ip_input.c revision 73402
1/*
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
34 * $FreeBSD: head/sys/netinet/ip_input.c 73402 2001-03-04 03:22:36Z truckman $
35 */
36
37#define	_IP_VHL
38
39#include "opt_bootp.h"
40#include "opt_ipfw.h"
41#include "opt_ipdn.h"
42#include "opt_ipdivert.h"
43#include "opt_ipfilter.h"
44#include "opt_ipstealth.h"
45#include "opt_ipsec.h"
46#include "opt_pfil_hooks.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/mbuf.h>
51#include <sys/malloc.h>
52#include <sys/domain.h>
53#include <sys/protosw.h>
54#include <sys/socket.h>
55#include <sys/time.h>
56#include <sys/kernel.h>
57#include <sys/syslog.h>
58#include <sys/sysctl.h>
59
60#include <net/pfil.h>
61#include <net/if.h>
62#include <net/if_var.h>
63#include <net/if_dl.h>
64#include <net/route.h>
65#include <net/netisr.h>
66#include <net/intrq.h>
67
68#include <netinet/in.h>
69#include <netinet/in_systm.h>
70#include <netinet/in_var.h>
71#include <netinet/ip.h>
72#include <netinet/in_pcb.h>
73#include <netinet/ip_var.h>
74#include <netinet/ip_icmp.h>
75#include <machine/in_cksum.h>
76
77#include <netinet/ipprotosw.h>
78
79#include <sys/socketvar.h>
80
81#include <netinet/ip_fw.h>
82
83#ifdef IPSEC
84#include <netinet6/ipsec.h>
85#include <netkey/key.h>
86#endif
87
88#include "faith.h"
89#if defined(NFAITH) && NFAITH > 0
90#include <net/if_types.h>
91#endif
92
93#ifdef DUMMYNET
94#include <netinet/ip_dummynet.h>
95#endif
96
97int rsvp_on = 0;
98static int ip_rsvp_on;
99struct socket *ip_rsvpd;
100
101int	ipforwarding = 0;
102SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
103    &ipforwarding, 0, "Enable IP forwarding between interfaces");
104
105static int	ipsendredirects = 1; /* XXX */
106SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
107    &ipsendredirects, 0, "Enable sending IP redirects");
108
109int	ip_defttl = IPDEFTTL;
110SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
111    &ip_defttl, 0, "Maximum TTL on IP packets");
112
113static int	ip_dosourceroute = 0;
114SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
115    &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
116
117static int	ip_acceptsourceroute = 0;
118SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
119    CTLFLAG_RW, &ip_acceptsourceroute, 0,
120    "Enable accepting source routed IP packets");
121
122static int	ip_keepfaith = 0;
123SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
124	&ip_keepfaith,	0,
125	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
126
127/*
128 * XXX - Setting ip_checkinterface mostly implements the receive side of
129 * the Strong ES model described in RFC 1122, but since the routing table
130 * and transmit implementation do not implement the Strong ES model, so
131 * setting this to 1 results in an odd hybrid.
132 */
133static int	ip_checkinterface = 1;
134SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
135    &ip_checkinterface, 0, "Verify packet arrives on correct interface");
136
137#ifdef DIAGNOSTIC
138static int	ipprintfs = 0;
139#endif
140
141extern	struct domain inetdomain;
142extern	struct ipprotosw inetsw[];
143u_char	ip_protox[IPPROTO_MAX];
144static int	ipqmaxlen = IFQ_MAXLEN;
145struct	in_ifaddrhead in_ifaddrhead; /* first inet address */
146SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
147    &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
148SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
149    &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
150
151struct ipstat ipstat;
152SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RD,
153    &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
154
155/* Packet reassembly stuff */
156#define IPREASS_NHASH_LOG2      6
157#define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
158#define IPREASS_HMASK           (IPREASS_NHASH - 1)
159#define IPREASS_HASH(x,y) \
160	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
161
162static struct ipq ipq[IPREASS_NHASH];
163static int    nipq = 0;         /* total # of reass queues */
164static int    maxnipq;
165const  int    ipintrq_present = 1;
166
167#ifdef IPCTL_DEFMTU
168SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
169    &ip_mtu, 0, "Default MTU");
170#endif
171
172#ifdef IPSTEALTH
173static int	ipstealth = 0;
174SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
175    &ipstealth, 0, "");
176#endif
177
178
179/* Firewall hooks */
180ip_fw_chk_t *ip_fw_chk_ptr;
181ip_fw_ctl_t *ip_fw_ctl_ptr;
182int fw_enable = 1 ;
183
184#ifdef DUMMYNET
185ip_dn_ctl_t *ip_dn_ctl_ptr;
186#endif
187
188
189/*
190 * We need to save the IP options in case a protocol wants to respond
191 * to an incoming packet over the same route if the packet got here
192 * using IP source routing.  This allows connection establishment and
193 * maintenance when the remote end is on a network that is not known
194 * to us.
195 */
196static int	ip_nhops = 0;
197static	struct ip_srcrt {
198	struct	in_addr dst;			/* final destination */
199	char	nop;				/* one NOP to align */
200	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
201	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
202} ip_srcrt;
203
204struct sockaddr_in *ip_fw_fwd_addr;
205
206static void	save_rte __P((u_char *, struct in_addr));
207static int	ip_dooptions __P((struct mbuf *));
208static void	ip_forward __P((struct mbuf *, int));
209static void	ip_freef __P((struct ipq *));
210#ifdef IPDIVERT
211static struct	mbuf *ip_reass __P((struct mbuf *,
212			struct ipq *, struct ipq *, u_int32_t *, u_int16_t *));
213#else
214static struct	mbuf *ip_reass __P((struct mbuf *, struct ipq *, struct ipq *));
215#endif
216static struct	in_ifaddr *ip_rtaddr __P((struct in_addr));
217static void	ipintr __P((void));
218
219/*
220 * IP initialization: fill in IP protocol switch table.
221 * All protocols not implemented in kernel go to raw IP protocol handler.
222 */
223void
224ip_init()
225{
226	register struct ipprotosw *pr;
227	register int i;
228
229	TAILQ_INIT(&in_ifaddrhead);
230	pr = (struct ipprotosw *)pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
231	if (pr == 0)
232		panic("ip_init");
233	for (i = 0; i < IPPROTO_MAX; i++)
234		ip_protox[i] = pr - inetsw;
235	for (pr = (struct ipprotosw *)inetdomain.dom_protosw;
236	    pr < (struct ipprotosw *)inetdomain.dom_protoswNPROTOSW; pr++)
237		if (pr->pr_domain->dom_family == PF_INET &&
238		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
239			ip_protox[pr->pr_protocol] = pr - inetsw;
240
241	for (i = 0; i < IPREASS_NHASH; i++)
242	    ipq[i].next = ipq[i].prev = &ipq[i];
243
244	maxnipq = nmbclusters/4;
245
246	ip_id = time_second & 0xffff;
247	ipintrq.ifq_maxlen = ipqmaxlen;
248	mtx_init(&ipintrq.ifq_mtx, "ip_inq", MTX_DEF);
249
250	register_netisr(NETISR_IP, ipintr);
251}
252
253static struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
254static struct	route ipforward_rt;
255
256/*
257 * Ip input routine.  Checksum and byte swap header.  If fragmented
258 * try to reassemble.  Process options.  Pass to next level.
