6o->im6o_multicast_loop;
2874		return (0);
2875
2876	default:
2877		return (EOPNOTSUPP);
2878	}
2879}
2880
2881/*
2882 * Discard the IP6 multicast options.
2883 */
2884void
2885ip6_freemoptions(im6o)
2886	struct ip6_moptions *im6o;
2887{
2888	struct in6_multi_mship *imm;
2889
2890	if (im6o == NULL)
2891		return;
2892
2893	while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
2894		LIST_REMOVE(imm, i6mm_chain);
2895		if (imm->i6mm_maddr)
2896			in6_delmulti(imm->i6mm_maddr);
2897		free(imm, M_IPMADDR);
2898	}
2899	free(im6o, M_IPMOPTS);
2900}
2901
2902/*
2903 * Set IPv6 outgoing packet options based on advanced API.
2904 */
2905int
2906ip6_setpktoptions(control, opt, stickyopt, priv, needcopy, uproto)
2907	struct mbuf *control;
2908	struct ip6_pktopts *opt, *stickyopt;
2909	int priv, needcopy, uproto;
2910{
2911	struct cmsghdr *cm = 0;
2912
2913	if (control == 0 || opt == 0)
2914		return (EINVAL);
2915
2916	if (stickyopt) {
2917		/*
2918		 * If stickyopt is provided, make a local copy of the options
2919		 * for this particular packet, then override them by ancillary
2920		 * objects.
2921		 * XXX: need to gain a reference for the cached route of the
2922		 * next hop in case of the overriding.
2923		 */
2924		*opt = *stickyopt;
2925		if (opt->ip6po_nextroute.ro_rt) {
2926			RT_LOCK(opt->ip6po_nextroute.ro_rt);
2927			RT_ADDREF(opt->ip6po_nextroute.ro_rt);
2928			RT_UNLOCK(opt->ip6po_nextroute.ro_rt);
2929		}
2930	} else
2931		init_ip6pktopts(opt);
2932	opt->needfree = needcopy;
2933
2934	/*
2935	 * XXX: Currently, we assume all the optional information is stored
2936	 * in a single mbuf.
2937	 */
2938	if (control->m_next)
2939		return (EINVAL);
2940
2941	for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2942	    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2943		int error;
2944
2945		if (control->m_len < CMSG_LEN(0))
2946			return (EINVAL);
2947
2948		cm = mtod(control, struct cmsghdr *);
2949		if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2950			return (EINVAL);
2951		if (cm->cmsg_level != IPPROTO_IPV6)
2952			continue;
2953
2954		error = ip6_setpktoption(cm->cmsg_type, CMSG_DATA(cm),
2955		    cm->cmsg_len - CMSG_LEN(0), opt, priv, needcopy, 1, uproto);
2956		if (error)
2957			return (error);
2958	}
2959
2960	return (0);
2961}
2962
2963/*
2964 * Set a particular packet option, as a sticky option or an ancillary data
2965 * item.  "len" can be 0 only when it's a sticky option.
2966 * We have 4 cases of combination of "sticky" and "cmsg":
2967 * "sticky=0, cmsg=0": impossible
2968 * "sticky=0, cmsg=1": RFC2292 or rfc2292bis ancillary data
2969 * "sticky=1, cmsg=0": rfc2292bis socket option
2970 * "sticky=1, cmsg=1": RFC2292 socket option
2971 */
2972static int
2973ip6_setpktoption(optname, buf, len, opt, priv, sticky, cmsg, uproto)
2974	int optname, len, priv, sticky, cmsg, uproto;
2975	u_char *buf;
2976	struct ip6_pktopts *opt;
2977{
2978	int minmtupolicy, preftemp;
2979
2980	if (!sticky && !cmsg) {
2981#ifdef DIAGNOSTIC
2982		printf("ip6_setpktoption: impossible case\n");
2983#endif
2984		return (EINVAL);
2985	}
2986
2987	/*
2988	 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2989	 * not be specified in the context of rfc2292bis.  Conversely,
2990	 * rfc2292bis types should not be specified in the context of RFC2292.
