ieee80211_crypto_tkip.c revision 182434
1/*-
2 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 */
25
26#include <sys/cdefs.h>
27__FBSDID("$FreeBSD: head/sys/net80211/ieee80211_crypto_tkip.c 182434 2008-08-29 05:02:10Z sam $");
28
29/*
30 * IEEE 802.11i TKIP crypto support.
31 *
32 * Part of this module is derived from similar code in the Host
33 * AP driver. The code is used with the consent of the author and
34 * it's license is included below.
35 */
36#include "opt_wlan.h"
37
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/mbuf.h>
41#include <sys/malloc.h>
42#include <sys/kernel.h>
43#include <sys/module.h>
44#include <sys/endian.h>
45
46#include <sys/socket.h>
47
48#include <net/if.h>
49#include <net/if_media.h>
50#include <net/ethernet.h>
51
52#include <net80211/ieee80211_var.h>
53
54static	void *tkip_attach(struct ieee80211vap *, struct ieee80211_key *);
55static	void tkip_detach(struct ieee80211_key *);
56static	int tkip_setkey(struct ieee80211_key *);
57static	int tkip_encap(struct ieee80211_key *, struct mbuf *m, uint8_t keyid);
58static	int tkip_enmic(struct ieee80211_key *, struct mbuf *, int);
59static	int tkip_decap(struct ieee80211_key *, struct mbuf *, int);
60static	int tkip_demic(struct ieee80211_key *, struct mbuf *, int);
61
62static const struct ieee80211_cipher tkip  = {
63	.ic_name	= "TKIP",
64	.ic_cipher	= IEEE80211_CIPHER_TKIP,
65	.ic_header	= IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
66			  IEEE80211_WEP_EXTIVLEN,
67	.ic_trailer	= IEEE80211_WEP_CRCLEN,
68	.ic_miclen	= IEEE80211_WEP_MICLEN,
69	.ic_attach	= tkip_attach,
70	.ic_detach	= tkip_detach,
71	.ic_setkey	= tkip_setkey,
72	.ic_encap	= tkip_encap,
73	.ic_decap	= tkip_decap,
74	.ic_enmic	= tkip_enmic,
75	.ic_demic	= tkip_demic,
76};
77
78typedef	uint8_t u8;
79typedef	uint16_t u16;
80typedef	uint32_t __u32;
81typedef	uint32_t u32;
82
83struct tkip_ctx {
84	struct ieee80211vap *tc_vap;	/* for diagnostics+statistics */
85
86	u16	tx_ttak[5];
87	int	tx_phase1_done;
88	u8	tx_rc4key[16];		/* XXX for test module; make locals? */
89
90	u16	rx_ttak[5];
91	int	rx_phase1_done;
92	u8	rx_rc4key[16];		/* XXX for test module; make locals? */
93	uint64_t rx_rsc;		/* held until MIC verified */
94};
95
96static	void michael_mic(struct tkip_ctx *, const u8 *key,
97		struct mbuf *m, u_int off, size_t data_len,
98		u8 mic[IEEE80211_WEP_MICLEN]);
99static	int tkip_encrypt(struct tkip_ctx *, struct ieee80211_key *,
100		struct mbuf *, int hdr_len);
101static	int tkip_decrypt(struct tkip_ctx *, struct ieee80211_key *,
102		struct mbuf *, int hdr_len);
103
104/* number of references from net80211 layer */
105static	int nrefs = 0;
106
107static void *
108tkip_attach(struct ieee80211vap *vap, struct ieee80211_key *k)
109{
110	struct tkip_ctx *ctx;
111
112	MALLOC(ctx, struct tkip_ctx *, sizeof(struct tkip_ctx),
113		M_80211_CRYPTO, M_NOWAIT | M_ZERO);
114	if (ctx == NULL) {
115		vap->iv_stats.is_crypto_nomem++;
116		return NULL;
117	}
118
119	ctx->tc_vap = vap;
120	nrefs++;			/* NB: we assume caller locking */
121	return ctx;
122}
123
124static void
125tkip_detach(struct ieee80211_key *k)
126{
127	struct tkip_ctx *ctx = k->wk_private;
128
129	FREE(ctx, M_80211_CRYPTO);
130	KASSERT(nrefs > 0, ("imbalanced attach/detach"));
131	nrefs--;			/* NB: we assume caller locking */
132}
133
134static int
135tkip_setkey(struct ieee80211_key *k)
136{
137	struct tkip_ctx *ctx = k->wk_private;
138
139	if (k->wk_keylen != (128/NBBY)) {
140		(void) ctx;		/* XXX */
141		IEEE80211_DPRINTF(ctx->tc_vap, IEEE80211_MSG_CRYPTO,
142			"%s: Invalid key length %u, expecting %u\n",
143			__func__, k->wk_keylen, 128/NBBY);
144		return 0;
145	}
146	k->wk_keytsc = 1;		/* TSC starts at 1 */
147	return 1;
148}
149
150/*
151 * Add privacy headers and do any s/w encryption required.
