ieee80211.c revision 165569
1/*-
2 * Copyright (c) 2001 Atsushi Onoe
3 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. The name of the author may not be used to endorse or promote products
15 *    derived from this software without specific prior written permission.
16 *
17 * Alternatively, this software may be distributed under the terms of the
18 * GNU General Public License ("GPL") version 2 as published by the Free
19 * Software Foundation.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
26 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
30 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/net80211/ieee80211.c 165569 2006-12-27 18:46:18Z sam $");
35
36/*
37 * IEEE 802.11 generic handler
38 */
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/kernel.h>
43
44#include <sys/socket.h>
45
46#include <net/if.h>
47#include <net/if_media.h>
48#include <net/ethernet.h>
49
50#include <net80211/ieee80211_var.h>
51
52#include <net/bpf.h>
53
54const char *ieee80211_phymode_name[] = {
55	"auto",		/* IEEE80211_MODE_AUTO */
56	"11a",		/* IEEE80211_MODE_11A */
57	"11b",		/* IEEE80211_MODE_11B */
58	"11g",		/* IEEE80211_MODE_11G */
59	"FH",		/* IEEE80211_MODE_FH */
60	"turboA",	/* IEEE80211_MODE_TURBO_A */
61	"turboG",	/* IEEE80211_MODE_TURBO_G */
62};
63
64/*
65 * Default supported rates for 802.11 operation (in IEEE .5Mb units).
66 */
67#define	B(r)	((r) | IEEE80211_RATE_BASIC)
68static const struct ieee80211_rateset ieee80211_rateset_11a =
69	{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
70static const struct ieee80211_rateset ieee80211_rateset_half =
71	{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
72static const struct ieee80211_rateset ieee80211_rateset_quarter =
73	{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
74static const struct ieee80211_rateset ieee80211_rateset_11b =
75	{ 4, { B(2), B(4), B(11), B(22) } };
76/* NB: OFDM rates are handled specially based on mode */
77static const struct ieee80211_rateset ieee80211_rateset_11g =
78	{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
79#undef B
80
81/* list of all instances */
82SLIST_HEAD(ieee80211_list, ieee80211com);
83static struct ieee80211_list ieee80211_list =
84	SLIST_HEAD_INITIALIZER(ieee80211_list);
85static u_int8_t ieee80211_vapmap[32];		/* enough for 256 */
86static struct mtx ieee80211_vap_mtx;
87MTX_SYSINIT(ieee80211, &ieee80211_vap_mtx, "net80211 instances", MTX_DEF);
88
89static void
90ieee80211_add_vap(struct ieee80211com *ic)
91{
92#define	N(a)	(sizeof(a)/sizeof(a[0]))
93	int i;
94	u_int8_t b;
95
96	mtx_lock(&ieee80211_vap_mtx);
97	ic->ic_vap = 0;
98	for (i = 0; i < N(ieee80211_vapmap) && ieee80211_vapmap[i] == 0xff; i++)
99		ic->ic_vap += NBBY;
100	if (i == N(ieee80211_vapmap))
101		panic("vap table full");
102	for (b = ieee80211_vapmap[i]; b & 1; b >>= 1)
103		ic->ic_vap++;
104	setbit(ieee80211_vapmap, ic->ic_vap);
105	SLIST_INSERT_HEAD(&ieee80211_list, ic, ic_next);
106	mtx_unlock(&ieee80211_vap_mtx);
107#undef N
108}
109
110static void
111ieee80211_remove_vap(struct ieee80211com *ic)
112{
113	mtx_lock(&ieee80211_vap_mtx);
114	SLIST_REMOVE(&ieee80211_list, ic, ieee80211com, ic_next);
115	KASSERT(ic->ic_vap < sizeof(ieee80211_vapmap)*NBBY,
116		("invalid vap id %d", ic->ic_vap));
117	KASSERT(isset(ieee80211_vapmap, ic->ic_vap),
118		("vap id %d not allocated", ic->ic_vap));
119	clrbit(ieee80211_vapmap, ic->ic_vap);
120	mtx_unlock(&ieee80211_vap_mtx);
121}
122
123/*
124 * Default reset method for use with the ioctl support.  This
125 * method is invoked after any state change in the 802.11
126 * layer that should be propagated to the hardware but not
127 * require re-initialization of the 802.11 state machine (e.g
128 * rescanning for an ap).  We always return ENETRESET which
129 * should cause the driver to re-initialize the device. Drivers
130 * can override this method to implement more optimized support.
131 */
132static int
133ieee80211_default_reset(struct ifnet *ifp)
134{
135	return ENETRESET;
136}
137
138/*
139 * Fill in 802.11 available channel set, mark
140 * all available channels as active, and pick
141 * a default channel if not already specified.
142 */
143static void
144ieee80211_chan_init(struct ieee80211com *ic)
145{
146#define	RATESDEFINED(m) \
147	((ic->ic_modecaps & (1<<m)) && ic->ic_sup_rates[m].rs_nrates != 0)
148#define	DEFAULTRATES(m, def) do { \
149	if (!RATESDEFINED(m)) ic->ic_sup_rates[m] = def; \
150} while (0)
151	struct ifnet *ifp = ic->ic_ifp;
152	struct ieee80211_channel *c;
153	int i;
154
155	memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
156	ic->ic_modecaps = 1<<IEEE80211_MODE_AUTO;
157	for (i = 0; i <= IEEE80211_CHAN_MAX; i++) {
158		c = &ic->ic_channels[i];
159		if (c->ic_flags) {
160			/*
161			 * Verify driver passed us valid data.