2991	 */
2992	if (!cmsg) {
2993		switch (optname) {
2994		case IPV6_2292PKTINFO:
2995		case IPV6_2292HOPLIMIT:
2996		case IPV6_2292NEXTHOP:
2997		case IPV6_2292HOPOPTS:
2998		case IPV6_2292DSTOPTS:
2999		case IPV6_2292RTHDR:
3000		case IPV6_2292PKTOPTIONS:
3001			return (ENOPROTOOPT);
3002		}
3003	}
3004	if (sticky && cmsg) {
3005		switch (optname) {
3006		case IPV6_PKTINFO:
3007		case IPV6_HOPLIMIT:
3008		case IPV6_NEXTHOP:
3009		case IPV6_HOPOPTS:
3010		case IPV6_DSTOPTS:
3011		case IPV6_RTHDRDSTOPTS:
3012		case IPV6_RTHDR:
3013		case IPV6_USE_MIN_MTU:
3014		case IPV6_DONTFRAG:
3015		case IPV6_TCLASS:
3016		case IPV6_PREFER_TEMPADDR: /* XXX: not an rfc2292bis option */
3017			return (ENOPROTOOPT);
3018		}
3019	}
3020
3021	switch (optname) {
3022	case IPV6_2292PKTINFO:
3023	case IPV6_PKTINFO:
3024	{
3025		struct ifnet *ifp = NULL;
3026		struct in6_pktinfo *pktinfo;
3027
3028		if (len != sizeof(struct in6_pktinfo))
3029			return (EINVAL);
3030
3031		pktinfo = (struct in6_pktinfo *)buf;
3032
3033		/*
3034		 * An application can clear any sticky IPV6_PKTINFO option by
3035		 * doing a "regular" setsockopt with ipi6_addr being
3036		 * in6addr_any and ipi6_ifindex being zero.
3037		 * [RFC 3542, Section 6]
3038		 */
3039		if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
3040		    pktinfo->ipi6_ifindex == 0 &&
3041		    IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
3042			ip6_clearpktopts(opt, optname);
3043			break;
3044		}
3045
3046		if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
3047		    sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
3048			return (EINVAL);
3049		}
3050
3051		/* validate the interface index if specified. */
3052		if (pktinfo->ipi6_ifindex > if_index ||
3053		    pktinfo->ipi6_ifindex < 0) {
3054			 return (ENXIO);
3055		}
3056		if (pktinfo->ipi6_ifindex) {
3057			ifp = ifnet_byindex(pktinfo->ipi6_ifindex);
3058			if (ifp == NULL)
3059				return (ENXIO);
3060		}
3061
3062		/*
3063		 * We store the address anyway, and let in6_selectsrc()
3064		 * validate the specified address.  This is because ipi6_addr
3065		 * may not have enough information about its scope zone, and
3066		 * we may need additional information (such as outgoing
3067		 * interface or the scope zone of a destination address) to
3068		 * disambiguate the scope.
3069		 * XXX: the delay of the validation may confuse the
3070		 * application when it is used as a sticky option.
3071		 */
3072		if (sticky) {
3073			if (opt->ip6po_pktinfo == NULL) {
3074				opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
3075				    M_IP6OPT, M_WAITOK);
3076			}
3077			bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo));
3078		} else
3079			opt->ip6po_pktinfo = pktinfo;
3080		break;
3081	}
3082
3083	case IPV6_2292HOPLIMIT:
3084	case IPV6_HOPLIMIT:
3085	{
3086		int *hlimp;
3087
3088		/*
3089		 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
3090		 * to simplify the ordering among hoplimit options.