152 */
153static int
154tkip_encap(struct ieee80211_key *k, struct mbuf *m, uint8_t keyid)
155{
156	struct tkip_ctx *ctx = k->wk_private;
157	struct ieee80211vap *vap = ctx->tc_vap;
158	struct ieee80211com *ic = vap->iv_ic;
159	uint8_t *ivp;
160	int hdrlen;
161
162	/*
163	 * Handle TKIP counter measures requirement.
164	 */
165	if (vap->iv_flags & IEEE80211_F_COUNTERM) {
166#ifdef IEEE80211_DEBUG
167		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
168#endif
169
170		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
171		    "discard frame due to countermeasures (%s)", __func__);
172		vap->iv_stats.is_crypto_tkipcm++;
173		return 0;
174	}
175	hdrlen = ieee80211_hdrspace(ic, mtod(m, void *));
176
177	/*
178	 * Copy down 802.11 header and add the IV, KeyID, and ExtIV.
179	 */
180	M_PREPEND(m, tkip.ic_header, M_NOWAIT);
181	if (m == NULL)
182		return 0;
183	ivp = mtod(m, uint8_t *);
184	memmove(ivp, ivp + tkip.ic_header, hdrlen);
185	ivp += hdrlen;
186
187	ivp[0] = k->wk_keytsc >> 8;		/* TSC1 */
188	ivp[1] = (ivp[0] | 0x20) & 0x7f;	/* WEP seed */
189	ivp[2] = k->wk_keytsc >> 0;		/* TSC0 */
190	ivp[3] = keyid | IEEE80211_WEP_EXTIV;	/* KeyID | ExtID */
191	ivp[4] = k->wk_keytsc >> 16;		/* TSC2 */
192	ivp[5] = k->wk_keytsc >> 24;		/* TSC3 */
193	ivp[6] = k->wk_keytsc >> 32;		/* TSC4 */
194	ivp[7] = k->wk_keytsc >> 40;		/* TSC5 */
195
196	/*
197	 * Finally, do software encrypt if neeed.
198	 */
199	if (k->wk_flags & IEEE80211_KEY_SWENCRYPT) {
200		if (!tkip_encrypt(ctx, k, m, hdrlen))
201			return 0;
202		/* NB: tkip_encrypt handles wk_keytsc */
203	} else
204		k->wk_keytsc++;
205
206	return 1;
207}
208
209/*
210 * Add MIC to the frame as needed.
211 */
212static int
213tkip_enmic(struct ieee80211_key *k, struct mbuf *m, int force)
214{
215	struct tkip_ctx *ctx = k->wk_private;
216
217	if (force || (k->wk_flags & IEEE80211_KEY_SWENMIC)) {
218		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
219		struct ieee80211vap *vap = ctx->tc_vap;
220		struct ieee80211com *ic = vap->iv_ic;
221		int hdrlen;
222		uint8_t mic[IEEE80211_WEP_MICLEN];
223
224		vap->iv_stats.is_crypto_tkipenmic++;
225
226		hdrlen = ieee80211_hdrspace(ic, wh);
227
228		michael_mic(ctx, k->wk_txmic,
229			m, hdrlen, m->m_pkthdr.len - hdrlen, mic);
230		return m_append(m, tkip.ic_miclen, mic);
231	}
232	return 1;
233}
234
235static __inline uint64_t
236READ_6(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3, uint8_t b4, uint8_t b5)
237{
238	uint32_t iv32 = (b0 << 0) | (b1 << 8) | (b2 << 16) | (b3 << 24);
239	uint16_t iv16 = (b4 << 0) | (b5 << 8);
240	return (((uint64_t)iv16) << 32) | iv32;
241}
242
243/*
244 * Validate and strip privacy headers (and trailer) for a
245 * received frame.  If necessary, decrypt the frame using
246 * the specified key.
