kern_umtx.c revision 201991
1/*-
2 * Copyright (c) 2004, David Xu <davidxu@freebsd.org>
3 * Copyright (c) 2002, Jeffrey Roberson <jeff@freebsd.org>
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice unmodified, this list of conditions, and the following
11 *    disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/sys/kern/kern_umtx.c 201991 2010-01-10 09:31:57Z davidxu $");
30
31#include "opt_compat.h"
32#include <sys/param.h>
33#include <sys/kernel.h>
34#include <sys/limits.h>
35#include <sys/lock.h>
36#include <sys/malloc.h>
37#include <sys/mutex.h>
38#include <sys/priv.h>
39#include <sys/proc.h>
40#include <sys/sched.h>
41#include <sys/smp.h>
42#include <sys/sysctl.h>
43#include <sys/sysent.h>
44#include <sys/systm.h>
45#include <sys/sysproto.h>
46#include <sys/eventhandler.h>
47#include <sys/umtx.h>
48
49#include <vm/vm.h>
50#include <vm/vm_param.h>
51#include <vm/pmap.h>
52#include <vm/vm_map.h>
53#include <vm/vm_object.h>
54
55#include <machine/cpu.h>
56
57#ifdef COMPAT_IA32
58#include <compat/freebsd32/freebsd32_proto.h>
59#endif
60
61enum {
62	TYPE_SIMPLE_WAIT,
63	TYPE_CV,
64	TYPE_SEM,
65	TYPE_SIMPLE_LOCK,
66	TYPE_NORMAL_UMUTEX,
67	TYPE_PI_UMUTEX,
68	TYPE_PP_UMUTEX,
69	TYPE_RWLOCK
70};
71
72#define _UMUTEX_TRY		1
73#define _UMUTEX_WAIT		2
74
75/* Key to represent a unique userland synchronous object */
76struct umtx_key {
77	int	hash;
78	int	type;
79	int	shared;
80	union {
81		struct {
82			vm_object_t	object;
83			uintptr_t	offset;
84		} shared;
85		struct {
86			struct vmspace	*vs;
87			uintptr_t	addr;
88		} private;
89		struct {
90			void		*a;
91			uintptr_t	b;
92		} both;
93	} info;
94};
95
96/* Priority inheritance mutex info. */
97struct umtx_pi {
98	/* Owner thread */
99	struct thread		*pi_owner;
100
101	/* Reference count */
102	int			pi_refcount;
103
104 	/* List entry to link umtx holding by thread */
105	TAILQ_ENTRY(umtx_pi)	pi_link;
106
107	/* List entry in hash */
108	TAILQ_ENTRY(umtx_pi)	pi_hashlink;
109
110	/* List for waiters */
111	TAILQ_HEAD(,umtx_q)	pi_blocked;
112
113	/* Identify a userland lock object */
114	struct umtx_key		pi_key;
115};
116
117/* A userland synchronous object user. */
118struct umtx_q {
119	/* Linked list for the hash. */
120	TAILQ_ENTRY(umtx_q)	uq_link;
121
122	/* Umtx key. */
123	struct umtx_key		uq_key;
124
125	/* Umtx flags. */
126	int			uq_flags;
127#define UQF_UMTXQ	0x0001
128
129	/* The thread waits on. */
130	struct thread		*uq_thread;
131
132	/*
133	 * Blocked on PI mutex. read can use chain lock
134	 * or umtx_lock, write must have both chain lock and
135	 * umtx_lock being hold.
136	 */
137	struct umtx_pi		*uq_pi_blocked;
138
139	/* On blocked list */
140	TAILQ_ENTRY(umtx_q)	uq_lockq;
141
142	/* Thread contending with us */
143	TAILQ_HEAD(,umtx_pi)	uq_pi_contested;
144
145	/* Inherited priority from PP mutex */
146	u_char			uq_inherited_pri;
147
148	/* Spare queue ready to be reused */
149	struct umtxq_queue	*uq_spare_queue;
150
151	/* The queue we on */
152	struct umtxq_queue	*uq_cur_queue;
153};
154
155TAILQ_HEAD(umtxq_head, umtx_q);
156
157/* Per-key wait-queue */
158struct umtxq_queue {
159	struct umtxq_head	head;
160	struct umtx_key		key;
161	LIST_ENTRY(umtxq_queue)	link;
162	int			length;
163};
164
165LIST_HEAD(umtxq_list, umtxq_queue);
166
167/* Userland lock object's wait-queue chain */
168struct umtxq_chain {
169	/* Lock for this chain. */
170	struct mtx		uc_lock;
171
172	/* List of sleep queues. */
173	struct umtxq_list	uc_queue[2];
174#define UMTX_SHARED_QUEUE	0
175#define UMTX_EXCLUSIVE_QUEUE	1
176
177	LIST_HEAD(, umtxq_queue) uc_spare_queue;
178
179	/* Busy flag */
180	char			uc_busy;
181
182	/* Chain lock waiters */
183	int			uc_waiters;
184
185	/* All PI in the list */
186	TAILQ_HEAD(,umtx_pi)	uc_pi_list;
187
188};
189
190#define	UMTXQ_LOCKED_ASSERT(uc)		mtx_assert(&(uc)->uc_lock, MA_OWNED)
191#define	UMTXQ_BUSY_ASSERT(uc)	KASSERT(&(uc)->uc_busy, ("umtx chain is not busy"))
192
193/*
194 * Don't propagate time-sharing priority, there is a security reason,
195 * a user can simply introduce PI-mutex, let thread A lock the mutex,
196 * and let another thread B block on the mutex, because B is
197 * sleeping, its priority will be boosted, this causes A's priority to
198 * be boosted via priority propagating too and will never be lowered even
199 * if it is using 100%CPU, this is unfair to other processes.
200 */
201
202#define UPRI(td)	(((td)->td_user_pri >= PRI_MIN_TIMESHARE &&\
203			  (td)->td_user_pri <= PRI_MAX_TIMESHARE) ?\
204			 PRI_MAX_TIMESHARE : (td)->td_user_pri)
205
206#define	GOLDEN_RATIO_PRIME	2654404609U
207#define	UMTX_CHAINS		128
208#define	UMTX_SHIFTS		(__WORD_BIT - 7)
209
210#define THREAD_SHARE		0
211#define PROCESS_SHARE		1
212#define AUTO_SHARE		2
213
214#define	GET_SHARE(flags)	\
215    (((flags) & USYNC_PROCESS_SHARED) == 0 ? THREAD_SHARE : PROCESS_SHARE)
216
217#define BUSY_SPINS		200
218
219static uma_zone_t		umtx_pi_zone;
220static struct umtxq_chain	umtxq_chains[2][UMTX_CHAINS];
221static MALLOC_DEFINE(M_UMTX, "umtx", "UMTX queue memory");
222static int			umtx_pi_allocated;
223
224SYSCTL_NODE(_debug, OID_AUTO, umtx, CTLFLAG_RW, 0, "umtx debug");
225SYSCTL_INT(_debug_umtx, OID_AUTO, umtx_pi_allocated, CTLFLAG_RD,
226    &umtx_pi_allocated, 0, "Allocated umtx_pi");
227
228static void umtxq_sysinit(void *);
229static void umtxq_hash(struct umtx_key *key);
230static struct umtxq_chain *umtxq_getchain(struct umtx_key *key);
231static void umtxq_lock(struct umtx_key *key);
232static void umtxq_unlock(struct umtx_key *key);
233static void umtxq_busy(struct umtx_key *key);
234static void umtxq_unbusy(struct umtx_key *key);
235static void umtxq_insert_queue(struct umtx_q *uq, int q);
236static void umtxq_remove_queue(struct umtx_q *uq, int q);
237static int umtxq_sleep(struct umtx_q *uq, const char *wmesg, int timo);
238static int umtxq_count(struct umtx_key *key);
239static int umtx_key_match(const struct umtx_key *k1, const struct umtx_key *k2);
240static int umtx_key_get(void *addr, int type, int share,
241	struct umtx_key *key);
242static void umtx_key_release(struct umtx_key *key);
243static struct umtx_pi *umtx_pi_alloc(int);
244static void umtx_pi_free(struct umtx_pi *pi);
245static void umtx_pi_adjust_locked(struct thread *td, u_char oldpri);
246static int do_unlock_pp(struct thread *td, struct umutex *m, uint32_t flags);
247static void umtx_thread_cleanup(struct thread *td);
248static void umtx_exec_hook(void *arg __unused, struct proc *p __unused,
249	struct image_params *imgp __unused);
250SYSINIT(umtx, SI_SUB_EVENTHANDLER+1, SI_ORDER_MIDDLE, umtxq_sysinit, NULL);
251
252#define umtxq_signal(key, nwake)	umtxq_signal_queue((key), (nwake), UMTX_SHARED_QUEUE)
253#define umtxq_insert(uq)	umtxq_insert_queue((uq), UMTX_SHARED_QUEUE)
254#define umtxq_remove(uq)	umtxq_remove_queue((uq), UMTX_SHARED_QUEUE)
255
256static struct mtx umtx_lock;
257
258static void
259umtxq_sysinit(void *arg __unused)
260{
261	int i, j;
262
263	umtx_pi_zone = uma_zcreate("umtx pi", sizeof(struct umtx_pi),
264		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
265	for (i = 0; i < 2; ++i) {
266		for (j = 0; j < UMTX_CHAINS; ++j) {
267			mtx_init(&umtxq_chains[i][j].uc_lock, "umtxql", NULL,
268				 MTX_DEF | MTX_DUPOK);
269			LIST_INIT(&umtxq_chains[i][j].uc_queue[0]);
270			LIST_INIT(&umtxq_chains[i][j].uc_queue[1]);
271			LIST_INIT(&umtxq_chains[i][j].uc_spare_queue);
272			TAILQ_INIT(&umtxq_chains[i][j].uc_pi_list);
273			umtxq_chains[i][j].uc_busy = 0;
274			umtxq_chains[i][j].uc_waiters = 0;
275		}
276	}
277	mtx_init(&umtx_lock, "umtx lock", NULL, MTX_SPIN);
278	EVENTHANDLER_REGISTER(process_exec, umtx_exec_hook, NULL,
279	    EVENTHANDLER_PRI_ANY);
280}
281
282struct umtx_q *
283umtxq_alloc(void)
284{
285	struct umtx_q *uq;
286
287	uq = malloc(sizeof(struct umtx_q), M_UMTX, M_WAITOK | M_ZERO);
288	uq->uq_spare_queue = malloc(sizeof(struct umtxq_queue), M_UMTX, M_WAITOK | M_ZERO);
289	TAILQ_INIT(&uq->uq_spare_queue->head);
290	TAILQ_INIT(&uq->uq_pi_contested);
291	uq->uq_inherited_pri = PRI_MAX;
292	return (uq);
293}
294
295void
296umtxq_free(struct umtx_q *uq)
297{
298	MPASS(uq->uq_spare_queue != NULL);
299	free(uq->uq_spare_queue, M_UMTX);
300	free(uq, M_UMTX);
301}
302
303static inline void
304umtxq_hash(struct umtx_key *key)
305{
306	unsigned n = (uintptr_t)key->info.both.a + key->info.both.b;
307	key->hash = ((n * GOLDEN_RATIO_PRIME) >> UMTX_SHIFTS) % UMTX_CHAINS;
308}
309
310static inline int
311umtx_key_match(const struct umtx_key *k1, const struct umtx_key *k2)
312{
313	return (k1->type == k2->type &&
314		k1->info.both.a == k2->info.both.a &&
315	        k1->info.both.b == k2->info.both.b);
316}
317
318static inline struct umtxq_chain *
319umtxq_getchain(struct umtx_key *key)
320{
321	if (key->type <= TYPE_SEM)
322		return (&umtxq_chains[1][key->hash]);
323	return (&umtxq_chains[0][key->hash]);
324}
325
326/*
327 * Lock a chain.