3091		 */
3092		if (optname == IPV6_HOPLIMIT && sticky)
3093			return (ENOPROTOOPT);
3094
3095		if (len != sizeof(int))
3096			return (EINVAL);
3097		hlimp = (int *)buf;
3098		if (*hlimp < -1 || *hlimp > 255)
3099			return (EINVAL);
3100
3101		opt->ip6po_hlim = *hlimp;
3102		break;
3103	}
3104
3105	case IPV6_TCLASS:
3106	{
3107		int tclass;
3108
3109		if (len != sizeof(int))
3110			return (EINVAL);
3111		tclass = *(int *)buf;
3112		if (tclass < -1 || tclass > 255)
3113			return (EINVAL);
3114
3115		opt->ip6po_tclass = tclass;
3116		break;
3117	}
3118
3119	case IPV6_2292NEXTHOP:
3120	case IPV6_NEXTHOP:
3121		if (!priv)
3122			return (EPERM);
3123
3124		if (len == 0) {	/* just remove the option */
3125			ip6_clearpktopts(opt, IPV6_NEXTHOP);
3126			break;
3127		}
3128
3129		/* check if cmsg_len is large enough for sa_len */
3130		if (len < sizeof(struct sockaddr) || len < *buf)
3131			return (EINVAL);
3132
3133		switch (((struct sockaddr *)buf)->sa_family) {
3134		case AF_INET6:
3135		{
3136			struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
3137#if 0
3138			int error;
3139#endif
3140
3141			if (sa6->sin6_len != sizeof(struct sockaddr_in6))
3142				return (EINVAL);
3143
3144			if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
3145			    IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
3146				return (EINVAL);
3147			}
3148#if 0
3149			if ((error = scope6_check_id(sa6, ip6_use_defzone))
3150			    != 0) {
3151				return (error);
3152			}
3153#endif
3154			sa6->sin6_scope_id = 0; /* XXX */
3155			break;
3156		}
3157		case AF_LINK:	/* should eventually be supported */
3158		default:
3159			return (EAFNOSUPPORT);
3160		}
3161
3162		/* turn off the previous option, then set the new option. */
3163		ip6_clearpktopts(opt, IPV6_NEXTHOP);
3164		if (sticky) {
3165			opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_WAITOK);
3166			bcopy(buf, opt->ip6po_nexthop, *buf);
3167		} else
3168			opt->ip6po_nexthop = (struct sockaddr *)buf;
3169		break;
3170
3171	case IPV6_2292HOPOPTS:
3172	case IPV6_HOPOPTS:
3173	{
3174		struct ip6_hbh *hbh;
3175		int hbhlen;
3176
3177		/*
3178		 * XXX: We don't allow a non-privileged user to set ANY HbH
3179		 * options, since per-option restriction has too much
3180		 * overhead.
3181		 */
3182		if (!priv)
3183			return (EPERM);
3184
3185		if (len == 0) {
3186			ip6_clearpktopts(opt, IPV6_HOPOPTS);
3187			break;	/* just remove the option */
3188		}
3189
3190		/* message length validation */
3191		if (len < sizeof(struct ip6_hbh))
3192			return (EINVAL);
3193		hbh = (struct ip6_hbh *)buf;
3194		hbhlen = (hbh->ip6h_len + 1) << 3;
3195		if (len != hbhlen)
3196			return (EINVAL);
3197
3198		/* turn off the previous option, then set the new option. */
3199		ip6_clearpktopts(opt, IPV6_HOPOPTS);
3200		if (sticky) {
3201			opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_WAITOK);
3202			bcopy(hbh, opt->ip6po_hbh, hbhlen);
3203		} else
3204			opt->ip6po_hbh = hbh;
3205
3206		break;
3207	}
3208
3209	case IPV6_2292DSTOPTS:
3210	case IPV6_DSTOPTS:
3211	case IPV6_RTHDRDSTOPTS:
3212	{
3213		struct ip6_dest *dest, **newdest = NULL;
3214		int destlen;
3215
3216		if (!priv)	/* XXX: see the comment for IPV6_HOPOPTS */
3217			return (EPERM);
3218
3219		if (len == 0) {
3220			ip6_clearpktopts(opt, optname);
3221			break;	/* just remove the option */
3222		}
3223
3224		/* message length validation */
3225		if (len < sizeof(struct ip6_dest))
3226			return (EINVAL);
3227		dest = (struct ip6_dest *)buf;
3228		destlen = (dest->ip6d_len + 1) << 3;
3229		if (len != destlen)
3230			return (EINVAL);
3231
3232		/*
3233		 * Determine the position that the destination options header
3234		 * should be inserted; before or after the routing header.
