sys_pipe.c revision 125367
1/*
2 * Copyright (c) 1996 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
15 *    John S. Dyson.
16 * 4. Modifications may be freely made to this file if the above conditions
17 *    are met.
18 */
19
20/*
21 * This file contains a high-performance replacement for the socket-based
22 * pipes scheme originally used in FreeBSD/4.4Lite.  It does not support
23 * all features of sockets, but does do everything that pipes normally
24 * do.
25 */
26
27/*
28 * This code has two modes of operation, a small write mode and a large
29 * write mode.  The small write mode acts like conventional pipes with
30 * a kernel buffer.  If the buffer is less than PIPE_MINDIRECT, then the
31 * "normal" pipe buffering is done.  If the buffer is between PIPE_MINDIRECT
32 * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
33 * the receiving process can copy it directly from the pages in the sending
34 * process.
35 *
36 * If the sending process receives a signal, it is possible that it will
37 * go away, and certainly its address space can change, because control
38 * is returned back to the user-mode side.  In that case, the pipe code
39 * arranges to copy the buffer supplied by the user process, to a pageable
40 * kernel buffer, and the receiving process will grab the data from the
41 * pageable kernel buffer.  Since signals don't happen all that often,
42 * the copy operation is normally eliminated.
43 *
44 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
45 * happen for small transfers so that the system will not spend all of
46 * its time context switching.
47 *
48 * In order to limit the resource use of pipes, two sysctls exist:
49 *
50 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
51 * address space available to us in pipe_map.  Whenever the amount in use
52 * exceeds half of this value, all new pipes will be created with size
53 * SMALL_PIPE_SIZE, rather than PIPE_SIZE.  Big pipe creation will be limited
54 * as well.  This value is loader tunable only.
55 *
56 * kern.ipc.maxpipekvawired - This value limits the amount of memory that may
57 * be wired in order to facilitate direct copies using page flipping.
58 * Whenever this value is exceeded, pipes will fall back to using regular
59 * copies.  This value is sysctl controllable at all times.
60 *
61 * These values are autotuned in subr_param.c.
62 *
63 * Memory usage may be monitored through the sysctls
64 * kern.ipc.pipes, kern.ipc.pipekva and kern.ipc.pipekvawired.
65 *
66 */
67
68#include <sys/cdefs.h>
69__FBSDID("$FreeBSD: head/sys/kern/sys_pipe.c 125367 2004-02-03 04:55:24Z rwatson $");
70
71#include "opt_mac.h"
72
73#include <sys/param.h>
74#include <sys/systm.h>
75#include <sys/fcntl.h>
76#include <sys/file.h>
77#include <sys/filedesc.h>
78#include <sys/filio.h>
79#include <sys/kernel.h>
80#include <sys/lock.h>
81#include <sys/mac.h>
82#include <sys/mutex.h>
83#include <sys/ttycom.h>
84#include <sys/stat.h>
85#include <sys/malloc.h>
86#include <sys/poll.h>
87#include <sys/selinfo.h>
88#include <sys/signalvar.h>
89#include <sys/sysctl.h>
90#include <sys/sysproto.h>
91#include <sys/pipe.h>
92#include <sys/proc.h>
93#include <sys/vnode.h>
94#include <sys/uio.h>
95#include <sys/event.h>
96
97#include <vm/vm.h>
98#include <vm/vm_param.h>
99#include <vm/vm_object.h>
100#include <vm/vm_kern.h>
101#include <vm/vm_extern.h>
102#include <vm/pmap.h>
103#include <vm/vm_map.h>
104#include <vm/vm_page.h>
105#include <vm/uma.h>
106
107/*
108 * Use this define if you want to disable *fancy* VM things.  Expect an
109 * approx 30% decrease in transfer rate.  This could be useful for
110 * NetBSD or OpenBSD.
111 */
112/* #define PIPE_NODIRECT */
113
114/*
115 * interfaces to the outside world
116 */
117static fo_rdwr_t	pipe_read;
118static fo_rdwr_t	pipe_write;
119static fo_ioctl_t	pipe_ioctl;
120static fo_poll_t	pipe_poll;
121static fo_kqfilter_t	pipe_kqfilter;
122static fo_stat_t	pipe_stat;
123static fo_close_t	pipe_close;
124
125static struct fileops pipeops = {
126	.fo_read = pipe_read,
127	.fo_write = pipe_write,
128	.fo_ioctl = pipe_ioctl,
129	.fo_poll = pipe_poll,
130	.fo_kqfilter = pipe_kqfilter,
131	.fo_stat = pipe_stat,
132	.fo_close = pipe_close,
133	.fo_flags = DFLAG_PASSABLE
134};
135
136static void	filt_pipedetach(struct knote *kn);
137static int	filt_piperead(struct knote *kn, long hint);
138static int	filt_pipewrite(struct knote *kn, long hint);
139
140static struct filterops pipe_rfiltops =
141	{ 1, NULL, filt_pipedetach, filt_piperead };
142static struct filterops pipe_wfiltops =
143	{ 1, NULL, filt_pipedetach, filt_pipewrite };
144
145/*
146 * Default pipe buffer size(s), this can be kind-of large now because pipe
147 * space is pageable.  The pipe code will try to maintain locality of
148 * reference for performance reasons, so small amounts of outstanding I/O
149 * will not wipe the cache.
150 */
151#define MINPIPESIZE (PIPE_SIZE/3)
152#define MAXPIPESIZE (2*PIPE_SIZE/3)
153
154/*
155 * Limit the number of "big" pipes
156 */
157#define LIMITBIGPIPES	32
158static int nbigpipe;
159
160static int amountpipes;
161static int amountpipekva;
162static int amountpipekvawired;
163
164SYSCTL_DECL(_kern_ipc);
165
166SYSCTL_INT(_kern_ipc, OID_AUTO, maxpipekva, CTLFLAG_RDTUN,
167	   &maxpipekva, 0, "Pipe KVA limit");
168SYSCTL_INT(_kern_ipc, OID_AUTO, maxpipekvawired, CTLFLAG_RW,
169	   &maxpipekvawired, 0, "Pipe KVA wired limit");
170SYSCTL_INT(_kern_ipc, OID_AUTO, pipes, CTLFLAG_RD,
171	   &amountpipes, 0, "Current # of pipes");
172SYSCTL_INT(_kern_ipc, OID_AUTO, bigpipes, CTLFLAG_RD,
173	   &nbigpipe, 0, "Current # of big pipes");
174SYSCTL_INT(_kern_ipc, OID_AUTO, pipekva, CTLFLAG_RD,
175	   &amountpipekva, 0, "Pipe KVA usage");
176SYSCTL_INT(_kern_ipc, OID_AUTO, pipekvawired, CTLFLAG_RD,
177	   &amountpipekvawired, 0, "Pipe wired KVA usage");
178
179static void pipeinit(void *dummy __unused);
180static void pipeclose(struct pipe *cpipe);
181static void pipe_free_kmem(struct pipe *cpipe);
182static int pipe_create(struct pipe *pipe);
183static __inline int pipelock(struct pipe *cpipe, int catch);
184static __inline void pipeunlock(struct pipe *cpipe);
185static __inline void pipeselwakeup(struct pipe *cpipe);
186#ifndef PIPE_NODIRECT
187static int pipe_build_write_buffer(struct pipe *wpipe, struct uio *uio);
188static void pipe_destroy_write_buffer(struct pipe *wpipe);
189static int pipe_direct_write(struct pipe *wpipe, struct uio *uio);
190static void pipe_clone_write_buffer(struct pipe *wpipe);
191#endif
192static int pipespace(struct pipe *cpipe, int size);
193
194static void	pipe_zone_ctor(void *mem, int size, void *arg);
195static void	pipe_zone_dtor(void *mem, int size, void *arg);
196static void	pipe_zone_init(void *mem, int size);
197static void	pipe_zone_fini(void *mem, int size);
198
199static uma_zone_t pipe_zone;
200
201SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_ANY, pipeinit, NULL);
202
203static void
204pipeinit(void *dummy __unused)
205{
206
207	pipe_zone = uma_zcreate("PIPE", sizeof(struct pipepair),
208	    pipe_zone_ctor, pipe_zone_dtor, pipe_zone_init, pipe_zone_fini,
209	    UMA_ALIGN_PTR, 0);
210	KASSERT(pipe_zone != NULL, ("pipe_zone not initialized"));
211}
212
213static void
214pipe_zone_ctor(void *mem, int size, void *arg)
215{
216	struct pipepair *pp;
217	struct pipe *rpipe, *wpipe;
218
219	KASSERT(size == sizeof(*pp), ("pipe_zone_ctor: wrong size"));
220
221	pp = (struct pipepair *)mem;
222
223	/*
224	 * We zero both pipe endpoints to make sure all the kmem pointers
225	 * are NULL, flag fields are zero'd, etc.  We timestamp both
226	 * endpoints with the same time.