328 */
329static inline void
330umtxq_lock(struct umtx_key *key)
331{
332	struct umtxq_chain *uc;
333
334	uc = umtxq_getchain(key);
335	mtx_lock(&uc->uc_lock);
336}
337
338/*
339 * Unlock a chain.
340 */
341static inline void
342umtxq_unlock(struct umtx_key *key)
343{
344	struct umtxq_chain *uc;
345
346	uc = umtxq_getchain(key);
347	mtx_unlock(&uc->uc_lock);
348}
349
350/*
351 * Set chain to busy state when following operation
352 * may be blocked (kernel mutex can not be used).
353 */
354static inline void
355umtxq_busy(struct umtx_key *key)
356{
357	struct umtxq_chain *uc;
358
359	uc = umtxq_getchain(key);
360	mtx_assert(&uc->uc_lock, MA_OWNED);
361	if (uc->uc_busy) {
362#ifdef SMP
363		if (smp_cpus > 1) {
364			int count = BUSY_SPINS;
365			if (count > 0) {
366				umtxq_unlock(key);
367				while (uc->uc_busy && --count > 0)
368					cpu_spinwait();
369				umtxq_lock(key);
370			}
371		}
372#endif
373		while (uc->uc_busy) {
374			uc->uc_waiters++;
375			msleep(uc, &uc->uc_lock, 0, "umtxqb", 0);
376			uc->uc_waiters--;
377		}
378	}
379	uc->uc_busy = 1;
380}
381
382/*
383 * Unbusy a chain.
384 */
385static inline void
386umtxq_unbusy(struct umtx_key *key)
387{
388	struct umtxq_chain *uc;
389
390	uc = umtxq_getchain(key);
391	mtx_assert(&uc->uc_lock, MA_OWNED);
392	KASSERT(uc->uc_busy != 0, ("not busy"));
393	uc->uc_busy = 0;
394	if (uc->uc_waiters)
395		wakeup_one(uc);
396}
397
398static struct umtxq_queue *
399umtxq_queue_lookup(struct umtx_key *key, int q)
400{
401	struct umtxq_queue *uh;
402	struct umtxq_chain *uc;
403
404	uc = umtxq_getchain(key);
405	UMTXQ_LOCKED_ASSERT(uc);
406	LIST_FOREACH(uh, &uc->uc_queue[q], link) {
407		if (umtx_key_match(&uh->key, key))
408			return (uh);
409	}
410
411	return (NULL);
412}
413
414static inline void
415umtxq_insert_queue(struct umtx_q *uq, int q)
416{
417	struct umtxq_queue *uh;
418	struct umtxq_chain *uc;
419
420	uc = umtxq_getchain(&uq->uq_key);
421	UMTXQ_LOCKED_ASSERT(uc);
422	KASSERT((uq->uq_flags & UQF_UMTXQ) == 0, ("umtx_q is already on queue"));
423	uh = umtxq_queue_lookup(&uq->uq_key, UMTX_SHARED_QUEUE);
424	if (uh != NULL) {
425		LIST_INSERT_HEAD(&uc->uc_spare_queue, uq->uq_spare_queue, link);
426	} else {
427		uh = uq->uq_spare_queue;
428		uh->key = uq->uq_key;
429		LIST_INSERT_HEAD(&uc->uc_queue[q], uh, link);
430	}
431	uq->uq_spare_queue = NULL;
432
433	TAILQ_INSERT_TAIL(&uh->head, uq, uq_link);
434	uh->length++;
435	uq->uq_flags |= UQF_UMTXQ;
436	uq->uq_cur_queue = uh;
437	return;
438}
439
440static inline void
441umtxq_remove_queue(struct umtx_q *uq, int q)
442{
443	struct umtxq_chain *uc;
444	struct umtxq_queue *uh;
445
446	uc = umtxq_getchain(&uq->uq_key);
447	UMTXQ_LOCKED_ASSERT(uc);
448	if (uq->uq_flags & UQF_UMTXQ) {
449		uh = uq->uq_cur_queue;
450		TAILQ_REMOVE(&uh->head, uq, uq_link);
451		uh->length--;
452		uq->uq_flags &= ~UQF_UMTXQ;
453		if (TAILQ_EMPTY(&uh->head)) {
454			KASSERT(uh->length == 0,
455			    ("inconsistent umtxq_queue length"));
456			LIST_REMOVE(uh, link);
457		} else {
458			uh = LIST_FIRST(&uc->uc_spare_queue);
459			KASSERT(uh != NULL, ("uc_spare_queue is empty"));
460			LIST_REMOVE(uh, link);
461		}
462		uq->uq_spare_queue = uh;
463		uq->uq_cur_queue = NULL;
464	}
465}
466
467/*
468 * Check if there are multiple waiters
469 */
470static int
471umtxq_count(struct umtx_key *key)
472{
473	struct umtxq_chain *uc;
474	struct umtxq_queue *uh;
475
476	uc = umtxq_getchain(key);
477	UMTXQ_LOCKED_ASSERT(uc);
478	uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
479	if (uh != NULL)
480		return (uh->length);
481	return (0);
482}
483
484/*
485 * Check if there are multiple PI waiters and returns first
486 * waiter.
487 */
488static int
489umtxq_count_pi(struct umtx_key *key, struct umtx_q **first)
490{
491	struct umtxq_chain *uc;
492	struct umtxq_queue *uh;
493
494	*first = NULL;
495	uc = umtxq_getchain(key);
496	UMTXQ_LOCKED_ASSERT(uc);
497	uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
498	if (uh != NULL) {
499		*first = TAILQ_FIRST(&uh->head);
500		return (uh->length);
501	}
502	return (0);
503}
504
505/*
506 * Wake up threads waiting on an userland object.
507 */
508
509static int
510umtxq_signal_queue(struct umtx_key *key, int n_wake, int q)
511{
512	struct umtxq_chain *uc;
513	struct umtxq_queue *uh;
514	struct umtx_q *uq;
515	int ret;
516
517	ret = 0;
518	uc = umtxq_getchain(key);
519	UMTXQ_LOCKED_ASSERT(uc);
520	uh = umtxq_queue_lookup(key, q);
521	if (uh != NULL) {
522		while ((uq = TAILQ_FIRST(&uh->head)) != NULL) {
523			umtxq_remove_queue(uq, q);
524			wakeup(uq);
525			if (++ret >= n_wake)
526				return (ret);
527		}
528	}
529	return (ret);
530}
531
532
533/*
534 * Wake up specified thread.
535 */
536static inline void
537umtxq_signal_thread(struct umtx_q *uq)
538{
539	struct umtxq_chain *uc;
540
541	uc = umtxq_getchain(&uq->uq_key);
542	UMTXQ_LOCKED_ASSERT(uc);
543	umtxq_remove(uq);
544	wakeup(uq);
545}
546
547/*
548 * Put thread into sleep state, before sleeping, check if
549 * thread was removed from umtx queue.
550 */
551static inline int
552umtxq_sleep(struct umtx_q *uq, const char *wmesg, int timo)
553{
554	struct umtxq_chain *uc;
555	int error;
556
557	uc = umtxq_getchain(&uq->uq_key);
558	UMTXQ_LOCKED_ASSERT(uc);
559	if (!(uq->uq_flags & UQF_UMTXQ))
560		return (0);
561	error = msleep(uq, &uc->uc_lock, PCATCH, wmesg, timo);
562	if (error == EWOULDBLOCK)
563		error = ETIMEDOUT;
564	return (error);
565}
566
567/*
568 * Convert userspace address into unique logical address.
569 */
570static int
571umtx_key_get(void *addr, int type, int share, struct umtx_key *key)
572{
573	struct thread *td = curthread;
574	vm_map_t map;
575	vm_map_entry_t entry;
576	vm_pindex_t pindex;
577	vm_prot_t prot;
578	boolean_t wired;
579
580	key->type = type;
581	if (share == THREAD_SHARE) {
582		key->shared = 0;
583		key->info.private.vs = td->td_proc->p_vmspace;
584		key->info.private.addr = (uintptr_t)addr;
585	} else {
586		MPASS(share == PROCESS_SHARE || share == AUTO_SHARE);
587		map = &td->td_proc->p_vmspace->vm_map;
588		if (vm_map_lookup(&map, (vm_offset_t)addr, VM_PROT_WRITE,
589		    &entry, &key->info.shared.object, &pindex, &prot,
590		    &wired) != KERN_SUCCESS) {
591			return EFAULT;
592		}
593
594		if ((share == PROCESS_SHARE) ||
595		    (share == AUTO_SHARE &&
596		     VM_INHERIT_SHARE == entry->inheritance)) {
597			key->shared = 1;
598			key->info.shared.offset = entry->offset + entry->start -
599				(vm_offset_t)addr;
600			vm_object_reference(key->info.shared.object);
601		} else {
602			key->shared = 0;
603			key->info.private.vs = td->td_proc->p_vmspace;
604			key->info.private.addr = (uintptr_t)addr;
605		}
606		vm_map_lookup_done(map, entry);
607	}
608
609	umtxq_hash(key);
610	return (0);
611}
612
613/*
614 * Release key.