162			 */
163			if (i != ieee80211_chan2ieee(ic, c)) {
164				if_printf(ifp, "bad channel ignored; "
165					"freq %u flags %x number %u\n",
166					c->ic_freq, c->ic_flags, i);
167				c->ic_flags = 0;	/* NB: remove */
168				continue;
169			}
170			setbit(ic->ic_chan_avail, i);
171			/*
172			 * Identify mode capabilities.
173			 */
174			if (IEEE80211_IS_CHAN_A(c))
175				ic->ic_modecaps |= 1<<IEEE80211_MODE_11A;
176			if (IEEE80211_IS_CHAN_B(c))
177				ic->ic_modecaps |= 1<<IEEE80211_MODE_11B;
178			if (IEEE80211_IS_CHAN_PUREG(c))
179				ic->ic_modecaps |= 1<<IEEE80211_MODE_11G;
180			if (IEEE80211_IS_CHAN_FHSS(c))
181				ic->ic_modecaps |= 1<<IEEE80211_MODE_FH;
182			if (IEEE80211_IS_CHAN_T(c))
183				ic->ic_modecaps |= 1<<IEEE80211_MODE_TURBO_A;
184			if (IEEE80211_IS_CHAN_108G(c))
185				ic->ic_modecaps |= 1<<IEEE80211_MODE_TURBO_G;
186			if (ic->ic_curchan == NULL) {
187				/* arbitrarily pick the first channel */
188				ic->ic_curchan = &ic->ic_channels[i];
189			}
190		}
191	}
192
193	/* fillin well-known rate sets if driver has not specified */
194	DEFAULTRATES(IEEE80211_MODE_11B,	 ieee80211_rateset_11b);
195	DEFAULTRATES(IEEE80211_MODE_11G,	 ieee80211_rateset_11g);
196	DEFAULTRATES(IEEE80211_MODE_11A,	 ieee80211_rateset_11a);
197	DEFAULTRATES(IEEE80211_MODE_TURBO_A,	 ieee80211_rateset_11a);
198	DEFAULTRATES(IEEE80211_MODE_TURBO_G,	 ieee80211_rateset_11g);
199
200	/*
201	 * Set auto mode to reset active channel state and any desired channel.
202	 */
203	(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
204#undef DEFAULTRATES
205#undef RATESDEFINED
206}
207
208void
209ieee80211_ifattach(struct ieee80211com *ic)
210{
211	struct ifnet *ifp = ic->ic_ifp;
212
213	ether_ifattach(ifp, ic->ic_myaddr);
214	ifp->if_output = ieee80211_output;
215
216	bpfattach2(ifp, DLT_IEEE802_11,
217	    sizeof(struct ieee80211_frame_addr4), &ic->ic_rawbpf);
218
219	ieee80211_crypto_attach(ic);
220
221	ic->ic_des_chan = IEEE80211_CHAN_ANYC;
222	/*
223	 * Fill in 802.11 available channel set, mark all
224	 * available channels as active, and pick a default
225	 * channel if not already specified.
226	 */
227	ieee80211_chan_init(ic);
228#if 0
229	/*
230	 * Enable WME by default if we're capable.
231	 */
232	if (ic->ic_caps & IEEE80211_C_WME)
233		ic->ic_flags |= IEEE80211_F_WME;
234#endif
235	if (ic->ic_caps & IEEE80211_C_BURST)
236		ic->ic_flags |= IEEE80211_F_BURST;
237
238	ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
239	ic->ic_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
240	ic->ic_dtim_period = IEEE80211_DTIM_DEFAULT;
241	IEEE80211_BEACON_LOCK_INIT(ic, "beacon");
242
243	ic->ic_lintval = ic->ic_bintval;
244	ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
245
246	ieee80211_node_attach(ic);
247	ieee80211_proto_attach(ic);
248
249	ieee80211_add_vap(ic);
250
251	ieee80211_sysctl_attach(ic);		/* NB: requires ic_vap */
252
253	/*
254	 * Install a default reset method for the ioctl support.
255	 * The driver is expected to fill this in before calling us.
256	 */
257	if (ic->ic_reset == NULL)
258		ic->ic_reset = ieee80211_default_reset;
259
260	KASSERT(ifp->if_spare2 == NULL, ("oops, hosed"));
261	ifp->if_spare2 = ic;			/* XXX temp backpointer */
262}
263
264void
265ieee80211_ifdetach(struct ieee80211com *ic)
266{
267	struct ifnet *ifp = ic->ic_ifp;
268
269	ieee80211_remove_vap(ic);
270
271	ieee80211_sysctl_detach(ic);
272	ieee80211_proto_detach(ic);
273	ieee80211_crypto_detach(ic);
274	ieee80211_node_detach(ic);
275	ifmedia_removeall(&ic->ic_media);
276
277	IEEE80211_BEACON_LOCK_DESTROY(ic);
278
279	bpfdetach(ifp);
280	ether_ifdetach(ifp);
281}
282
283/*
284 * Convert MHz frequency to IEEE channel number.
