ip_input.c revision 105218
1/*
2 * Copyright (c) 1982, 1986, 1988, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
34 * $FreeBSD: head/sys/netinet/ip_input.c 105218 2002-10-16 09:01:48Z guido $
35 */
36
37#define	_IP_VHL
38
39#include "opt_bootp.h"
40#include "opt_ipfw.h"
41#include "opt_ipdn.h"
42#include "opt_ipdivert.h"
43#include "opt_ipfilter.h"
44#include "opt_ipstealth.h"
45#include "opt_ipsec.h"
46#include "opt_mac.h"
47#include "opt_pfil_hooks.h"
48#include "opt_random_ip_id.h"
49
50#include <sys/param.h>
51#include <sys/systm.h>
52#include <sys/mac.h>
53#include <sys/mbuf.h>
54#include <sys/malloc.h>
55#include <sys/domain.h>
56#include <sys/protosw.h>
57#include <sys/socket.h>
58#include <sys/time.h>
59#include <sys/kernel.h>
60#include <sys/syslog.h>
61#include <sys/sysctl.h>
62
63#include <net/pfil.h>
64#include <net/if.h>
65#include <net/if_types.h>
66#include <net/if_var.h>
67#include <net/if_dl.h>
68#include <net/route.h>
69#include <net/netisr.h>
70#include <net/intrq.h>
71
72#include <netinet/in.h>
73#include <netinet/in_systm.h>
74#include <netinet/in_var.h>
75#include <netinet/ip.h>
76#include <netinet/in_pcb.h>
77#include <netinet/ip_var.h>
78#include <netinet/ip_icmp.h>
79#include <machine/in_cksum.h>
80
81#include <sys/socketvar.h>
82
83#include <netinet/ip_fw.h>
84#include <netinet/ip_dummynet.h>
85
86#ifdef IPSEC
87#include <netinet6/ipsec.h>
88#include <netkey/key.h>
89#endif
90
91#ifdef FAST_IPSEC
92#include <netipsec/ipsec.h>
93#include <netipsec/key.h>
94#endif
95
96int rsvp_on = 0;
97
98int	ipforwarding = 0;
99SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
100    &ipforwarding, 0, "Enable IP forwarding between interfaces");
101
102static int	ipsendredirects = 1; /* XXX */
103SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
104    &ipsendredirects, 0, "Enable sending IP redirects");
105
106int	ip_defttl = IPDEFTTL;
107SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
108    &ip_defttl, 0, "Maximum TTL on IP packets");
109
110static int	ip_dosourceroute = 0;
111SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
112    &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
113
114static int	ip_acceptsourceroute = 0;
115SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
116    CTLFLAG_RW, &ip_acceptsourceroute, 0,
117    "Enable accepting source routed IP packets");
118
119static int	ip_keepfaith = 0;
120SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
121	&ip_keepfaith,	0,
122	"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
123
124static int	ip_nfragpackets = 0;
125static int	ip_maxfragpackets;	/* initialized in ip_init() */
126SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
127	&ip_maxfragpackets, 0,
128	"Maximum number of IPv4 fragment reassembly queue entries");
129
130/*
131 * XXX - Setting ip_checkinterface mostly implements the receive side of
132 * the Strong ES model described in RFC 1122, but since the routing table
133 * and transmit implementation do not implement the Strong ES model,
134 * setting this to 1 results in an odd hybrid.
135 *
136 * XXX - ip_checkinterface currently must be disabled if you use ipnat
137 * to translate the destination address to another local interface.
138 *
139 * XXX - ip_checkinterface must be disabled if you add IP aliases
140 * to the loopback interface instead of the interface where the
141 * packets for those addresses are received.
142 */
143static int	ip_checkinterface = 1;
144SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
145    &ip_checkinterface, 0, "Verify packet arrives on correct interface");
146
147#ifdef DIAGNOSTIC
148static int	ipprintfs = 0;
149#endif
150
151static int	ipqmaxlen = IFQ_MAXLEN;
152
153extern	struct domain inetdomain;
154extern	struct protosw inetsw[];
155u_char	ip_protox[IPPROTO_MAX];
156struct	in_ifaddrhead in_ifaddrhead; 		/* first inet address */
157struct	in_ifaddrhashhead *in_ifaddrhashtbl;	/* inet addr hash table  */
158u_long 	in_ifaddrhmask;				/* mask for hash table */
159
160SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
161    &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
162SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
163    &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
164
165struct ipstat ipstat;
166SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
167    &ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
168
169/* Packet reassembly stuff */
170#define IPREASS_NHASH_LOG2      6
171#define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
172#define IPREASS_HMASK           (IPREASS_NHASH - 1)
173#define IPREASS_HASH(x,y) \
174	(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
175
176static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
177static int    nipq = 0;         /* total # of reass queues */
178static int    maxnipq;
179
180#ifdef IPCTL_DEFMTU
181SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
182    &ip_mtu, 0, "Default MTU");
183#endif
184
185#ifdef IPSTEALTH
186static int	ipstealth = 0;
187SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
188    &ipstealth, 0, "");
189#endif
190
191
192/* Firewall hooks */
193ip_fw_chk_t *ip_fw_chk_ptr;
194int fw_enable = 1 ;
195
196/* Dummynet hooks */
197ip_dn_io_t *ip_dn_io_ptr;
198
199
200/*
201 * XXX this is ugly -- the following two global variables are
202 * used to store packet state while it travels through the stack.
203 * Note that the code even makes assumptions on the size and
204 * alignment of fields inside struct ip_srcrt so e.g. adding some
205 * fields will break the code. This needs to be fixed.
206 *
207 * We need to save the IP options in case a protocol wants to respond
208 * to an incoming packet over the same route if the packet got here
209 * using IP source routing.  This allows connection establishment and
210 * maintenance when the remote end is on a network that is not known
211 * to us.
212 */
213static int	ip_nhops = 0;
214static	struct ip_srcrt {
215	struct	in_addr dst;			/* final destination */
216	char	nop;				/* one NOP to align */
217	char	srcopt[IPOPT_OFFSET + 1];	/* OPTVAL, OLEN and OFFSET */
218	struct	in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
219} ip_srcrt;
220
221static void	save_rte(u_char *, struct in_addr);
222static int	ip_dooptions(struct mbuf *m, int,
223			struct sockaddr_in *next_hop);
224static void	ip_forward(struct mbuf *m, int srcrt,
225			struct sockaddr_in *next_hop);
226static void	ip_freef(struct ipqhead *, struct ipq *);
227static struct	mbuf *ip_reass(struct mbuf *, struct ipqhead *,
228		struct ipq *, u_int32_t *, u_int16_t *);
229static void	ipintr(void);
230
231/*
232 * IP initialization: fill in IP protocol switch table.
233 * All protocols not implemented in kernel go to raw IP protocol handler.
234 */
235void
236ip_init()
237{
238	register struct protosw *pr;
239	register int i;
240
241	TAILQ_INIT(&in_ifaddrhead);
242	in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
243	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
244	if (pr == 0)
245		panic("ip_init");
246	for (i = 0; i < IPPROTO_MAX; i++)
247		ip_protox[i] = pr - inetsw;
248	for (pr = inetdomain.dom_protosw;
249	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
250		if (pr->pr_domain->dom_family == PF_INET &&
251		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
252			ip_protox[pr->pr_protocol] = pr - inetsw;
253
254	for (i = 0; i < IPREASS_NHASH; i++)
255	    TAILQ_INIT(&ipq[i]);
256
257	maxnipq = nmbclusters / 4;
258	ip_maxfragpackets = nmbclusters / 4;
259
260#ifndef RANDOM_IP_ID
261	ip_id = time_second & 0xffff;
262#endif
263	ipintrq.ifq_maxlen = ipqmaxlen;
264	mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
265	ipintrq_present = 1;
266
267	register_netisr(NETISR_IP, ipintr);
268}
269
270/*
271 * XXX watch out this one. It is perhaps used as a cache for
272 * the most recently used route ? it is cleared in in_addroute()
273 * when a new route is successfully created.
274 */
275struct	route ipforward_rt;
276
277/*
278 * Ip input routine.  Checksum and byte swap header.  If fragmented
279 * try to reassemble.  Process options.  Pass to next level.