227	 */
228	rpipe = &pp->pp_rpipe;
229	bzero(rpipe, sizeof(*rpipe));
230	vfs_timestamp(&rpipe->pipe_ctime);
231	rpipe->pipe_atime = rpipe->pipe_mtime = rpipe->pipe_ctime;
232
233	wpipe = &pp->pp_wpipe;
234	bzero(wpipe, sizeof(*wpipe));
235	wpipe->pipe_ctime = rpipe->pipe_ctime;
236	wpipe->pipe_atime = wpipe->pipe_mtime = rpipe->pipe_ctime;
237
238	rpipe->pipe_peer = wpipe;
239	rpipe->pipe_pair = pp;
240	wpipe->pipe_peer = rpipe;
241	wpipe->pipe_pair = pp;
242
243	/*
244	 * Mark both endpoints as present; they will later get free'd
245	 * one at a time.  When both are free'd, then the whole pair
246	 * is released.
247	 */
248	rpipe->pipe_present = 1;
249	wpipe->pipe_present = 1;
250
251	/*
252	 * Eventually, the MAC Framework may initialize the label
253	 * in ctor or init, but for now we do it elswhere to avoid
254	 * blocking in ctor or init.
255	 */
256	pp->pp_label = NULL;
257
258	atomic_add_int(&amountpipes, 2);
259}
260
261static void
262pipe_zone_dtor(void *mem, int size, void *arg)
263{
264	struct pipepair *pp;
265
266	KASSERT(size == sizeof(*pp), ("pipe_zone_dtor: wrong size"));
267
268	pp = (struct pipepair *)mem;
269
270	atomic_subtract_int(&amountpipes, 2);
271}
272
273static void
274pipe_zone_init(void *mem, int size)
275{
276	struct pipepair *pp;
277
278	KASSERT(size == sizeof(*pp), ("pipe_zone_init: wrong size"));
279
280	pp = (struct pipepair *)mem;
281
282	mtx_init(&pp->pp_mtx, "pipe mutex", NULL, MTX_DEF | MTX_RECURSE);
283}
284
285static void
286pipe_zone_fini(void *mem, int size)
287{
288	struct pipepair *pp;
289
290	KASSERT(size == sizeof(*pp), ("pipe_zone_fini: wrong size"));
291
292	pp = (struct pipepair *)mem;
293
294	mtx_destroy(&pp->pp_mtx);
295}
296
297/*
298 * The pipe system call for the DTYPE_PIPE type of pipes.  If we fail,
299 * let the zone pick up the pieces via pipeclose().
300 */
301
302/* ARGSUSED */
303int
304pipe(td, uap)
305	struct thread *td;
306	struct pipe_args /* {
307		int	dummy;
308	} */ *uap;
309{
310	struct filedesc *fdp = td->td_proc->p_fd;
311	struct file *rf, *wf;
312	struct pipepair *pp;
313	struct pipe *rpipe, *wpipe;
314	int fd, error;
315
316	pp = uma_zalloc(pipe_zone, M_WAITOK);
317#ifdef MAC
318	/*
319	 * struct pipe represents a pipe endpoint.  The MAC label is shared
320	 * between the connected endpoints.  As a result mac_init_pipe() and
321	 * mac_create_pipe() should only be called on one of the endpoints
322	 * after they have been connected.
323	 */
324	mac_init_pipe(pp);
325	mac_create_pipe(td->td_ucred, pp);
326#endif
327	rpipe = &pp->pp_rpipe;
328	wpipe = &pp->pp_wpipe;
329
330	if (pipe_create(rpipe) || pipe_create(wpipe)) {
331		pipeclose(rpipe);
332		pipeclose(wpipe);
333		return (ENFILE);
334	}
335
336	rpipe->pipe_state |= PIPE_DIRECTOK;
337	wpipe->pipe_state |= PIPE_DIRECTOK;
338
339	error = falloc(td, &rf, &fd);
340	if (error) {
341		pipeclose(rpipe);
342		pipeclose(wpipe);
343		return (error);
344	}
345	/* An extra reference on `rf' has been held for us by falloc(). */
346	td->td_retval[0] = fd;
347
348	/*
349	 * Warning: once we've gotten past allocation of the fd for the
350	 * read-side, we can only drop the read side via fdrop() in order
351	 * to avoid races against processes which manage to dup() the read
352	 * side while we are blocked trying to allocate the write side.
353	 */
354	FILE_LOCK(rf);
355	rf->f_flag = FREAD | FWRITE;
356	rf->f_type = DTYPE_PIPE;
357	rf->f_data = rpipe;
358	rf->f_ops = &pipeops;
359	FILE_UNLOCK(rf);
360	error = falloc(td, &wf, &fd);
361	if (error) {
362		FILEDESC_LOCK(fdp);
363		if (fdp->fd_ofiles[td->td_retval[0]] == rf) {
364			fdp->fd_ofiles[td->td_retval[0]] = NULL;
365			fdunused(fdp, td->td_retval[0]);
366			FILEDESC_UNLOCK(fdp);
367			fdrop(rf, td);
368		} else {
369			FILEDESC_UNLOCK(fdp);
370		}
371		fdrop(rf, td);
372		/* rpipe has been closed by fdrop(). */
373		pipeclose(wpipe);
374		return (error);
375	}
376	/* An extra reference on `wf' has been held for us by falloc(). */
377	FILE_LOCK(wf);
378	wf->f_flag = FREAD | FWRITE;
379	wf->f_type = DTYPE_PIPE;
380	wf->f_data = wpipe;
381	wf->f_ops = &pipeops;
382	FILE_UNLOCK(wf);
383	fdrop(wf, td);
384	td->td_retval[1] = fd;
385	fdrop(rf, td);
386
387	return (0);
388}
389
390/*
391 * Allocate kva for pipe circular buffer, the space is pageable
392 * This routine will 'realloc' the size of a pipe safely, if it fails
393 * it will retain the old buffer.