285 */
286int
287ieee80211_mhz2ieee(u_int freq, u_int flags)
288{
289	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
290		if (freq == 2484)
291			return 14;
292		if (freq < 2484)
293			return ((int) freq - 2407) / 5;
294		else
295			return 15 + ((freq - 2512) / 20);
296	} else if (flags & IEEE80211_CHAN_5GHZ) {	/* 5Ghz band */
297		if (freq <= 5000) {
298			if (flags &(IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER))
299				return 37 + ((freq * 10) +
300				    ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
301			return (freq - 4000) / 5;
302		} else
303			return (freq - 5000) / 5;
304	} else {				/* either, guess */
305		if (freq == 2484)
306			return 14;
307		if (freq < 2484)
308			return ((int) freq - 2407) / 5;
309		if (freq < 5000) {
310			if (flags &(IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER))
311				return 37 + ((freq * 10) +
312				    ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
313			else if (freq > 4900)
314				return (freq - 4000) / 5;
315			else
316				return 15 + ((freq - 2512) / 20);
317		}
318		return (freq - 5000) / 5;
319	}
320}
321
322/*
323 * Convert channel to IEEE channel number.
324 */
325int
326ieee80211_chan2ieee(struct ieee80211com *ic, struct ieee80211_channel *c)
327{
328	if (ic->ic_channels <= c && c <= &ic->ic_channels[IEEE80211_CHAN_MAX])
329		return c - ic->ic_channels;
330	else if (c == IEEE80211_CHAN_ANYC)
331		return IEEE80211_CHAN_ANY;
332	else if (c != NULL) {
333		if_printf(ic->ic_ifp, "invalid channel freq %u flags %x\n",
334			c->ic_freq, c->ic_flags);
335		return 0;		/* XXX */
336	} else {
337		if_printf(ic->ic_ifp, "invalid channel (NULL)\n");
338		return 0;		/* XXX */
339	}
340}
341
342/*
343 * Convert IEEE channel number to MHz frequency.
344 */
345u_int
346ieee80211_ieee2mhz(u_int chan, u_int flags)
347{
348	if (flags & IEEE80211_CHAN_2GHZ) {	/* 2GHz band */
349		if (chan == 14)
350			return 2484;
351		if (chan < 14)
352			return 2407 + chan*5;
353		else
354			return 2512 + ((chan-15)*20);
355	} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
356		if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
357			chan -= 37;
358			return 4940 + chan*5 + (chan % 5 ? 2 : 0);
359		}
360		return 5000 + (chan*5);
361	} else {				/* either, guess */
362		if (chan == 14)
363			return 2484;
364		if (chan < 14)			/* 0-13 */
365			return 2407 + chan*5;
366		if (chan < 27)			/* 15-26 */
367			return 2512 + ((chan-15)*20);
368		/* XXX can't distinguish PSB channels */
369		return 5000 + (chan*5);
370	}
371}
372
373/*
374 * Setup the media data structures according to the channel and
375 * rate tables.  This must be called by the driver after
376 * ieee80211_attach and before most anything else.
377 */
378void
379ieee80211_media_init(struct ieee80211com *ic,
380	ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
381{
382#define	ADD(_ic, _s, _o) \
383	ifmedia_add(&(_ic)->ic_media, \
384		IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
385	struct ifnet *ifp = ic->ic_ifp;
386	struct ifmediareq imr;
387	int i, j, mode, rate, maxrate, mword, mopt, r;
388	struct ieee80211_rateset *rs;
389	struct ieee80211_rateset allrates;
390
391	/* NB: this works because the structure is initialized to zero */
392	if (LIST_EMPTY(&ic->ic_media.ifm_list)) {
393		/*
394		 * Do late attach work that must wait for any subclass
395		 * (i.e. driver) work such as overriding methods.
396		 */
397		ieee80211_node_lateattach(ic);
398	} else {
399		/*
400		 * We are re-initializing the channel list; clear
401		 * the existing media state as the media routines
402		 * don't suppress duplicates.
403		 */
404		ifmedia_removeall(&ic->ic_media);
405		ieee80211_chan_init(ic);
406	}
407
408	/*
409	 * Fill in media characteristics.
410	 */
411	ifmedia_init(&ic->ic_media, 0, media_change, media_stat);
412	maxrate = 0;
413	memset(&allrates, 0, sizeof(allrates));
414	for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_MAX; mode++) {
415		static const u_int mopts[] = {
416			IFM_AUTO,
417			IFM_IEEE80211_11A,
418			IFM_IEEE80211_11B,
419			IFM_IEEE80211_11G,
420			IFM_IEEE80211_FH,
421			IFM_IEEE80211_11A | IFM_IEEE80211_TURBO,
422			IFM_IEEE80211_11G | IFM_IEEE80211_TURBO,
423		};
424		if ((ic->ic_modecaps & (1<<mode)) == 0)
425			continue;
426		mopt = mopts[mode];
427		ADD(ic, IFM_AUTO, mopt);	/* e.g. 11a auto */
428		if (ic->ic_caps & IEEE80211_C_IBSS)
429			ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_ADHOC);
430		if (ic->ic_caps & IEEE80211_C_HOSTAP)
431			ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_HOSTAP);
432		if (ic->ic_caps & IEEE80211_C_AHDEMO)
433			ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
434		if (ic->ic_caps & IEEE80211_C_MONITOR)
435			ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_MONITOR);
436		if (mode == IEEE80211_MODE_AUTO)
437			continue;
438		rs = &ic->ic_sup_rates[mode];
439		for (i = 0; i < rs->rs_nrates; i++) {
440			rate = rs->rs_rates[i];
441			mword = ieee80211_rate2media(ic, rate, mode);
442			if (mword == 0)
443				continue;
444			ADD(ic, mword, mopt);
445			if (ic->ic_caps & IEEE80211_C_IBSS)
446				ADD(ic, mword, mopt | IFM_IEEE80211_ADHOC);
447			if (ic->ic_caps & IEEE80211_C_HOSTAP)
448				ADD(ic, mword, mopt | IFM_IEEE80211_HOSTAP);
449			if (ic->ic_caps & IEEE80211_C_AHDEMO)
450				ADD(ic, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
451			if (ic->ic_caps & IEEE80211_C_MONITOR)
452				ADD(ic, mword, mopt | IFM_IEEE80211_MONITOR);
453			/*
454			 * Add rate to the collection of all rates.