615 */
616static inline void
617umtx_key_release(struct umtx_key *key)
618{
619	if (key->shared)
620		vm_object_deallocate(key->info.shared.object);
621}
622
623/*
624 * Lock a umtx object.
625 */
626static int
627_do_lock_umtx(struct thread *td, struct umtx *umtx, u_long id, int timo)
628{
629	struct umtx_q *uq;
630	u_long owner;
631	u_long old;
632	int error = 0;
633
634	uq = td->td_umtxq;
635
636	/*
637	 * Care must be exercised when dealing with umtx structure. It
638	 * can fault on any access.
639	 */
640	for (;;) {
641		/*
642		 * Try the uncontested case.  This should be done in userland.
643		 */
644		owner = casuword(&umtx->u_owner, UMTX_UNOWNED, id);
645
646		/* The acquire succeeded. */
647		if (owner == UMTX_UNOWNED)
648			return (0);
649
650		/* The address was invalid. */
651		if (owner == -1)
652			return (EFAULT);
653
654		/* If no one owns it but it is contested try to acquire it. */
655		if (owner == UMTX_CONTESTED) {
656			owner = casuword(&umtx->u_owner,
657			    UMTX_CONTESTED, id | UMTX_CONTESTED);
658
659			if (owner == UMTX_CONTESTED)
660				return (0);
661
662			/* The address was invalid. */
663			if (owner == -1)
664				return (EFAULT);
665
666			/* If this failed the lock has changed, restart. */
667			continue;
668		}
669
670		/*
671		 * If we caught a signal, we have retried and now
672		 * exit immediately.
673		 */
674		if (error != 0)
675			return (error);
676
677		if ((error = umtx_key_get(umtx, TYPE_SIMPLE_LOCK,
678			AUTO_SHARE, &uq->uq_key)) != 0)
679			return (error);
680
681		umtxq_lock(&uq->uq_key);
682		umtxq_busy(&uq->uq_key);
683		umtxq_insert(uq);
684		umtxq_unbusy(&uq->uq_key);
685		umtxq_unlock(&uq->uq_key);
686
687		/*
688		 * Set the contested bit so that a release in user space
689		 * knows to use the system call for unlock.  If this fails
690		 * either some one else has acquired the lock or it has been
691		 * released.
692		 */
693		old = casuword(&umtx->u_owner, owner, owner | UMTX_CONTESTED);
694
695		/* The address was invalid. */
696		if (old == -1) {
697			umtxq_lock(&uq->uq_key);
698			umtxq_remove(uq);
699			umtxq_unlock(&uq->uq_key);
700			umtx_key_release(&uq->uq_key);
701			return (EFAULT);
702		}
703
704		/*
705		 * We set the contested bit, sleep. Otherwise the lock changed
706		 * and we need to retry or we lost a race to the thread
707		 * unlocking the umtx.
708		 */
709		umtxq_lock(&uq->uq_key);
710		if (old == owner)
711			error = umtxq_sleep(uq, "umtx", timo);
712		umtxq_remove(uq);
713		umtxq_unlock(&uq->uq_key);
714		umtx_key_release(&uq->uq_key);
715	}
716
717	return (0);
718}
719
720/*
721 * Lock a umtx object.
722 */
723static int
724do_lock_umtx(struct thread *td, struct umtx *umtx, u_long id,
725	struct timespec *timeout)
726{
727	struct timespec ts, ts2, ts3;
728	struct timeval tv;
729	int error;
730
731	if (timeout == NULL) {
732		error = _do_lock_umtx(td, umtx, id, 0);
733		/* Mutex locking is restarted if it is interrupted. */
734		if (error == EINTR)
735			error = ERESTART;
736	} else {
737		getnanouptime(&ts);
738		timespecadd(&ts, timeout);
739		TIMESPEC_TO_TIMEVAL(&tv, timeout);
740		for (;;) {
741			error = _do_lock_umtx(td, umtx, id, tvtohz(&tv));
742			if (error != ETIMEDOUT)
743				break;
744			getnanouptime(&ts2);
745			if (timespeccmp(&ts2, &ts, >=)) {
746				error = ETIMEDOUT;
747				break;
748			}
749			ts3 = ts;
750			timespecsub(&ts3, &ts2);
751			TIMESPEC_TO_TIMEVAL(&tv, &ts3);
752		}
753		/* Timed-locking is not restarted. */
754		if (error == ERESTART)
755			error = EINTR;
756	}
757	return (error);
758}
759
760/*
761 * Unlock a umtx object.
762 */
763static int
764do_unlock_umtx(struct thread *td, struct umtx *umtx, u_long id)
765{
766	struct umtx_key key;
767	u_long owner;
768	u_long old;
769	int error;
770	int count;
771
772	/*
773	 * Make sure we own this mtx.
774	 */
775	owner = fuword(__DEVOLATILE(u_long *, &umtx->u_owner));
776	if (owner == -1)
777		return (EFAULT);
778
779	if ((owner & ~UMTX_CONTESTED) != id)
780		return (EPERM);
781
782	/* This should be done in userland */
783	if ((owner & UMTX_CONTESTED) == 0) {
784		old = casuword(&umtx->u_owner, owner, UMTX_UNOWNED);
785		if (old == -1)
786			return (EFAULT);
787		if (old == owner)
788			return (0);
789		owner = old;
790	}
791
792	/* We should only ever be in here for contested locks */
793	if ((error = umtx_key_get(umtx, TYPE_SIMPLE_LOCK, AUTO_SHARE,
794		&key)) != 0)
795		return (error);
796
797	umtxq_lock(&key);
798	umtxq_busy(&key);
799	count = umtxq_count(&key);
800	umtxq_unlock(&key);
801
802	/*
803	 * When unlocking the umtx, it must be marked as unowned if
804	 * there is zero or one thread only waiting for it.
805	 * Otherwise, it must be marked as contested.
806	 */
807	old = casuword(&umtx->u_owner, owner,
808		count <= 1 ? UMTX_UNOWNED : UMTX_CONTESTED);
809	umtxq_lock(&key);
810	umtxq_signal(&key,1);
811	umtxq_unbusy(&key);
812	umtxq_unlock(&key);
813	umtx_key_release(&key);
814	if (old == -1)
815		return (EFAULT);
816	if (old != owner)
817		return (EINVAL);
818	return (0);
819}
820
821#ifdef COMPAT_IA32
822
823/*
824 * Lock a umtx object.
825 */
826static int
827_do_lock_umtx32(struct thread *td, uint32_t *m, uint32_t id, int timo)
828{
829	struct umtx_q *uq;
830	uint32_t owner;
831	uint32_t old;
832	int error = 0;
833
834	uq = td->td_umtxq;
835
836	/*
837	 * Care must be exercised when dealing with umtx structure. It
838	 * can fault on any access.
839	 */
840	for (;;) {
841		/*
842		 * Try the uncontested case.  This should be done in userland.
843		 */
844		owner = casuword32(m, UMUTEX_UNOWNED, id);
845
846		/* The acquire succeeded. */
847		if (owner == UMUTEX_UNOWNED)
848			return (0);
849
850		/* The address was invalid. */
851		if (owner == -1)
852			return (EFAULT);
853
854		/* If no one owns it but it is contested try to acquire it. */
855		if (owner == UMUTEX_CONTESTED) {
856			owner = casuword32(m,
857			    UMUTEX_CONTESTED, id | UMUTEX_CONTESTED);
858			if (owner == UMUTEX_CONTESTED)
859				return (0);
860
861			/* The address was invalid. */
862			if (owner == -1)
863				return (EFAULT);
864
865			/* If this failed the lock has changed, restart. */
866			continue;
867		}
868
869		/*
870		 * If we caught a signal, we have retried and now
871		 * exit immediately.
872		 */
873		if (error != 0)
874			return (error);
875
876		if ((error = umtx_key_get(m, TYPE_SIMPLE_LOCK,
877			AUTO_SHARE, &uq->uq_key)) != 0)
878			return (error);
879
880		umtxq_lock(&uq->uq_key);
881		umtxq_busy(&uq->uq_key);
882		umtxq_insert(uq);
883		umtxq_unbusy(&uq->uq_key);
884		umtxq_unlock(&uq->uq_key);
885
886		/*
887		 * Set the contested bit so that a release in user space
888		 * knows to use the system call for unlock.  If this fails
889		 * either some one else has acquired the lock or it has been
890		 * released.
891		 */
892		old = casuword32(m, owner, owner | UMUTEX_CONTESTED);
893
894		/* The address was invalid. */
895		if (old == -1) {
896			umtxq_lock(&uq->uq_key);
897			umtxq_remove(uq);
898			umtxq_unlock(&uq->uq_key);
899			umtx_key_release(&uq->uq_key);
900			return (EFAULT);
901		}
902
903		/*
904		 * We set the contested bit, sleep. Otherwise the lock changed
905		 * and we need to retry or we lost a race to the thread
906		 * unlocking the umtx.
907		 */
908		umtxq_lock(&uq->uq_key);
909		if (old == owner)
910			error = umtxq_sleep(uq, "umtx", timo);
911		umtxq_remove(uq);
912		umtxq_unlock(&uq->uq_key);
913		umtx_key_release(&uq->uq_key);
914	}
915
916	return (0);
917}
918
919/*
920 * Lock a umtx object.