280 */
281void
282ip_input(struct mbuf *m)
283{
284	struct ip *ip;
285	struct ipq *fp;
286	struct in_ifaddr *ia = NULL;
287	struct ifaddr *ifa;
288	int    i, hlen, checkif;
289	u_short sum;
290	struct in_addr pkt_dst;
291	u_int32_t divert_info = 0;		/* packet divert/tee info */
292	struct ip_fw_args args;
293#ifdef PFIL_HOOKS
294	struct packet_filter_hook *pfh;
295	struct mbuf *m0;
296	int rv;
297#endif /* PFIL_HOOKS */
298#ifdef FAST_IPSEC
299	struct m_tag *mtag;
300	struct tdb_ident *tdbi;
301	struct secpolicy *sp;
302	int s, error;
303#endif /* FAST_IPSEC */
304
305	args.eh = NULL;
306	args.oif = NULL;
307	args.rule = NULL;
308	args.divert_rule = 0;			/* divert cookie */
309	args.next_hop = NULL;
310
311	/* Grab info from MT_TAG mbufs prepended to the chain.	*/
312	for (; m && m->m_type == MT_TAG; m = m->m_next) {
313		switch(m->_m_tag_id) {
314		default:
315			printf("ip_input: unrecognised MT_TAG tag %d\n",
316			    m->_m_tag_id);
317			break;
318
319		case PACKET_TAG_DUMMYNET:
320			args.rule = ((struct dn_pkt *)m)->rule;
321			break;
322
323		case PACKET_TAG_DIVERT:
324			args.divert_rule = (intptr_t)m->m_hdr.mh_data & 0xffff;
325			break;
326
327		case PACKET_TAG_IPFORWARD:
328			args.next_hop = (struct sockaddr_in *)m->m_hdr.mh_data;
329			break;
330		}
331	}
332
333	KASSERT(m != NULL && (m->m_flags & M_PKTHDR) != 0,
334	    ("ip_input: no HDR"));
335
336	if (args.rule) {	/* dummynet already filtered us */
337		ip = mtod(m, struct ip *);
338		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
339		goto iphack ;
340	}
341
342	ipstat.ips_total++;
343
344	if (m->m_pkthdr.len < sizeof(struct ip))
345		goto tooshort;
346
347	if (m->m_len < sizeof (struct ip) &&
348	    (m = m_pullup(m, sizeof (struct ip))) == 0) {
349		ipstat.ips_toosmall++;
350		return;
351	}
352	ip = mtod(m, struct ip *);
353
354	if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
355		ipstat.ips_badvers++;
356		goto bad;
357	}
358
359	hlen = IP_VHL_HL(ip->ip_vhl) << 2;
360	if (hlen < sizeof(struct ip)) {	/* minimum header length */
361		ipstat.ips_badhlen++;
362		goto bad;
363	}
364	if (hlen > m->m_len) {
365		if ((m = m_pullup(m, hlen)) == 0) {
366			ipstat.ips_badhlen++;
367			return;
368		}
369		ip = mtod(m, struct ip *);
370	}
371
372	/* 127/8 must not appear on wire - RFC1122 */
373	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
374	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
375		if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
376			ipstat.ips_badaddr++;
377			goto bad;
378		}
379	}
380
381	if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
382		sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
383	} else {
384		if (hlen == sizeof(struct ip)) {
385			sum = in_cksum_hdr(ip);
386		} else {
387			sum = in_cksum(m, hlen);
388		}
389	}
390	if (sum) {
391		ipstat.ips_badsum++;
392		goto bad;
393	}
394
395	/*
396	 * Convert fields to host representation.
397	 */
398	ip->ip_len = ntohs(ip->ip_len);
399	if (ip->ip_len < hlen) {
400		ipstat.ips_badlen++;
401		goto bad;
402	}
403	ip->ip_off = ntohs(ip->ip_off);
404
405	/*
406	 * Check that the amount of data in the buffers
407	 * is as at least much as the IP header would have us expect.
408	 * Trim mbufs if longer than we expect.
409	 * Drop packet if shorter than we expect.
410	 */
411	if (m->m_pkthdr.len < ip->ip_len) {
412tooshort:
413		ipstat.ips_tooshort++;
414		goto bad;
415	}
416	if (m->m_pkthdr.len > ip->ip_len) {
417		if (m->m_len == m->m_pkthdr.len) {
418			m->m_len = ip->ip_len;
419			m->m_pkthdr.len = ip->ip_len;
420		} else
421			m_adj(m, ip->ip_len - m->m_pkthdr.len);
422	}
423
424	/*
425	 * IpHack's section.
426	 * Right now when no processing on packet has done
427	 * and it is still fresh out of network we do our black
428	 * deals with it.
429	 * - Firewall: deny/allow/divert
430	 * - Xlate: translate packet's addr/port (NAT).
431	 * - Pipe: pass pkt through dummynet.
432	 * - Wrap: fake packet's addr/port <unimpl.>
433	 * - Encapsulate: put it in another IP and send out. <unimp.>
434 	 */
435
436iphack:
437
438#ifdef PFIL_HOOKS
439	/*
440	 * Run through list of hooks for input packets.  If there are any
441	 * filters which require that additional packets in the flow are
442	 * not fast-forwarded, they must clear the M_CANFASTFWD flag.
443	 * Note that filters must _never_ set this flag, as another filter
444	 * in the list may have previously cleared it.
445	 */
446	m0 = m;
447	pfh = pfil_hook_get(PFIL_IN, &inetsw[ip_protox[IPPROTO_IP]].pr_pfh);
448	for (; pfh; pfh = TAILQ_NEXT(pfh, pfil_link))
449		if (pfh->pfil_func) {
450			rv = pfh->pfil_func(ip, hlen,
451					    m->m_pkthdr.rcvif, 0, &m0);
452			if (rv)
453				return;
454			m = m0;
455			if (m == NULL)
456				return;
457			ip = mtod(m, struct ip *);
458		}
459#endif /* PFIL_HOOKS */
460
461	if (fw_enable && IPFW_LOADED) {
462		/*
463		 * If we've been forwarded from the output side, then
464		 * skip the firewall a second time
465		 */
466		if (args.next_hop)
467			goto ours;
468
469		args.m = m;
470		i = ip_fw_chk_ptr(&args);
471		m = args.m;
472
473		if ( (i & IP_FW_PORT_DENY_FLAG) || m == NULL) { /* drop */
474			if (m)
475				m_freem(m);
476			return;
477		}
478		ip = mtod(m, struct ip *); /* just in case m changed */
479		if (i == 0 && args.next_hop == NULL)	/* common case */
480			goto pass;
481                if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG) != 0) {
482			/* Send packet to the appropriate pipe */
483			ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args);
484			return;
485		}
486#ifdef IPDIVERT
487		if (i != 0 && (i & IP_FW_PORT_DYNT_FLAG) == 0) {
488			/* Divert or tee packet */
489			divert_info = i;
490			goto ours;
491		}
492#endif
493		if (i == 0 && args.next_hop != NULL)
494			goto pass;
495		/*
496		 * if we get here, the packet must be dropped
497		 */
498		m_freem(m);
499		return;
500	}
501pass:
502
503	/*
504	 * Process options and, if not destined for us,
505	 * ship it on.  ip_dooptions returns 1 when an
506	 * error was detected (causing an icmp message
507	 * to be sent and the original packet to be freed).
508	 */
509	ip_nhops = 0;		/* for source routed packets */
510	if (hlen > sizeof (struct ip) && ip_dooptions(m, 0, args.next_hop))
511		return;
512
513        /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
514         * matter if it is destined to another node, or whether it is
515         * a multicast one, RSVP wants it! and prevents it from being forwarded
516         * anywhere else. Also checks if the rsvp daemon is running before
517	 * grabbing the packet.
518         */
519	if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
520		goto ours;
521
522	/*
523	 * Check our list of addresses, to see if the packet is for us.
524	 * If we don't have any addresses, assume any unicast packet
525	 * we receive might be for us (and let the upper layers deal
526	 * with it).
527	 */
528	if (TAILQ_EMPTY(&in_ifaddrhead) &&
529	    (m->m_flags & (M_MCAST|M_BCAST)) == 0)
530		goto ours;
531
532	/*
533	 * Cache the destination address of the packet; this may be
534	 * changed by use of 'ipfw fwd'.