394 * If it fails it will return ENOMEM.
395 */
396static int
397pipespace(cpipe, size)
398	struct pipe *cpipe;
399	int size;
400{
401	caddr_t buffer;
402	int error;
403	static int curfail = 0;
404	static struct timeval lastfail;
405
406	KASSERT(!mtx_owned(PIPE_MTX(cpipe)), ("pipespace: pipe mutex locked"));
407
408	size = round_page(size);
409	/*
410	 * XXX -- minor change needed here for NetBSD/OpenBSD VM systems.
411	 */
412	buffer = (caddr_t) vm_map_min(pipe_map);
413
414	/*
415	 * The map entry is, by default, pageable.
416	 * XXX -- minor change needed here for NetBSD/OpenBSD VM systems.
417	 */
418	error = vm_map_find(pipe_map, NULL, 0,
419		(vm_offset_t *) &buffer, size, 1,
420		VM_PROT_ALL, VM_PROT_ALL, 0);
421	if (error != KERN_SUCCESS) {
422		if (ppsratecheck(&lastfail, &curfail, 1))
423			printf("kern.ipc.maxpipekva exceeded; see tuning(7)\n");
424		return (ENOMEM);
425	}
426
427	/* free old resources if we're resizing */
428	pipe_free_kmem(cpipe);
429	cpipe->pipe_buffer.buffer = buffer;
430	cpipe->pipe_buffer.size = size;
431	cpipe->pipe_buffer.in = 0;
432	cpipe->pipe_buffer.out = 0;
433	cpipe->pipe_buffer.cnt = 0;
434	atomic_add_int(&amountpipekva, cpipe->pipe_buffer.size);
435	return (0);
436}
437
438/*
439 * Initialize and allocate VM and memory for pipe.  The structure
440 * will start out zero'd from the ctor, so we just manage the kmem.
441 */
442static int
443pipe_create(pipe)
444	struct pipe *pipe;
445{
446	int error;
447
448	/*
449	 * Reduce to 1/4th pipe size if we're over our global max.
450	 */
451	if (amountpipekva > maxpipekva / 2)
452		error = pipespace(pipe, SMALL_PIPE_SIZE);
453	else
454		error = pipespace(pipe, PIPE_SIZE);
455	if (error)
456		return (error);
457
458	return (0);
459}
460
461/*
462 * lock a pipe for I/O, blocking other access
463 */
464static __inline int
465pipelock(cpipe, catch)
466	struct pipe *cpipe;
467	int catch;
468{
469	int error;
470
471	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
472	while (cpipe->pipe_state & PIPE_LOCKFL) {
473		cpipe->pipe_state |= PIPE_LWANT;
474		error = msleep(cpipe, PIPE_MTX(cpipe),
475		    catch ? (PRIBIO | PCATCH) : PRIBIO,
476		    "pipelk", 0);
477		if (error != 0)
478			return (error);
479	}
480	cpipe->pipe_state |= PIPE_LOCKFL;
481	return (0);
482}
483
484/*
485 * unlock a pipe I/O lock
486 */
487static __inline void
488pipeunlock(cpipe)
489	struct pipe *cpipe;
490{
491
492	PIPE_LOCK_ASSERT(cpipe, MA_OWNED);
493	cpipe->pipe_state &= ~PIPE_LOCKFL;
494	if (cpipe->pipe_state & PIPE_LWANT) {
495		cpipe->pipe_state &= ~PIPE_LWANT;
496		wakeup(cpipe);
497	}
498}
499
500static __inline void
501pipeselwakeup(cpipe)
502	struct pipe *cpipe;
503{
504
505	if (cpipe->pipe_state & PIPE_SEL) {
506		cpipe->pipe_state &= ~PIPE_SEL;
507		selwakeuppri(&cpipe->pipe_sel, PSOCK);
508	}
509	if ((cpipe->pipe_state & PIPE_ASYNC) && cpipe->pipe_sigio)
510		pgsigio(&cpipe->pipe_sigio, SIGIO, 0);
511	KNOTE(&cpipe->pipe_sel.si_note, 0);
512}
513
514/* ARGSUSED */
515static int
516pipe_read(fp, uio, active_cred, flags, td)
517	struct file *fp;
518	struct uio *uio;
519	struct ucred *active_cred;
520	struct thread *td;
521	int flags;
522{
523	struct pipe *rpipe = fp->f_data;
524	int error;
525	int nread = 0;
526	u_int size;
527
528	PIPE_LOCK(rpipe);
529	++rpipe->pipe_busy;
530	error = pipelock(rpipe, 1);
531	if (error)
532		goto unlocked_error;
533
534#ifdef MAC
535	error = mac_check_pipe_read(active_cred, rpipe->pipe_pair);
536	if (error)
537		goto locked_error;
538#endif
539
540	while (uio->uio_resid) {
541		/*
542		 * normal pipe buffer receive
543		 */
544		if (rpipe->pipe_buffer.cnt > 0) {
545			size = rpipe->pipe_buffer.size - rpipe->pipe_buffer.out;
546			if (size > rpipe->pipe_buffer.cnt)
547				size = rpipe->pipe_buffer.cnt;
548			if (size > (u_int) uio->uio_resid)
549				size = (u_int) uio->uio_resid;
550
551			PIPE_UNLOCK(rpipe);
552			error = uiomove(
553			    &rpipe->pipe_buffer.buffer[rpipe->pipe_buffer.out],
554			    size, uio);
555			PIPE_LOCK(rpipe);
556			if (error)
557				break;
558
559			rpipe->pipe_buffer.out += size;
560			if (rpipe->pipe_buffer.out >= rpipe->pipe_buffer.size)
561				rpipe->pipe_buffer.out = 0;
562
563			rpipe->pipe_buffer.cnt -= size;
564
565			/*
566			 * If there is no more to read in the pipe, reset
567			 * its pointers to the beginning.  This improves
568			 * cache hit stats.
569			 */
570			if (rpipe->pipe_buffer.cnt == 0) {
571				rpipe->pipe_buffer.in = 0;
572				rpipe->pipe_buffer.out = 0;
573			}
574			nread += size;
575#ifndef PIPE_NODIRECT
576		/*
577		 * Direct copy, bypassing a kernel buffer.