259 */
260void
261ip_input(struct mbuf *m)
262{
263	struct ip *ip;
264	struct ipq *fp;
265	struct in_ifaddr *ia = NULL;
266	int    i, hlen, checkif;
267	u_short sum;
268	u_int16_t divert_cookie;		/* firewall cookie */
269	struct in_addr pkt_dst;
270#ifdef IPDIVERT
271	u_int32_t divert_info = 0;		/* packet divert/tee info */
272#endif
273	struct ip_fw_chain *rule = NULL;
274#ifdef PFIL_HOOKS
275	struct packet_filter_hook *pfh;
276	struct mbuf *m0;
277	int rv;
278#endif /* PFIL_HOOKS */
279
280#ifdef IPDIVERT
281	/* Get and reset firewall cookie */
282	divert_cookie = ip_divert_cookie;
283	ip_divert_cookie = 0;
284#else
285	divert_cookie = 0;
286#endif
287
288#if defined(IPFIREWALL) && defined(DUMMYNET)
289        /*
290         * dummynet packet are prepended a vestigial mbuf with
291         * m_type = MT_DUMMYNET and m_data pointing to the matching
292         * rule.
293         */
294        if (m->m_type == MT_DUMMYNET) {
295            rule = (struct ip_fw_chain *)(m->m_data) ;
296            m = m->m_next ;
297            ip = mtod(m, struct ip *);
298            hlen = IP_VHL_HL(ip->ip_vhl) << 2;
299            goto iphack ;
300        } else
301            rule = NULL ;
302#endif
303
304#ifdef	DIAGNOSTIC
305	if (m == NULL || (m->m_flags & M_PKTHDR) == 0)
306		panic("ip_input no HDR");
307#endif
308	ipstat.ips_total++;
309
310	if (m->m_pkthdr.len < sizeof(struct ip))
311		goto tooshort;
312
313	if (m->m_len < sizeof (struct ip) &&
314	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
315		ipstat.ips_toosmall++;
316		return;
317	}
318	ip = mtod(m, struct ip *);
319
320	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
321		ipstat.ips_badvers++;
322		goto bad;
323	}
324
325	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
326	if (hlen < sizeof(struct ip)) {	/* minimum header length */
327		ipstat.ips_badhlen++;
328		goto bad;
329	}
330	if (hlen > m->m_len) {
331		if ((m = m_pullup(m, hlen)) == 0) {
332			ipstat.ips_badhlen++;
333			return;
334		}
335		ip = mtod(m, struct ip *);
336	}
337	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
338		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
339	} else {
340		if (hlen == sizeof(struct ip)) {
341			sum = in_cksum_hdr(ip);
342		} else {
343			sum = in_cksum(m, hlen);
344		}
345	}
346	if (sum) {
347		ipstat.ips_badsum++;
348		goto bad;
349	}
350
351	/*
352	 * Convert fields to host representation.
353	 */
354	NTOHS(ip->ip_len);
355	if (ip->ip_len < hlen) {
356		ipstat.ips_badlen++;
357		goto bad;
358	}
359	NTOHS(ip->ip_off);
360
361	/*
362	 * Check that the amount of data in the buffers
363	 * is as at least much as the IP header would have us expect.
364	 * Trim mbufs if longer than we expect.
365	 * Drop packet if shorter than we expect.
366	 */
367	if (m->m_pkthdr.len < ip->ip_len) {
368tooshort:
369		ipstat.ips_tooshort++;
370		goto bad;
371	}
372	if (m->m_pkthdr.len > ip->ip_len) {
373		if (m->m_len == m->m_pkthdr.len) {
374			m->m_len = ip->ip_len;
375			m->m_pkthdr.len = ip->ip_len;
376		} else
377			m_adj(m, ip->ip_len - m->m_pkthdr.len);
378	}
379	/*
380	 * IpHack's section.
381	 * Right now when no processing on packet has done
382	 * and it is still fresh out of network we do our black
383	 * deals with it.
384	 * - Firewall: deny/allow/divert
385	 * - Xlate: translate packet's addr/port (NAT).
386	 * - Pipe: pass pkt through dummynet.
387	 * - Wrap: fake packet's addr/port <unimpl.>
388	 * - Encapsulate: put it in another IP and send out. <unimp.>
389 	 */
390
391#if defined(IPFIREWALL) && defined(DUMMYNET)
392iphack:
393#endif
394
395#ifdef PFIL_HOOKS
396	/*
397	 * Run through list of hooks for input packets.  If there are any
398	 * filters which require that additional packets in the flow are
399	 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
400	 * Note that filters must _never_ set this flag, as another filter
401	 * in the list may have previously cleared it.
402	 */
403	m0 = m;
404	pfh = pfil_hook_get(PFIL_IN, &inetsw[ip_protox[IPPROTO_IP]].pr_pfh);
405	for (; pfh; pfh = TAILQ_NEXT(pfh, pfil_link))
406		if (pfh->pfil_func) {
407			rv = pfh->pfil_func(ip, hlen,
408					    m->m_pkthdr.rcvif, 0, &m0);
409			if (rv)
410				return;
411			m = m0;
412			if (m == NULL)
413				return;
414			ip = mtod(m, struct ip *);
415		}
416#endif /* PFIL_HOOKS */
417
418	if (fw_enable && ip_fw_chk_ptr) {
419#ifdef IPFIREWALL_FORWARD
420		/*
421		 * If we've been forwarded from the output side, then
422		 * skip the firewall a second time
423		 */
424		if (ip_fw_fwd_addr)
425			goto ours;
426#endif	/* IPFIREWALL_FORWARD */
427		/*
428		 * See the comment in ip_output for the return values
429		 * produced by the firewall.
430		 */
431		i = (*ip_fw_chk_ptr)(&ip,
432		    hlen, NULL, &divert_cookie, &m, &rule, &ip_fw_fwd_addr);
433		if (i & IP_FW_PORT_DENY_FLAG) { /* XXX new interface-denied */
434		    if (m)
435			m_freem(m);
436		    return ;
437		}
438		if (m == NULL) {	/* Packet discarded by firewall */
439		    static int __debug=10;
440		    if (__debug >0) {
441			printf("firewall returns NULL, please update!\n");
442			__debug-- ;
443		    }
444		    return;
445		}
446		if (i == 0 && ip_fw_fwd_addr == NULL)	/* common case */
447			goto pass;
448#ifdef DUMMYNET
449                if ((i & IP_FW_PORT_DYNT_FLAG) != 0) {
450                        /* Send packet to the appropriate pipe */
451                        dummynet_io(i&0xffff,DN_TO_IP_IN,m,NULL,NULL,0, rule,
452				    0);
453			return;
454		}
455#endif
456#ifdef IPDIVERT
457		if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) {
458			/* Divert or tee packet */
459			divert_info = i;
460			goto ours;
461		}
462#endif
463#ifdef IPFIREWALL_FORWARD
464		if (i == 0 && ip_fw_fwd_addr != NULL)
465			goto pass;
466#endif
467		/*
468		 * if we get here, the packet must be dropped
469		 */
470		m_freem(m);
471		return;
472	}
473pass:
474
475	/*
476	 * Process options and, if not destined for us,
477	 * ship it on.  ip_dooptions returns 1 when an
478	 * error was detected (causing an icmp message
479	 * to be sent and the original packet to be freed).