247 */
248static int
249tkip_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen)
250{
251	struct tkip_ctx *ctx = k->wk_private;
252	struct ieee80211vap *vap = ctx->tc_vap;
253	struct ieee80211_frame *wh;
254	uint8_t *ivp, tid;
255
256	/*
257	 * Header should have extended IV and sequence number;
258	 * verify the former and validate the latter.
259	 */
260	wh = mtod(m, struct ieee80211_frame *);
261	ivp = mtod(m, uint8_t *) + hdrlen;
262	if ((ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) == 0) {
263		/*
264		 * No extended IV; discard frame.
265		 */
266		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
267		    "%s", "missing ExtIV for TKIP cipher");
268		vap->iv_stats.is_rx_tkipformat++;
269		return 0;
270	}
271	/*
272	 * Handle TKIP counter measures requirement.
273	 */
274	if (vap->iv_flags & IEEE80211_F_COUNTERM) {
275		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
276		    "discard frame due to countermeasures (%s)", __func__);
277		vap->iv_stats.is_crypto_tkipcm++;
278		return 0;
279	}
280
281	tid = ieee80211_gettid(wh);
282	ctx->rx_rsc = READ_6(ivp[2], ivp[0], ivp[4], ivp[5], ivp[6], ivp[7]);
283	if (ctx->rx_rsc <= k->wk_keyrsc[tid]) {
284		/*
285		 * Replay violation; notify upper layer.
286		 */
287		ieee80211_notify_replay_failure(vap, wh, k, ctx->rx_rsc);
288		vap->iv_stats.is_rx_tkipreplay++;
289		return 0;
290	}
291	/*
292	 * NB: We can't update the rsc in the key until MIC is verified.
293	 *
294	 * We assume we are not preempted between doing the check above
295	 * and updating wk_keyrsc when stripping the MIC in tkip_demic.
296	 * Otherwise we might process another packet and discard it as
297	 * a replay.
298	 */
299
300	/*
301	 * Check if the device handled the decrypt in hardware.
302	 * If so we just strip the header; otherwise we need to
303	 * handle the decrypt in software.
304	 */
305	if ((k->wk_flags & IEEE80211_KEY_SWDECRYPT) &&
306	    !tkip_decrypt(ctx, k, m, hdrlen))
307		return 0;
308
309	/*
310	 * Copy up 802.11 header and strip crypto bits.
311	 */
312	memmove(mtod(m, uint8_t *) + tkip.ic_header, mtod(m, void *), hdrlen);
313	m_adj(m, tkip.ic_header);
314	m_adj(m, -tkip.ic_trailer);
315
316	return 1;
317}
318
319/*
320 * Verify and strip MIC from the frame.
321 */
322static int
323tkip_demic(struct ieee80211_key *k, struct mbuf *m, int force)
324{
325	struct tkip_ctx *ctx = k->wk_private;
326	struct ieee80211_frame *wh;
327	uint8_t tid;
328
329	wh = mtod(m, struct ieee80211_frame *);
330	if ((k->wk_flags & IEEE80211_KEY_SWDEMIC) || force) {
331		struct ieee80211vap *vap = ctx->tc_vap;
332		int hdrlen = ieee80211_hdrspace(vap->iv_ic, wh);
333		u8 mic[IEEE80211_WEP_MICLEN];
334		u8 mic0[IEEE80211_WEP_MICLEN];
335
336		vap->iv_stats.is_crypto_tkipdemic++;
337
338		michael_mic(ctx, k->wk_rxmic,
339			m, hdrlen, m->m_pkthdr.len - (hdrlen + tkip.ic_miclen),
340			mic);
341		m_copydata(m, m->m_pkthdr.len - tkip.ic_miclen,
342			tkip.ic_miclen, mic0);
343		if (memcmp(mic, mic0, tkip.ic_miclen)) {
344			/* NB: 802.11 layer handles statistic and debug msg */
345			ieee80211_notify_michael_failure(vap, wh,
346				k->wk_rxkeyix != IEEE80211_KEYIX_NONE ?
347					k->wk_rxkeyix : k->wk_keyix);
348			return 0;
349		}
350	}
351	/*
352	 * Strip MIC from the tail.