578		 */
579		} else if ((size = rpipe->pipe_map.cnt) &&
580			   (rpipe->pipe_state & PIPE_DIRECTW)) {
581			caddr_t	va;
582			if (size > (u_int) uio->uio_resid)
583				size = (u_int) uio->uio_resid;
584
585			va = (caddr_t) rpipe->pipe_map.kva +
586			    rpipe->pipe_map.pos;
587			PIPE_UNLOCK(rpipe);
588			error = uiomove(va, size, uio);
589			PIPE_LOCK(rpipe);
590			if (error)
591				break;
592			nread += size;
593			rpipe->pipe_map.pos += size;
594			rpipe->pipe_map.cnt -= size;
595			if (rpipe->pipe_map.cnt == 0) {
596				rpipe->pipe_state &= ~PIPE_DIRECTW;
597				wakeup(rpipe);
598			}
599#endif
600		} else {
601			/*
602			 * detect EOF condition
603			 * read returns 0 on EOF, no need to set error
604			 */
605			if (rpipe->pipe_state & PIPE_EOF)
606				break;
607
608			/*
609			 * If the "write-side" has been blocked, wake it up now.
610			 */
611			if (rpipe->pipe_state & PIPE_WANTW) {
612				rpipe->pipe_state &= ~PIPE_WANTW;
613				wakeup(rpipe);
614			}
615
616			/*
617			 * Break if some data was read.
618			 */
619			if (nread > 0)
620				break;
621
622			/*
623			 * Unlock the pipe buffer for our remaining processing.
624			 * We will either break out with an error or we will
625			 * sleep and relock to loop.
626			 */
627			pipeunlock(rpipe);
628
629			/*
630			 * Handle non-blocking mode operation or
631			 * wait for more data.
632			 */
633			if (fp->f_flag & FNONBLOCK) {
634				error = EAGAIN;
635			} else {
636				rpipe->pipe_state |= PIPE_WANTR;
637				if ((error = msleep(rpipe, PIPE_MTX(rpipe),
638				    PRIBIO | PCATCH,
639				    "piperd", 0)) == 0)
640					error = pipelock(rpipe, 1);
641			}
642			if (error)
643				goto unlocked_error;
644		}
645	}
646#ifdef MAC
647locked_error:
648#endif
649	pipeunlock(rpipe);
650
651	/* XXX: should probably do this before getting any locks. */
652	if (error == 0)
653		vfs_timestamp(&rpipe->pipe_atime);
654unlocked_error:
655	--rpipe->pipe_busy;
656
657	/*
658	 * PIPE_WANT processing only makes sense if pipe_busy is 0.
659	 */
660	if ((rpipe->pipe_busy == 0) && (rpipe->pipe_state & PIPE_WANT)) {
661		rpipe->pipe_state &= ~(PIPE_WANT|PIPE_WANTW);
662		wakeup(rpipe);
663	} else if (rpipe->pipe_buffer.cnt < MINPIPESIZE) {
664		/*
665		 * Handle write blocking hysteresis.
666		 */
667		if (rpipe->pipe_state & PIPE_WANTW) {
668			rpipe->pipe_state &= ~PIPE_WANTW;
669			wakeup(rpipe);
670		}
671	}
672
673	if ((rpipe->pipe_buffer.size - rpipe->pipe_buffer.cnt) >= PIPE_BUF)
674		pipeselwakeup(rpipe);
675
676	PIPE_UNLOCK(rpipe);
677	return (error);
678}
679
680#ifndef PIPE_NODIRECT
681/*
682 * Map the sending processes' buffer into kernel space and wire it.
683 * This is similar to a physical write operation.
684 */
685static int
686pipe_build_write_buffer(wpipe, uio)
687	struct pipe *wpipe;
688	struct uio *uio;
689{
690	pmap_t pmap;
691	u_int size;
692	int i, j;
693	vm_offset_t addr, endaddr;
694
695	PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
696
697	size = (u_int) uio->uio_iov->iov_len;
698	if (size > wpipe->pipe_buffer.size)
699		size = wpipe->pipe_buffer.size;
700
701	pmap = vmspace_pmap(curproc->p_vmspace);
702	endaddr = round_page((vm_offset_t)uio->uio_iov->iov_base + size);
703	addr = trunc_page((vm_offset_t)uio->uio_iov->iov_base);
704	for (i = 0; addr < endaddr; addr += PAGE_SIZE, i++) {
705		/*
706		 * vm_fault_quick() can sleep.  Consequently,
707		 * vm_page_lock_queue() and vm_page_unlock_queue()
708		 * should not be performed outside of this loop.
709		 */
710	race:
711		if (vm_fault_quick((caddr_t)addr, VM_PROT_READ) < 0) {
712			vm_page_lock_queues();
713			for (j = 0; j < i; j++)
714				vm_page_unhold(wpipe->pipe_map.ms[j]);
715			vm_page_unlock_queues();
716			return (EFAULT);
717		}
718		wpipe->pipe_map.ms[i] = pmap_extract_and_hold(pmap, addr,
719		    VM_PROT_READ);
720		if (wpipe->pipe_map.ms[i] == NULL)
721			goto race;
722	}
723
724/*
725 * set up the control block
726 */
727	wpipe->pipe_map.npages = i;
728	wpipe->pipe_map.pos =
729	    ((vm_offset_t) uio->uio_iov->iov_base) & PAGE_MASK;
730	wpipe->pipe_map.cnt = size;
731
732/*
733 * and map the buffer
734 */
735	if (wpipe->pipe_map.kva == 0) {
736		/*
737		 * We need to allocate space for an extra page because the
738		 * address range might (will) span pages at times.
739		 */
740		wpipe->pipe_map.kva = kmem_alloc_nofault(kernel_map,
741			wpipe->pipe_buffer.size + PAGE_SIZE);
742		atomic_add_int(&amountpipekvawired,
743		    wpipe->pipe_buffer.size + PAGE_SIZE);
744	}
745	pmap_qenter(wpipe->pipe_map.kva, wpipe->pipe_map.ms,
746		wpipe->pipe_map.npages);
747
748/*
749 * and update the uio data
750 */
751
752	uio->uio_iov->iov_len -= size;
753	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + size;
754	if (uio->uio_iov->iov_len == 0)
755		uio->uio_iov++;
756	uio->uio_resid -= size;
757	uio->uio_offset += size;
758	return (0);
759}
760
761/*
762 * unmap and unwire the process buffer
763 */
764static void
765pipe_destroy_write_buffer(wpipe)
766	struct pipe *wpipe;
767{
768	int i;
769
770	PIPE_LOCK_ASSERT(wpipe, MA_NOTOWNED);
771	if (wpipe->pipe_map.kva) {
772		pmap_qremove(wpipe->pipe_map.kva, wpipe->pipe_map.npages);
773
774		if (amountpipekvawired > maxpipekvawired / 2) {
775			/* Conserve address space */
776			vm_offset_t kva = wpipe->pipe_map.kva;
777			wpipe->pipe_map.kva = 0;
778			kmem_free(kernel_map, kva,
779			    wpipe->pipe_buffer.size + PAGE_SIZE);
780			atomic_subtract_int(&amountpipekvawired,
781			    wpipe->pipe_buffer.size + PAGE_SIZE);
782		}
783	}
784	vm_page_lock_queues();
785	for (i = 0; i < wpipe->pipe_map.npages; i++) {
786		vm_page_unhold(wpipe->pipe_map.ms[i]);
787	}
788	vm_page_unlock_queues();
789	wpipe->pipe_map.npages = 0;
790}
791
792/*
793 * In the case of a signal, the writing process might go away.  This
794 * code copies the data into the circular buffer so that the source
795 * pages can be freed without loss of data.