455			 */
456			r = rate & IEEE80211_RATE_VAL;
457			for (j = 0; j < allrates.rs_nrates; j++)
458				if (allrates.rs_rates[j] == r)
459					break;
460			if (j == allrates.rs_nrates) {
461				/* unique, add to the set */
462				allrates.rs_rates[j] = r;
463				allrates.rs_nrates++;
464			}
465			rate = (rate & IEEE80211_RATE_VAL) / 2;
466			if (rate > maxrate)
467				maxrate = rate;
468		}
469	}
470	for (i = 0; i < allrates.rs_nrates; i++) {
471		mword = ieee80211_rate2media(ic, allrates.rs_rates[i],
472				IEEE80211_MODE_AUTO);
473		if (mword == 0)
474			continue;
475		mword = IFM_SUBTYPE(mword);	/* remove media options */
476		ADD(ic, mword, 0);
477		if (ic->ic_caps & IEEE80211_C_IBSS)
478			ADD(ic, mword, IFM_IEEE80211_ADHOC);
479		if (ic->ic_caps & IEEE80211_C_HOSTAP)
480			ADD(ic, mword, IFM_IEEE80211_HOSTAP);
481		if (ic->ic_caps & IEEE80211_C_AHDEMO)
482			ADD(ic, mword, IFM_IEEE80211_ADHOC | IFM_FLAG0);
483		if (ic->ic_caps & IEEE80211_C_MONITOR)
484			ADD(ic, mword, IFM_IEEE80211_MONITOR);
485	}
486	ieee80211_media_status(ifp, &imr);
487	ifmedia_set(&ic->ic_media, imr.ifm_active);
488
489	if (maxrate)
490		ifp->if_baudrate = IF_Mbps(maxrate);
491#undef ADD
492}
493
494const struct ieee80211_rateset *
495ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
496{
497	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, c);
498
499	if (mode == IEEE80211_MODE_11A) {
500		if (IEEE80211_IS_CHAN_HALF(c))
501			return &ieee80211_rateset_half;
502		if (IEEE80211_IS_CHAN_QUARTER(c))
503			return &ieee80211_rateset_quarter;
504	}
505	return &ic->ic_sup_rates[mode];
506}
507
508void
509ieee80211_announce(struct ieee80211com *ic)
510{
511	struct ifnet *ifp = ic->ic_ifp;
512	int i, mode, rate, mword;
513	struct ieee80211_rateset *rs;
514
515	for (mode = IEEE80211_MODE_11A; mode < IEEE80211_MODE_MAX; mode++) {
516		if ((ic->ic_modecaps & (1<<mode)) == 0)
517			continue;
518		if_printf(ifp, "%s rates: ", ieee80211_phymode_name[mode]);
519		rs = &ic->ic_sup_rates[mode];
520		for (i = 0; i < rs->rs_nrates; i++) {
521			rate = rs->rs_rates[i];
522			mword = ieee80211_rate2media(ic, rate, mode);
523			if (mword == 0)
524				continue;
525			printf("%s%d%sMbps", (i != 0 ? " " : ""),
526			    (rate & IEEE80211_RATE_VAL) / 2,
527			    ((rate & 0x1) != 0 ? ".5" : ""));
528		}
529		printf("\n");
530	}
531}
532
533static int
534findrate(struct ieee80211com *ic, enum ieee80211_phymode mode, int rate)
535{
536#define	IEEERATE(_ic,_m,_i) \
537	((_ic)->ic_sup_rates[_m].rs_rates[_i] & IEEE80211_RATE_VAL)
538	int i, nrates = ic->ic_sup_rates[mode].rs_nrates;
539	for (i = 0; i < nrates; i++)
540		if (IEEERATE(ic, mode, i) == rate)
541			return i;
542	return -1;
543#undef IEEERATE
544}
545
546/*
547 * Find an instance by it's mac address.
548 */
549struct ieee80211com *
550ieee80211_find_vap(const u_int8_t mac[IEEE80211_ADDR_LEN])
551{
552	struct ieee80211com *ic;
553
554	/* XXX lock */
555	SLIST_FOREACH(ic, &ieee80211_list, ic_next)
556		if (IEEE80211_ADDR_EQ(mac, ic->ic_myaddr))
557			return ic;
558	return NULL;
559}
560
561static struct ieee80211com *
562ieee80211_find_instance(struct ifnet *ifp)
563{
564	struct ieee80211com *ic;
565
566	/* XXX lock */
567	/* XXX not right for multiple instances but works for now */
568	SLIST_FOREACH(ic, &ieee80211_list, ic_next)
569		if (ic->ic_ifp == ifp)
570			return ic;
571	return NULL;
572}
573
574/*
575 * Handle a media change request.