353	 */
354	m_adj(m, -tkip.ic_miclen);
355
356	/*
357	 * Ok to update rsc now that MIC has been verified.
358	 */
359	tid = ieee80211_gettid(wh);
360	k->wk_keyrsc[tid] = ctx->rx_rsc;
361
362	return 1;
363}
364
365/*
366 * Host AP crypt: host-based TKIP encryption implementation for Host AP driver
367 *
368 * Copyright (c) 2003-2004, Jouni Malinen <jkmaline@cc.hut.fi>
369 *
370 * This program is free software; you can redistribute it and/or modify
371 * it under the terms of the GNU General Public License version 2 as
372 * published by the Free Software Foundation. See README and COPYING for
373 * more details.
374 *
375 * Alternatively, this software may be distributed under the terms of BSD
376 * license.
377 */
378
379static const __u32 crc32_table[256] = {
380	0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L,
381	0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L,
382	0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L,
383	0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL,
384	0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L,
385	0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L,
386	0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L,
387	0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL,
388	0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L,
389	0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL,
390	0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L,
391	0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L,
392	0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L,
393	0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL,
394	0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL,
395	0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L,
396	0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL,
397	0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L,
398	0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L,
399	0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L,
400	0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL,
401	0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L,
402	0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L,
403	0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL,
404	0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L,
405	0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L,
406	0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L,
407	0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L,
408	0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L,
409	0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL,
410	0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL,
411	0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L,
412	0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L,
413	0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL,
414	0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL,
415	0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L,
416	0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL,
417	0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L,
418	0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL,
419	0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L,
420	0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL,
421	0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L,
422	0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L,
423	0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL,
424	0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L,
425	0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L,
426	0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L,
427	0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L,
428	0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L,
429	0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L,
430	0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL,
431	0x2d02ef8dL
432};
433
434static __inline u16 RotR1(u16 val)
435{
436	return (val >> 1) | (val << 15);
437}
438
439static __inline u8 Lo8(u16 val)
440{
441	return val & 0xff;
442}
443
444static __inline u8 Hi8(u16 val)
445{
446	return val >> 8;
447}
448
449static __inline u16 Lo16(u32 val)
450{
451	return val & 0xffff;
452}
453
454static __inline u16 Hi16(u32 val)
455{
456	return val >> 16;
457}
458
459static __inline u16 Mk16(u8 hi, u8 lo)