480	 */
481	ip_nhops = 0;		/* for source routed packets */
482	if (hlen > sizeof (struct ip) && ip_dooptions(m)) {
483#ifdef IPFIREWALL_FORWARD
484		ip_fw_fwd_addr = NULL;
485#endif
486		return;
487	}
488
489        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
490         * matter if it is destined to another node, or whether it is
491         * a multicast one, RSVP wants it! and prevents it from being forwarded
492         * anywhere else. Also checks if the rsvp daemon is running before
493	 * grabbing the packet.
494         */
495	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
496		goto ours;
497
498	/*
499	 * Check our list of addresses, to see if the packet is for us.
500	 * If we don't have any addresses, assume any unicast packet
501	 * we receive might be for us (and let the upper layers deal
502	 * with it).
503	 */
504	if (TAILQ_EMPTY(&in_ifaddrhead) &&
505	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
506		goto ours;
507
508	/*
509	 * Cache the destination address of the packet; this may be
510	 * changed by use of 'ipfw fwd'.
511	 */
512	pkt_dst = ip_fw_fwd_addr == NULL ?
513	    ip->ip_dst : ip_fw_fwd_addr->sin_addr;
514
515	/*
516	 * Don't accept packets with a loopback destination address
517	 * unless they arrived via the loopback interface.
518	 */
519	if ((ntohl(ip->ip_dst.s_addr) & IN_CLASSA_NET) ==
520	    (IN_LOOPBACKNET << IN_CLASSA_NSHIFT) &&
521	    (m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
522		m_freem(m);
523#ifdef IPFIREWALL_FORWARD
524		ip_fw_fwd_addr = NULL;
525#endif
526		return;
527	}
528
529	/*
530	 * Enable a consistency check between the destination address
531	 * and the arrival interface for a unicast packet (the RFC 1122
532	 * strong ES model) if IP forwarding is disabled and the packet
533	 * is not locally generated and the packet is not subject to
534	 * 'ipfw fwd'.
535	 */
536	checkif = ip_checkinterface && (ipforwarding == 0) &&
537	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
538	    (ip_fw_fwd_addr == NULL);
539
540	TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link) {
541#define	satosin(sa)	((struct sockaddr_in *)(sa))
542
543#ifdef BOOTP_COMPAT
544		if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
545			goto ours;
546#endif
547		/*
548		 * If the address matches, verify that the packet
549		 * arrived via the correct interface if checking is
550		 * enabled.
551		 */
552		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
553		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
554			goto ours;
555		/*
556		 * Only accept broadcast packets that arrive via the
557		 * matching interface.  Reception of forwarded directed
558		 * broadcasts would be handled via ip_forward() and
559		 * ether_output() with the loopback into the stack for
560		 * SIMPLEX interfaces handled by ether_output().
561		 */
562		if (ia->ia_ifp == m->m_pkthdr.rcvif &&
563		    ia->ia_ifp && ia->ia_ifp->if_flags & IFF_BROADCAST) {
564			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
565			    pkt_dst.s_addr)
566				goto ours;
567			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
568				goto ours;
569		}
570	}
571	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
572		struct in_multi *inm;
573		if (ip_mrouter) {
574			/*
575			 * If we are acting as a multicast router, all
576			 * incoming multicast packets are passed to the
577			 * kernel-level multicast forwarding function.
578			 * The packet is returned (relatively) intact; if
579			 * ip_mforward() returns a non-zero value, the packet
580			 * must be discarded, else it may be accepted below.
581			 */
582			if (ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
583				ipstat.ips_cantforward++;
584				m_freem(m);
585				return;
586			}
587
588			/*
589			 * The process-level routing demon needs to receive
590			 * all multicast IGMP packets, whether or not this
591			 * host belongs to their destination groups.
592			 */
593			if (ip->ip_p == IPPROTO_IGMP)
594				goto ours;
595			ipstat.ips_forward++;
596		}
597		/*
598		 * See if we belong to the destination multicast group on the
599		 * arrival interface.
600		 */
601		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
602		if (inm == NULL) {
603			ipstat.ips_notmember++;
604			m_freem(m);
605			return;
606		}
607		goto ours;
608	}
609	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
610		goto ours;
611	if (ip->ip_dst.s_addr == INADDR_ANY)
612		goto ours;
613
614#if defined(NFAITH) && 0 < NFAITH
615	/*
616	 * FAITH(Firewall Aided Internet Translator)
617	 */
618	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
619		if (ip_keepfaith) {
620			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
621				goto ours;
622		}
623		m_freem(m);
624		return;
625	}
626#endif
627	/*
628	 * Not for us; forward if possible and desirable.
629	 */
630	if (ipforwarding == 0) {
631		ipstat.ips_cantforward++;
632		m_freem(m);
633	} else
634		ip_forward(m, 0);
635#ifdef IPFIREWALL_FORWARD
636	ip_fw_fwd_addr = NULL;
637#endif
638	return;
639
640ours:
641	/* Count the packet in the ip address stats */
642	if (ia != NULL) {
643		ia->ia_ifa.if_ipackets++;
644		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
645	}
646
647	/*
648	 * If offset or IP_MF are set, must reassemble.
649	 * Otherwise, nothing need be done.
650	 * (We could look in the reassembly queue to see
651	 * if the packet was previously fragmented,
652	 * but it's not worth the time; just let them time out.)
653	 */
654	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
655
656		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
657		/*
658		 * Look for queue of fragments
659		 * of this datagram.
660		 */
661		for (fp = ipq[sum].next; fp != &ipq[sum]; fp = fp->next)
662			if (ip->ip_id == fp->ipq_id &&
663			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
664			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
665			    ip->ip_p == fp->ipq_p)
666				goto found;
667
668		fp = 0;
669
670		/* check if there's a place for the new queue */
671		if (nipq > maxnipq) {
672		    /*
673		     * drop something from the tail of the current queue
674		     * before proceeding further
675		     */
676		    if (ipq[sum].prev == &ipq[sum]) {   /* gak */
677			for (i = 0; i < IPREASS_NHASH; i++) {
678			    if (ipq[i].prev != &ipq[i]) {
679				ip_freef(ipq[i].prev);
680				break;
681			    }
682			}
683		    } else
684			ip_freef(ipq[sum].prev);
685		}
686found:
687		/*
688		 * Adjust ip_len to not reflect header,
689		 * convert offset of this to bytes.
690		 */
691		ip->ip_len -= hlen;
692		if (ip->ip_off & IP_MF) {
693		        /*
694		         * Make sure that fragments have a data length
695			 * that's a non-zero multiple of 8 bytes.