576 */
577int
578ieee80211_media_change(struct ifnet *ifp)
579{
580	struct ieee80211com *ic;
581	struct ifmedia_entry *ime;
582	enum ieee80211_opmode newopmode;
583	enum ieee80211_phymode newphymode;
584	int i, j, newrate, error = 0;
585
586	ic = ieee80211_find_instance(ifp);
587	if (!ic) {
588		if_printf(ifp, "%s: no 802.11 instance!\n", __func__);
589		return EINVAL;
590	}
591	ime = ic->ic_media.ifm_cur;
592	/*
593	 * First, identify the phy mode.
594	 */
595	switch (IFM_MODE(ime->ifm_media)) {
596	case IFM_IEEE80211_11A:
597		newphymode = IEEE80211_MODE_11A;
598		break;
599	case IFM_IEEE80211_11B:
600		newphymode = IEEE80211_MODE_11B;
601		break;
602	case IFM_IEEE80211_11G:
603		newphymode = IEEE80211_MODE_11G;
604		break;
605	case IFM_IEEE80211_FH:
606		newphymode = IEEE80211_MODE_FH;
607		break;
608	case IFM_AUTO:
609		newphymode = IEEE80211_MODE_AUTO;
610		break;
611	default:
612		return EINVAL;
613	}
614	/*
615	 * Turbo mode is an ``option''.
616	 * XXX does not apply to AUTO
617	 */
618	if (ime->ifm_media & IFM_IEEE80211_TURBO) {
619		if (newphymode == IEEE80211_MODE_11A)
620			newphymode = IEEE80211_MODE_TURBO_A;
621		else if (newphymode == IEEE80211_MODE_11G)
622			newphymode = IEEE80211_MODE_TURBO_G;
623		else
624			return EINVAL;
625	}
626	/*
627	 * Validate requested mode is available.
628	 */
629	if ((ic->ic_modecaps & (1<<newphymode)) == 0)
630		return EINVAL;
631
632	/*
633	 * Next, the fixed/variable rate.
634	 */
635	i = -1;
636	if (IFM_SUBTYPE(ime->ifm_media) != IFM_AUTO) {
637		/*
638		 * Convert media subtype to rate.
639		 */
640		newrate = ieee80211_media2rate(ime->ifm_media);
641		if (newrate == 0)
642			return EINVAL;
643		/*
644		 * Check the rate table for the specified/current phy.
645		 */
646		if (newphymode == IEEE80211_MODE_AUTO) {
647			/*
648			 * In autoselect mode search for the rate.
649			 */
650			for (j = IEEE80211_MODE_11A;
651			     j < IEEE80211_MODE_MAX; j++) {
652				if ((ic->ic_modecaps & (1<<j)) == 0)
653					continue;
654				i = findrate(ic, j, newrate);
655				if (i != -1) {
656					/* lock mode too */
657					newphymode = j;
658					break;
659				}
660			}
661		} else {
662			i = findrate(ic, newphymode, newrate);
663		}
664		if (i == -1)			/* mode/rate mismatch */
665			return EINVAL;
666	}
667	/* NB: defer rate setting to later */
668
669	/*
670	 * Deduce new operating mode but don't install it just yet.
671	 */
672	if ((ime->ifm_media & (IFM_IEEE80211_ADHOC|IFM_FLAG0)) ==
673	    (IFM_IEEE80211_ADHOC|IFM_FLAG0))
674		newopmode = IEEE80211_M_AHDEMO;
675	else if (ime->ifm_media & IFM_IEEE80211_HOSTAP)
676		newopmode = IEEE80211_M_HOSTAP;
677	else if (ime->ifm_media & IFM_IEEE80211_ADHOC)
678		newopmode = IEEE80211_M_IBSS;
679	else if (ime->ifm_media & IFM_IEEE80211_MONITOR)
680		newopmode = IEEE80211_M_MONITOR;
681	else
682		newopmode = IEEE80211_M_STA;
683
684	/*
685	 * Autoselect doesn't make sense when operating as an AP.
686	 * If no phy mode has been selected, pick one and lock it
687	 * down so rate tables can be used in forming beacon frames
688	 * and the like.
689	 */
690	if (newopmode == IEEE80211_M_HOSTAP &&
691	    newphymode == IEEE80211_MODE_AUTO) {
692		for (j = IEEE80211_MODE_11A; j < IEEE80211_MODE_MAX; j++)
693			if (ic->ic_modecaps & (1<<j)) {
694				newphymode = j;
695				break;
696			}
697	}
698
699	/*
700	 * Handle phy mode change.
701	 */
702	if (ic->ic_curmode != newphymode) {		/* change phy mode */
703		error = ieee80211_setmode(ic, newphymode);
704		if (error != 0)
705			return error;
706		error = ENETRESET;
707	}
708
709	/*
710	 * Committed to changes, install the rate setting.
711	 */
712	if (ic->ic_fixed_rate != i) {
713		ic->ic_fixed_rate = i;			/* set fixed tx rate */
714		error = ENETRESET;
715	}
716
717	/*
718	 * Handle operating mode change.