460{
461	return lo | (((u16) hi) << 8);
462}
463
464static __inline u16 Mk16_le(const u16 *v)
465{
466	return le16toh(*v);
467}
468
469static const u16 Sbox[256] = {
470	0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
471	0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
472	0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
473	0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
474	0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
475	0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
476	0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
477	0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
478	0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
479	0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
480	0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
481	0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
482	0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
483	0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
484	0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
485	0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
486	0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
487	0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
488	0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
489	0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
490	0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
491	0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
492	0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
493	0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
494	0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
495	0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
496	0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
497	0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
498	0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
499	0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
500	0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
501	0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
502};
503
504static __inline u16 _S_(u16 v)
505{
506	u16 t = Sbox[Hi8(v)];
507	return Sbox[Lo8(v)] ^ ((t << 8) | (t >> 8));
508}
509
510#define PHASE1_LOOP_COUNT 8
511
512static void tkip_mixing_phase1(u16 *TTAK, const u8 *TK, const u8 *TA, u32 IV32)
513{
514	int i, j;
515
516	/* Initialize the 80-bit TTAK from TSC (IV32) and TA[0..5] */
517	TTAK[0] = Lo16(IV32);
518	TTAK[1] = Hi16(IV32);
519	TTAK[2] = Mk16(TA[1], TA[0]);
520	TTAK[3] = Mk16(TA[3], TA[2]);
521	TTAK[4] = Mk16(TA[5], TA[4]);
522
523	for (i = 0; i < PHASE1_LOOP_COUNT; i++) {
524		j = 2 * (i & 1);
525		TTAK[0] += _S_(TTAK[4] ^ Mk16(TK[1 + j], TK[0 + j]));
526		TTAK[1] += _S_(TTAK[0] ^ Mk16(TK[5 + j], TK[4 + j]));
527		TTAK[2] += _S_(TTAK[1] ^ Mk16(TK[9 + j], TK[8 + j]));
528		TTAK[3] += _S_(TTAK[2] ^ Mk16(TK[13 + j], TK[12 + j]));
529		TTAK[4] += _S_(TTAK[3] ^ Mk16(TK[1 + j], TK[0 + j])) + i;
530	}
531}
532
533#ifndef _BYTE_ORDER
534#error "Don't know native byte order"
535#endif
536
537static void tkip_mixing_phase2(u8 *WEPSeed, const u8 *TK, const u16 *TTAK,
538			       u16 IV16)
539{
540	/* Make temporary area overlap WEP seed so that the final copy can be
541	 * avoided on little endian hosts. */
542	u16 *PPK = (u16 *) &WEPSeed[4];
543
544	/* Step 1 - make copy of TTAK and bring in TSC */
545	PPK[0] = TTAK[0];
546	PPK[1] = TTAK[1];
547	PPK[2] = TTAK[2];
548	PPK[3] = TTAK[3];
549	PPK[4] = TTAK[4];
550	PPK[5] = TTAK[4] + IV16;
551
552	/* Step 2 - 96-bit bijective mixing using S-box */
553	PPK[0] += _S_(PPK[5] ^ Mk16_le((const u16 *) &TK[0]));
554	PPK[1] += _S_(PPK[0] ^ Mk16_le((const u16 *) &TK[2]));
555	PPK[2] += _S_(PPK[1] ^ Mk16_le((const u16 *) &TK[4]));
556	PPK[3] += _S_(PPK[2] ^ Mk16_le((const u16 *) &TK[6]));
557	PPK[4] += _S_(PPK[3] ^ Mk16_le((const u16 *) &TK[8]));
558	PPK[5] += _S_(PPK[4] ^ Mk16_le((const u16 *) &TK[10]));
559
560	PPK[0] += RotR1(PPK[5] ^ Mk16_le((const u16 *) &TK[12]));
561	PPK[1] += RotR1(PPK[0] ^ Mk16_le((const u16 *) &TK[14]));
562	PPK[2] += RotR1(PPK[1]);
563	PPK[3] += RotR1(PPK[2]);
564	PPK[4] += RotR1(PPK[3]);
565	PPK[5] += RotR1(PPK[4]);
566
567	/* Step 3 - bring in last of TK bits, assign 24-bit WEP IV value
568	 * WEPSeed[0..2] is transmitted as WEP IV */
569	WEPSeed[0] = Hi8(IV16);
570	WEPSeed[1] = (Hi8(IV16) | 0x20) & 0x7F;