796 */
797static void
798pipe_clone_write_buffer(wpipe)
799	struct pipe *wpipe;
800{
801	int size;
802	int pos;
803
804	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
805	size = wpipe->pipe_map.cnt;
806	pos = wpipe->pipe_map.pos;
807
808	wpipe->pipe_buffer.in = size;
809	wpipe->pipe_buffer.out = 0;
810	wpipe->pipe_buffer.cnt = size;
811	wpipe->pipe_state &= ~PIPE_DIRECTW;
812
813	PIPE_UNLOCK(wpipe);
814	bcopy((caddr_t) wpipe->pipe_map.kva + pos,
815	    wpipe->pipe_buffer.buffer, size);
816	pipe_destroy_write_buffer(wpipe);
817	PIPE_LOCK(wpipe);
818}
819
820/*
821 * This implements the pipe buffer write mechanism.  Note that only
822 * a direct write OR a normal pipe write can be pending at any given time.
823 * If there are any characters in the pipe buffer, the direct write will
824 * be deferred until the receiving process grabs all of the bytes from
825 * the pipe buffer.  Then the direct mapping write is set-up.
826 */
827static int
828pipe_direct_write(wpipe, uio)
829	struct pipe *wpipe;
830	struct uio *uio;
831{
832	int error;
833
834retry:
835	PIPE_LOCK_ASSERT(wpipe, MA_OWNED);
836	while (wpipe->pipe_state & PIPE_DIRECTW) {
837		if (wpipe->pipe_state & PIPE_WANTR) {
838			wpipe->pipe_state &= ~PIPE_WANTR;
839			wakeup(wpipe);
840		}
841		wpipe->pipe_state |= PIPE_WANTW;
842		error = msleep(wpipe, PIPE_MTX(wpipe),
843		    PRIBIO | PCATCH, "pipdww", 0);
844		if (error)
845			goto error1;
846		if (wpipe->pipe_state & PIPE_EOF) {
847			error = EPIPE;
848			goto error1;
849		}
850	}
851	wpipe->pipe_map.cnt = 0;	/* transfer not ready yet */
852	if (wpipe->pipe_buffer.cnt > 0) {
853		if (wpipe->pipe_state & PIPE_WANTR) {
854			wpipe->pipe_state &= ~PIPE_WANTR;
855			wakeup(wpipe);
856		}
857
858		wpipe->pipe_state |= PIPE_WANTW;
859		error = msleep(wpipe, PIPE_MTX(wpipe),
860		    PRIBIO | PCATCH, "pipdwc", 0);
861		if (error)
862			goto error1;
863		if (wpipe->pipe_state & PIPE_EOF) {
864			error = EPIPE;
865			goto error1;
866		}
867		goto retry;
868	}
869
870	wpipe->pipe_state |= PIPE_DIRECTW;
871
872	pipelock(wpipe, 0);
873	PIPE_UNLOCK(wpipe);
874	error = pipe_build_write_buffer(wpipe, uio);
875	PIPE_LOCK(wpipe);
876	pipeunlock(wpipe);
877	if (error) {
878		wpipe->pipe_state &= ~PIPE_DIRECTW;
879		goto error1;
880	}
881
882	error = 0;
883	while (!error && (wpipe->pipe_state & PIPE_DIRECTW)) {
884		if (wpipe->pipe_state & PIPE_EOF) {
885			pipelock(wpipe, 0);
886			PIPE_UNLOCK(wpipe);
887			pipe_destroy_write_buffer(wpipe);
888			PIPE_LOCK(wpipe);
889			pipeselwakeup(wpipe);
890			pipeunlock(wpipe);
891			error = EPIPE;
892			goto error1;
893		}
894		if (wpipe->pipe_state & PIPE_WANTR) {
895			wpipe->pipe_state &= ~PIPE_WANTR;
896			wakeup(wpipe);
897		}
898		pipeselwakeup(wpipe);
899		error = msleep(wpipe, PIPE_MTX(wpipe), PRIBIO | PCATCH,
900		    "pipdwt", 0);
901	}
902
903	pipelock(wpipe,0);
904	if (wpipe->pipe_state & PIPE_DIRECTW) {
905		/*
906		 * this bit of trickery substitutes a kernel buffer for
907		 * the process that might be going away.
908		 */
909		pipe_clone_write_buffer(wpipe);
910	} else {
911		PIPE_UNLOCK(wpipe);
912		pipe_destroy_write_buffer(wpipe);
913		PIPE_LOCK(wpipe);
914	}
915	pipeunlock(wpipe);
916	return (error);
917
918error1:
919	wakeup(wpipe);
920	return (error);
921}
922#endif
923
924static int
925pipe_write(fp, uio, active_cred, flags, td)
926	struct file *fp;
927	struct uio *uio;
928	struct ucred *active_cred;
929	struct thread *td;
930	int flags;
931{
932	int error = 0;
933	int orig_resid;
934	struct pipe *wpipe, *rpipe;
935
936	rpipe = fp->f_data;
937	wpipe = rpipe->pipe_peer;
938
939	PIPE_LOCK(rpipe);
940	/*
941	 * detect loss of pipe read side, issue SIGPIPE if lost.
942	 */
943	if ((!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) {
944		PIPE_UNLOCK(rpipe);
945		return (EPIPE);
946	}
947#ifdef MAC
948	error = mac_check_pipe_write(active_cred, wpipe->pipe_pair);
949	if (error) {
950		PIPE_UNLOCK(rpipe);
951		return (error);
952	}
953#endif
954	++wpipe->pipe_busy;
955
956	/*
957	 * If it is advantageous to resize the pipe buffer, do
958	 * so.
959	 */
960	if ((uio->uio_resid > PIPE_SIZE) &&
961		(amountpipekva < maxpipekva / 2) &&
962		(nbigpipe < LIMITBIGPIPES) &&
963		(wpipe->pipe_state & PIPE_DIRECTW) == 0 &&
964		(wpipe->pipe_buffer.size <= PIPE_SIZE) &&
965		(wpipe->pipe_buffer.cnt == 0)) {
966
967		if ((error = pipelock(wpipe, 1)) == 0) {
968			PIPE_UNLOCK(wpipe);
969			if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
970				atomic_add_int(&nbigpipe, 1);
971			PIPE_LOCK(wpipe);
972			pipeunlock(wpipe);
973		}
974	}
975
976	/*
977	 * If an early error occured unbusy and return, waking up any pending
978	 * readers.
979	 */
980	if (error) {
981		--wpipe->pipe_busy;
982		if ((wpipe->pipe_busy == 0) &&
983		    (wpipe->pipe_state & PIPE_WANT)) {
984			wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
985			wakeup(wpipe);
986		}
987		PIPE_UNLOCK(rpipe);
988		return(error);
989	}
990
991	orig_resid = uio->uio_resid;
992
993	while (uio->uio_resid) {
994		int space;
995
996#ifndef PIPE_NODIRECT
997		/*
998		 * If the transfer is large, we can gain performance if
999		 * we do process-to-process copies directly.