535	 */
536	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
537
538	/*
539	 * Enable a consistency check between the destination address
540	 * and the arrival interface for a unicast packet (the RFC 1122
541	 * strong ES model) if IP forwarding is disabled and the packet
542	 * is not locally generated and the packet is not subject to
543	 * 'ipfw fwd'.
544	 *
545	 * XXX - Checking also should be disabled if the destination
546	 * address is ipnat'ed to a different interface.
547	 *
548	 * XXX - Checking is incompatible with IP aliases added
549	 * to the loopback interface instead of the interface where
550	 * the packets are received.
551	 */
552	checkif = ip_checkinterface && (ipforwarding == 0) &&
553	    m->m_pkthdr.rcvif != NULL &&
554	    ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
555	    (args.next_hop == NULL);
556
557	/*
558	 * Check for exact addresses in the hash bucket.
559	 */
560	LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
561		/*
562		 * If the address matches, verify that the packet
563		 * arrived via the correct interface if checking is
564		 * enabled.
565		 */
566		if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
567		    (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
568			goto ours;
569	}
570	/*
571	 * Check for broadcast addresses.
572	 *
573	 * Only accept broadcast packets that arrive via the matching
574	 * interface.  Reception of forwarded directed broadcasts would
575	 * be handled via ip_forward() and ether_output() with the loopback
576	 * into the stack for SIMPLEX interfaces handled by ether_output().
577	 */
578	if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
579	        TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
580			if (ifa->ifa_addr->sa_family != AF_INET)
581				continue;
582			ia = ifatoia(ifa);
583			if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
584			    pkt_dst.s_addr)
585				goto ours;
586			if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
587				goto ours;
588#ifdef BOOTP_COMPAT
589			if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
590				goto ours;
591#endif
592		}
593	}
594	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
595		struct in_multi *inm;
596		if (ip_mrouter) {
597			/*
598			 * If we are acting as a multicast router, all
599			 * incoming multicast packets are passed to the
600			 * kernel-level multicast forwarding function.
601			 * The packet is returned (relatively) intact; if
602			 * ip_mforward() returns a non-zero value, the packet
603			 * must be discarded, else it may be accepted below.
604			 */
605			if (ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
606				ipstat.ips_cantforward++;
607				m_freem(m);
608				return;
609			}
610
611			/*
612			 * The process-level routing daemon needs to receive
613			 * all multicast IGMP packets, whether or not this
614			 * host belongs to their destination groups.
615			 */
616			if (ip->ip_p == IPPROTO_IGMP)
617				goto ours;
618			ipstat.ips_forward++;
619		}
620		/*
621		 * See if we belong to the destination multicast group on the
622		 * arrival interface.
623		 */
624		IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
625		if (inm == NULL) {
626			ipstat.ips_notmember++;
627			m_freem(m);
628			return;
629		}
630		goto ours;
631	}
632	if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
633		goto ours;
634	if (ip->ip_dst.s_addr == INADDR_ANY)
635		goto ours;
636
637	/*
638	 * FAITH(Firewall Aided Internet Translator)
639	 */
640	if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
641		if (ip_keepfaith) {
642			if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
643				goto ours;
644		}
645		m_freem(m);
646		return;
647	}
648
649	/*
650	 * Not for us; forward if possible and desirable.
651	 */
652	if (ipforwarding == 0) {
653		ipstat.ips_cantforward++;
654		m_freem(m);
655	} else {
656#ifdef IPSEC
657		/*
658		 * Enforce inbound IPsec SPD.
659		 */
660		if (ipsec4_in_reject(m, NULL)) {
661			ipsecstat.in_polvio++;
662			goto bad;
663		}
664#endif /* IPSEC */
665#ifdef FAST_IPSEC
666		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
667		s = splnet();
668		if (mtag != NULL) {
669			tdbi = (struct tdb_ident *)(mtag + 1);
670			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
671		} else {
672			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
673						   IP_FORWARDING, &error);
674		}
675		if (sp == NULL) {	/* NB: can happen if error */
676			splx(s);
677			/*XXX error stat???*/
678			DPRINTF(("ip_input: no SP for forwarding\n"));	/*XXX*/
679			goto bad;
680		}
681
682		/*
683		 * Check security policy against packet attributes.
684		 */
685		error = ipsec_in_reject(sp, m);
686		KEY_FREESP(&sp);
687		splx(s);
688		if (error) {
689			ipstat.ips_cantforward++;
690			goto bad;
691		}
692#endif /* FAST_IPSEC */
693		ip_forward(m, 0, args.next_hop);
694	}
695	return;
696
697ours:
698#ifdef IPSTEALTH
699	/*
700	 * IPSTEALTH: Process non-routing options only
701	 * if the packet is destined for us.
702	 */
703	if (ipstealth && hlen > sizeof (struct ip) &&
704	    ip_dooptions(m, 1, args.next_hop))
705		return;
706#endif /* IPSTEALTH */
707
708	/* Count the packet in the ip address stats */
709	if (ia != NULL) {
710		ia->ia_ifa.if_ipackets++;
711		ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
712	}
713
714	/*
715	 * If offset or IP_MF are set, must reassemble.
716	 * Otherwise, nothing need be done.
717	 * (We could look in the reassembly queue to see
718	 * if the packet was previously fragmented,
719	 * but it's not worth the time; just let them time out.)
720	 */
721	if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
722
723		sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
724		/*
725		 * Look for queue of fragments
726		 * of this datagram.
727		 */
728		TAILQ_FOREACH(fp, &ipq[sum], ipq_list)
729			if (ip->ip_id == fp->ipq_id &&
730			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
731			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
732#ifdef MAC
733			    mac_fragment_match(m, fp) &&
734#endif
735			    ip->ip_p == fp->ipq_p)
736				goto found;
737
738		fp = 0;
739
740		/* check if there's a place for the new queue */
741		if (nipq > maxnipq) {
742		    /*
743		     * drop something from the tail of the current queue
744		     * before proceeding further
745		     */
746		    struct ipq *q = TAILQ_LAST(&ipq[sum], ipqhead);
747		    if (q == NULL) {   /* gak */
748			for (i = 0; i < IPREASS_NHASH; i++) {
749			    struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
750			    if (r) {
751				ip_freef(&ipq[i], r);
752				break;
753			    }
754			}
755		    } else
756			ip_freef(&ipq[sum], q);
757		}
758found:
759		/*
760		 * Adjust ip_len to not reflect header,
761		 * convert offset of this to bytes.
762		 */
763		ip->ip_len -= hlen;
764		if (ip->ip_off & IP_MF) {
765		        /*
766		         * Make sure that fragments have a data length
767			 * that's a non-zero multiple of 8 bytes.
768		         */
769			if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
770				ipstat.ips_toosmall++; /* XXX */
771				goto bad;
772			}
773			m->m_flags |= M_FRAG;
774		} else
775			m->m_flags &= ~M_FRAG;
776		ip->ip_off <<= 3;
777
778		/*
779		 * Attempt reassembly; if it succeeds, proceed.
780		 * ip_reass() will return a different mbuf, and update
781		 * the divert info in divert_info and args.divert_rule.
782		 */
783		ipstat.ips_fragments++;
784		m->m_pkthdr.header = ip;
785		m = ip_reass(m,
786		    &ipq[sum], fp, &divert_info, &args.divert_rule);
787		if (m == 0)
788			return;
789		ipstat.ips_reassembled++;
790		ip = mtod(m, struct ip *);
791		/* Get the header length of the reassembled packet */
792		hlen = IP_VHL_HL(ip->ip_vhl) << 2;
793#ifdef IPDIVERT
794		/* Restore original checksum before diverting packet */
795		if (divert_info != 0) {
796			ip->ip_len += hlen;
797			ip->ip_len = htons(ip->ip_len);
798			ip->ip_off = htons(ip->ip_off);
799			ip->ip_sum = 0;
800			if (hlen == sizeof(struct ip))
801				ip->ip_sum = in_cksum_hdr(ip);
802			else
803				ip->ip_sum = in_cksum(m, hlen);
804			ip->ip_off = ntohs(ip->ip_off);
805			ip->ip_len = ntohs(ip->ip_len);
806			ip->ip_len -= hlen;
807		}
808#endif
809	} else
810		ip->ip_len -= hlen;
811
812#ifdef IPDIVERT
813	/*
814	 * Divert or tee packet to the divert protocol if required.