571	WEPSeed[2] = Lo8(IV16);
572	WEPSeed[3] = Lo8((PPK[5] ^ Mk16_le((const u16 *) &TK[0])) >> 1);
573
574#if _BYTE_ORDER == _BIG_ENDIAN
575	{
576		int i;
577		for (i = 0; i < 6; i++)
578			PPK[i] = (PPK[i] << 8) | (PPK[i] >> 8);
579	}
580#endif
581}
582
583static void
584wep_encrypt(u8 *key, struct mbuf *m0, u_int off, size_t data_len,
585	uint8_t icv[IEEE80211_WEP_CRCLEN])
586{
587	u32 i, j, k, crc;
588	size_t buflen;
589	u8 S[256];
590	u8 *pos;
591	struct mbuf *m;
592#define S_SWAP(a,b) do { u8 t = S[a]; S[a] = S[b]; S[b] = t; } while(0)
593
594	/* Setup RC4 state */
595	for (i = 0; i < 256; i++)
596		S[i] = i;
597	j = 0;
598	for (i = 0; i < 256; i++) {
599		j = (j + S[i] + key[i & 0x0f]) & 0xff;
600		S_SWAP(i, j);
601	}
602
603	/* Compute CRC32 over unencrypted data and apply RC4 to data */
604	crc = ~0;
605	i = j = 0;
606	m = m0;
607	pos = mtod(m, uint8_t *) + off;
608	buflen = m->m_len - off;
609	for (;;) {
610		if (buflen > data_len)
611			buflen = data_len;
612		data_len -= buflen;
613		for (k = 0; k < buflen; k++) {
614			crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8);
615			i = (i + 1) & 0xff;
616			j = (j + S[i]) & 0xff;
617			S_SWAP(i, j);
618			*pos++ ^= S[(S[i] + S[j]) & 0xff];
619		}
620		m = m->m_next;
621		if (m == NULL) {
622			KASSERT(data_len == 0,
623			    ("out of buffers with data_len %zu\n", data_len));
624			break;
625		}
626		pos = mtod(m, uint8_t *);
627		buflen = m->m_len;
628	}
629	crc = ~crc;
630
631	/* Append little-endian CRC32 and encrypt it to produce ICV */
632	icv[0] = crc;
633	icv[1] = crc >> 8;
634	icv[2] = crc >> 16;
635	icv[3] = crc >> 24;
636	for (k = 0; k < IEEE80211_WEP_CRCLEN; k++) {
637		i = (i + 1) & 0xff;
638		j = (j + S[i]) & 0xff;
639		S_SWAP(i, j);
640		icv[k] ^= S[(S[i] + S[j]) & 0xff];
641	}
642}
643
644static int
645wep_decrypt(u8 *key, struct mbuf *m, u_int off, size_t data_len)
646{
647	u32 i, j, k, crc;
648	u8 S[256];
649	u8 *pos, icv[4];
650	size_t buflen;
651
652	/* Setup RC4 state */
653	for (i = 0; i < 256; i++)
654		S[i] = i;
655	j = 0;
656	for (i = 0; i < 256; i++) {
657		j = (j + S[i] + key[i & 0x0f]) & 0xff;
658		S_SWAP(i, j);
659	}
660
661	/* Apply RC4 to data and compute CRC32 over decrypted data */
662	crc = ~0;
663	i = j = 0;
664	pos = mtod(m, uint8_t *) + off;
665	buflen = m->m_len - off;
666	for (;;) {
667		if (buflen > data_len)
668			buflen = data_len;
669		data_len -= buflen;
670		for (k = 0; k < buflen; k++) {
671			i = (i + 1) & 0xff;
672			j = (j + S[i]) & 0xff;
673			S_SWAP(i, j);
674			*pos ^= S[(S[i] + S[j]) & 0xff];
675			crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8);
676			pos++;
677		}
678		m = m->m_next;
679		if (m == NULL) {
680			KASSERT(data_len == 0,
681			    ("out of buffers with data_len %zu\n", data_len));
682			break;
683		}
684		pos = mtod(m, uint8_t *);
685		buflen = m->m_len;
686	}
687	crc = ~crc;
688
689	/* Encrypt little-endian CRC32 and verify that it matches with the
690	 * received ICV */
691	icv[0] = crc;
692	icv[1] = crc >> 8;
693	icv[2] = crc >> 16;
694	icv[3] = crc >> 24;
695	for (k = 0; k < 4; k++) {
696		i = (i + 1) & 0xff;
697		j = (j + S[i]) & 0xff;
698		S_SWAP(i, j);
699		if ((icv[k] ^ S[(S[i] + S[j]) & 0xff]) != *pos++) {
700			/* ICV mismatch - drop frame */
701			return -1;
702		}
703	}
704
705	return 0;
706}
707
708
709static __inline u32 rotl(u32 val, int bits)
710{
711	return (val << bits) | (val >> (32 - bits));
712}
713
714
715static __inline u32 rotr(u32 val, int bits)
716{
717	return (val >> bits) | (val << (32 - bits));
718}
719
720
721static __inline u32 xswap(u32 val)
722{
723	return ((val & 0x00ff00ff) << 8) | ((val & 0xff00ff00) >> 8);
724}
725
726
727#define michael_block(l, r)	\
728do {				\
729	r ^= rotl(l, 17);	\
730	l += r;			\
731	r ^= xswap(l);		\
732	l += r;			\
733	r ^= rotl(l, 3);	\
734	l += r;			\
735	r ^= rotr(l, 2);	\
736	l += r;			\
737} while (0)
738
739
740static __inline u32 get_le32_split(u8 b0, u8 b1, u8 b2, u8 b3)
741{
742	return b0 | (b1 << 8) | (b2 << 16) | (b3 << 24);
743}
744
745static __inline u32 get_le32(const u8 *p)
746{
747	return get_le32_split(p[0], p[1], p[2], p[3]);
748}
749
750
751static __inline void put_le32(u8 *p, u32 v)
752{
753	p[0] = v;
754	p[1] = v >> 8;
755	p[2] = v >> 16;
756	p[3] = v >> 24;
757}
758
759/*
760 * Craft pseudo header used to calculate the MIC.