696		         */
697			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
698				ipstat.ips_toosmall++; /* XXX */
699				goto bad;
700			}
701			m->m_flags |= M_FRAG;
702		}
703		ip->ip_off <<= 3;
704
705		/*
706		 * Attempt reassembly; if it succeeds, proceed.
707		 */
708		ipstat.ips_fragments++;
709		m->m_pkthdr.header = ip;
710#ifdef IPDIVERT
711		m = ip_reass(m,
712		    fp, &ipq[sum], &divert_info, &divert_cookie);
713#else
714		m = ip_reass(m, fp, &ipq[sum]);
715#endif
716		if (m == 0) {
717#ifdef IPFIREWALL_FORWARD
718			ip_fw_fwd_addr = NULL;
719#endif
720			return;
721		}
722		ipstat.ips_reassembled++;
723		ip = mtod(m, struct ip *);
724		/* Get the header length of the reassembled packet */
725		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
726#ifdef IPDIVERT
727		/* Restore original checksum before diverting packet */
728		if (divert_info != 0) {
729			ip->ip_len += hlen;
730			HTONS(ip->ip_len);
731			HTONS(ip->ip_off);
732			ip->ip_sum = 0;
733			if (hlen == sizeof(struct ip))
734				ip->ip_sum = in_cksum_hdr(ip);
735			else
736				ip->ip_sum = in_cksum(m, hlen);
737			NTOHS(ip->ip_off);
738			NTOHS(ip->ip_len);
739			ip->ip_len -= hlen;
740		}
741#endif
742	} else
743		ip->ip_len -= hlen;
744
745#ifdef IPDIVERT
746	/*
747	 * Divert or tee packet to the divert protocol if required.
748	 *
749	 * If divert_info is zero then cookie should be too, so we shouldn't
750	 * need to clear them here.  Assume divert_packet() does so also.
751	 */
752	if (divert_info != 0) {
753		struct mbuf *clone = NULL;
754
755		/* Clone packet if we're doing a 'tee' */
756		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
757			clone = m_dup(m, M_DONTWAIT);
758
759		/* Restore packet header fields to original values */
760		ip->ip_len += hlen;
761		HTONS(ip->ip_len);
762		HTONS(ip->ip_off);
763
764		/* Deliver packet to divert input routine */
765		ip_divert_cookie = divert_cookie;
766		divert_packet(m, 1, divert_info & 0xffff);
767		ipstat.ips_delivered++;
768
769		/* If 'tee', continue with original packet */
770		if (clone == NULL)
771			return;
772		m = clone;
773		ip = mtod(m, struct ip *);
774	}
775#endif
776
777	/*
778	 * Switch out to protocol's input routine.
779	 */
780	ipstat.ips_delivered++;
781    {
782	int off = hlen, nh = ip->ip_p;
783
784	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, off, nh);
785#ifdef	IPFIREWALL_FORWARD
786	ip_fw_fwd_addr = NULL;	/* tcp needed it */
787#endif
788	return;
789    }
790bad:
791#ifdef	IPFIREWALL_FORWARD
792	ip_fw_fwd_addr = NULL;
793#endif
794	m_freem(m);
795}
796
797/*
798 * IP software interrupt routine - to go away sometime soon
799 */
800static void
801ipintr(void)
802{
803	struct mbuf *m;
804
805	while (1) {
806		IF_DEQUEUE(&ipintrq, m);
807		if (m == 0)
808			return;
809		ip_input(m);
810	}
811}
812
813/*
814 * Take incoming datagram fragment and try to reassemble it into
815 * whole datagram.  If a chain for reassembly of this datagram already
816 * exists, then it is given as fp; otherwise have to make a chain.
817 *
818 * When IPDIVERT enabled, keep additional state with each packet that
819 * tells us if we need to divert or tee the packet we're building.
820 */
821
822static struct mbuf *
823#ifdef IPDIVERT
824ip_reass(m, fp, where, divinfo, divcookie)
825#else
826ip_reass(m, fp, where)
827#endif
828	register struct mbuf *m;
829	register struct ipq *fp;
830	struct   ipq    *where;
831#ifdef IPDIVERT
832	u_int32_t *divinfo;
833	u_int16_t *divcookie;
834#endif
835{
836	struct ip *ip = mtod(m, struct ip *);
837	register struct mbuf *p, *q, *nq;
838	struct mbuf *t;
839	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
840	int i, next;
841
842	/*
843	 * Presence of header sizes in mbufs
844	 * would confuse code below.
845	 */
846	m->m_data += hlen;
847	m->m_len -= hlen;
848
849	/*
850	 * If first fragment to arrive, create a reassembly queue.
851	 */
852	if (fp == 0) {
853		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
854			goto dropfrag;
855		fp = mtod(t, struct ipq *);
856		insque(fp, where);
857		nipq++;
858		fp->ipq_ttl = IPFRAGTTL;
859		fp->ipq_p = ip->ip_p;
860		fp->ipq_id = ip->ip_id;
861		fp->ipq_src = ip->ip_src;
862		fp->ipq_dst = ip->ip_dst;
863		fp->ipq_frags = m;
864		m->m_nextpkt = NULL;
865#ifdef IPDIVERT
866		fp->ipq_div_info = 0;
867		fp->ipq_div_cookie = 0;
868#endif
869		goto inserted;
870	}
871
872#define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
873
874	/*
875	 * Find a segment which begins after this one does.
876	 */
877	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
878		if (GETIP(q)->ip_off > ip->ip_off)
879			break;
880
881	/*
882	 * If there is a preceding segment, it may provide some of
883	 * our data already.  If so, drop the data from the incoming
884	 * segment.  If it provides all of our data, drop us, otherwise
885	 * stick new segment in the proper place.
886	 *
887	 * If some of the data is dropped from the the preceding
888	 * segment, then it's checksum is invalidated.
889	 */
890	if (p) {
891		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
892		if (i > 0) {
893			if (i >= ip->ip_len)
894				goto dropfrag;
895			m_adj(m, i);
896			m->m_pkthdr.csum_flags = 0;
897			ip->ip_off += i;
898			ip->ip_len -= i;
899		}
900		m->m_nextpkt = p->m_nextpkt;
901		p->m_nextpkt = m;
902	} else {
903		m->m_nextpkt = fp->ipq_frags;
904		fp->ipq_frags = m;
905	}
906
907	/*
908	 * While we overlap succeeding segments trim them or,
909	 * if they are completely covered, dequeue them.
910	 */
911	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
912	     q = nq) {
913		i = (ip->ip_off + ip->ip_len) -
914		    GETIP(q)->ip_off;
915		if (i < GETIP(q)->ip_len) {
916			GETIP(q)->ip_len -= i;
917			GETIP(q)->ip_off += i;
918			m_adj(q, i);
919			q->m_pkthdr.csum_flags = 0;
920			break;
921		}
922		nq = q->m_nextpkt;
923		m->m_nextpkt = nq;
924		m_freem(q);
925	}
926
927inserted:
928
929#ifdef IPDIVERT
930	/*
931	 * Transfer firewall instructions to the fragment structure.