815	 */
816	if (divert_info != 0) {
817		struct mbuf *clone = NULL;
818
819		/* Clone packet if we're doing a 'tee' */
820		if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
821			clone = m_dup(m, M_DONTWAIT);
822
823		/* Restore packet header fields to original values */
824		ip->ip_len += hlen;
825		ip->ip_len = htons(ip->ip_len);
826		ip->ip_off = htons(ip->ip_off);
827
828		/* Deliver packet to divert input routine */
829		divert_packet(m, 1, divert_info & 0xffff, args.divert_rule);
830		ipstat.ips_delivered++;
831
832		/* If 'tee', continue with original packet */
833		if (clone == NULL)
834			return;
835		m = clone;
836		ip = mtod(m, struct ip *);
837		ip->ip_len += hlen;
838		/*
839		 * Jump backwards to complete processing of the
840		 * packet. But first clear divert_info to avoid
841		 * entering this block again.
842		 * We do not need to clear args.divert_rule
843		 * or args.next_hop as they will not be used.
844		 */
845		divert_info = 0;
846		goto pass;
847	}
848#endif
849
850#ifdef IPSEC
851	/*
852	 * enforce IPsec policy checking if we are seeing last header.
853	 * note that we do not visit this with protocols with pcb layer
854	 * code - like udp/tcp/raw ip.
855	 */
856	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 &&
857	    ipsec4_in_reject(m, NULL)) {
858		ipsecstat.in_polvio++;
859		goto bad;
860	}
861#endif
862#if FAST_IPSEC
863	/*
864	 * enforce IPsec policy checking if we are seeing last header.
865	 * note that we do not visit this with protocols with pcb layer
866	 * code - like udp/tcp/raw ip.
867	 */
868	if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) {
869		/*
870		 * Check if the packet has already had IPsec processing
871		 * done.  If so, then just pass it along.  This tag gets
872		 * set during AH, ESP, etc. input handling, before the
873		 * packet is returned to the ip input queue for delivery.
874		 */
875		mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
876		s = splnet();
877		if (mtag != NULL) {
878			tdbi = (struct tdb_ident *)(mtag + 1);
879			sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
880		} else {
881			sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
882						   IP_FORWARDING, &error);
883		}
884		if (sp != NULL) {
885			/*
886			 * Check security policy against packet attributes.
887			 */
888			error = ipsec_in_reject(sp, m);
889			KEY_FREESP(&sp);
890		} else {
891			/* XXX error stat??? */
892			error = EINVAL;
893DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
894			goto bad;
895		}
896		splx(s);
897		if (error)
898			goto bad;
899	}
900#endif /* FAST_IPSEC */
901
902	/*
903	 * Switch out to protocol's input routine.
904	 */
905	ipstat.ips_delivered++;
906	if (args.next_hop && ip->ip_p == IPPROTO_TCP) {
907		/* TCP needs IPFORWARD info if available */
908		struct m_hdr tag;
909
910		tag.mh_type = MT_TAG;
911		tag.mh_flags = PACKET_TAG_IPFORWARD;
912		tag.mh_data = (caddr_t)args.next_hop;
913		tag.mh_next = m;
914
915		(*inetsw[ip_protox[ip->ip_p]].pr_input)(
916			(struct mbuf *)&tag, hlen);
917	} else
918		(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
919	return;
920bad:
921	m_freem(m);
922}
923
924/*
925 * IP software interrupt routine - to go away sometime soon
926 */
927static void
928ipintr(void)
929{
930	struct mbuf *m;
931
932	while (1) {
933		IF_DEQUEUE(&ipintrq, m);
934		if (m == 0)
935			return;
936		ip_input(m);
937	}
938}
939
940/*
941 * Take incoming datagram fragment and try to reassemble it into
942 * whole datagram.  If a chain for reassembly of this datagram already
943 * exists, then it is given as fp; otherwise have to make a chain.
944 *
945 * When IPDIVERT enabled, keep additional state with each packet that
946 * tells us if we need to divert or tee the packet we're building.
947 * In particular, *divinfo includes the port and TEE flag,
948 * *divert_rule is the number of the matching rule.
949 */
950
951static struct mbuf *
952ip_reass(struct mbuf *m, struct ipqhead *head, struct ipq *fp,
953	u_int32_t *divinfo, u_int16_t *divert_rule)
954{
955	struct ip *ip = mtod(m, struct ip *);
956	register struct mbuf *p, *q, *nq;
957	struct mbuf *t;
958	int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
959	int i, next;
960
961	/*
962	 * Presence of header sizes in mbufs
963	 * would confuse code below.
964	 */
965	m->m_data += hlen;
966	m->m_len -= hlen;
967
968	/*
969	 * If first fragment to arrive, create a reassembly queue.
970	 */
971	if (fp == 0) {
972		/*
973		 * Enforce upper bound on number of fragmented packets
974		 * for which we attempt reassembly;
975		 * If maxfrag is 0, never accept fragments.
976		 * If maxfrag is -1, accept all fragments without limitation.
977		 */
978		if ((ip_maxfragpackets >= 0) && (ip_nfragpackets >= ip_maxfragpackets))
979			goto dropfrag;
980		ip_nfragpackets++;
981		if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
982			goto dropfrag;
983		fp = mtod(t, struct ipq *);
984#ifdef MAC
985		mac_init_ipq(fp);
986		mac_create_ipq(m, fp);
987#endif
988		TAILQ_INSERT_HEAD(head, fp, ipq_list);
989		nipq++;
990		fp->ipq_ttl = IPFRAGTTL;
991		fp->ipq_p = ip->ip_p;
992		fp->ipq_id = ip->ip_id;
993		fp->ipq_src = ip->ip_src;
994		fp->ipq_dst = ip->ip_dst;
995		fp->ipq_frags = m;
996		m->m_nextpkt = NULL;
997#ifdef IPDIVERT
998		fp->ipq_div_info = 0;
999		fp->ipq_div_cookie = 0;
1000#endif
1001		goto inserted;
1002	} else {
1003#ifdef MAC
1004		mac_update_ipq(m, fp);
1005#endif
1006	}
1007
1008#define GETIP(m)	((struct ip*)((m)->m_pkthdr.header))
1009
1010	/*
1011	 * Find a segment which begins after this one does.
1012	 */
1013	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1014		if (GETIP(q)->ip_off > ip->ip_off)
1015			break;
1016
1017	/*
1018	 * If there is a preceding segment, it may provide some of
1019	 * our data already.  If so, drop the data from the incoming
1020	 * segment.  If it provides all of our data, drop us, otherwise
1021	 * stick new segment in the proper place.
1022	 *
1023	 * If some of the data is dropped from the the preceding
1024	 * segment, then it's checksum is invalidated.
1025	 */
1026	if (p) {
1027		i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1028		if (i > 0) {
1029			if (i >= ip->ip_len)
1030				goto dropfrag;
1031			m_adj(m, i);
1032			m->m_pkthdr.csum_flags = 0;
1033			ip->ip_off += i;
1034			ip->ip_len -= i;
1035		}
1036		m->m_nextpkt = p->m_nextpkt;
1037		p->m_nextpkt = m;
1038	} else {
1039		m->m_nextpkt = fp->ipq_frags;
1040		fp->ipq_frags = m;
1041	}
1042
1043	/*
1044	 * While we overlap succeeding segments trim them or,
1045	 * if they are completely covered, dequeue them.
1046	 */
1047	for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1048	     q = nq) {
1049		i = (ip->ip_off + ip->ip_len) -
1050		    GETIP(q)->ip_off;
1051		if (i < GETIP(q)->ip_len) {
1052			GETIP(q)->ip_len -= i;
1053			GETIP(q)->ip_off += i;
1054			m_adj(q, i);
1055			q->m_pkthdr.csum_flags = 0;
1056			break;
1057		}
1058		nq = q->m_nextpkt;
1059		m->m_nextpkt = nq;
1060		m_freem(q);
1061	}
1062
1063inserted:
1064
1065#ifdef IPDIVERT
1066	/*
1067	 * Transfer firewall instructions to the fragment structure.
1068	 * Only trust info in the fragment at offset 0.
1069	 */
1070	if (ip->ip_off == 0) {
1071		fp->ipq_div_info = *divinfo;
1072		fp->ipq_div_cookie = *divert_rule;
1073	}
1074	*divinfo = 0;
1075	*divert_rule = 0;
1076#endif
1077
1078	/*
1079	 * Check for complete reassembly.