3235		 */
3236		switch (optname) {
3237		case IPV6_2292DSTOPTS:
3238			/*
3239			 * The old advacned API is ambiguous on this point.
3240			 * Our approach is to determine the position based
3241			 * according to the existence of a routing header.
3242			 * Note, however, that this depends on the order of the
3243			 * extension headers in the ancillary data; the 1st
3244			 * part of the destination options header must appear
3245			 * before the routing header in the ancillary data,
3246			 * too.
3247			 * RFC2292bis solved the ambiguity by introducing
3248			 * separate ancillary data or option types.
3249			 */
3250			if (opt->ip6po_rthdr == NULL)
3251				newdest = &opt->ip6po_dest1;
3252			else
3253				newdest = &opt->ip6po_dest2;
3254			break;
3255		case IPV6_RTHDRDSTOPTS:
3256			newdest = &opt->ip6po_dest1;
3257			break;
3258		case IPV6_DSTOPTS:
3259			newdest = &opt->ip6po_dest2;
3260			break;
3261		}
3262
3263		/* turn off the previous option, then set the new option. */
3264		ip6_clearpktopts(opt, optname);
3265		if (sticky) {
3266			*newdest = malloc(destlen, M_IP6OPT, M_WAITOK);
3267			bcopy(dest, *newdest, destlen);
3268		} else
3269			*newdest = dest;
3270
3271		break;
3272	}
3273
3274	case IPV6_2292RTHDR:
3275	case IPV6_RTHDR:
3276	{
3277		struct ip6_rthdr *rth;
3278		int rthlen;
3279
3280		if (len == 0) {
3281			ip6_clearpktopts(opt, IPV6_RTHDR);
3282			break;	/* just remove the option */
3283		}
3284
3285		/* message length validation */
3286		if (len < sizeof(struct ip6_rthdr))
3287			return (EINVAL);
3288		rth = (struct ip6_rthdr *)buf;
3289		rthlen = (rth->ip6r_len + 1) << 3;
3290		if (len != rthlen)
3291			return (EINVAL);
3292
3293		switch (rth->ip6r_type) {
3294		case IPV6_RTHDR_TYPE_0:
3295			if (rth->ip6r_len == 0)	/* must contain one addr */
3296				return (EINVAL);
3297			if (rth->ip6r_len % 2) /* length must be even */
3298				return (EINVAL);
3299			if (rth->ip6r_len / 2 != rth->ip6r_segleft)
3300				return (EINVAL);
3301			break;
3302		default:
3303			return (EINVAL);	/* not supported */
3304		}
3305
3306		/* turn off the previous option */
3307		ip6_clearpktopts(opt, IPV6_RTHDR);
3308		if (sticky) {
3309			opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_WAITOK);
3310			bcopy(rth, opt->ip6po_rthdr, rthlen);
3311		} else
3312			opt->ip6po_rthdr = rth;
3313
3314		break;
3315	}
3316
3317	case IPV6_USE_MIN_MTU:
3318		if (len != sizeof(int))
3319			return (EINVAL);
3320		minmtupolicy = *(int *)buf;
3321		if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
3322		    minmtupolicy != IP6PO_MINMTU_DISABLE &&
3323		    minmtupolicy != IP6PO_MINMTU_ALL) {
3324			return (EINVAL);
3325		}
3326		opt->ip6po_minmtu = minmtupolicy;
3327		break;
3328
3329	case IPV6_DONTFRAG:
3330		if (len != sizeof(int))
3331			return (EINVAL);
3332
3333		if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
3334			/*
3335			 * we ignore this option for TCP sockets.
3336			 * (rfc2292bis leaves this case unspecified.)