1000		 * If the write is non-blocking, we don't use the
1001		 * direct write mechanism.
1002		 *
1003		 * The direct write mechanism will detect the reader going
1004		 * away on us.
1005		 */
1006		if ((uio->uio_iov->iov_len >= PIPE_MINDIRECT) &&
1007		    (fp->f_flag & FNONBLOCK) == 0 &&
1008		    amountpipekvawired + uio->uio_resid < maxpipekvawired) {
1009			error = pipe_direct_write(wpipe, uio);
1010			if (error)
1011				break;
1012			continue;
1013		}
1014#endif
1015
1016		/*
1017		 * Pipe buffered writes cannot be coincidental with
1018		 * direct writes.  We wait until the currently executing
1019		 * direct write is completed before we start filling the
1020		 * pipe buffer.  We break out if a signal occurs or the
1021		 * reader goes away.
1022		 */
1023	retrywrite:
1024		while (wpipe->pipe_state & PIPE_DIRECTW) {
1025			if (wpipe->pipe_state & PIPE_WANTR) {
1026				wpipe->pipe_state &= ~PIPE_WANTR;
1027				wakeup(wpipe);
1028			}
1029			error = msleep(wpipe, PIPE_MTX(rpipe), PRIBIO | PCATCH,
1030			    "pipbww", 0);
1031			if (wpipe->pipe_state & PIPE_EOF)
1032				break;
1033			if (error)
1034				break;
1035		}
1036		if (wpipe->pipe_state & PIPE_EOF) {
1037			error = EPIPE;
1038			break;
1039		}
1040
1041		space = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1042
1043		/* Writes of size <= PIPE_BUF must be atomic. */
1044		if ((space < uio->uio_resid) && (orig_resid <= PIPE_BUF))
1045			space = 0;
1046
1047		if (space > 0) {
1048			if ((error = pipelock(wpipe,1)) == 0) {
1049				int size;	/* Transfer size */
1050				int segsize;	/* first segment to transfer */
1051
1052				/*
1053				 * It is possible for a direct write to
1054				 * slip in on us... handle it here...
1055				 */
1056				if (wpipe->pipe_state & PIPE_DIRECTW) {
1057					pipeunlock(wpipe);
1058					goto retrywrite;
1059				}
1060				/*
1061				 * If a process blocked in uiomove, our
1062				 * value for space might be bad.
1063				 *
1064				 * XXX will we be ok if the reader has gone
1065				 * away here?
1066				 */
1067				if (space > wpipe->pipe_buffer.size -
1068				    wpipe->pipe_buffer.cnt) {
1069					pipeunlock(wpipe);
1070					goto retrywrite;
1071				}
1072
1073				/*
1074				 * Transfer size is minimum of uio transfer
1075				 * and free space in pipe buffer.
1076				 */
1077				if (space > uio->uio_resid)
1078					size = uio->uio_resid;
1079				else
1080					size = space;
1081				/*
1082				 * First segment to transfer is minimum of
1083				 * transfer size and contiguous space in
1084				 * pipe buffer.  If first segment to transfer
1085				 * is less than the transfer size, we've got
1086				 * a wraparound in the buffer.
1087				 */
1088				segsize = wpipe->pipe_buffer.size -
1089					wpipe->pipe_buffer.in;
1090				if (segsize > size)
1091					segsize = size;
1092
1093				/* Transfer first segment */
1094
1095				PIPE_UNLOCK(rpipe);
1096				error = uiomove(&wpipe->pipe_buffer.buffer[wpipe->pipe_buffer.in],
1097						segsize, uio);
1098				PIPE_LOCK(rpipe);
1099
1100				if (error == 0 && segsize < size) {
1101					/*
1102					 * Transfer remaining part now, to
1103					 * support atomic writes.  Wraparound
1104					 * happened.
1105					 */
1106					if (wpipe->pipe_buffer.in + segsize !=
1107					    wpipe->pipe_buffer.size)
1108						panic("Expected pipe buffer "
1109						    "wraparound disappeared");
1110
1111					PIPE_UNLOCK(rpipe);
1112					error = uiomove(
1113					    &wpipe->pipe_buffer.buffer[0],
1114					    size - segsize, uio);
1115					PIPE_LOCK(rpipe);
1116				}
1117				if (error == 0) {
1118					wpipe->pipe_buffer.in += size;
1119					if (wpipe->pipe_buffer.in >=
1120					    wpipe->pipe_buffer.size) {
1121						if (wpipe->pipe_buffer.in !=
1122						    size - segsize +
1123						    wpipe->pipe_buffer.size)
1124							panic("Expected "
1125							    "wraparound bad");
1126						wpipe->pipe_buffer.in = size -
1127						    segsize;
1128					}
1129
1130					wpipe->pipe_buffer.cnt += size;
1131					if (wpipe->pipe_buffer.cnt >
1132					    wpipe->pipe_buffer.size)
1133						panic("Pipe buffer overflow");
1134
1135				}
1136				pipeunlock(wpipe);
1137			}
1138			if (error)
1139				break;
1140
1141		} else {
1142			/*
1143			 * If the "read-side" has been blocked, wake it up now.
1144			 */
1145			if (wpipe->pipe_state & PIPE_WANTR) {
1146				wpipe->pipe_state &= ~PIPE_WANTR;
1147				wakeup(wpipe);
1148			}
1149
1150			/*
1151			 * don't block on non-blocking I/O
1152			 */
1153			if (fp->f_flag & FNONBLOCK) {
1154				error = EAGAIN;
1155				break;
1156			}
1157
1158			/*
1159			 * We have no more space and have something to offer,
1160			 * wake up select/poll.
1161			 */
1162			pipeselwakeup(wpipe);
1163
1164			wpipe->pipe_state |= PIPE_WANTW;
1165			error = msleep(wpipe, PIPE_MTX(rpipe),
1166			    PRIBIO | PCATCH, "pipewr", 0);
1167			if (error != 0)
1168				break;
1169			/*
1170			 * If read side wants to go away, we just issue a signal
1171			 * to ourselves.
1172			 */
1173			if (wpipe->pipe_state & PIPE_EOF) {
1174				error = EPIPE;
1175				break;
1176			}
1177		}
1178	}
1179
1180	--wpipe->pipe_busy;
1181
1182	if ((wpipe->pipe_busy == 0) && (wpipe->pipe_state & PIPE_WANT)) {
1183		wpipe->pipe_state &= ~(PIPE_WANT | PIPE_WANTR);
1184		wakeup(wpipe);
1185	} else if (wpipe->pipe_buffer.cnt > 0) {
1186		/*
1187		 * If we have put any characters in the buffer, we wake up
1188		 * the reader.
1189		 */
1190		if (wpipe->pipe_state & PIPE_WANTR) {
1191			wpipe->pipe_state &= ~PIPE_WANTR;
1192			wakeup(wpipe);
1193		}
1194	}
1195
1196	/*
1197	 * Don't return EPIPE if I/O was successful
1198	 */
1199	if ((wpipe->pipe_buffer.cnt == 0) &&
1200	    (uio->uio_resid == 0) &&
1201	    (error == EPIPE)) {
1202		error = 0;
1203	}
1204
1205	if (error == 0)
1206		vfs_timestamp(&wpipe->pipe_mtime);
1207
1208	/*
1209	 * We have something to offer,
1210	 * wake up select/poll.