1080	 */
1081	next = 0;
1082	for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1083		if (GETIP(q)->ip_off != next)
1084			return (0);
1085		next += GETIP(q)->ip_len;
1086	}
1087	/* Make sure the last packet didn't have the IP_MF flag */
1088	if (p->m_flags & M_FRAG)
1089		return (0);
1090
1091	/*
1092	 * Reassembly is complete.  Make sure the packet is a sane size.
1093	 */
1094	q = fp->ipq_frags;
1095	ip = GETIP(q);
1096	if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1097		ipstat.ips_toolong++;
1098		ip_freef(head, fp);
1099		return (0);
1100	}
1101
1102	/*
1103	 * Concatenate fragments.
1104	 */
1105	m = q;
1106	t = m->m_next;
1107	m->m_next = 0;
1108	m_cat(m, t);
1109	nq = q->m_nextpkt;
1110	q->m_nextpkt = 0;
1111	for (q = nq; q != NULL; q = nq) {
1112		nq = q->m_nextpkt;
1113		q->m_nextpkt = NULL;
1114		m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1115		m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1116		m_cat(m, q);
1117	}
1118#ifdef MAC
1119	mac_create_datagram_from_ipq(fp, m);
1120	mac_destroy_ipq(fp);
1121#endif
1122
1123#ifdef IPDIVERT
1124	/*
1125	 * Extract firewall instructions from the fragment structure.
1126	 */
1127	*divinfo = fp->ipq_div_info;
1128	*divert_rule = fp->ipq_div_cookie;
1129#endif
1130
1131	/*
1132	 * Create header for new ip packet by
1133	 * modifying header of first packet;
1134	 * dequeue and discard fragment reassembly header.
1135	 * Make header visible.
1136	 */
1137	ip->ip_len = next;
1138	ip->ip_src = fp->ipq_src;
1139	ip->ip_dst = fp->ipq_dst;
1140	TAILQ_REMOVE(head, fp, ipq_list);
1141	nipq--;
1142	(void) m_free(dtom(fp));
1143	ip_nfragpackets--;
1144	m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1145	m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1146	/* some debugging cruft by sklower, below, will go away soon */
1147	if (m->m_flags & M_PKTHDR)	/* XXX this should be done elsewhere */
1148		m_fixhdr(m);
1149	return (m);
1150
1151dropfrag:
1152#ifdef IPDIVERT
1153	*divinfo = 0;
1154	*divert_rule = 0;
1155#endif
1156	ipstat.ips_fragdropped++;
1157	m_freem(m);
1158	return (0);
1159
1160#undef GETIP
1161}
1162
1163/*
1164 * Free a fragment reassembly header and all
1165 * associated datagrams.
1166 */
1167static void
1168ip_freef(fhp, fp)
1169	struct ipqhead *fhp;
1170	struct ipq *fp;
1171{
1172	register struct mbuf *q;
1173
1174	while (fp->ipq_frags) {
1175		q = fp->ipq_frags;
1176		fp->ipq_frags = q->m_nextpkt;
1177		m_freem(q);
1178	}
1179	TAILQ_REMOVE(fhp, fp, ipq_list);
1180	(void) m_free(dtom(fp));
1181	ip_nfragpackets--;
1182	nipq--;
1183}
1184
1185/*
1186 * IP timer processing;
1187 * if a timer expires on a reassembly
1188 * queue, discard it.
1189 */
1190void
1191ip_slowtimo()
1192{
1193	register struct ipq *fp;
1194	int s = splnet();
1195	int i;
1196
1197	for (i = 0; i < IPREASS_NHASH; i++) {
1198		for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
1199			struct ipq *fpp;
1200
1201			fpp = fp;
1202			fp = TAILQ_NEXT(fp, ipq_list);
1203			if(--fpp->ipq_ttl == 0) {
1204				ipstat.ips_fragtimeout++;
1205				ip_freef(&ipq[i], fpp);
1206			}
1207		}
1208	}
1209	/*
1210	 * If we are over the maximum number of fragments
1211	 * (due to the limit being lowered), drain off
1212	 * enough to get down to the new limit.
1213	 */
1214	for (i = 0; i < IPREASS_NHASH; i++) {
1215		if (ip_maxfragpackets >= 0) {
1216			while (ip_nfragpackets > ip_maxfragpackets &&
1217				!TAILQ_EMPTY(&ipq[i])) {
1218				ipstat.ips_fragdropped++;
1219				ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1220			}
1221		}
1222	}
1223	ipflow_slowtimo();
1224	splx(s);
1225}
1226
1227/*
1228 * Drain off all datagram fragments.
1229 */
1230void
1231ip_drain()
1232{
1233	int     i;
1234
1235	for (i = 0; i < IPREASS_NHASH; i++) {
1236		while(!TAILQ_EMPTY(&ipq[i])) {
1237			ipstat.ips_fragdropped++;
1238			ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
1239		}
1240	}
1241	in_rtqdrain();
1242}
1243
1244/*
1245 * Do option processing on a datagram,
1246 * possibly discarding it if bad options are encountered,
1247 * or forwarding it if source-routed.
1248 * The pass argument is used when operating in the IPSTEALTH
1249 * mode to tell what options to process:
1250 * [LS]SRR (pass 0) or the others (pass 1).
1251 * The reason for as many as two passes is that when doing IPSTEALTH,
1252 * non-routing options should be processed only if the packet is for us.
1253 * Returns 1 if packet has been forwarded/freed,
1254 * 0 if the packet should be processed further.
1255 */
1256static int
1257ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1258{
1259	struct ip *ip = mtod(m, struct ip *);
1260	u_char *cp;
1261	struct in_ifaddr *ia;
1262	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1263	struct in_addr *sin, dst;
1264	n_time ntime;
1265	struct	sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
1266
1267	dst = ip->ip_dst;
1268	cp = (u_char *)(ip + 1);
1269	cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1270	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1271		opt = cp[IPOPT_OPTVAL];
1272		if (opt == IPOPT_EOL)
1273			break;
1274		if (opt == IPOPT_NOP)
1275			optlen = 1;
1276		else {
1277			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1278				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1279				goto bad;
1280			}
1281			optlen = cp[IPOPT_OLEN];
1282			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1283				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1284				goto bad;
1285			}
1286		}
1287		switch (opt) {
1288
1289		default:
1290			break;
1291
1292		/*
1293		 * Source routing with record.
1294		 * Find interface with current destination address.
1295		 * If none on this machine then drop if strictly routed,
1296		 * or do nothing if loosely routed.
1297		 * Record interface address and bring up next address
1298		 * component.  If strictly routed make sure next
1299		 * address is on directly accessible net.
1300		 */
1301		case IPOPT_LSRR:
1302		case IPOPT_SSRR:
1303#ifdef IPSTEALTH
1304			if (ipstealth && pass > 0)
1305				break;
1306#endif
1307			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1308				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1309				goto bad;
1310			}
1311			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1312				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1313				goto bad;
1314			}
1315			ipaddr.sin_addr = ip->ip_dst;
1316			ia = (struct in_ifaddr *)
1317				ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1318			if (ia == 0) {
1319				if (opt == IPOPT_SSRR) {
1320					type = ICMP_UNREACH;
1321					code = ICMP_UNREACH_SRCFAIL;
1322					goto bad;
1323				}
1324				if (!ip_dosourceroute)
1325					goto nosourcerouting;
1326				/*
1327				 * Loose routing, and not at next destination
1328				 * yet; nothing to do except forward.
1329				 */
1330				break;
1331			}
1332			off--;			/* 0 origin */
1333			if (off > optlen - (int)sizeof(struct in_addr)) {
1334				/*
1335				 * End of source route.  Should be for us.
1336				 */
1337				if (!ip_acceptsourceroute)
1338					goto nosourcerouting;
1339				save_rte(cp, ip->ip_src);
1340				break;
1341			}
1342#ifdef IPSTEALTH
1343			if (ipstealth)
1344				goto dropit;
1345#endif
1346			if (!ip_dosourceroute) {
1347				if (ipforwarding) {
1348					char buf[16]; /* aaa.bbb.ccc.ddd\0 */
1349					/*
1350					 * Acting as a router, so generate ICMP
1351					 */
1352nosourcerouting:
1353					strcpy(buf, inet_ntoa(ip->ip_dst));
1354					log(LOG_WARNING,
1355					    "attempted source route from %s to %s\n",
1356					    inet_ntoa(ip->ip_src), buf);
1357					type = ICMP_UNREACH;
1358					code = ICMP_UNREACH_SRCFAIL;
1359					goto bad;
1360				} else {
1361					/*
1362					 * Not acting as a router, so silently drop.