3337			 */
3338			opt->ip6po_flags &= ~IP6PO_DONTFRAG;
3339		} else
3340			opt->ip6po_flags |= IP6PO_DONTFRAG;
3341		break;
3342
3343	case IPV6_PREFER_TEMPADDR:
3344		if (len != sizeof(int))
3345			return (EINVAL);
3346		preftemp = *(int *)buf;
3347		if (preftemp != IP6PO_TEMPADDR_SYSTEM &&
3348		    preftemp != IP6PO_TEMPADDR_NOTPREFER &&
3349		    preftemp != IP6PO_TEMPADDR_PREFER) {
3350			return (EINVAL);
3351		}
3352		opt->ip6po_prefer_tempaddr = preftemp;
3353		break;
3354
3355	default:
3356		return (ENOPROTOOPT);
3357	} /* end of switch */
3358
3359	return (0);
3360}
3361
3362/*
3363 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
3364 * packet to the input queue of a specified interface.  Note that this
3365 * calls the output routine of the loopback "driver", but with an interface
3366 * pointer that might NOT be &loif -- easier than replicating that code here.
3367 */
3368void
3369ip6_mloopback(ifp, m, dst)
3370	struct ifnet *ifp;
3371	struct mbuf *m;
3372	struct sockaddr_in6 *dst;
3373{
3374	struct mbuf *copym;
3375	struct ip6_hdr *ip6;
3376
3377	copym = m_copy(m, 0, M_COPYALL);
3378	if (copym == NULL)
3379		return;
3380
3381	/*
3382	 * Make sure to deep-copy IPv6 header portion in case the data
3383	 * is in an mbuf cluster, so that we can safely override the IPv6
3384	 * header portion later.
3385	 */
3386	if ((copym->m_flags & M_EXT) != 0 ||
3387	    copym->m_len < sizeof(struct ip6_hdr)) {
3388		copym = m_pullup(copym, sizeof(struct ip6_hdr));
3389		if (copym == NULL)
3390			return;
3391	}
3392
3393#ifdef DIAGNOSTIC
3394	if (copym->m_len < sizeof(*ip6)) {
3395		m_freem(copym);
3396		return;
3397	}
3398#endif
3399
3400	ip6 = mtod(copym, struct ip6_hdr *);
3401	/*
3402	 * clear embedded scope identifiers if necessary.
3403	 * in6_clearscope will touch the addresses only when necessary.
3404	 */
3405	in6_clearscope(&ip6->ip6_src);
3406	in6_clearscope(&ip6->ip6_dst);
3407
3408	(void)if_simloop(ifp, copym, dst->sin6_family, NULL);
3409}
3410
3411/*
3412 * Chop IPv6 header off from the payload.
3413 */
3414static int
3415ip6_splithdr(m, exthdrs)
3416	struct mbuf *m;
3417	struct ip6_exthdrs *exthdrs;
3418{
3419	struct mbuf *mh;
3420	struct ip6_hdr *ip6;
3421
3422	ip6 = mtod(m, struct ip6_hdr *);
3423	if (m->m_len > sizeof(*ip6)) {
3424		MGETHDR(mh, M_DONTWAIT, MT_HEADER);
3425		if (mh == 0) {
3426			m_freem(m);
3427			return ENOBUFS;
3428		}
3429		M_MOVE_PKTHDR(mh, m);
3430		MH_ALIGN(mh, sizeof(*ip6));
3431		m->m_len -= sizeof(*ip6);
3432		m->m_data += sizeof(*ip6);
3433		mh->m_next = m;
3434		m = mh;
3435		m->m_len = sizeof(*ip6);
3436		bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
3437	}
3438	exthdrs->ip6e_ip6 = m;
3439	return 0;
3440}
3441
3442/*
3443 * Compute IPv6 extension header length.
3444 */
3445int
3446ip6_optlen(in6p)
3447	struct in6pcb *in6p;
3448{
3449	int len;
3450
3451	if (!in6p->in6p_outputopts)
3452		return 0;
3453
3454	len = 0;
3455#define elen(x) \
3456    (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3457
3458	len += elen(in6p->in6p_outputopts->ip6po_hbh);
3459	if (in6p->in6p_outputopts->ip6po_rthdr)
3460		/* dest1 is valid with rthdr only */
3461		len += elen(in6p->in6p_outputopts->ip6po_dest1);
3462	len += elen(in6p->in6p_outputopts->ip6po_rthdr);
3463	len += elen(in6p->in6p_outputopts->ip6po_dest2);
3464	return len;
3465#undef elen
3466}
3467