932	 * Any fragment diverting causes the whole packet to divert.
933	 */
934	fp->ipq_div_info = *divinfo;
935	fp->ipq_div_cookie = *divcookie;
936	*divinfo = 0;
937	*divcookie = 0;
938#endif
939
940	/*
941	 * Check for complete reassembly.
942	 */
943	next = 0;
944	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
945		if (GETIP(q)->ip_off != next)
946			return (0);
947		next += GETIP(q)->ip_len;
948	}
949	/* Make sure the last packet didn't have the IP_MF flag */
950	if (p->m_flags & M_FRAG)
951		return (0);
952
953	/*
954	 * Reassembly is complete.  Make sure the packet is a sane size.
955	 */
956	q = fp->ipq_frags;
957	ip = GETIP(q);
958	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
959		ipstat.ips_toolong++;
960		ip_freef(fp);
961		return (0);
962	}
963
964	/*
965	 * Concatenate fragments.
966	 */
967	m = q;
968	t = m->m_next;
969	m->m_next = 0;
970	m_cat(m, t);
971	nq = q->m_nextpkt;
972	q->m_nextpkt = 0;
973	for (q = nq; q != NULL; q = nq) {
974		nq = q->m_nextpkt;
975		q->m_nextpkt = NULL;
976		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
977		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
978		m_cat(m, q);
979	}
980
981#ifdef IPDIVERT
982	/*
983	 * Extract firewall instructions from the fragment structure.
984	 */
985	*divinfo = fp->ipq_div_info;
986	*divcookie = fp->ipq_div_cookie;
987#endif
988
989	/*
990	 * Create header for new ip packet by
991	 * modifying header of first packet;
992	 * dequeue and discard fragment reassembly header.
993	 * Make header visible.
994	 */
995	ip->ip_len = next;
996	ip->ip_src = fp->ipq_src;
997	ip->ip_dst = fp->ipq_dst;
998	remque(fp);
999	nipq--;
1000	(void) m_free(dtom(fp));
1001	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1002	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1003	/* some debugging cruft by sklower, below, will go away soon */
1004	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1005		register int plen = 0;
1006		for (t = m; t; t = t->m_next)
1007			plen += t->m_len;
1008		m->m_pkthdr.len = plen;
1009	}
1010	return (m);
1011
1012dropfrag:
1013#ifdef IPDIVERT
1014	*divinfo = 0;
1015	*divcookie = 0;
1016#endif
1017	ipstat.ips_fragdropped++;
1018	m_freem(m);
1019	return (0);
1020
1021#undef GETIP
1022}
1023
1024/*
1025 * Free a fragment reassembly header and all
1026 * associated datagrams.
1027 */
1028static void
1029ip_freef(fp)
1030	struct ipq *fp;
1031{
1032	register struct mbuf *q;
1033
1034	while (fp->ipq_frags) {
1035		q = fp->ipq_frags;
1036		fp->ipq_frags = q->m_nextpkt;
1037		m_freem(q);
1038	}
1039	remque(fp);
1040	(void) m_free(dtom(fp));
1041	nipq--;
1042}
1043
1044/*
1045 * IP timer processing;
1046 * if a timer expires on a reassembly
1047 * queue, discard it.
1048 */
1049void
1050ip_slowtimo()
1051{
1052	register struct ipq *fp;
1053	int s = splnet();
1054	int i;
1055
1056	for (i = 0; i < IPREASS_NHASH; i++) {
1057		fp = ipq[i].next;
1058		if (fp == 0)
1059			continue;
1060		while (fp != &ipq[i]) {
1061			--fp->ipq_ttl;
1062			fp = fp->next;
1063			if (fp->prev->ipq_ttl == 0) {
1064				ipstat.ips_fragtimeout++;
1065				ip_freef(fp->prev);
1066			}
1067		}
1068	}
1069	ipflow_slowtimo();
1070	splx(s);
1071}
1072
1073/*
1074 * Drain off all datagram fragments.
1075 */
1076void
1077ip_drain()
1078{
1079	int     i;
1080
1081	for (i = 0; i < IPREASS_NHASH; i++) {
1082		while (ipq[i].next != &ipq[i]) {
1083			ipstat.ips_fragdropped++;
1084			ip_freef(ipq[i].next);
1085		}
1086	}
1087	in_rtqdrain();
1088}
1089
1090/*
1091 * Do option processing on a datagram,
1092 * possibly discarding it if bad options are encountered,
1093 * or forwarding it if source-routed.
1094 * Returns 1 if packet has been forwarded/freed,
1095 * 0 if the packet should be processed further.
1096 */
1097static int
1098ip_dooptions(m)
1099	struct mbuf *m;
1100{
1101	register struct ip *ip = mtod(m, struct ip *);
1102	register u_char *cp;
1103	register struct ip_timestamp *ipt;
1104	register struct in_ifaddr *ia;
1105	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1106	struct in_addr *sin, dst;
1107	n_time ntime;
1108
1109	dst = ip->ip_dst;
1110	cp = (u_char *)(ip + 1);
1111	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1112	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1113		opt = cp[IPOPT_OPTVAL];
1114		if (opt == IPOPT_EOL)
1115			break;
1116		if (opt == IPOPT_NOP)
1117			optlen = 1;
1118		else {
1119			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1120				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1121				goto bad;
1122			}
1123			optlen = cp[IPOPT_OLEN];
1124			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1125				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1126				goto bad;
1127			}
1128		}
1129		switch (opt) {
1130
1131		default:
1132			break;
1133
1134		/*
1135		 * Source routing with record.
1136		 * Find interface with current destination address.
1137		 * If none on this machine then drop if strictly routed,
1138		 * or do nothing if loosely routed.
1139		 * Record interface address and bring up next address
1140		 * component.  If strictly routed make sure next
1141		 * address is on directly accessible net.
1142		 */
1143		case IPOPT_LSRR:
1144		case IPOPT_SSRR:
1145			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1146				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1147				goto bad;
1148			}
1149			ipaddr.sin_addr = ip->ip_dst;
1150			ia = (struct in_ifaddr *)
1151				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1152			if (ia == 0) {
1153				if (opt == IPOPT_SSRR) {
1154					type = ICMP_UNREACH;
1155					code = ICMP_UNREACH_SRCFAIL;
1156					goto bad;
1157				}
1158				if (!ip_dosourceroute)
1159					goto nosourcerouting;
1160				/*
1161				 * Loose routing, and not at next destination
1162				 * yet; nothing to do except forward.
1163				 */
1164				break;
1165			}
1166			off--;			/* 0 origin */
1167			if (off > optlen - (int)sizeof(struct in_addr)) {
1168				/*
1169				 * End of source route.  Should be for us.