1363					 */
1364#ifdef IPSTEALTH
1365dropit:
1366#endif
1367					ipstat.ips_cantforward++;
1368					m_freem(m);
1369					return (1);
1370				}
1371			}
1372
1373			/*
1374			 * locate outgoing interface
1375			 */
1376			(void)memcpy(&ipaddr.sin_addr, cp + off,
1377			    sizeof(ipaddr.sin_addr));
1378
1379			if (opt == IPOPT_SSRR) {
1380#define	INA	struct in_ifaddr *
1381#define	SA	struct sockaddr *
1382			    if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
1383				ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1384			} else
1385				ia = ip_rtaddr(ipaddr.sin_addr, &ipforward_rt);
1386			if (ia == 0) {
1387				type = ICMP_UNREACH;
1388				code = ICMP_UNREACH_SRCFAIL;
1389				goto bad;
1390			}
1391			ip->ip_dst = ipaddr.sin_addr;
1392			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1393			    sizeof(struct in_addr));
1394			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1395			/*
1396			 * Let ip_intr's mcast routing check handle mcast pkts
1397			 */
1398			forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1399			break;
1400
1401		case IPOPT_RR:
1402#ifdef IPSTEALTH
1403			if (ipstealth && pass == 0)
1404				break;
1405#endif
1406			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1407				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1408				goto bad;
1409			}
1410			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1411				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1412				goto bad;
1413			}
1414			/*
1415			 * If no space remains, ignore.
1416			 */
1417			off--;			/* 0 origin */
1418			if (off > optlen - (int)sizeof(struct in_addr))
1419				break;
1420			(void)memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1421			    sizeof(ipaddr.sin_addr));
1422			/*
1423			 * locate outgoing interface; if we're the destination,
1424			 * use the incoming interface (should be same).
1425			 */
1426			if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
1427			    (ia = ip_rtaddr(ipaddr.sin_addr,
1428			    &ipforward_rt)) == 0) {
1429				type = ICMP_UNREACH;
1430				code = ICMP_UNREACH_HOST;
1431				goto bad;
1432			}
1433			(void)memcpy(cp + off, &(IA_SIN(ia)->sin_addr),
1434			    sizeof(struct in_addr));
1435			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1436			break;
1437
1438		case IPOPT_TS:
1439#ifdef IPSTEALTH
1440			if (ipstealth && pass == 0)
1441				break;
1442#endif
1443			code = cp - (u_char *)ip;
1444			if (optlen < 4 || optlen > 40) {
1445				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1446				goto bad;
1447			}
1448			if ((off = cp[IPOPT_OFFSET]) < 5) {
1449				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1450				goto bad;
1451			}
1452			if (off > optlen - (int)sizeof(int32_t)) {
1453				cp[IPOPT_OFFSET + 1] += (1 << 4);
1454				if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1455					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1456					goto bad;
1457				}
1458				break;
1459			}
1460			off--;				/* 0 origin */
1461			sin = (struct in_addr *)(cp + off);
1462			switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1463
1464			case IPOPT_TS_TSONLY:
1465				break;
1466
1467			case IPOPT_TS_TSANDADDR:
1468				if (off + sizeof(n_time) +
1469				    sizeof(struct in_addr) > optlen) {
1470					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1471					goto bad;
1472				}
1473				ipaddr.sin_addr = dst;
1474				ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1475							    m->m_pkthdr.rcvif);
1476				if (ia == 0)
1477					continue;
1478				(void)memcpy(sin, &IA_SIN(ia)->sin_addr,
1479				    sizeof(struct in_addr));
1480				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1481				off += sizeof(struct in_addr);
1482				break;
1483
1484			case IPOPT_TS_PRESPEC:
1485				if (off + sizeof(n_time) +
1486				    sizeof(struct in_addr) > optlen) {
1487					code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1488					goto bad;
1489				}
1490				(void)memcpy(&ipaddr.sin_addr, sin,
1491				    sizeof(struct in_addr));
1492				if (ifa_ifwithaddr((SA)&ipaddr) == 0)
1493					continue;
1494				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1495				off += sizeof(struct in_addr);
1496				break;
1497
1498			default:
1499				code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1500				goto bad;
1501			}
1502			ntime = iptime();
1503			(void)memcpy(cp + off, &ntime, sizeof(n_time));
1504			cp[IPOPT_OFFSET] += sizeof(n_time);
1505		}
1506	}
1507	if (forward && ipforwarding) {
1508		ip_forward(m, 1, next_hop);
1509		return (1);
1510	}
1511	return (0);
1512bad:
1513	icmp_error(m, type, code, 0, 0);
1514	ipstat.ips_badoptions++;
1515	return (1);
1516}
1517
1518/*
1519 * Given address of next destination (final or next hop),
1520 * return internet address info of interface to be used to get there.
1521 */
1522struct in_ifaddr *
1523ip_rtaddr(dst, rt)
1524	struct in_addr dst;
1525	struct route *rt;
1526{
1527	register struct sockaddr_in *sin;
1528
1529	sin = (struct sockaddr_in *)&rt->ro_dst;
1530
1531	if (rt->ro_rt == 0 ||
1532	    !(rt->ro_rt->rt_flags & RTF_UP) ||
1533	    dst.s_addr != sin->sin_addr.s_addr) {
1534		if (rt->ro_rt) {
1535			RTFREE(rt->ro_rt);
1536			rt->ro_rt = 0;
1537		}
1538		sin->sin_family = AF_INET;
1539		sin->sin_len = sizeof(*sin);
1540		sin->sin_addr = dst;
1541
1542		rtalloc_ign(rt, RTF_PRCLONING);
1543	}
1544	if (rt->ro_rt == 0)
1545		return ((struct in_ifaddr *)0);
1546	return (ifatoia(rt->ro_rt->rt_ifa));
1547}
1548
1549/*
1550 * Save incoming source route for use in replies,
1551 * to be picked up later by ip_srcroute if the receiver is interested.
1552 */
1553static void
1554save_rte(option, dst)
1555	u_char *option;
1556	struct in_addr dst;
1557{
1558	unsigned olen;
1559
1560	olen = option[IPOPT_OLEN];
1561#ifdef DIAGNOSTIC
1562	if (ipprintfs)
1563		printf("save_rte: olen %d\n", olen);
1564#endif
1565	if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1566		return;
1567	bcopy(option, ip_srcrt.srcopt, olen);
1568	ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1569	ip_srcrt.dst = dst;
1570}
1571
1572/*
1573 * Retrieve incoming source route for use in replies,
1574 * in the same form used by setsockopt.
1575 * The first hop is placed before the options, will be removed later.
1576 */
1577struct mbuf *
1578ip_srcroute()
1579{
1580	register struct in_addr *p, *q;
1581	register struct mbuf *m;
1582
1583	if (ip_nhops == 0)
1584		return ((struct mbuf *)0);
1585	m = m_get(M_DONTWAIT, MT_HEADER);
1586	if (m == 0)
1587		return ((struct mbuf *)0);
1588
1589#define OPTSIZ	(sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1590
1591	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1592	m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1593	    OPTSIZ;
1594#ifdef DIAGNOSTIC
1595	if (ipprintfs)
1596		printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1597#endif
1598
1599	/*
1600	 * First save first hop for return route
1601	 */
1602	p = &ip_srcrt.route[ip_nhops - 1];
1603	*(mtod(m, struct in_addr *)) = *p--;
1604#ifdef DIAGNOSTIC
1605	if (ipprintfs)
1606		printf(" hops %lx", (u_long)ntohl(mtod(m, struct in_addr *)->s_addr));
1607#endif
1608
1609	/*
1610	 * Copy option fields and padding (nop) to mbuf.
1611	 */
1612	ip_srcrt.nop = IPOPT_NOP;
1613	ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1614	(void)memcpy(mtod(m, caddr_t) + sizeof(struct in_addr),
1615	    &ip_srcrt.nop, OPTSIZ);
1616	q = (struct in_addr *)(mtod(m, caddr_t) +
1617	    sizeof(struct in_addr) + OPTSIZ);
1618#undef OPTSIZ
1619	/*
1620	 * Record return path as an IP source route,
1621	 * reversing the path (pointers are now aligned).