921 */
922static int
923do_lock_umtx32(struct thread *td, void *m, uint32_t id,
924	struct timespec *timeout)
925{
926	struct timespec ts, ts2, ts3;
927	struct timeval tv;
928	int error;
929
930	if (timeout == NULL) {
931		error = _do_lock_umtx32(td, m, id, 0);
932		/* Mutex locking is restarted if it is interrupted. */
933		if (error == EINTR)
934			error = ERESTART;
935	} else {
936		getnanouptime(&ts);
937		timespecadd(&ts, timeout);
938		TIMESPEC_TO_TIMEVAL(&tv, timeout);
939		for (;;) {
940			error = _do_lock_umtx32(td, m, id, tvtohz(&tv));
941			if (error != ETIMEDOUT)
942				break;
943			getnanouptime(&ts2);
944			if (timespeccmp(&ts2, &ts, >=)) {
945				error = ETIMEDOUT;
946				break;
947			}
948			ts3 = ts;
949			timespecsub(&ts3, &ts2);
950			TIMESPEC_TO_TIMEVAL(&tv, &ts3);
951		}
952		/* Timed-locking is not restarted. */
953		if (error == ERESTART)
954			error = EINTR;
955	}
956	return (error);
957}
958
959/*
960 * Unlock a umtx object.
961 */
962static int
963do_unlock_umtx32(struct thread *td, uint32_t *m, uint32_t id)
964{
965	struct umtx_key key;
966	uint32_t owner;
967	uint32_t old;
968	int error;
969	int count;
970
971	/*
972	 * Make sure we own this mtx.
973	 */
974	owner = fuword32(m);
975	if (owner == -1)
976		return (EFAULT);
977
978	if ((owner & ~UMUTEX_CONTESTED) != id)
979		return (EPERM);
980
981	/* This should be done in userland */
982	if ((owner & UMUTEX_CONTESTED) == 0) {
983		old = casuword32(m, owner, UMUTEX_UNOWNED);
984		if (old == -1)
985			return (EFAULT);
986		if (old == owner)
987			return (0);
988		owner = old;
989	}
990
991	/* We should only ever be in here for contested locks */
992	if ((error = umtx_key_get(m, TYPE_SIMPLE_LOCK, AUTO_SHARE,
993		&key)) != 0)
994		return (error);
995
996	umtxq_lock(&key);
997	umtxq_busy(&key);
998	count = umtxq_count(&key);
999	umtxq_unlock(&key);
1000
1001	/*
1002	 * When unlocking the umtx, it must be marked as unowned if
1003	 * there is zero or one thread only waiting for it.
1004	 * Otherwise, it must be marked as contested.
1005	 */
1006	old = casuword32(m, owner,
1007		count <= 1 ? UMUTEX_UNOWNED : UMUTEX_CONTESTED);
1008	umtxq_lock(&key);
1009	umtxq_signal(&key,1);
1010	umtxq_unbusy(&key);
1011	umtxq_unlock(&key);
1012	umtx_key_release(&key);
1013	if (old == -1)
1014		return (EFAULT);
1015	if (old != owner)
1016		return (EINVAL);
1017	return (0);
1018}
1019#endif
1020
1021/*
1022 * Fetch and compare value, sleep on the address if value is not changed.
1023 */
1024static int
1025do_wait(struct thread *td, void *addr, u_long id,
1026	struct timespec *timeout, int compat32, int is_private)
1027{
1028	struct umtx_q *uq;
1029	struct timespec ts, ts2, ts3;
1030	struct timeval tv;
1031	u_long tmp;
1032	int error = 0;
1033
1034	uq = td->td_umtxq;
1035	if ((error = umtx_key_get(addr, TYPE_SIMPLE_WAIT,
1036		is_private ? THREAD_SHARE : AUTO_SHARE, &uq->uq_key)) != 0)
1037		return (error);
1038
1039	umtxq_lock(&uq->uq_key);
1040	umtxq_insert(uq);
1041	umtxq_unlock(&uq->uq_key);
1042	if (compat32 == 0)
1043		tmp = fuword(addr);
1044        else
1045		tmp = (unsigned int)fuword32(addr);
1046	if (tmp != id) {
1047		umtxq_lock(&uq->uq_key);
1048		umtxq_remove(uq);
1049		umtxq_unlock(&uq->uq_key);
1050	} else if (timeout == NULL) {
1051		umtxq_lock(&uq->uq_key);
1052		error = umtxq_sleep(uq, "uwait", 0);
1053		umtxq_remove(uq);
1054		umtxq_unlock(&uq->uq_key);
1055	} else {
1056		getnanouptime(&ts);
1057		timespecadd(&ts, timeout);
1058		TIMESPEC_TO_TIMEVAL(&tv, timeout);
1059		umtxq_lock(&uq->uq_key);
1060		for (;;) {
1061			error = umtxq_sleep(uq, "uwait", tvtohz(&tv));
1062			if (!(uq->uq_flags & UQF_UMTXQ))
1063				break;
1064			if (error != ETIMEDOUT)
1065				break;
1066			umtxq_unlock(&uq->uq_key);
1067			getnanouptime(&ts2);
1068			if (timespeccmp(&ts2, &ts, >=)) {
1069				error = ETIMEDOUT;
1070				umtxq_lock(&uq->uq_key);
1071				break;
1072			}
1073			ts3 = ts;
1074			timespecsub(&ts3, &ts2);
1075			TIMESPEC_TO_TIMEVAL(&tv, &ts3);
1076			umtxq_lock(&uq->uq_key);
1077		}
1078		umtxq_remove(uq);
1079		umtxq_unlock(&uq->uq_key);
1080	}
1081	umtx_key_release(&uq->uq_key);
1082	if (error == ERESTART)
1083		error = EINTR;
1084	return (error);
1085}
1086
1087/*
1088 * Wake up threads sleeping on the specified address.
1089 */
1090int
1091kern_umtx_wake(struct thread *td, void *uaddr, int n_wake, int is_private)
1092{
1093	struct umtx_key key;
1094	int ret;
1095
1096	if ((ret = umtx_key_get(uaddr, TYPE_SIMPLE_WAIT,
1097		is_private ? THREAD_SHARE : AUTO_SHARE, &key)) != 0)
1098		return (ret);
1099	umtxq_lock(&key);
1100	ret = umtxq_signal(&key, n_wake);
1101	umtxq_unlock(&key);
1102	umtx_key_release(&key);
1103	return (0);
1104}
1105
1106/*
1107 * Lock PTHREAD_PRIO_NONE protocol POSIX mutex.
1108 */
1109static int
1110_do_lock_normal(struct thread *td, struct umutex *m, uint32_t flags, int timo,
1111	int mode)
1112{
1113	struct umtx_q *uq;
1114	uint32_t owner, old, id;
1115	int error = 0;
1116
1117	id = td->td_tid;
1118	uq = td->td_umtxq;
1119
1120	/*
1121	 * Care must be exercised when dealing with umtx structure. It
1122	 * can fault on any access.
1123	 */
1124	for (;;) {
1125		owner = fuword32(__DEVOLATILE(void *, &m->m_owner));
1126		if (mode == _UMUTEX_WAIT) {
1127			if (owner == UMUTEX_UNOWNED || owner == UMUTEX_CONTESTED)
1128				return (0);
1129		} else {
1130			/*
1131			 * Try the uncontested case.  This should be done in userland.
1132			 */
1133			owner = casuword32(&m->m_owner, UMUTEX_UNOWNED, id);
1134
1135			/* The acquire succeeded. */
1136			if (owner == UMUTEX_UNOWNED)
1137				return (0);
1138
1139			/* The address was invalid. */
1140			if (owner == -1)
1141				return (EFAULT);
1142
1143			/* If no one owns it but it is contested try to acquire it. */
1144			if (owner == UMUTEX_CONTESTED) {
1145				owner = casuword32(&m->m_owner,
1146				    UMUTEX_CONTESTED, id | UMUTEX_CONTESTED);
1147
1148				if (owner == UMUTEX_CONTESTED)
1149					return (0);
1150
1151				/* The address was invalid. */
1152				if (owner == -1)
1153					return (EFAULT);
1154
1155				/* If this failed the lock has changed, restart. */
1156				continue;
1157			}
1158		}
1159
1160		if ((flags & UMUTEX_ERROR_CHECK) != 0 &&
1161		    (owner & ~UMUTEX_CONTESTED) == id)
1162			return (EDEADLK);
1163
1164		if (mode == _UMUTEX_TRY)
1165			return (EBUSY);
1166
1167		/*
1168		 * If we caught a signal, we have retried and now
1169		 * exit immediately.
1170		 */
1171		if (error != 0)
1172			return (error);
1173
1174		if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX,
1175		    GET_SHARE(flags), &uq->uq_key)) != 0)
1176			return (error);
1177
1178		umtxq_lock(&uq->uq_key);
1179		umtxq_busy(&uq->uq_key);
1180		umtxq_insert(uq);
1181		umtxq_unlock(&uq->uq_key);
1182
1183		/*
1184		 * Set the contested bit so that a release in user space
1185		 * knows to use the system call for unlock.  If this fails
1186		 * either some one else has acquired the lock or it has been
1187		 * released.
1188		 */
1189		old = casuword32(&m->m_owner, owner, owner | UMUTEX_CONTESTED);
1190
1191		/* The address was invalid. */
1192		if (old == -1) {
1193			umtxq_lock(&uq->uq_key);
1194			umtxq_remove(uq);
1195			umtxq_unbusy(&uq->uq_key);
1196			umtxq_unlock(&uq->uq_key);
1197			umtx_key_release(&uq->uq_key);
1198			return (EFAULT);
1199		}
1200
1201		/*
1202		 * We set the contested bit, sleep. Otherwise the lock changed
1203		 * and we need to retry or we lost a race to the thread
1204		 * unlocking the umtx.
1205		 */
1206		umtxq_lock(&uq->uq_key);
1207		umtxq_unbusy(&uq->uq_key);
1208		if (old == owner)
1209			error = umtxq_sleep(uq, "umtxn", timo);
1210		umtxq_remove(uq);
1211		umtxq_unlock(&uq->uq_key);
1212		umtx_key_release(&uq->uq_key);
1213	}
1214
1215	return (0);
1216}
1217
1218/*
1219 * Lock PTHREAD_PRIO_NONE protocol POSIX mutex.
1220 */
1221/*
1222 * Unlock PTHREAD_PRIO_NONE protocol POSIX mutex.
1223 */
1224static int
1225do_unlock_normal(struct thread *td, struct umutex *m, uint32_t flags)
1226{
1227	struct umtx_key key;
1228	uint32_t owner, old, id;
1229	int error;
1230	int count;
1231
1232	id = td->td_tid;
1233	/*
1234	 * Make sure we own this mtx.