719	 */
720	if (ic->ic_opmode != newopmode) {
721		ic->ic_opmode = newopmode;
722		switch (newopmode) {
723		case IEEE80211_M_AHDEMO:
724		case IEEE80211_M_HOSTAP:
725		case IEEE80211_M_STA:
726		case IEEE80211_M_MONITOR:
727			ic->ic_flags &= ~IEEE80211_F_IBSSON;
728			break;
729		case IEEE80211_M_IBSS:
730			ic->ic_flags |= IEEE80211_F_IBSSON;
731			break;
732		}
733		/*
734		 * Yech, slot time may change depending on the
735		 * operating mode so reset it to be sure everything
736		 * is setup appropriately.
737		 */
738		ieee80211_reset_erp(ic);
739		ieee80211_wme_initparams(ic);	/* after opmode change */
740		error = ENETRESET;
741	}
742#ifdef notdef
743	if (error == 0)
744		ifp->if_baudrate = ifmedia_baudrate(ime->ifm_media);
745#endif
746	return error;
747}
748
749void
750ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
751{
752	struct ieee80211com *ic;
753	const struct ieee80211_rateset *rs;
754
755	ic = ieee80211_find_instance(ifp);
756	if (!ic) {
757		if_printf(ifp, "%s: no 802.11 instance!\n", __func__);
758		return;
759	}
760	imr->ifm_status = IFM_AVALID;
761	imr->ifm_active = IFM_IEEE80211;
762	if (ic->ic_state == IEEE80211_S_RUN)
763		imr->ifm_status |= IFM_ACTIVE;
764	/*
765	 * Calculate a current rate if possible.
766	 */
767	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
768		/*
769		 * A fixed rate is set, report that.
770		 */
771		rs = &ic->ic_sup_rates[ic->ic_curmode];
772		imr->ifm_active |= ieee80211_rate2media(ic,
773			rs->rs_rates[ic->ic_fixed_rate], ic->ic_curmode);
774	} else if (ic->ic_opmode == IEEE80211_M_STA) {
775		/*
776		 * In station mode report the current transmit rate.
777		 */
778		rs = &ic->ic_bss->ni_rates;
779		imr->ifm_active |= ieee80211_rate2media(ic,
780			rs->rs_rates[ic->ic_bss->ni_txrate], ic->ic_curmode);
781	} else
782		imr->ifm_active |= IFM_AUTO;
783	switch (ic->ic_opmode) {
784	case IEEE80211_M_STA:
785		break;
786	case IEEE80211_M_IBSS:
787		imr->ifm_active |= IFM_IEEE80211_ADHOC;
788		break;
789	case IEEE80211_M_AHDEMO:
790		/* should not come here */
791		break;
792	case IEEE80211_M_HOSTAP:
793		imr->ifm_active |= IFM_IEEE80211_HOSTAP;
794		break;
795	case IEEE80211_M_MONITOR:
796		imr->ifm_active |= IFM_IEEE80211_MONITOR;
797		break;
798	}
799	switch (ic->ic_curmode) {
800	case IEEE80211_MODE_11A:
801		imr->ifm_active |= IFM_IEEE80211_11A;
802		break;
803	case IEEE80211_MODE_11B:
804		imr->ifm_active |= IFM_IEEE80211_11B;
805		break;
806	case IEEE80211_MODE_11G:
807		imr->ifm_active |= IFM_IEEE80211_11G;
808		break;
809	case IEEE80211_MODE_FH:
810		imr->ifm_active |= IFM_IEEE80211_FH;
811		break;
812	case IEEE80211_MODE_TURBO_A:
813		imr->ifm_active |= IFM_IEEE80211_11A
814				|  IFM_IEEE80211_TURBO;
815		break;
816	case IEEE80211_MODE_TURBO_G:
817		imr->ifm_active |= IFM_IEEE80211_11G
818				|  IFM_IEEE80211_TURBO;
819		break;
820	}
821}
822
823void
824ieee80211_watchdog(struct ieee80211com *ic)
825{
826	struct ieee80211_node_table *nt;
827	int need_inact_timer = 0;
828
829	if (ic->ic_state != IEEE80211_S_INIT) {
830		if (ic->ic_mgt_timer && --ic->ic_mgt_timer == 0)
831			ieee80211_new_state(ic, IEEE80211_S_SCAN, 0);
832		nt = &ic->ic_scan;
833		if (nt->nt_inact_timer) {
834			if (--nt->nt_inact_timer == 0)
835				nt->nt_timeout(nt);
836			need_inact_timer += nt->nt_inact_timer;
837		}
838		nt = &ic->ic_sta;
839		if (nt->nt_inact_timer) {
840			if (--nt->nt_inact_timer == 0)
841				nt->nt_timeout(nt);
842			need_inact_timer += nt->nt_inact_timer;
843		}
844	}
845	if (ic->ic_mgt_timer != 0 || need_inact_timer)
846		ic->ic_ifp->if_timer = 1;
847}
848
849/*
850 * Set the current phy mode and recalculate the active channel
851 * set based on the available channels for this mode.  Also
852 * select a new default/current channel if the current one is
853 * inappropriate for this mode.