1622	 */
1623	while (p >= ip_srcrt.route) {
1624#ifdef DIAGNOSTIC
1625		if (ipprintfs)
1626			printf(" %lx", (u_long)ntohl(q->s_addr));
1627#endif
1628		*q++ = *p--;
1629	}
1630	/*
1631	 * Last hop goes to final destination.
1632	 */
1633	*q = ip_srcrt.dst;
1634#ifdef DIAGNOSTIC
1635	if (ipprintfs)
1636		printf(" %lx\n", (u_long)ntohl(q->s_addr));
1637#endif
1638	return (m);
1639}
1640
1641/*
1642 * Strip out IP options, at higher
1643 * level protocol in the kernel.
1644 * Second argument is buffer to which options
1645 * will be moved, and return value is their length.
1646 * XXX should be deleted; last arg currently ignored.
1647 */
1648void
1649ip_stripoptions(m, mopt)
1650	register struct mbuf *m;
1651	struct mbuf *mopt;
1652{
1653	register int i;
1654	struct ip *ip = mtod(m, struct ip *);
1655	register caddr_t opts;
1656	int olen;
1657
1658	olen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof (struct ip);
1659	opts = (caddr_t)(ip + 1);
1660	i = m->m_len - (sizeof (struct ip) + olen);
1661	bcopy(opts + olen, opts, (unsigned)i);
1662	m->m_len -= olen;
1663	if (m->m_flags & M_PKTHDR)
1664		m->m_pkthdr.len -= olen;
1665	ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1666}
1667
1668u_char inetctlerrmap[PRC_NCMDS] = {
1669	0,		0,		0,		0,
1670	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1671	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1672	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1673	0,		0,		0,		0,
1674	ENOPROTOOPT,	ECONNREFUSED
1675};
1676
1677/*
1678 * Forward a packet.  If some error occurs return the sender
1679 * an icmp packet.  Note we can't always generate a meaningful
1680 * icmp message because icmp doesn't have a large enough repertoire
1681 * of codes and types.
1682 *
1683 * If not forwarding, just drop the packet.  This could be confusing
1684 * if ipforwarding was zero but some routing protocol was advancing
1685 * us as a gateway to somewhere.  However, we must let the routing
1686 * protocol deal with that.
1687 *
1688 * The srcrt parameter indicates whether the packet is being forwarded
1689 * via a source route.
1690 */
1691static void
1692ip_forward(struct mbuf *m, int srcrt, struct sockaddr_in *next_hop)
1693{
1694	struct ip *ip = mtod(m, struct ip *);
1695	struct rtentry *rt;
1696	int error, type = 0, code = 0;
1697	struct mbuf *mcopy;
1698	n_long dest;
1699	struct in_addr pkt_dst;
1700	struct ifnet *destifp;
1701#if defined(IPSEC) || defined(FAST_IPSEC)
1702	struct ifnet dummyifp;
1703#endif
1704
1705	dest = 0;
1706	/*
1707	 * Cache the destination address of the packet; this may be
1708	 * changed by use of 'ipfw fwd'.
1709	 */
1710	pkt_dst = next_hop ? next_hop->sin_addr : ip->ip_dst;
1711
1712#ifdef DIAGNOSTIC
1713	if (ipprintfs)
1714		printf("forward: src %lx dst %lx ttl %x\n",
1715		    (u_long)ip->ip_src.s_addr, (u_long)pkt_dst.s_addr,
1716		    ip->ip_ttl);
1717#endif
1718
1719
1720	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(pkt_dst) == 0) {
1721		ipstat.ips_cantforward++;
1722		m_freem(m);
1723		return;
1724	}
1725#ifdef IPSTEALTH
1726	if (!ipstealth) {
1727#endif
1728		if (ip->ip_ttl <= IPTTLDEC) {
1729			icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
1730			    dest, 0);
1731			return;
1732		}
1733#ifdef IPSTEALTH
1734	}
1735#endif
1736
1737	if (ip_rtaddr(pkt_dst, &ipforward_rt) == 0) {
1738		icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1739		return;
1740	} else
1741		rt = ipforward_rt.ro_rt;
1742
1743	/*
1744	 * Save the IP header and at most 8 bytes of the payload,
1745	 * in case we need to generate an ICMP message to the src.
1746	 *
1747	 * XXX this can be optimized a lot by saving the data in a local
1748	 * buffer on the stack (72 bytes at most), and only allocating the
1749	 * mbuf if really necessary. The vast majority of the packets
1750	 * are forwarded without having to send an ICMP back (either
1751	 * because unnecessary, or because rate limited), so we are
1752	 * really we are wasting a lot of work here.
1753	 *
1754	 * We don't use m_copy() because it might return a reference
1755	 * to a shared cluster. Both this function and ip_output()
1756	 * assume exclusive access to the IP header in `m', so any
1757	 * data in a cluster may change before we reach icmp_error().
1758	 */
1759	MGET(mcopy, M_DONTWAIT, m->m_type);
1760	if (mcopy != NULL) {
1761		M_COPY_PKTHDR(mcopy, m);
1762		mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
1763		    (int)ip->ip_len);
1764		m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1765#ifdef MAC
1766		/*
1767		 * XXXMAC: This will eventually become an explicit
1768		 * labeling point.
1769		 */
1770		mac_create_mbuf_from_mbuf(m, mcopy);
1771#endif
1772	}
1773
1774#ifdef IPSTEALTH
1775	if (!ipstealth) {
1776#endif
1777		ip->ip_ttl -= IPTTLDEC;
1778#ifdef IPSTEALTH
1779	}
1780#endif
1781
1782	/*
1783	 * If forwarding packet using same interface that it came in on,
1784	 * perhaps should send a redirect to sender to shortcut a hop.
1785	 * Only send redirect if source is sending directly to us,
1786	 * and if packet was not source routed (or has any options).
1787	 * Also, don't send redirect if forwarding using a default route
1788	 * or a route modified by a redirect.
1789	 */
1790	if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1791	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1792	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1793	    ipsendredirects && !srcrt && !next_hop) {
1794#define	RTA(rt)	((struct in_ifaddr *)(rt->rt_ifa))
1795		u_long src = ntohl(ip->ip_src.s_addr);
1796
1797		if (RTA(rt) &&
1798		    (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1799		    if (rt->rt_flags & RTF_GATEWAY)
1800			dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1801		    else
1802			dest = pkt_dst.s_addr;
1803		    /* Router requirements says to only send host redirects */
1804		    type = ICMP_REDIRECT;
1805		    code = ICMP_REDIRECT_HOST;
1806#ifdef DIAGNOSTIC
1807		    if (ipprintfs)
1808		        printf("redirect (%d) to %lx\n", code, (u_long)dest);
1809#endif
1810		}
1811	}
1812
1813    {
1814	struct m_hdr tag;
1815
1816	if (next_hop) {
1817		/* Pass IPFORWARD info if available */
1818
1819		tag.mh_type = MT_TAG;
1820		tag.mh_flags = PACKET_TAG_IPFORWARD;
1821		tag.mh_data = (caddr_t)next_hop;
1822		tag.mh_next = m;
1823		m = (struct mbuf *)&tag;
1824	}
1825	error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
1826			  IP_FORWARDING, 0, NULL);
1827    }
1828	if (error)
1829		ipstat.ips_cantforward++;
1830	else {
1831		ipstat.ips_forward++;
1832		if (type)
1833			ipstat.ips_redirectsent++;
1834		else {
1835			if (mcopy) {
1836				ipflow_create(&ipforward_rt, mcopy);
1837				m_freem(mcopy);
1838			}
1839			return;
1840		}
1841	}
1842	if (mcopy == NULL)
1843		return;
1844	destifp = NULL;
1845
1846	switch (error) {
1847
1848	case 0:				/* forwarded, but need redirect */
1849		/* type, code set above */
1850		break;
1851
1852	case ENETUNREACH:		/* shouldn't happen, checked above */
1853	case EHOSTUNREACH:
1854	case ENETDOWN:
1855	case EHOSTDOWN:
1856	default:
1857		type = ICMP_UNREACH;
1858		code = ICMP_UNREACH_HOST;
1859		break;
1860
1861	case EMSGSIZE:
1862		type = ICMP_UNREACH;
1863		code = ICMP_UNREACH_NEEDFRAG;
1864#ifdef IPSEC
1865		/*
1866		 * If the packet is routed over IPsec tunnel, tell the
1867		 * originator the tunnel MTU.