1170				 */
1171				if (!ip_acceptsourceroute)
1172					goto nosourcerouting;
1173				save_rte(cp, ip->ip_src);
1174				break;
1175			}
1176
1177			if (!ip_dosourceroute) {
1178				if (ipforwarding) {
1179					char buf[16]; /* aaa.bbb.ccc.ddd\0 */
1180					/*
1181					 * Acting as a router, so generate ICMP
1182					 */
1183nosourcerouting:
1184					strcpy(buf, inet_ntoa(ip->ip_dst));
1185					log(LOG_WARNING,
1186					    "attempted source route from %s to %s\n",
1187					    inet_ntoa(ip->ip_src), buf);
1188					type = ICMP_UNREACH;
1189					code = ICMP_UNREACH_SRCFAIL;
1190					goto bad;
1191				} else {
1192					/*
1193					 * Not acting as a router, so silently drop.
1194					 */
1195					ipstat.ips_cantforward++;
1196					m_freem(m);
1197					return (1);
1198				}
1199			}
1200
1201			/*
1202			 * locate outgoing interface
1203			 */
1204			(void)memcpy(&ipaddr.sin_addr, cp + off,
1205			    sizeof(ipaddr.sin_addr));
1206
1207			if (opt == IPOPT_SSRR) {
1208#define	INA	struct in_ifaddr *
1209#define	SA	struct sockaddr *
1210			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
1211				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1212			} else
1213				ia = ip_rtaddr(ipaddr.sin_addr);
1214			if (ia == 0) {
1215				type = ICMP_UNREACH;
1216				code = ICMP_UNREACH_SRCFAIL;
1217				goto bad;
1218			}
1219			ip->ip_dst = ipaddr.sin_addr;
1220			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1221			    sizeof(struct in_addr));
1222			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1223			/*
1224			 * Let ip_intr's mcast routing check handle mcast pkts
1225			 */
1226			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1227			break;
1228
1229		case IPOPT_RR:
1230			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1231				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1232				goto bad;
1233			}
1234			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1235				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1236				goto bad;
1237			}
1238			/*
1239			 * If no space remains, ignore.
1240			 */
1241			off--;			/* 0 origin */
1242			if (off > optlen - (int)sizeof(struct in_addr))
1243				break;
1244			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1245			    sizeof(ipaddr.sin_addr));
1246			/*
1247			 * locate outgoing interface; if we're the destination,
1248			 * use the incoming interface (should be same).
1249			 */
1250			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
1251			    (ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
1252				type = ICMP_UNREACH;
1253				code = ICMP_UNREACH_HOST;
1254				goto bad;
1255			}
1256			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1257			    sizeof(struct in_addr));
1258			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1259			break;
1260
1261		case IPOPT_TS:
1262			code = cp - (u_char *)ip;
1263			ipt = (struct ip_timestamp *)cp;
1264			if (ipt->ipt_len < 5)
1265				goto bad;
1266			if (ipt->ipt_ptr >
1267			    ipt->ipt_len - (int)sizeof(int32_t)) {
1268				if (++ipt->ipt_oflw == 0)
1269					goto bad;
1270				break;
1271			}
1272			sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
1273			switch (ipt->ipt_flg) {
1274
1275			case IPOPT_TS_TSONLY:
1276				break;
1277
1278			case IPOPT_TS_TSANDADDR:
1279				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1280				    sizeof(struct in_addr) > ipt->ipt_len)
1281					goto bad;
1282				ipaddr.sin_addr = dst;
1283				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1284							    m->m_pkthdr.rcvif);
1285				if (ia == 0)
1286					continue;
1287				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1288				    sizeof(struct in_addr));
1289				ipt->ipt_ptr += sizeof(struct in_addr);
1290				break;
1291
1292			case IPOPT_TS_PRESPEC:
1293				if (ipt->ipt_ptr - 1 + sizeof(n_time) +
1294				    sizeof(struct in_addr) > ipt->ipt_len)
1295					goto bad;
1296				(void)memcpy(&ipaddr.sin_addr, sin,
1297				    sizeof(struct in_addr));
1298				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
1299					continue;
1300				ipt->ipt_ptr += sizeof(struct in_addr);
1301				break;
1302
1303			default:
1304				goto bad;
1305			}
1306			ntime = iptime();
1307			(void)memcpy(cp + ipt->ipt_ptr - 1, &ntime,
1308			    sizeof(n_time));
1309			ipt->ipt_ptr += sizeof(n_time);
1310		}
1311	}
1312	if (forward && ipforwarding) {
1313		ip_forward(m, 1);
1314		return (1);
1315	}
1316	return (0);
1317bad:
1318	icmp_error(m, type, code, 0, 0);
1319	ipstat.ips_badoptions++;
1320	return (1);
1321}
1322
1323/*
1324 * Given address of next destination (final or next hop),
1325 * return internet address info of interface to be used to get there.
1326 */
1327static struct in_ifaddr *
1328ip_rtaddr(dst)
1329	 struct in_addr dst;
1330{
1331	register struct sockaddr_in *sin;
1332
1333	sin = (struct sockaddr_in *) &ipforward_rt.ro_dst;
1334
1335	if (ipforward_rt.ro_rt == 0 || dst.s_addr != sin->sin_addr.s_addr) {
1336		if (ipforward_rt.ro_rt) {
1337			RTFREE(ipforward_rt.ro_rt);
1338			ipforward_rt.ro_rt = 0;
1339		}
1340		sin->sin_family = AF_INET;
1341		sin->sin_len = sizeof(*sin);
1342		sin->sin_addr = dst;
1343
1344		rtalloc_ign(&ipforward_rt, RTF_PRCLONING);
1345	}
1346	if (ipforward_rt.ro_rt == 0)
1347		return ((struct in_ifaddr *)0);
1348	return ((struct in_ifaddr *) ipforward_rt.ro_rt->rt_ifa);
1349}
1350
1351/*
1352 * Save incoming source route for use in replies,
1353 * to be picked up later by ip_srcroute if the receiver is interested.
1354 */
1355void
1356save_rte(option, dst)
1357	u_char *option;
1358	struct in_addr dst;
1359{
1360	unsigned olen;
1361
1362	olen = option[IPOPT_OLEN];
1363#ifdef DIAGNOSTIC
1364	if (ipprintfs)
1365		printf("save_rte: olen %d\n", olen);
1366#endif
1367	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1368		return;
1369	bcopy(option, ip_srcrt.srcopt, olen);
1370	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1371	ip_srcrt.dst = dst;
1372}
1373
1374/*
1375 * Retrieve incoming source route for use in replies,
1376 * in the same form used by setsockopt.
1377 * The first hop is placed before the options, will be removed later.
1378 */
1379struct mbuf *
1380ip_srcroute()
1381{
1382	register struct in_addr *p, *q;
1383	register struct mbuf *m;
1384
1385	if (ip_nhops == 0)
1386		return ((struct mbuf *)0);
1387	m = m_get(M_DONTWAIT, MT_HEADER);
1388	if (m == 0)
1389		return ((struct mbuf *)0);
1390
1391#define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1392
1393	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1394	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1395	    OPTSIZ;
1396#ifdef DIAGNOSTIC
1397	if (ipprintfs)
1398		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1399#endif
1400
1401	/*
1402	 * First save first hop for return route
1403	 */
1404	p = &ip_srcrt.route[ip_nhops - 1];
1405	*(mtod(m, struct in_addr *)) = *p--;
1406#ifdef DIAGNOSTIC
1407	if (ipprintfs)
1408		printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr));
1409#endif
1410
1411	/*
1412	 * Copy option fields and padding (nop) to mbuf.