1211	 */
1212	if (wpipe->pipe_buffer.cnt)
1213		pipeselwakeup(wpipe);
1214
1215	PIPE_UNLOCK(rpipe);
1216	return (error);
1217}
1218
1219/*
1220 * we implement a very minimal set of ioctls for compatibility with sockets.
1221 */
1222static int
1223pipe_ioctl(fp, cmd, data, active_cred, td)
1224	struct file *fp;
1225	u_long cmd;
1226	void *data;
1227	struct ucred *active_cred;
1228	struct thread *td;
1229{
1230	struct pipe *mpipe = fp->f_data;
1231#ifdef MAC
1232	int error;
1233#endif
1234
1235	PIPE_LOCK(mpipe);
1236
1237#ifdef MAC
1238	error = mac_check_pipe_ioctl(active_cred, mpipe->pipe_pair, cmd, data);
1239	if (error) {
1240		PIPE_UNLOCK(mpipe);
1241		return (error);
1242	}
1243#endif
1244
1245	switch (cmd) {
1246
1247	case FIONBIO:
1248		PIPE_UNLOCK(mpipe);
1249		return (0);
1250
1251	case FIOASYNC:
1252		if (*(int *)data) {
1253			mpipe->pipe_state |= PIPE_ASYNC;
1254		} else {
1255			mpipe->pipe_state &= ~PIPE_ASYNC;
1256		}
1257		PIPE_UNLOCK(mpipe);
1258		return (0);
1259
1260	case FIONREAD:
1261		if (mpipe->pipe_state & PIPE_DIRECTW)
1262			*(int *)data = mpipe->pipe_map.cnt;
1263		else
1264			*(int *)data = mpipe->pipe_buffer.cnt;
1265		PIPE_UNLOCK(mpipe);
1266		return (0);
1267
1268	case FIOSETOWN:
1269		PIPE_UNLOCK(mpipe);
1270		return (fsetown(*(int *)data, &mpipe->pipe_sigio));
1271
1272	case FIOGETOWN:
1273		PIPE_UNLOCK(mpipe);
1274		*(int *)data = fgetown(&mpipe->pipe_sigio);
1275		return (0);
1276
1277	/* This is deprecated, FIOSETOWN should be used instead. */
1278	case TIOCSPGRP:
1279		PIPE_UNLOCK(mpipe);
1280		return (fsetown(-(*(int *)data), &mpipe->pipe_sigio));
1281
1282	/* This is deprecated, FIOGETOWN should be used instead. */
1283	case TIOCGPGRP:
1284		PIPE_UNLOCK(mpipe);
1285		*(int *)data = -fgetown(&mpipe->pipe_sigio);
1286		return (0);
1287
1288	}
1289	PIPE_UNLOCK(mpipe);
1290	return (ENOTTY);
1291}
1292
1293static int
1294pipe_poll(fp, events, active_cred, td)
1295	struct file *fp;
1296	int events;
1297	struct ucred *active_cred;
1298	struct thread *td;
1299{
1300	struct pipe *rpipe = fp->f_data;
1301	struct pipe *wpipe;
1302	int revents = 0;
1303#ifdef MAC
1304	int error;
1305#endif
1306
1307	wpipe = rpipe->pipe_peer;
1308	PIPE_LOCK(rpipe);
1309#ifdef MAC
1310	error = mac_check_pipe_poll(active_cred, rpipe->pipe_pair);
1311	if (error)
1312		goto locked_error;
1313#endif
1314	if (events & (POLLIN | POLLRDNORM))
1315		if ((rpipe->pipe_state & PIPE_DIRECTW) ||
1316		    (rpipe->pipe_buffer.cnt > 0) ||
1317		    (rpipe->pipe_state & PIPE_EOF))
1318			revents |= events & (POLLIN | POLLRDNORM);
1319
1320	if (events & (POLLOUT | POLLWRNORM))
1321		if (!wpipe->pipe_present || (wpipe->pipe_state & PIPE_EOF) ||
1322		    (((wpipe->pipe_state & PIPE_DIRECTW) == 0) &&
1323		     (wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
1324			revents |= events & (POLLOUT | POLLWRNORM);
1325
1326	if ((rpipe->pipe_state & PIPE_EOF) ||
1327	    (!wpipe->pipe_present) ||
1328	    (wpipe->pipe_state & PIPE_EOF))
1329		revents |= POLLHUP;
1330
1331	if (revents == 0) {
1332		if (events & (POLLIN | POLLRDNORM)) {
1333			selrecord(td, &rpipe->pipe_sel);
1334			rpipe->pipe_state |= PIPE_SEL;
1335		}
1336
1337		if (events & (POLLOUT | POLLWRNORM)) {
1338			selrecord(td, &wpipe->pipe_sel);
1339			wpipe->pipe_state |= PIPE_SEL;
1340		}
1341	}
1342#ifdef MAC
1343locked_error:
1344#endif
1345	PIPE_UNLOCK(rpipe);
1346
1347	return (revents);
1348}
1349
1350/*
1351 * We shouldn't need locks here as we're doing a read and this should
1352 * be a natural race.
1353 */
1354static int
1355pipe_stat(fp, ub, active_cred, td)
1356	struct file *fp;
1357	struct stat *ub;
1358	struct ucred *active_cred;
1359	struct thread *td;
1360{
1361	struct pipe *pipe = fp->f_data;
1362#ifdef MAC
1363	int error;
1364
1365	PIPE_LOCK(pipe);
1366	error = mac_check_pipe_stat(active_cred, pipe->pipe_pair);
1367	PIPE_UNLOCK(pipe);
1368	if (error)
1369		return (error);
1370#endif
1371	bzero(ub, sizeof(*ub));
1372	ub->st_mode = S_IFIFO;
1373	ub->st_blksize = pipe->pipe_buffer.size;
1374	ub->st_size = pipe->pipe_buffer.cnt;
1375	ub->st_blocks = (ub->st_size + ub->st_blksize - 1) / ub->st_blksize;
1376	ub->st_atimespec = pipe->pipe_atime;
1377	ub->st_mtimespec = pipe->pipe_mtime;
1378	ub->st_ctimespec = pipe->pipe_ctime;
1379	ub->st_uid = fp->f_cred->cr_uid;
1380	ub->st_gid = fp->f_cred->cr_gid;
1381	/*
1382	 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
1383	 * XXX (st_dev, st_ino) should be unique.