1868		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1869		 * XXX quickhack!!!
1870		 */
1871		if (ipforward_rt.ro_rt) {
1872			struct secpolicy *sp = NULL;
1873			int ipsecerror;
1874			int ipsechdr;
1875			struct route *ro;
1876
1877			sp = ipsec4_getpolicybyaddr(mcopy,
1878						    IPSEC_DIR_OUTBOUND,
1879			                            IP_FORWARDING,
1880			                            &ipsecerror);
1881
1882			if (sp == NULL)
1883				destifp = ipforward_rt.ro_rt->rt_ifp;
1884			else {
1885				/* count IPsec header size */
1886				ipsechdr = ipsec4_hdrsiz(mcopy,
1887							 IPSEC_DIR_OUTBOUND,
1888							 NULL);
1889
1890				/*
1891				 * find the correct route for outer IPv4
1892				 * header, compute tunnel MTU.
1893				 *
1894				 * XXX BUG ALERT
1895				 * The "dummyifp" code relies upon the fact
1896				 * that icmp_error() touches only ifp->if_mtu.
1897				 */
1898				/*XXX*/
1899				destifp = NULL;
1900				if (sp->req != NULL
1901				 && sp->req->sav != NULL
1902				 && sp->req->sav->sah != NULL) {
1903					ro = &sp->req->sav->sah->sa_route;
1904					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1905						dummyifp.if_mtu =
1906						    ro->ro_rt->rt_ifp->if_mtu;
1907						dummyifp.if_mtu -= ipsechdr;
1908						destifp = &dummyifp;
1909					}
1910				}
1911
1912				key_freesp(sp);
1913			}
1914		}
1915#elif FAST_IPSEC
1916		/*
1917		 * If the packet is routed over IPsec tunnel, tell the
1918		 * originator the tunnel MTU.
1919		 *	tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1920		 * XXX quickhack!!!
1921		 */
1922		if (ipforward_rt.ro_rt) {
1923			struct secpolicy *sp = NULL;
1924			int ipsecerror;
1925			int ipsechdr;
1926			struct route *ro;
1927
1928			sp = ipsec_getpolicybyaddr(mcopy,
1929						   IPSEC_DIR_OUTBOUND,
1930			                           IP_FORWARDING,
1931			                           &ipsecerror);
1932
1933			if (sp == NULL)
1934				destifp = ipforward_rt.ro_rt->rt_ifp;
1935			else {
1936				/* count IPsec header size */
1937				ipsechdr = ipsec4_hdrsiz(mcopy,
1938							 IPSEC_DIR_OUTBOUND,
1939							 NULL);
1940
1941				/*
1942				 * find the correct route for outer IPv4
1943				 * header, compute tunnel MTU.
1944				 *
1945				 * XXX BUG ALERT
1946				 * The "dummyifp" code relies upon the fact
1947				 * that icmp_error() touches only ifp->if_mtu.
1948				 */
1949				/*XXX*/
1950				destifp = NULL;
1951				if (sp->req != NULL
1952				 && sp->req->sav != NULL
1953				 && sp->req->sav->sah != NULL) {
1954					ro = &sp->req->sav->sah->sa_route;
1955					if (ro->ro_rt && ro->ro_rt->rt_ifp) {
1956						dummyifp.if_mtu =
1957						    ro->ro_rt->rt_ifp->if_mtu;
1958						dummyifp.if_mtu -= ipsechdr;
1959						destifp = &dummyifp;
1960					}
1961				}
1962
1963				KEY_FREESP(&sp);
1964			}
1965		}
1966#else /* !IPSEC && !FAST_IPSEC */
1967		if (ipforward_rt.ro_rt)
1968			destifp = ipforward_rt.ro_rt->rt_ifp;
1969#endif /*IPSEC*/
1970		ipstat.ips_cantfrag++;
1971		break;
1972
1973	case ENOBUFS:
1974		type = ICMP_SOURCEQUENCH;
1975		code = 0;
1976		break;
1977
1978	case EACCES:			/* ipfw denied packet */
1979		m_freem(mcopy);
1980		return;
1981	}
1982	icmp_error(mcopy, type, code, dest, destifp);
1983}
1984
1985void
1986ip_savecontrol(inp, mp, ip, m)
1987	register struct inpcb *inp;
1988	register struct mbuf **mp;
1989	register struct ip *ip;
1990	register struct mbuf *m;
1991{
1992	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1993		struct timeval tv;
1994
1995		microtime(&tv);
1996		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1997			SCM_TIMESTAMP, SOL_SOCKET);
1998		if (*mp)
1999			mp = &(*mp)->m_next;
2000	}
2001	if (inp->inp_flags & INP_RECVDSTADDR) {
2002		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2003		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2004		if (*mp)
2005			mp = &(*mp)->m_next;
2006	}
2007#ifdef notyet
2008	/* XXX
2009	 * Moving these out of udp_input() made them even more broken
2010	 * than they already were.
2011	 */
2012	/* options were tossed already */
2013	if (inp->inp_flags & INP_RECVOPTS) {
2014		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2015		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2016		if (*mp)
2017			mp = &(*mp)->m_next;
2018	}
2019	/* ip_srcroute doesn't do what we want here, need to fix */
2020	if (inp->inp_flags & INP_RECVRETOPTS) {
2021		*mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2022		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2023		if (*mp)
2024			mp = &(*mp)->m_next;
2025	}
2026#endif
2027	if (inp->inp_flags & INP_RECVIF) {
2028		struct ifnet *ifp;
2029		struct sdlbuf {
2030			struct sockaddr_dl sdl;
2031			u_char	pad[32];
2032		} sdlbuf;
2033		struct sockaddr_dl *sdp;
2034		struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2035
2036		if (((ifp = m->m_pkthdr.rcvif))
2037		&& ( ifp->if_index && (ifp->if_index <= if_index))) {
2038			sdp = (struct sockaddr_dl *)
2039			    (ifaddr_byindex(ifp->if_index)->ifa_addr);
2040			/*
2041			 * Change our mind and don't try copy.
2042			 */
2043			if ((sdp->sdl_family != AF_LINK)
2044			|| (sdp->sdl_len > sizeof(sdlbuf))) {
2045				goto makedummy;
2046			}
2047			bcopy(sdp, sdl2, sdp->sdl_len);
2048		} else {
2049makedummy:
2050			sdl2->sdl_len
2051				= offsetof(struct sockaddr_dl, sdl_data[0]);
2052			sdl2->sdl_family = AF_LINK;
2053			sdl2->sdl_index = 0;
2054			sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2055		}
2056		*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2057			IP_RECVIF, IPPROTO_IP);
2058		if (*mp)
2059			mp = &(*mp)->m_next;
2060	}
2061}
2062
2063/*
2064 * XXX these routines are called from the upper part of the kernel.
2065 * They need to be locked when we remove Giant.
2066 *
2067 * They could also be moved to ip_mroute.c, since all the RSVP
2068 *  handling is done there already.
2069 */
2070static int ip_rsvp_on;
2071struct socket *ip_rsvpd;
2072int
2073ip_rsvp_init(struct socket *so)
2074{
2075	if (so->so_type != SOCK_RAW ||
2076	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2077	  return EOPNOTSUPP;
2078
2079	if (ip_rsvpd != NULL)
2080	  return EADDRINUSE;
2081
2082	ip_rsvpd = so;
2083	/*
2084	 * This may seem silly, but we need to be sure we don't over-increment
2085	 * the RSVP counter, in case something slips up.
2086	 */
2087	if (!ip_rsvp_on) {
2088		ip_rsvp_on = 1;
2089		rsvp_on++;
2090	}
2091
2092	return 0;
2093}
2094
2095int
2096ip_rsvp_done(void)
2097{
2098	ip_rsvpd = NULL;
2099	/*
2100	 * This may seem silly, but we need to be sure we don't over-decrement
2101	 * the RSVP counter, in case something slips up.
2102	 */
2103	if (ip_rsvp_on) {
2104		ip_rsvp_on = 0;
2105		rsvp_on--;
2106	}
2107	return 0;
2108}
2109