761 */
762static void
763michael_mic_hdr(const struct ieee80211_frame *wh0, uint8_t hdr[16])
764{
765	const struct ieee80211_frame_addr4 *wh =
766		(const struct ieee80211_frame_addr4 *) wh0;
767
768	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
769	case IEEE80211_FC1_DIR_NODS:
770		IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
771		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr2);
772		break;
773	case IEEE80211_FC1_DIR_TODS:
774		IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
775		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr2);
776		break;
777	case IEEE80211_FC1_DIR_FROMDS:
778		IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
779		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr3);
780		break;
781	case IEEE80211_FC1_DIR_DSTODS:
782		IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
783		IEEE80211_ADDR_COPY(hdr + IEEE80211_ADDR_LEN, wh->i_addr4);
784		break;
785	}
786
787	if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
788		const struct ieee80211_qosframe *qwh =
789			(const struct ieee80211_qosframe *) wh;
790		hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
791	} else
792		hdr[12] = 0;
793	hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
794}
795
796static void
797michael_mic(struct tkip_ctx *ctx, const u8 *key,
798	struct mbuf *m, u_int off, size_t data_len,
799	u8 mic[IEEE80211_WEP_MICLEN])
800{
801	uint8_t hdr[16];
802	u32 l, r;
803	const uint8_t *data;
804	u_int space;
805
806	michael_mic_hdr(mtod(m, struct ieee80211_frame *), hdr);
807
808	l = get_le32(key);
809	r = get_le32(key + 4);
810
811	/* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
812	l ^= get_le32(hdr);
813	michael_block(l, r);
814	l ^= get_le32(&hdr[4]);
815	michael_block(l, r);
816	l ^= get_le32(&hdr[8]);
817	michael_block(l, r);
818	l ^= get_le32(&hdr[12]);
819	michael_block(l, r);
820
821	/* first buffer has special handling */
822	data = mtod(m, const uint8_t *) + off;
823	space = m->m_len - off;
824	for (;;) {
825		if (space > data_len)
826			space = data_len;
827		/* collect 32-bit blocks from current buffer */
828		while (space >= sizeof(uint32_t)) {
829			l ^= get_le32(data);
830			michael_block(l, r);
831			data += sizeof(uint32_t), space -= sizeof(uint32_t);
832			data_len -= sizeof(uint32_t);
833		}
834		/*
835		 * NB: when space is zero we make one more trip around
836		 * the loop to advance to the next mbuf where there is
837		 * data.  This handles the case where there are 4*n
838		 * bytes in an mbuf followed by <4 bytes in a later mbuf.
839		 * By making an extra trip we'll drop out of the loop
840		 * with m pointing at the mbuf with 3 bytes and space
841		 * set as required by the remainder handling below.
842		 */
843		if (data_len == 0 ||
844		    (data_len < sizeof(uint32_t) && space != 0))
845			break;
846		m = m->m_next;
847		if (m == NULL) {
848			KASSERT(0, ("out of data, data_len %zu\n", data_len));
849			break;
850		}
851		if (space != 0) {
852			const uint8_t *data_next;
853			/*
854			 * Block straddles buffers, split references.
855			 */
856			data_next = mtod(m, const uint8_t *);
857			KASSERT(m->m_len >= sizeof(uint32_t) - space,
858				("not enough data in following buffer, "
859				"m_len %u need %zu\n", m->m_len,
860				sizeof(uint32_t) - space));
861			switch (space) {
862			case 1:
863				l ^= get_le32_split(data[0], data_next[0],
864					data_next[1], data_next[2]);
865				data = data_next + 3;
866				space = m->m_len - 3;
867				break;
868			case 2:
869				l ^= get_le32_split(data[0], data[1],
870					data_next[0], data_next[1]);
871				data = data_next + 2;
872				space = m->m_len - 2;
873				break;
874			case 3:
875				l ^= get_le32_split(data[0], data[1],
876					data[2], data_next[0]);
877				data = data_next + 1;
878				space = m->m_len - 1;
879				break;
880			}
881			michael_block(l, r);
882			data_len -= sizeof(uint32_t);
883		} else {
884			/*
885			 * Setup for next buffer.
886			 */
887			data = mtod(m, const uint8_t *);
888			space = m->m_len;
889		}
890	}
891	/*
892	 * Catch degenerate cases like mbuf[4*n+1 bytes] followed by
893	 * mbuf[2 bytes].  I don't believe these should happen; if they
894	 * do then we'll need more involved logic.