1235	 */
1236	owner = fuword32(__DEVOLATILE(uint32_t *, &m->m_owner));
1237	if (owner == -1)
1238		return (EFAULT);
1239
1240	if ((owner & ~UMUTEX_CONTESTED) != id)
1241		return (EPERM);
1242
1243	if ((owner & UMUTEX_CONTESTED) == 0) {
1244		old = casuword32(&m->m_owner, owner, UMUTEX_UNOWNED);
1245		if (old == -1)
1246			return (EFAULT);
1247		if (old == owner)
1248			return (0);
1249		owner = old;
1250	}
1251
1252	/* We should only ever be in here for contested locks */
1253	if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX, GET_SHARE(flags),
1254	    &key)) != 0)
1255		return (error);
1256
1257	umtxq_lock(&key);
1258	umtxq_busy(&key);
1259	count = umtxq_count(&key);
1260	umtxq_unlock(&key);
1261
1262	/*
1263	 * When unlocking the umtx, it must be marked as unowned if
1264	 * there is zero or one thread only waiting for it.
1265	 * Otherwise, it must be marked as contested.
1266	 */
1267	old = casuword32(&m->m_owner, owner,
1268		count <= 1 ? UMUTEX_UNOWNED : UMUTEX_CONTESTED);
1269	umtxq_lock(&key);
1270	umtxq_signal(&key,1);
1271	umtxq_unbusy(&key);
1272	umtxq_unlock(&key);
1273	umtx_key_release(&key);
1274	if (old == -1)
1275		return (EFAULT);
1276	if (old != owner)
1277		return (EINVAL);
1278	return (0);
1279}
1280
1281/*
1282 * Check if the mutex is available and wake up a waiter,
1283 * only for simple mutex.
1284 */
1285static int
1286do_wake_umutex(struct thread *td, struct umutex *m)
1287{
1288	struct umtx_key key;
1289	uint32_t owner;
1290	uint32_t flags;
1291	int error;
1292	int count;
1293
1294	owner = fuword32(__DEVOLATILE(uint32_t *, &m->m_owner));
1295	if (owner == -1)
1296		return (EFAULT);
1297
1298	if ((owner & ~UMUTEX_CONTESTED) != 0)
1299		return (0);
1300
1301	flags = fuword32(&m->m_flags);
1302
1303	/* We should only ever be in here for contested locks */
1304	if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX, GET_SHARE(flags),
1305	    &key)) != 0)
1306		return (error);
1307
1308	umtxq_lock(&key);
1309	umtxq_busy(&key);
1310	count = umtxq_count(&key);
1311	umtxq_unlock(&key);
1312
1313	if (count <= 1)
1314		owner = casuword32(&m->m_owner, UMUTEX_CONTESTED, UMUTEX_UNOWNED);
1315
1316	umtxq_lock(&key);
1317	if (count != 0 && (owner & ~UMUTEX_CONTESTED) == 0)
1318		umtxq_signal(&key, 1);
1319	umtxq_unbusy(&key);
1320	umtxq_unlock(&key);
1321	umtx_key_release(&key);
1322	return (0);
1323}
1324
1325static inline struct umtx_pi *
1326umtx_pi_alloc(int flags)
1327{
1328	struct umtx_pi *pi;
1329
1330	pi = uma_zalloc(umtx_pi_zone, M_ZERO | flags);
1331	TAILQ_INIT(&pi->pi_blocked);
1332	atomic_add_int(&umtx_pi_allocated, 1);
1333	return (pi);
1334}
1335
1336static inline void
1337umtx_pi_free(struct umtx_pi *pi)
1338{
1339	uma_zfree(umtx_pi_zone, pi);
1340	atomic_add_int(&umtx_pi_allocated, -1);
1341}
1342
1343/*
1344 * Adjust the thread's position on a pi_state after its priority has been
1345 * changed.
1346 */
1347static int
1348umtx_pi_adjust_thread(struct umtx_pi *pi, struct thread *td)
1349{
1350	struct umtx_q *uq, *uq1, *uq2;
1351	struct thread *td1;
1352
1353	mtx_assert(&umtx_lock, MA_OWNED);
1354	if (pi == NULL)
1355		return (0);
1356
1357	uq = td->td_umtxq;
1358
1359	/*
1360	 * Check if the thread needs to be moved on the blocked chain.
1361	 * It needs to be moved if either its priority is lower than
1362	 * the previous thread or higher than the next thread.
1363	 */
1364	uq1 = TAILQ_PREV(uq, umtxq_head, uq_lockq);
1365	uq2 = TAILQ_NEXT(uq, uq_lockq);
1366	if ((uq1 != NULL && UPRI(td) < UPRI(uq1->uq_thread)) ||
1367	    (uq2 != NULL && UPRI(td) > UPRI(uq2->uq_thread))) {
1368		/*
1369		 * Remove thread from blocked chain and determine where
1370		 * it should be moved to.
1371		 */
1372		TAILQ_REMOVE(&pi->pi_blocked, uq, uq_lockq);
1373		TAILQ_FOREACH(uq1, &pi->pi_blocked, uq_lockq) {
1374			td1 = uq1->uq_thread;
1375			MPASS(td1->td_proc->p_magic == P_MAGIC);
1376			if (UPRI(td1) > UPRI(td))
1377				break;
1378		}
1379
1380		if (uq1 == NULL)
1381			TAILQ_INSERT_TAIL(&pi->pi_blocked, uq, uq_lockq);
1382		else
1383			TAILQ_INSERT_BEFORE(uq1, uq, uq_lockq);
1384	}
1385	return (1);
1386}
1387
1388/*
1389 * Propagate priority when a thread is blocked on POSIX
1390 * PI mutex.
1391 */
1392static void
1393umtx_propagate_priority(struct thread *td)
1394{
1395	struct umtx_q *uq;
1396	struct umtx_pi *pi;
1397	int pri;
1398
1399	mtx_assert(&umtx_lock, MA_OWNED);
1400	pri = UPRI(td);
1401	uq = td->td_umtxq;
1402	pi = uq->uq_pi_blocked;
1403	if (pi == NULL)
1404		return;
1405
1406	for (;;) {
1407		td = pi->pi_owner;
1408		if (td == NULL)
1409			return;
1410
1411		MPASS(td->td_proc != NULL);
1412		MPASS(td->td_proc->p_magic == P_MAGIC);
1413
1414		if (UPRI(td) <= pri)
1415			return;
1416
1417		thread_lock(td);
1418		sched_lend_user_prio(td, pri);
1419		thread_unlock(td);
1420
1421		/*
1422		 * Pick up the lock that td is blocked on.
1423		 */
1424		uq = td->td_umtxq;
1425		pi = uq->uq_pi_blocked;
1426		/* Resort td on the list if needed. */
1427		if (!umtx_pi_adjust_thread(pi, td))
1428			break;
1429	}
1430}
1431
1432/*
1433 * Unpropagate priority for a PI mutex when a thread blocked on
1434 * it is interrupted by signal or resumed by others.
1435 */
1436static void
1437umtx_unpropagate_priority(struct umtx_pi *pi)
1438{
1439	struct umtx_q *uq, *uq_owner;
1440	struct umtx_pi *pi2;
1441	int pri, oldpri;
1442
1443	mtx_assert(&umtx_lock, MA_OWNED);
1444
1445	while (pi != NULL && pi->pi_owner != NULL) {
1446		pri = PRI_MAX;
1447		uq_owner = pi->pi_owner->td_umtxq;
1448
1449		TAILQ_FOREACH(pi2, &uq_owner->uq_pi_contested, pi_link) {
1450			uq = TAILQ_FIRST(&pi2->pi_blocked);
1451			if (uq != NULL) {
1452				if (pri > UPRI(uq->uq_thread))
1453					pri = UPRI(uq->uq_thread);
1454			}
1455		}
1456
1457		if (pri > uq_owner->uq_inherited_pri)
1458			pri = uq_owner->uq_inherited_pri;
1459		thread_lock(pi->pi_owner);
1460		oldpri = pi->pi_owner->td_user_pri;
1461		sched_unlend_user_prio(pi->pi_owner, pri);
1462		thread_unlock(pi->pi_owner);
1463		if (uq_owner->uq_pi_blocked != NULL)
1464			umtx_pi_adjust_locked(pi->pi_owner, oldpri);
1465		pi = uq_owner->uq_pi_blocked;
1466	}
1467}
1468
1469/*
1470 * Insert a PI mutex into owned list.
1471 */
1472static void
1473umtx_pi_setowner(struct umtx_pi *pi, struct thread *owner)
1474{
1475	struct umtx_q *uq_owner;
1476
1477	uq_owner = owner->td_umtxq;
1478	mtx_assert(&umtx_lock, MA_OWNED);
1479	if (pi->pi_owner != NULL)
1480		panic("pi_ower != NULL");
1481	pi->pi_owner = owner;
1482	TAILQ_INSERT_TAIL(&uq_owner->uq_pi_contested, pi, pi_link);
1483}
1484
1485/*
1486 * Claim ownership of a PI mutex.
1487 */
1488static int
1489umtx_pi_claim(struct umtx_pi *pi, struct thread *owner)
1490{
1491	struct umtx_q *uq, *uq_owner;
1492
1493	uq_owner = owner->td_umtxq;
1494	mtx_lock_spin(&umtx_lock);
1495	if (pi->pi_owner == owner) {
1496		mtx_unlock_spin(&umtx_lock);
1497		return (0);
1498	}
1499
1500	if (pi->pi_owner != NULL) {
1501		/*
1502		 * userland may have already messed the mutex, sigh.
1503		 */
1504		mtx_unlock_spin(&umtx_lock);
1505		return (EPERM);
1506	}
1507	umtx_pi_setowner(pi, owner);
1508	uq = TAILQ_FIRST(&pi->pi_blocked);
1509	if (uq != NULL) {
1510		int pri;
1511
1512		pri = UPRI(uq->uq_thread);
1513		thread_lock(owner);
1514		if (pri < UPRI(owner))
1515			sched_lend_user_prio(owner, pri);
1516		thread_unlock(owner);
1517	}
1518	mtx_unlock_spin(&umtx_lock);
1519	return (0);
1520}
1521
1522static void
1523umtx_pi_adjust_locked(struct thread *td, u_char oldpri)
1524{
1525	struct umtx_q *uq;
1526	struct umtx_pi *pi;
1527
1528	uq = td->td_umtxq;
1529	/*
1530	 * Pick up the lock that td is blocked on.