1413	 */
1414	ip_srcrt.nop = IPOPT_NOP;
1415	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1416	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1417	    &ip_srcrt.nop, OPTSIZ);
1418	q = (struct in_addr *)(mtod(m, caddr_t) +
1419	    sizeof(struct in_addr) + OPTSIZ);
1420#undef OPTSIZ
1421	/*
1422	 * Record return path as an IP source route,
1423	 * reversing the path (pointers are now aligned).
1424	 */
1425	while (p >= ip_srcrt.route) {
1426#ifdef DIAGNOSTIC
1427		if (ipprintfs)
1428			printf(" %lx", (u_long)ntohl(q->s_addr));
1429#endif
1430		*q++ = *p--;
1431	}
1432	/*
1433	 * Last hop goes to final destination.
1434	 */
1435	*q = ip_srcrt.dst;
1436#ifdef DIAGNOSTIC
1437	if (ipprintfs)
1438		printf(" %lx\n", (u_long)ntohl(q->s_addr));
1439#endif
1440	return (m);
1441}
1442
1443/*
1444 * Strip out IP options, at higher
1445 * level protocol in the kernel.
1446 * Second argument is buffer to which options
1447 * will be moved, and return value is their length.
1448 * XXX should be deleted; last arg currently ignored.
1449 */
1450void
1451ip_stripoptions(m, mopt)
1452	register struct mbuf *m;
1453	struct mbuf *mopt;
1454{
1455	register int i;
1456	struct ip *ip = mtod(m, struct ip *);
1457	register caddr_t opts;
1458	int olen;
1459
1460	olen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1461	opts = (caddr_t)(ip + 1);
1462	i = m->m_len - (sizeof (struct ip) + olen);
1463	bcopy(opts + olen, opts, (unsigned)i);
1464	m->m_len -= olen;
1465	if (m->m_flags & M_PKTHDR)
1466		m->m_pkthdr.len -= olen;
1467	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1468}
1469
1470u_char inetctlerrmap[PRC_NCMDS] = {
1471	0,		0,		0,		0,
1472	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1473	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1474	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1475	0,		0,		0,		0,
1476	ENOPROTOOPT,	ENETRESET
1477};
1478
1479/*
1480 * Forward a packet.  If some error occurs return the sender
1481 * an icmp packet.  Note we can't always generate a meaningful
1482 * icmp message because icmp doesn't have a large enough repertoire
1483 * of codes and types.
1484 *
1485 * If not forwarding, just drop the packet.  This could be confusing
1486 * if ipforwarding was zero but some routing protocol was advancing
1487 * us as a gateway to somewhere.  However, we must let the routing
1488 * protocol deal with that.
1489 *
1490 * The srcrt parameter indicates whether the packet is being forwarded
1491 * via a source route.
1492 */
1493static void
1494ip_forward(m, srcrt)
1495	struct mbuf *m;
1496	int srcrt;
1497{
1498	register struct ip *ip = mtod(m, struct ip *);
1499	register struct sockaddr_in *sin;
1500	register struct rtentry *rt;
1501	int error, type = 0, code = 0;
1502	struct mbuf *mcopy;
1503	n_long dest;
1504	struct ifnet *destifp;
1505#ifdef IPSEC
1506	struct ifnet dummyifp;
1507#endif
1508
1509	dest = 0;
1510#ifdef DIAGNOSTIC
1511	if (ipprintfs)
1512		printf("forward: src %lx dst %lx ttl %x\n",
1513		    (u_long)ip->ip_src.s_addr, (u_long)ip->ip_dst.s_addr,
1514		    ip->ip_ttl);
1515#endif
1516
1517
1518	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1519		ipstat.ips_cantforward++;
1520		m_freem(m);
1521		return;
1522	}
1523#ifdef IPSTEALTH
1524	if (!ipstealth) {
1525#endif
1526		if (ip->ip_ttl <= IPTTLDEC) {
1527			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1528			    dest, 0);
1529			return;
1530		}
1531#ifdef IPSTEALTH
1532	}
1533#endif
1534
1535	sin = (struct sockaddr_in *)&ipforward_rt.ro_dst;
1536	if ((rt = ipforward_rt.ro_rt) == 0 ||
1537	    ip->ip_dst.s_addr != sin->sin_addr.s_addr) {
1538		if (ipforward_rt.ro_rt) {
1539			RTFREE(ipforward_rt.ro_rt);
1540			ipforward_rt.ro_rt = 0;
1541		}
1542		sin->sin_family = AF_INET;
1543		sin->sin_len = sizeof(*sin);
1544		sin->sin_addr = ip->ip_dst;
1545
1546		rtalloc_ign(&ipforward_rt, RTF_PRCLONING);
1547		if (ipforward_rt.ro_rt == 0) {
1548			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1549			return;
1550		}
1551		rt = ipforward_rt.ro_rt;
1552	}
1553
1554	/*
1555	 * Save at most 64 bytes of the packet in case
1556	 * we need to generate an ICMP message to the src.
1557	 */
1558	mcopy = m_copy(m, 0, imin((int)ip->ip_len, 64));
1559	if (mcopy && (mcopy->m_flags & M_EXT))
1560		m_copydata(mcopy, 0, sizeof(struct ip), mtod(mcopy, caddr_t));
1561
1562#ifdef IPSTEALTH
1563	if (!ipstealth) {
1564#endif
1565		ip->ip_ttl -= IPTTLDEC;
1566#ifdef IPSTEALTH
1567	}
1568#endif
1569
1570	/*
1571	 * If forwarding packet using same interface that it came in on,
1572	 * perhaps should send a redirect to sender to shortcut a hop.
1573	 * Only send redirect if source is sending directly to us,
1574	 * and if packet was not source routed (or has any options).
1575	 * Also, don't send redirect if forwarding using a default route
1576	 * or a route modified by a redirect.