854 */
855int
856ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
857{
858#define	N(a)	(sizeof(a) / sizeof(a[0]))
859	static const u_int chanflags[] = {
860		0,			/* IEEE80211_MODE_AUTO */
861		IEEE80211_CHAN_A,	/* IEEE80211_MODE_11A */
862		IEEE80211_CHAN_B,	/* IEEE80211_MODE_11B */
863		IEEE80211_CHAN_PUREG,	/* IEEE80211_MODE_11G */
864		IEEE80211_CHAN_FHSS,	/* IEEE80211_MODE_FH */
865		IEEE80211_CHAN_T,	/* IEEE80211_MODE_TURBO_A */
866		IEEE80211_CHAN_108G,	/* IEEE80211_MODE_TURBO_G */
867	};
868	struct ieee80211_channel *c;
869	u_int modeflags;
870	int i;
871
872	/* validate new mode */
873	if ((ic->ic_modecaps & (1<<mode)) == 0) {
874		IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
875			"%s: mode %u not supported (caps 0x%x)\n",
876			__func__, mode, ic->ic_modecaps);
877		return EINVAL;
878	}
879
880	/*
881	 * Verify at least one channel is present in the available
882	 * channel list before committing to the new mode.
883	 */
884	KASSERT(mode < N(chanflags), ("Unexpected mode %u", mode));
885	modeflags = chanflags[mode];
886	for (i = 0; i <= IEEE80211_CHAN_MAX; i++) {
887		c = &ic->ic_channels[i];
888		if (c->ic_flags == 0)
889			continue;
890		if (mode == IEEE80211_MODE_AUTO) {
891			/* ignore static turbo channels for autoselect */
892			if (!IEEE80211_IS_CHAN_T(c))
893				break;
894		} else {
895			if ((c->ic_flags & modeflags) == modeflags)
896				break;
897		}
898	}
899	if (i > IEEE80211_CHAN_MAX) {
900		IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
901			"%s: no channels found for mode %u\n", __func__, mode);
902		return EINVAL;
903	}
904
905	/*
906	 * Calculate the active channel set.
907	 */
908	memset(ic->ic_chan_active, 0, sizeof(ic->ic_chan_active));
909	for (i = 0; i <= IEEE80211_CHAN_MAX; i++) {
910		c = &ic->ic_channels[i];
911		if (c->ic_flags == 0)
912			continue;
913		if (mode == IEEE80211_MODE_AUTO) {
914			/* take anything but static turbo channels */
915			if (!IEEE80211_IS_CHAN_T(c))
916				setbit(ic->ic_chan_active, i);
917		} else {
918			if ((c->ic_flags & modeflags) == modeflags)
919				setbit(ic->ic_chan_active, i);
920		}
921	}
922	/*
923	 * If no current/default channel is setup or the current
924	 * channel is wrong for the mode then pick the first
925	 * available channel from the active list.  This is likely
926	 * not the right one.
927	 */
928	if (ic->ic_ibss_chan == NULL ||
929	    isclr(ic->ic_chan_active, ieee80211_chan2ieee(ic, ic->ic_ibss_chan))) {
930		for (i = 0; i <= IEEE80211_CHAN_MAX; i++)
931			if (isset(ic->ic_chan_active, i)) {
932				ic->ic_ibss_chan = &ic->ic_channels[i];
933				break;
934			}
935		KASSERT(ic->ic_ibss_chan != NULL &&
936		    isset(ic->ic_chan_active,
937			ieee80211_chan2ieee(ic, ic->ic_ibss_chan)),
938		    ("Bad IBSS channel %u",
939		     ieee80211_chan2ieee(ic, ic->ic_ibss_chan)));
940	}
941	/*
942	 * If the desired channel is set but no longer valid then reset it.
943	 */
944	if (ic->ic_des_chan != IEEE80211_CHAN_ANYC &&
945	    isclr(ic->ic_chan_active, ieee80211_chan2ieee(ic, ic->ic_des_chan)))
946		ic->ic_des_chan = IEEE80211_CHAN_ANYC;
947
948	/*
949	 * Do mode-specific rate setup.
950	 */
951	if (mode == IEEE80211_MODE_11G) {
952		/*
953		 * Use a mixed 11b/11g rate set.
954		 */
955		ieee80211_set11gbasicrates(&ic->ic_sup_rates[mode],
956			IEEE80211_MODE_11G);
957	} else if (mode == IEEE80211_MODE_11B) {
958		/*
959		 * Force pure 11b rate set.
960		 */
961		ieee80211_set11gbasicrates(&ic->ic_sup_rates[mode],
962			IEEE80211_MODE_11B);
963	}
964	/*
965	 * Setup an initial rate set according to the
966	 * current/default channel selected above.  This
967	 * will be changed when scanning but must exist
968	 * now so driver have a consistent state of ic_ibss_chan.
969	 */
970	if (ic->ic_bss)		/* NB: can be called before lateattach */
971		ic->ic_bss->ni_rates = ic->ic_sup_rates[mode];
972
973	ic->ic_curmode = mode;
974	ieee80211_reset_erp(ic);	/* reset ERP state */
975	ieee80211_wme_initparams(ic);	/* reset WME stat */
976
977	return 0;
978#undef N
979}
980
981/*
982 * Return the phy mode for with the specified channel so the
983 * caller can select a rate set.  This is problematic for channels
984 * where multiple operating modes are possible (e.g. 11g+11b).
985 * In those cases we defer to the current operating mode when set.