1531	 */
1532	pi = uq->uq_pi_blocked;
1533	MPASS(pi != NULL);
1534
1535	/* Resort the turnstile on the list. */
1536	if (!umtx_pi_adjust_thread(pi, td))
1537		return;
1538
1539	/*
1540	 * If our priority was lowered and we are at the head of the
1541	 * turnstile, then propagate our new priority up the chain.
1542	 */
1543	if (uq == TAILQ_FIRST(&pi->pi_blocked) && UPRI(td) < oldpri)
1544		umtx_propagate_priority(td);
1545}
1546
1547/*
1548 * Adjust a thread's order position in its blocked PI mutex,
1549 * this may result new priority propagating process.
1550 */
1551void
1552umtx_pi_adjust(struct thread *td, u_char oldpri)
1553{
1554	struct umtx_q *uq;
1555	struct umtx_pi *pi;
1556
1557	uq = td->td_umtxq;
1558	mtx_lock_spin(&umtx_lock);
1559	/*
1560	 * Pick up the lock that td is blocked on.
1561	 */
1562	pi = uq->uq_pi_blocked;
1563	if (pi != NULL)
1564		umtx_pi_adjust_locked(td, oldpri);
1565	mtx_unlock_spin(&umtx_lock);
1566}
1567
1568/*
1569 * Sleep on a PI mutex.
1570 */
1571static int
1572umtxq_sleep_pi(struct umtx_q *uq, struct umtx_pi *pi,
1573	uint32_t owner, const char *wmesg, int timo)
1574{
1575	struct umtxq_chain *uc;
1576	struct thread *td, *td1;
1577	struct umtx_q *uq1;
1578	int pri;
1579	int error = 0;
1580
1581	td = uq->uq_thread;
1582	KASSERT(td == curthread, ("inconsistent uq_thread"));
1583	uc = umtxq_getchain(&uq->uq_key);
1584	UMTXQ_LOCKED_ASSERT(uc);
1585	UMTXQ_BUSY_ASSERT(uc);
1586	umtxq_insert(uq);
1587	mtx_lock_spin(&umtx_lock);
1588	if (pi->pi_owner == NULL) {
1589		/* XXX
1590		 * Current, We only support process private PI-mutex,
1591		 * we need a faster way to find an owner thread for
1592		 * process-shared mutex (not available yet).
1593		 */
1594		mtx_unlock_spin(&umtx_lock);
1595		PROC_LOCK(curproc);
1596		td1 = thread_find(curproc, owner);
1597		mtx_lock_spin(&umtx_lock);
1598		if (td1 != NULL && pi->pi_owner == NULL) {
1599			uq1 = td1->td_umtxq;
1600			umtx_pi_setowner(pi, td1);
1601		}
1602		PROC_UNLOCK(curproc);
1603	}
1604
1605	TAILQ_FOREACH(uq1, &pi->pi_blocked, uq_lockq) {
1606		pri = UPRI(uq1->uq_thread);
1607		if (pri > UPRI(td))
1608			break;
1609	}
1610
1611	if (uq1 != NULL)
1612		TAILQ_INSERT_BEFORE(uq1, uq, uq_lockq);
1613	else
1614		TAILQ_INSERT_TAIL(&pi->pi_blocked, uq, uq_lockq);
1615
1616	uq->uq_pi_blocked = pi;
1617	thread_lock(td);
1618	td->td_flags |= TDF_UPIBLOCKED;
1619	thread_unlock(td);
1620	umtx_propagate_priority(td);
1621	mtx_unlock_spin(&umtx_lock);
1622	umtxq_unbusy(&uq->uq_key);
1623
1624	if (uq->uq_flags & UQF_UMTXQ) {
1625		error = msleep(uq, &uc->uc_lock, PCATCH, wmesg, timo);
1626		if (error == EWOULDBLOCK)
1627			error = ETIMEDOUT;
1628		if (uq->uq_flags & UQF_UMTXQ) {
1629			umtxq_remove(uq);
1630		}
1631	}
1632	mtx_lock_spin(&umtx_lock);
1633	uq->uq_pi_blocked = NULL;
1634	thread_lock(td);
1635	td->td_flags &= ~TDF_UPIBLOCKED;
1636	thread_unlock(td);
1637	TAILQ_REMOVE(&pi->pi_blocked, uq, uq_lockq);
1638	umtx_unpropagate_priority(pi);
1639	mtx_unlock_spin(&umtx_lock);
1640	umtxq_unlock(&uq->uq_key);
1641
1642	return (error);
1643}
1644
1645/*
1646 * Add reference count for a PI mutex.
1647 */
1648static void
1649umtx_pi_ref(struct umtx_pi *pi)
1650{
1651	struct umtxq_chain *uc;
1652
1653	uc = umtxq_getchain(&pi->pi_key);
1654	UMTXQ_LOCKED_ASSERT(uc);
1655	pi->pi_refcount++;
1656}
1657
1658/*
1659 * Decrease reference count for a PI mutex, if the counter
1660 * is decreased to zero, its memory space is freed.
1661 */
1662static void
1663umtx_pi_unref(struct umtx_pi *pi)
1664{
1665	struct umtxq_chain *uc;
1666
1667	uc = umtxq_getchain(&pi->pi_key);
1668	UMTXQ_LOCKED_ASSERT(uc);
1669	KASSERT(pi->pi_refcount > 0, ("invalid reference count"));
1670	if (--pi->pi_refcount == 0) {
1671		mtx_lock_spin(&umtx_lock);
1672		if (pi->pi_owner != NULL) {
1673			TAILQ_REMOVE(&pi->pi_owner->td_umtxq->uq_pi_contested,
1674				pi, pi_link);
1675			pi->pi_owner = NULL;
1676		}
1677		KASSERT(TAILQ_EMPTY(&pi->pi_blocked),
1678			("blocked queue not empty"));
1679		mtx_unlock_spin(&umtx_lock);
1680		TAILQ_REMOVE(&uc->uc_pi_list, pi, pi_hashlink);
1681		umtx_pi_free(pi);
1682	}
1683}
1684
1685/*
1686 * Find a PI mutex in hash table.
1687 */
1688static struct umtx_pi *
1689umtx_pi_lookup(struct umtx_key *key)
1690{
1691	struct umtxq_chain *uc;
1692	struct umtx_pi *pi;
1693
1694	uc = umtxq_getchain(key);
1695	UMTXQ_LOCKED_ASSERT(uc);
1696
1697	TAILQ_FOREACH(pi, &uc->uc_pi_list, pi_hashlink) {
1698		if (umtx_key_match(&pi->pi_key, key)) {
1699			return (pi);
1700		}
1701	}
1702	return (NULL);
1703}
1704
1705/*
1706 * Insert a PI mutex into hash table.
1707 */
1708static inline void
1709umtx_pi_insert(struct umtx_pi *pi)
1710{
1711	struct umtxq_chain *uc;
1712
1713	uc = umtxq_getchain(&pi->pi_key);
1714	UMTXQ_LOCKED_ASSERT(uc);
1715	TAILQ_INSERT_TAIL(&uc->uc_pi_list, pi, pi_hashlink);
1716}
1717
1718/*
1719 * Lock a PI mutex.
1720 */
1721static int
1722_do_lock_pi(struct thread *td, struct umutex *m, uint32_t flags, int timo,
1723	int try)
1724{
1725	struct umtx_q *uq;
1726	struct umtx_pi *pi, *new_pi;
1727	uint32_t id, owner, old;
1728	int error;
1729
1730	id = td->td_tid;
1731	uq = td->td_umtxq;
1732
1733	if ((error = umtx_key_get(m, TYPE_PI_UMUTEX, GET_SHARE(flags),
1734	    &uq->uq_key)) != 0)
1735		return (error);
1736	umtxq_lock(&uq->uq_key);
1737	pi = umtx_pi_lookup(&uq->uq_key);
1738	if (pi == NULL) {
1739		new_pi = umtx_pi_alloc(M_NOWAIT);
1740		if (new_pi == NULL) {
1741			umtxq_unlock(&uq->uq_key);
1742			new_pi = umtx_pi_alloc(M_WAITOK);
1743			umtxq_lock(&uq->uq_key);
1744			pi = umtx_pi_lookup(&uq->uq_key);
1745			if (pi != NULL) {
1746				umtx_pi_free(new_pi);
1747				new_pi = NULL;
1748			}
1749		}
1750		if (new_pi != NULL) {
1751			new_pi->pi_key = uq->uq_key;
1752			umtx_pi_insert(new_pi);
1753			pi = new_pi;
1754		}
1755	}
1756	umtx_pi_ref(pi);
1757	umtxq_unlock(&uq->uq_key);
1758
1759	/*
1760	 * Care must be exercised when dealing with umtx structure.  It
1761	 * can fault on any access.
1762	 */
1763	for (;;) {
1764		/*
1765		 * Try the uncontested case.  This should be done in userland.
1766		 */
1767		owner = casuword32(&m->m_owner, UMUTEX_UNOWNED, id);
1768
1769		/* The acquire succeeded. */
1770		if (owner == UMUTEX_UNOWNED) {
1771			error = 0;
1772			break;
1773		}
1774
1775		/* The address was invalid. */
1776		if (owner == -1) {
1777			error = EFAULT;
1778			break;
1779		}
1780
1781		/* If no one owns it but it is contested try to acquire it. */
1782		if (owner == UMUTEX_CONTESTED) {
1783			owner = casuword32(&m->m_owner,
1784			    UMUTEX_CONTESTED, id | UMUTEX_CONTESTED);
1785
1786			if (owner == UMUTEX_CONTESTED) {
1787				umtxq_lock(&uq->uq_key);
1788				umtxq_busy(&uq->uq_key);
1789				error = umtx_pi_claim(pi, td);
1790				umtxq_unbusy(&uq->uq_key);
1791				umtxq_unlock(&uq->uq_key);
1792				break;
1793			}
1794
1795			/* The address was invalid. */
1796			if (owner == -1) {
1797				error = EFAULT;
1798				break;
1799			}
1800
1801			/* If this failed the lock has changed, restart. */
1802			continue;
1803		}
1804
1805		if ((flags & UMUTEX_ERROR_CHECK) != 0 &&
1806		    (owner & ~UMUTEX_CONTESTED) == id) {
1807			error = EDEADLK;
1808			break;
1809		}
1810
1811		if (try != 0) {
1812			error = EBUSY;
1813			break;
1814		}
1815
1816		/*
1817		 * If we caught a signal, we have retried and now
1818		 * exit immediately.