1577	 */
1578#define	satosin(sa)	((struct sockaddr_in *)(sa))
1579	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1580	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1581	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1582	    ipsendredirects && !srcrt) {
1583#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1584		u_long src = ntohl(ip->ip_src.s_addr);
1585
1586		if (RTA(rt) &&
1587		    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1588		    if (rt->rt_flags & RTF_GATEWAY)
1589			dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1590		    else
1591			dest = ip->ip_dst.s_addr;
1592		    /* Router requirements says to only send host redirects */
1593		    type = ICMP_REDIRECT;
1594		    code = ICMP_REDIRECT_HOST;
1595#ifdef DIAGNOSTIC
1596		    if (ipprintfs)
1597		        printf("redirect (%d) to %lx\n", code, (u_long)dest);
1598#endif
1599		}
1600	}
1601
1602	error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1603			  IP_FORWARDING, 0);
1604	if (error)
1605		ipstat.ips_cantforward++;
1606	else {
1607		ipstat.ips_forward++;
1608		if (type)
1609			ipstat.ips_redirectsent++;
1610		else {
1611			if (mcopy) {
1612				ipflow_create(&ipforward_rt, mcopy);
1613				m_freem(mcopy);
1614			}
1615			return;
1616		}
1617	}
1618	if (mcopy == NULL)
1619		return;
1620	destifp = NULL;
1621
1622	switch (error) {
1623
1624	case 0:				/* forwarded, but need redirect */
1625		/* type, code set above */
1626		break;
1627
1628	case ENETUNREACH:		/* shouldn't happen, checked above */
1629	case EHOSTUNREACH:
1630	case ENETDOWN:
1631	case EHOSTDOWN:
1632	default:
1633		type = ICMP_UNREACH;
1634		code = ICMP_UNREACH_HOST;
1635		break;
1636
1637	case EMSGSIZE:
1638		type = ICMP_UNREACH;
1639		code = ICMP_UNREACH_NEEDFRAG;
1640#ifndef IPSEC
1641		if (ipforward_rt.ro_rt)
1642			destifp = ipforward_rt.ro_rt->rt_ifp;
1643#else
1644		/*
1645		 * If the packet is routed over IPsec tunnel, tell the
1646		 * originator the tunnel MTU.
1647		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1648		 * XXX quickhack!!!
1649		 */
1650		if (ipforward_rt.ro_rt) {
1651			struct secpolicy *sp = NULL;
1652			int ipsecerror;
1653			int ipsechdr;
1654			struct route *ro;
1655
1656			sp = ipsec4_getpolicybyaddr(mcopy,
1657						    IPSEC_DIR_OUTBOUND,
1658			                            IP_FORWARDING,
1659			                            &ipsecerror);
1660
1661			if (sp == NULL)
1662				destifp = ipforward_rt.ro_rt->rt_ifp;
1663			else {
1664				/* count IPsec header size */
1665				ipsechdr = ipsec4_hdrsiz(mcopy,
1666							 IPSEC_DIR_OUTBOUND,
1667							 NULL);
1668
1669				/*
1670				 * find the correct route for outer IPv4
1671				 * header, compute tunnel MTU.
1672				 *
1673				 * XXX BUG ALERT
1674				 * The "dummyifp" code relies upon the fact
1675				 * that icmp_error() touches only ifp->if_mtu.
1676				 */
1677				/*XXX*/
1678				destifp = NULL;
1679				if (sp->req != NULL
1680				 && sp->req->sav != NULL
1681				 && sp->req->sav->sah != NULL) {
1682					ro = &sp->req->sav->sah->sa_route;
1683					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1684						dummyifp.if_mtu =
1685						    ro->ro_rt->rt_ifp->if_mtu;
1686						dummyifp.if_mtu -= ipsechdr;
1687						destifp = &dummyifp;
1688					}
1689				}
1690
1691				key_freesp(sp);
1692			}
1693		}
1694#endif /*IPSEC*/
1695		ipstat.ips_cantfrag++;
1696		break;
1697
1698	case ENOBUFS:
1699		type = ICMP_SOURCEQUENCH;
1700		code = 0;
1701		break;
1702
1703	case EACCES:			/* ipfw denied packet */
1704		m_freem(mcopy);
1705		return;
1706	}
1707	if (mcopy->m_flags & M_EXT)
1708		m_copyback(mcopy, 0, sizeof(struct ip), mtod(mcopy, caddr_t));
1709	icmp_error(mcopy, type, code, dest, destifp);
1710}
1711
1712void
1713ip_savecontrol(inp, mp, ip, m)
1714	register struct inpcb *inp;
1715	register struct mbuf **mp;
1716	register struct ip *ip;
1717	register struct mbuf *m;
1718{
1719	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1720		struct timeval tv;
1721
1722		microtime(&tv);
1723		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1724			SCM_TIMESTAMP, SOL_SOCKET);
1725		if (*mp)
1726			mp = &(*mp)->m_next;
1727	}
1728	if (inp->inp_flags & INP_RECVDSTADDR) {
1729		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1730		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1731		if (*mp)
1732			mp = &(*mp)->m_next;
1733	}
1734#ifdef notyet
1735	/* XXX
1736	 * Moving these out of udp_input() made them even more broken
1737	 * than they already were.
1738	 */
1739	/* options were tossed already */
1740	if (inp->inp_flags & INP_RECVOPTS) {
1741		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1742		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1743		if (*mp)
1744			mp = &(*mp)->m_next;
1745	}
1746	/* ip_srcroute doesn't do what we want here, need to fix */
1747	if (inp->inp_flags & INP_RECVRETOPTS) {
1748		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
1749		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1750		if (*mp)
1751			mp = &(*mp)->m_next;
1752	}
1753#endif
1754	if (inp->inp_flags & INP_RECVIF) {
1755		struct ifnet *ifp;
1756		struct sdlbuf {
1757			struct sockaddr_dl sdl;
1758			u_char	pad[32];
1759		} sdlbuf;
1760		struct sockaddr_dl *sdp;
1761		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
1762
1763		if (((ifp = m->m_pkthdr.rcvif))
1764		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
1765			sdp = (struct sockaddr_dl *)(ifnet_addrs
1766					[ifp->if_index - 1]->ifa_addr);
1767			/*
1768			 * Change our mind and don't try copy.
1769			 */
1770			if ((sdp->sdl_family != AF_LINK)
1771			|| (sdp->sdl_len > sizeof(sdlbuf))) {
1772				goto makedummy;
1773			}
1774			bcopy(sdp, sdl2, sdp->sdl_len);
1775		} else {
1776makedummy:
1777			sdl2->sdl_len
1778				= offsetof(struct sockaddr_dl, sdl_data[0]);
1779			sdl2->sdl_family = AF_LINK;
1780			sdl2->sdl_index = 0;
1781			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
1782		}
1783		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
1784			IP_RECVIF, IPPROTO_IP);
1785		if (*mp)
1786			mp = &(*mp)->m_next;
1787	}
1788}
1789
1790int
1791ip_rsvp_init(struct socket *so)
1792{
1793	if (so->so_type != SOCK_RAW ||
1794	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1795	  return EOPNOTSUPP;
1796
1797	if (ip_rsvpd != NULL)
1798	  return EADDRINUSE;
1799
1800	ip_rsvpd = so;
1801	/*
1802	 * This may seem silly, but we need to be sure we don't over-increment
1803	 * the RSVP counter, in case something slips up.
1804	 */
1805	if (!ip_rsvp_on) {
1806		ip_rsvp_on = 1;
1807		rsvp_on++;
1808	}
1809
1810	return 0;
1811}
1812
1813int
1814ip_rsvp_done(void)
1815{
1816	ip_rsvpd = NULL;
1817	/*
1818	 * This may seem silly, but we need to be sure we don't over-decrement
1819	 * the RSVP counter, in case something slips up.
1820	 */
1821	if (ip_rsvp_on) {
1822		ip_rsvp_on = 0;
1823		rsvp_on--;
1824	}
1825	return 0;
1826}
1827