986 */
987enum ieee80211_phymode
988ieee80211_chan2mode(struct ieee80211com *ic, const struct ieee80211_channel *chan)
989{
990	if (IEEE80211_IS_CHAN_T(chan)) {
991		return IEEE80211_MODE_TURBO_A;
992	} else if (IEEE80211_IS_CHAN_5GHZ(chan)) {
993		return IEEE80211_MODE_11A;
994	} else if (IEEE80211_IS_CHAN_FHSS(chan))
995		return IEEE80211_MODE_FH;
996	else if (chan->ic_flags & (IEEE80211_CHAN_OFDM|IEEE80211_CHAN_DYN)) {
997		/*
998		 * This assumes all 11g channels are also usable
999		 * for 11b, which is currently true.
1000		 */
1001		if (ic->ic_curmode == IEEE80211_MODE_TURBO_G)
1002			return IEEE80211_MODE_TURBO_G;
1003		if (ic->ic_curmode == IEEE80211_MODE_11B)
1004			return IEEE80211_MODE_11B;
1005		return IEEE80211_MODE_11G;
1006	} else
1007		return IEEE80211_MODE_11B;
1008}
1009
1010/*
1011 * convert IEEE80211 rate value to ifmedia subtype.
1012 * ieee80211 rate is in unit of 0.5Mbps.
1013 */
1014int
1015ieee80211_rate2media(struct ieee80211com *ic, int rate, enum ieee80211_phymode mode)
1016{
1017#define	N(a)	(sizeof(a) / sizeof(a[0]))
1018	static const struct {
1019		u_int	m;	/* rate + mode */
1020		u_int	r;	/* if_media rate */
1021	} rates[] = {
1022		{   2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
1023		{   4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
1024		{   2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
1025		{   4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
1026		{  11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
1027		{  22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
1028		{  44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
1029		{  12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
1030		{  18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
1031		{  24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
1032		{  36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
1033		{  48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
1034		{  72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
1035		{  96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
1036		{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
1037		{   2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
1038		{   4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
1039		{  11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
1040		{  22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
1041		{  12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
1042		{  18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
1043		{  24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
1044		{  36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
1045		{  48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
1046		{  72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
1047		{  96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
1048		{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
1049		{   6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
1050		{   9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
1051		{  54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
1052		/* NB: OFDM72 doesn't realy exist so we don't handle it */
1053	};
1054	u_int mask, i;
1055
1056	mask = rate & IEEE80211_RATE_VAL;
1057	switch (mode) {
1058	case IEEE80211_MODE_11A:
1059	case IEEE80211_MODE_TURBO_A:
1060		mask |= IFM_IEEE80211_11A;
1061		break;
1062	case IEEE80211_MODE_11B:
1063		mask |= IFM_IEEE80211_11B;
1064		break;
1065	case IEEE80211_MODE_FH:
1066		mask |= IFM_IEEE80211_FH;
1067		break;
1068	case IEEE80211_MODE_AUTO:
1069		/* NB: ic may be NULL for some drivers */
1070		if (ic && ic->ic_phytype == IEEE80211_T_FH) {
1071			mask |= IFM_IEEE80211_FH;
1072			break;
1073		}
1074		/* NB: hack, 11g matches both 11b+11a rates */
1075		/* fall thru... */
1076	case IEEE80211_MODE_11G:
1077	case IEEE80211_MODE_TURBO_G:
1078		mask |= IFM_IEEE80211_11G;
1079		break;
1080	}
1081	for (i = 0; i < N(rates); i++)
1082		if (rates[i].m == mask)
1083			return rates[i].r;
1084	return IFM_AUTO;
1085#undef N
1086}
1087
1088int
1089ieee80211_media2rate(int mword)
1090{
1091#define	N(a)	(sizeof(a) / sizeof(a[0]))
1092	static const int ieeerates[] = {
1093		-1,		/* IFM_AUTO */
1094		0,		/* IFM_MANUAL */
1095		0,		/* IFM_NONE */
1096		2,		/* IFM_IEEE80211_FH1 */
1097		4,		/* IFM_IEEE80211_FH2 */
1098		2,		/* IFM_IEEE80211_DS1 */
1099		4,		/* IFM_IEEE80211_DS2 */
1100		11,		/* IFM_IEEE80211_DS5 */
1101		22,		/* IFM_IEEE80211_DS11 */
1102		44,		/* IFM_IEEE80211_DS22 */
1103		12,		/* IFM_IEEE80211_OFDM6 */
1104		18,		/* IFM_IEEE80211_OFDM9 */
1105		24,		/* IFM_IEEE80211_OFDM12 */
1106		36,		/* IFM_IEEE80211_OFDM18 */
1107		48,		/* IFM_IEEE80211_OFDM24 */
1108		72,		/* IFM_IEEE80211_OFDM36 */
1109		96,		/* IFM_IEEE80211_OFDM48 */
1110		108,		/* IFM_IEEE80211_OFDM54 */
1111		144,		/* IFM_IEEE80211_OFDM72 */
1112		0,		/* IFM_IEEE80211_DS354k */
1113		0,		/* IFM_IEEE80211_DS512k */
1114		6,		/* IFM_IEEE80211_OFDM3 */
1115		9,		/* IFM_IEEE80211_OFDM4 */
1116		54,		/* IFM_IEEE80211_OFDM27 */
1117	};
1118	return IFM_SUBTYPE(mword) < N(ieeerates) ?
1119		ieeerates[IFM_SUBTYPE(mword)] : 0;
1120#undef N
1121}
1122