1819		 */
1820		if (error != 0)
1821			break;
1822
1823		umtxq_lock(&uq->uq_key);
1824		umtxq_busy(&uq->uq_key);
1825		umtxq_unlock(&uq->uq_key);
1826
1827		/*
1828		 * Set the contested bit so that a release in user space
1829		 * knows to use the system call for unlock.  If this fails
1830		 * either some one else has acquired the lock or it has been
1831		 * released.
1832		 */
1833		old = casuword32(&m->m_owner, owner, owner | UMUTEX_CONTESTED);
1834
1835		/* The address was invalid. */
1836		if (old == -1) {
1837			umtxq_lock(&uq->uq_key);
1838			umtxq_unbusy(&uq->uq_key);
1839			umtxq_unlock(&uq->uq_key);
1840			error = EFAULT;
1841			break;
1842		}
1843
1844		umtxq_lock(&uq->uq_key);
1845		/*
1846		 * We set the contested bit, sleep. Otherwise the lock changed
1847		 * and we need to retry or we lost a race to the thread
1848		 * unlocking the umtx.
1849		 */
1850		if (old == owner)
1851			error = umtxq_sleep_pi(uq, pi, owner & ~UMUTEX_CONTESTED,
1852				 "umtxpi", timo);
1853		else {
1854			umtxq_unbusy(&uq->uq_key);
1855			umtxq_unlock(&uq->uq_key);
1856		}
1857	}
1858
1859	umtxq_lock(&uq->uq_key);
1860	umtx_pi_unref(pi);
1861	umtxq_unlock(&uq->uq_key);
1862
1863	umtx_key_release(&uq->uq_key);
1864	return (error);
1865}
1866
1867/*
1868 * Unlock a PI mutex.
1869 */
1870static int
1871do_unlock_pi(struct thread *td, struct umutex *m, uint32_t flags)
1872{
1873	struct umtx_key key;
1874	struct umtx_q *uq_first, *uq_first2, *uq_me;
1875	struct umtx_pi *pi, *pi2;
1876	uint32_t owner, old, id;
1877	int error;
1878	int count;
1879	int pri;
1880
1881	id = td->td_tid;
1882	/*
1883	 * Make sure we own this mtx.
1884	 */
1885	owner = fuword32(__DEVOLATILE(uint32_t *, &m->m_owner));
1886	if (owner == -1)
1887		return (EFAULT);
1888
1889	if ((owner & ~UMUTEX_CONTESTED) != id)
1890		return (EPERM);
1891
1892	/* This should be done in userland */
1893	if ((owner & UMUTEX_CONTESTED) == 0) {
1894		old = casuword32(&m->m_owner, owner, UMUTEX_UNOWNED);
1895		if (old == -1)
1896			return (EFAULT);
1897		if (old == owner)
1898			return (0);
1899		owner = old;
1900	}
1901
1902	/* We should only ever be in here for contested locks */
1903	if ((error = umtx_key_get(m, TYPE_PI_UMUTEX, GET_SHARE(flags),
1904	    &key)) != 0)
1905		return (error);
1906
1907	umtxq_lock(&key);
1908	umtxq_busy(&key);
1909	count = umtxq_count_pi(&key, &uq_first);
1910	if (uq_first != NULL) {
1911		mtx_lock_spin(&umtx_lock);
1912		pi = uq_first->uq_pi_blocked;
1913		KASSERT(pi != NULL, ("pi == NULL?"));
1914		if (pi->pi_owner != curthread) {
1915			mtx_unlock_spin(&umtx_lock);
1916			umtxq_unbusy(&key);
1917			umtxq_unlock(&key);
1918			umtx_key_release(&key);
1919			/* userland messed the mutex */
1920			return (EPERM);
1921		}
1922		uq_me = curthread->td_umtxq;
1923		pi->pi_owner = NULL;
1924		TAILQ_REMOVE(&uq_me->uq_pi_contested, pi, pi_link);
1925		/* get highest priority thread which is still sleeping. */
1926		uq_first = TAILQ_FIRST(&pi->pi_blocked);
1927		while (uq_first != NULL &&
1928		       (uq_first->uq_flags & UQF_UMTXQ) == 0) {
1929			uq_first = TAILQ_NEXT(uq_first, uq_lockq);
1930		}
1931		pri = PRI_MAX;
1932		TAILQ_FOREACH(pi2, &uq_me->uq_pi_contested, pi_link) {
1933			uq_first2 = TAILQ_FIRST(&pi2->pi_blocked);
1934			if (uq_first2 != NULL) {
1935				if (pri > UPRI(uq_first2->uq_thread))
1936					pri = UPRI(uq_first2->uq_thread);
1937			}
1938		}
1939		thread_lock(curthread);
1940		sched_unlend_user_prio(curthread, pri);
1941		thread_unlock(curthread);
1942		mtx_unlock_spin(&umtx_lock);
1943		if (uq_first)
1944			umtxq_signal_thread(uq_first);
1945	}
1946	umtxq_unlock(&key);
1947
1948	/*
1949	 * When unlocking the umtx, it must be marked as unowned if
1950	 * there is zero or one thread only waiting for it.
1951	 * Otherwise, it must be marked as contested.
1952	 */
1953	old = casuword32(&m->m_owner, owner,
1954		count <= 1 ? UMUTEX_UNOWNED : UMUTEX_CONTESTED);
1955
1956	umtxq_lock(&key);
1957	umtxq_unbusy(&key);
1958	umtxq_unlock(&key);
1959	umtx_key_release(&key);
1960	if (old == -1)
1961		return (EFAULT);
1962	if (old != owner)
1963		return (EINVAL);
1964	return (0);
1965}
1966
1967/*
1968 * Lock a PP mutex.
1969 */
1970static int
1971_do_lock_pp(struct thread *td, struct umutex *m, uint32_t flags, int timo,
1972	int try)
1973{
1974	struct umtx_q *uq, *uq2;
1975	struct umtx_pi *pi;
1976	uint32_t ceiling;
1977	uint32_t owner, id;
1978	int error, pri, old_inherited_pri, su;
1979
1980	id = td->td_tid;
1981	uq = td->td_umtxq;
1982	if ((error = umtx_key_get(m, TYPE_PP_UMUTEX, GET_SHARE(flags),
1983	    &uq->uq_key)) != 0)
1984		return (error);
1985	su = (priv_check(td, PRIV_SCHED_RTPRIO) == 0);
1986	for (;;) {
1987		old_inherited_pri = uq->uq_inherited_pri;
1988		umtxq_lock(&uq->uq_key);
1989		umtxq_busy(&uq->uq_key);
1990		umtxq_unlock(&uq->uq_key);
1991
1992		ceiling = RTP_PRIO_MAX - fuword32(&m->m_ceilings[0]);
1993		if (ceiling > RTP_PRIO_MAX) {
1994			error = EINVAL;
1995			goto out;
1996		}
1997
1998		mtx_lock_spin(&umtx_lock);
1999		if (UPRI(td) < PRI_MIN_REALTIME + ceiling) {
2000			mtx_unlock_spin(&umtx_lock);
2001			error = EINVAL;
2002			goto out;
2003		}
2004		if (su && PRI_MIN_REALTIME + ceiling < uq->uq_inherited_pri) {
2005			uq->uq_inherited_pri = PRI_MIN_REALTIME + ceiling;
2006			thread_lock(td);
2007			if (uq->uq_inherited_pri < UPRI(td))
2008				sched_lend_user_prio(td, uq->uq_inherited_pri);
2009			thread_unlock(td);
2010		}
2011		mtx_unlock_spin(&umtx_lock);
2012
2013		owner = casuword32(&m->m_owner,
2014		    UMUTEX_CONTESTED, id | UMUTEX_CONTESTED);
2015
2016		if (owner == UMUTEX_CONTESTED) {
2017			error = 0;
2018			break;
2019		}
2020
2021		/* The address was invalid. */
2022		if (owner == -1) {
2023			error = EFAULT;
2024			break;
2025		}
2026
2027		if ((flags & UMUTEX_ERROR_CHECK) != 0 &&
2028		    (owner & ~UMUTEX_CONTESTED) == id) {
2029			error = EDEADLK;
2030			break;
2031		}
2032
2033		if (try != 0) {
2034			error = EBUSY;
2035			break;
2036		}
2037
2038		/*
2039		 * If we caught a signal, we have retried and now
2040		 * exit immediately.
2041		 */
2042		if (error != 0)
2043			break;
2044
2045		umtxq_lock(&uq->uq_key);
2046		umtxq_insert(uq);
2047		umtxq_unbusy(&uq->uq_key);
2048		error = umtxq_sleep(uq, "umtxpp", timo);
2049		umtxq_remove(uq);
2050		umtxq_unlock(&uq->uq_key);
2051
2052		mtx_lock_spin(&umtx_lock);
2053		uq->uq_inherited_pri = old_inherited_pri;
2054		pri = PRI_MAX;
2055		TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
2056			uq2 = TAILQ_FIRST(&pi->pi_blocked);
2057			if (uq2 != NULL) {
2058				if (pri > UPRI(uq2->uq_thread))
2059					pri = UPRI(uq2->uq_thread);
2060			}
2061		}
2062		if (pri > uq->uq_inherited_pri)
2063			pri = uq->uq_inherited_pri;
2064		thread_lock(td);
2065		sched_unlend_user_prio(td, pri);
2066		thread_unlock(td);
2067		mtx_unlock_spin(&umtx_lock);
2068	}
2069
2070	if (error != 0) {
2071		mtx_lock_spin(&umtx_lock);
2072		uq->uq_inherited_pri = old_inherited_pri;
2073		pri = PRI_MAX;
2074		TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
2075			uq2 = TAILQ_FIRST(&pi->pi_blocked);
2076			if (uq2 != NULL) {
2077				if (pri > UPRI(uq2->uq_thread))
2078					pri = UPRI(uq2->uq_thread);
2079			}
2080		}
2081		if (pri > uq->uq_inherited_pri)
2082			pri = uq->uq_inherited_pri;
2083		thread_lock(td);
2084		sched_unlend_user_prio(td, pri);
2085		thread_unlock(td);
2086		mtx_unlock_spin(&umtx_lock);
2087	}
2088
2089out:
2090	umtxq_lock(&uq->uq_key);
2091	umtxq_unbusy(&uq->uq_key);
2092	umtxq_unlock(&uq->uq_key);
2093	umtx_key_release(&uq->uq_key);
2094	return (error);
2095}
2096
2097/*
2098 * Unlock a PP mutex.