895	 */
896	KASSERT(data_len <= space,
897	    ("not enough data, data_len %u space %u\n", data_len, space));
898
899	/* Last block and padding (0x5a, 4..7 x 0) */
900	switch (data_len) {
901	case 0:
902		l ^= get_le32_split(0x5a, 0, 0, 0);
903		break;
904	case 1:
905		l ^= get_le32_split(data[0], 0x5a, 0, 0);
906		break;
907	case 2:
908		l ^= get_le32_split(data[0], data[1], 0x5a, 0);
909		break;
910	case 3:
911		l ^= get_le32_split(data[0], data[1], data[2], 0x5a);
912		break;
913	}
914	michael_block(l, r);
915	/* l ^= 0; */
916	michael_block(l, r);
917
918	put_le32(mic, l);
919	put_le32(mic + 4, r);
920}
921
922static int
923tkip_encrypt(struct tkip_ctx *ctx, struct ieee80211_key *key,
924	struct mbuf *m, int hdrlen)
925{
926	struct ieee80211_frame *wh;
927	uint8_t icv[IEEE80211_WEP_CRCLEN];
928
929	ctx->tc_vap->iv_stats.is_crypto_tkip++;
930
931	wh = mtod(m, struct ieee80211_frame *);
932	if (!ctx->tx_phase1_done) {
933		tkip_mixing_phase1(ctx->tx_ttak, key->wk_key, wh->i_addr2,
934				   (u32)(key->wk_keytsc >> 16));
935		ctx->tx_phase1_done = 1;
936	}
937	tkip_mixing_phase2(ctx->tx_rc4key, key->wk_key, ctx->tx_ttak,
938		(u16) key->wk_keytsc);
939
940	wep_encrypt(ctx->tx_rc4key,
941		m, hdrlen + tkip.ic_header,
942		m->m_pkthdr.len - (hdrlen + tkip.ic_header),
943		icv);
944	(void) m_append(m, IEEE80211_WEP_CRCLEN, icv);	/* XXX check return */
945
946	key->wk_keytsc++;
947	if ((u16)(key->wk_keytsc) == 0)
948		ctx->tx_phase1_done = 0;
949	return 1;
950}
951
952static int
953tkip_decrypt(struct tkip_ctx *ctx, struct ieee80211_key *key,
954	struct mbuf *m, int hdrlen)
955{
956	struct ieee80211_frame *wh;
957	struct ieee80211vap *vap = ctx->tc_vap;
958	u32 iv32;
959	u16 iv16;
960	u8 tid;
961
962	vap->iv_stats.is_crypto_tkip++;
963
964	wh = mtod(m, struct ieee80211_frame *);
965	/* NB: tkip_decap already verified header and left seq in rx_rsc */
966	iv16 = (u16) ctx->rx_rsc;
967	iv32 = (u32) (ctx->rx_rsc >> 16);
968
969	tid = ieee80211_gettid(wh);
970	if (iv32 != (u32)(key->wk_keyrsc[tid] >> 16) || !ctx->rx_phase1_done) {
971		tkip_mixing_phase1(ctx->rx_ttak, key->wk_key,
972			wh->i_addr2, iv32);
973		ctx->rx_phase1_done = 1;
974	}
975	tkip_mixing_phase2(ctx->rx_rc4key, key->wk_key, ctx->rx_ttak, iv16);
976
977	/* NB: m is unstripped; deduct headers + ICV to get payload */
978	if (wep_decrypt(ctx->rx_rc4key,
979		m, hdrlen + tkip.ic_header,
980	        m->m_pkthdr.len - (hdrlen + tkip.ic_header + tkip.ic_trailer))) {
981		if (iv32 != (u32)(key->wk_keyrsc[tid] >> 16)) {
982			/* Previously cached Phase1 result was already lost, so
983			 * it needs to be recalculated for the next packet. */
984			ctx->rx_phase1_done = 0;
985		}
986		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
987		    "%s", "TKIP ICV mismatch on decrypt");
988		vap->iv_stats.is_rx_tkipicv++;
989		return 0;
990	}
991	return 1;
992}
993
994/*
995 * Module glue.
996 */
997IEEE80211_CRYPTO_MODULE(tkip, 1);
998