1384	 */
1385	return (0);
1386}
1387
1388/* ARGSUSED */
1389static int
1390pipe_close(fp, td)
1391	struct file *fp;
1392	struct thread *td;
1393{
1394	struct pipe *cpipe = fp->f_data;
1395
1396	fp->f_ops = &badfileops;
1397	fp->f_data = NULL;
1398	funsetown(&cpipe->pipe_sigio);
1399	pipeclose(cpipe);
1400	return (0);
1401}
1402
1403static void
1404pipe_free_kmem(cpipe)
1405	struct pipe *cpipe;
1406{
1407
1408	KASSERT(!mtx_owned(PIPE_MTX(cpipe)),
1409	    ("pipe_free_kmem: pipe mutex locked"));
1410
1411	if (cpipe->pipe_buffer.buffer != NULL) {
1412		if (cpipe->pipe_buffer.size > PIPE_SIZE)
1413			atomic_subtract_int(&nbigpipe, 1);
1414		atomic_subtract_int(&amountpipekva, cpipe->pipe_buffer.size);
1415		vm_map_remove(pipe_map,
1416		    (vm_offset_t)cpipe->pipe_buffer.buffer,
1417		    (vm_offset_t)cpipe->pipe_buffer.buffer + cpipe->pipe_buffer.size);
1418		cpipe->pipe_buffer.buffer = NULL;
1419	}
1420#ifndef PIPE_NODIRECT
1421	if (cpipe->pipe_map.kva != 0) {
1422		atomic_subtract_int(&amountpipekvawired,
1423		    cpipe->pipe_buffer.size + PAGE_SIZE);
1424		kmem_free(kernel_map,
1425			cpipe->pipe_map.kva,
1426			cpipe->pipe_buffer.size + PAGE_SIZE);
1427		cpipe->pipe_map.cnt = 0;
1428		cpipe->pipe_map.kva = 0;
1429		cpipe->pipe_map.pos = 0;
1430		cpipe->pipe_map.npages = 0;
1431	}
1432#endif
1433}
1434
1435/*
1436 * shutdown the pipe
1437 */
1438static void
1439pipeclose(cpipe)
1440	struct pipe *cpipe;
1441{
1442	struct pipepair *pp;
1443	struct pipe *ppipe;
1444	int hadpeer;
1445
1446	KASSERT(cpipe != NULL, ("pipeclose: cpipe == NULL"));
1447
1448	hadpeer = 0;
1449	PIPE_LOCK(cpipe);
1450	pp = cpipe->pipe_pair;
1451
1452	pipeselwakeup(cpipe);
1453
1454	/*
1455	 * If the other side is blocked, wake it up saying that
1456	 * we want to close it down.
1457	 */
1458	while (cpipe->pipe_busy) {
1459		wakeup(cpipe);
1460		cpipe->pipe_state |= PIPE_WANT | PIPE_EOF;
1461		msleep(cpipe, PIPE_MTX(cpipe), PRIBIO, "pipecl", 0);
1462	}
1463
1464
1465	/*
1466	 * Disconnect from peer, if any.
1467	 */
1468	ppipe = cpipe->pipe_peer;
1469	if (ppipe->pipe_present != 0) {
1470		hadpeer++;
1471		pipeselwakeup(ppipe);
1472
1473		ppipe->pipe_state |= PIPE_EOF;
1474		wakeup(ppipe);
1475		KNOTE(&ppipe->pipe_sel.si_note, 0);
1476	}
1477
1478	/*
1479	 * Mark this endpoint as free.  Release kmem resources.  We
1480	 * don't mark this endpoint as unused until we've finished
1481	 * doing that, or the pipe might disappear out from under
1482	 * us.
1483	 */
1484	PIPE_UNLOCK(cpipe);
1485	pipe_free_kmem(cpipe);
1486	PIPE_LOCK(cpipe);
1487	cpipe->pipe_present = 0;
1488
1489	/*
1490	 * If both endpoints are now closed, release the memory for the
1491	 * pipe pair.  If not, unlock.
1492	 */
1493	if (ppipe->pipe_present == 0) {
1494		PIPE_UNLOCK(cpipe);
1495#ifdef MAC
1496		mac_destroy_pipe(pp);
1497#endif
1498		uma_zfree(pipe_zone, cpipe->pipe_pair);
1499	} else
1500		PIPE_UNLOCK(cpipe);
1501}
1502
1503/*ARGSUSED*/
1504static int
1505pipe_kqfilter(struct file *fp, struct knote *kn)
1506{
1507	struct pipe *cpipe;
1508
1509	cpipe = kn->kn_fp->f_data;
1510	switch (kn->kn_filter) {
1511	case EVFILT_READ:
1512		kn->kn_fop = &pipe_rfiltops;
1513		break;
1514	case EVFILT_WRITE:
1515		kn->kn_fop = &pipe_wfiltops;
1516		cpipe = cpipe->pipe_peer;
1517		if (!cpipe->pipe_present)
1518			/* other end of pipe has been closed */
1519			return (EPIPE);
1520		break;
1521	default:
1522		return (1);
1523	}
1524
1525	PIPE_LOCK(cpipe);
1526	SLIST_INSERT_HEAD(&cpipe->pipe_sel.si_note, kn, kn_selnext);
1527	PIPE_UNLOCK(cpipe);
1528	return (0);
1529}
1530
1531static void
1532filt_pipedetach(struct knote *kn)
1533{
1534	struct pipe *cpipe = (struct pipe *)kn->kn_fp->f_data;
1535
1536	if (kn->kn_filter == EVFILT_WRITE) {
1537		if (cpipe->pipe_peer == NULL)
1538			return;
1539		cpipe = cpipe->pipe_peer;
1540	}
1541
1542	PIPE_LOCK(cpipe);
1543	SLIST_REMOVE(&cpipe->pipe_sel.si_note, kn, knote, kn_selnext);
1544	PIPE_UNLOCK(cpipe);
1545}
1546
1547/*ARGSUSED*/
1548static int
1549filt_piperead(struct knote *kn, long hint)
1550{
1551	struct pipe *rpipe = kn->kn_fp->f_data;
1552	struct pipe *wpipe = rpipe->pipe_peer;
1553
1554	PIPE_LOCK(rpipe);
1555	kn->kn_data = rpipe->pipe_buffer.cnt;
1556	if ((kn->kn_data == 0) && (rpipe->pipe_state & PIPE_DIRECTW))
1557		kn->kn_data = rpipe->pipe_map.cnt;
1558
1559	if ((rpipe->pipe_state & PIPE_EOF) ||
1560	    (!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) {
1561		kn->kn_flags |= EV_EOF;
1562		PIPE_UNLOCK(rpipe);
1563		return (1);
1564	}
1565	PIPE_UNLOCK(rpipe);
1566	return (kn->kn_data > 0);
1567}
1568
1569/*ARGSUSED*/
1570static int
1571filt_pipewrite(struct knote *kn, long hint)
1572{
1573	struct pipe *rpipe = kn->kn_fp->f_data;
1574	struct pipe *wpipe = rpipe->pipe_peer;
1575
1576	PIPE_LOCK(rpipe);
1577	if ((!wpipe->pipe_present) || (wpipe->pipe_state & PIPE_EOF)) {
1578		kn->kn_data = 0;
1579		kn->kn_flags |= EV_EOF;
1580		PIPE_UNLOCK(rpipe);
1581		return (1);
1582	}
1583	kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
1584	if (wpipe->pipe_state & PIPE_DIRECTW)
1585		kn->kn_data = 0;
1586
1587	PIPE_UNLOCK(rpipe);
1588	return (kn->kn_data >= PIPE_BUF);
1589}
1590