2099 */
2100static int
2101do_unlock_pp(struct thread *td, struct umutex *m, uint32_t flags)
2102{
2103	struct umtx_key key;
2104	struct umtx_q *uq, *uq2;
2105	struct umtx_pi *pi;
2106	uint32_t owner, id;
2107	uint32_t rceiling;
2108	int error, pri, new_inherited_pri, su;
2109
2110	id = td->td_tid;
2111	uq = td->td_umtxq;
2112	su = (priv_check(td, PRIV_SCHED_RTPRIO) == 0);
2113
2114	/*
2115	 * Make sure we own this mtx.
2116	 */
2117	owner = fuword32(__DEVOLATILE(uint32_t *, &m->m_owner));
2118	if (owner == -1)
2119		return (EFAULT);
2120
2121	if ((owner & ~UMUTEX_CONTESTED) != id)
2122		return (EPERM);
2123
2124	error = copyin(&m->m_ceilings[1], &rceiling, sizeof(uint32_t));
2125	if (error != 0)
2126		return (error);
2127
2128	if (rceiling == -1)
2129		new_inherited_pri = PRI_MAX;
2130	else {
2131		rceiling = RTP_PRIO_MAX - rceiling;
2132		if (rceiling > RTP_PRIO_MAX)
2133			return (EINVAL);
2134		new_inherited_pri = PRI_MIN_REALTIME + rceiling;
2135	}
2136
2137	if ((error = umtx_key_get(m, TYPE_PP_UMUTEX, GET_SHARE(flags),
2138	    &key)) != 0)
2139		return (error);
2140	umtxq_lock(&key);
2141	umtxq_busy(&key);
2142	umtxq_unlock(&key);
2143	/*
2144	 * For priority protected mutex, always set unlocked state
2145	 * to UMUTEX_CONTESTED, so that userland always enters kernel
2146	 * to lock the mutex, it is necessary because thread priority
2147	 * has to be adjusted for such mutex.
2148	 */
2149	error = suword32(__DEVOLATILE(uint32_t *, &m->m_owner),
2150		UMUTEX_CONTESTED);
2151
2152	umtxq_lock(&key);
2153	if (error == 0)
2154		umtxq_signal(&key, 1);
2155	umtxq_unbusy(&key);
2156	umtxq_unlock(&key);
2157
2158	if (error == -1)
2159		error = EFAULT;
2160	else {
2161		mtx_lock_spin(&umtx_lock);
2162		if (su != 0)
2163			uq->uq_inherited_pri = new_inherited_pri;
2164		pri = PRI_MAX;
2165		TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
2166			uq2 = TAILQ_FIRST(&pi->pi_blocked);
2167			if (uq2 != NULL) {
2168				if (pri > UPRI(uq2->uq_thread))
2169					pri = UPRI(uq2->uq_thread);
2170			}
2171		}
2172		if (pri > uq->uq_inherited_pri)
2173			pri = uq->uq_inherited_pri;
2174		thread_lock(td);
2175		sched_unlend_user_prio(td, pri);
2176		thread_unlock(td);
2177		mtx_unlock_spin(&umtx_lock);
2178	}
2179	umtx_key_release(&key);
2180	return (error);
2181}
2182
2183static int
2184do_set_ceiling(struct thread *td, struct umutex *m, uint32_t ceiling,
2185	uint32_t *old_ceiling)
2186{
2187	struct umtx_q *uq;
2188	uint32_t save_ceiling;
2189	uint32_t owner, id;
2190	uint32_t flags;
2191	int error;
2192
2193	flags = fuword32(&m->m_flags);
2194	if ((flags & UMUTEX_PRIO_PROTECT) == 0)
2195		return (EINVAL);
2196	if (ceiling > RTP_PRIO_MAX)
2197		return (EINVAL);
2198	id = td->td_tid;
2199	uq = td->td_umtxq;
2200	if ((error = umtx_key_get(m, TYPE_PP_UMUTEX, GET_SHARE(flags),
2201	   &uq->uq_key)) != 0)
2202		return (error);
2203	for (;;) {
2204		umtxq_lock(&uq->uq_key);
2205		umtxq_busy(&uq->uq_key);
2206		umtxq_unlock(&uq->uq_key);
2207
2208		save_ceiling = fuword32(&m->m_ceilings[0]);
2209
2210		owner = casuword32(&m->m_owner,
2211		    UMUTEX_CONTESTED, id | UMUTEX_CONTESTED);
2212
2213		if (owner == UMUTEX_CONTESTED) {
2214			suword32(&m->m_ceilings[0], ceiling);
2215			suword32(__DEVOLATILE(uint32_t *, &m->m_owner),
2216				UMUTEX_CONTESTED);
2217			error = 0;
2218			break;
2219		}
2220
2221		/* The address was invalid. */
2222		if (owner == -1) {
2223			error = EFAULT;
2224			break;
2225		}
2226
2227		if ((owner & ~UMUTEX_CONTESTED) == id) {
2228			suword32(&m->m_ceilings[0], ceiling);
2229			error = 0;
2230			break;
2231		}
2232
2233		/*
2234		 * If we caught a signal, we have retried and now
2235		 * exit immediately.
2236		 */
2237		if (error != 0)
2238			break;
2239
2240		/*
2241		 * We set the contested bit, sleep. Otherwise the lock changed
2242		 * and we need to retry or we lost a race to the thread
2243		 * unlocking the umtx.
2244		 */
2245		umtxq_lock(&uq->uq_key);
2246		umtxq_insert(uq);
2247		umtxq_unbusy(&uq->uq_key);
2248		error = umtxq_sleep(uq, "umtxpp", 0);
2249		umtxq_remove(uq);
2250		umtxq_unlock(&uq->uq_key);
2251	}
2252	umtxq_lock(&uq->uq_key);
2253	if (error == 0)
2254		umtxq_signal(&uq->uq_key, INT_MAX);
2255	umtxq_unbusy(&uq->uq_key);
2256	umtxq_unlock(&uq->uq_key);
2257	umtx_key_release(&uq->uq_key);
2258	if (error == 0 && old_ceiling != NULL)
2259		suword32(old_ceiling, save_ceiling);
2260	return (error);
2261}
2262
2263static int
2264_do_lock_umutex(struct thread *td, struct umutex *m, int flags, int timo,
2265	int mode)
2266{
2267	switch(flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT)) {
2268	case 0:
2269		return (_do_lock_normal(td, m, flags, timo, mode));
2270	case UMUTEX_PRIO_INHERIT:
2271		return (_do_lock_pi(td, m, flags, timo, mode));
2272	case UMUTEX_PRIO_PROTECT:
2273		return (_do_lock_pp(td, m, flags, timo, mode));
2274	}
2275	return (EINVAL);
2276}
2277
2278/*
2279 * Lock a userland POSIX mutex.
2280 */
2281static int
2282do_lock_umutex(struct thread *td, struct umutex *m,
2283	struct timespec *timeout, int mode)
2284{
2285	struct timespec ts, ts2, ts3;
2286	struct timeval tv;
2287	uint32_t flags;
2288	int error;
2289
2290	flags = fuword32(&m->m_flags);
2291	if (flags == -1)
2292		return (EFAULT);
2293
2294	if (timeout == NULL) {
2295		error = _do_lock_umutex(td, m, flags, 0, mode);
2296		/* Mutex locking is restarted if it is interrupted. */
2297		if (error == EINTR && mode != _UMUTEX_WAIT)
2298			error = ERESTART;
2299	} else {
2300		getnanouptime(&ts);
2301		timespecadd(&ts, timeout);
2302		TIMESPEC_TO_TIMEVAL(&tv, timeout);
2303		for (;;) {
2304			error = _do_lock_umutex(td, m, flags, tvtohz(&tv), mode);
2305			if (error != ETIMEDOUT)
2306				break;
2307			getnanouptime(&ts2);
2308			if (timespeccmp(&ts2, &ts, >=)) {
2309				error = ETIMEDOUT;
2310				break;
2311			}
2312			ts3 = ts;
2313			timespecsub(&ts3, &ts2);
2314			TIMESPEC_TO_TIMEVAL(&tv, &ts3);
2315		}
2316		/* Timed-locking is not restarted. */
2317		if (error == ERESTART)
2318			error = EINTR;
2319	}
2320	return (error);
2321}
2322
2323/*
2324 * Unlock a userland POSIX mutex.
2325 */
2326static int
2327do_unlock_umutex(struct thread *td, struct umutex *m)
2328{
2329	uint32_t flags;
2330
2331	flags = fuword32(&m->m_flags);
2332	if (flags == -1)
2333		return (EFAULT);
2334
2335	switch(flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT)) {
2336	case 0:
2337		return (do_unlock_normal(td, m, flags));
2338	case UMUTEX_PRIO_INHERIT:
2339		return (do_unlock_pi(td, m, flags));
2340	case UMUTEX_PRIO_PROTECT:
2341		return (do_unlock_pp(td, m, flags));
2342	}
2343
2344	return (EINVAL);
2345}
2346
2347static int
2348do_cv_wait(struct thread *td, struct ucond *cv, struct umutex *m,
2349	struct timespec *timeout, u_long wflags)
2350{
2351	struct umtx_q *uq;
2352	struct timeval tv;
2353	struct timespec cts, ets, tts;
2354	uint32_t flags;
2355	int error;
2356
2357	uq = td->td_umtxq;
2358	flags = fuword32(&cv->c_flags);
2359	error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &uq->uq_key);
2360	if (error != 0)
2361		return (error);
2362	umtxq_lock(&uq->uq_key);
2363	umtxq_busy(&uq->uq_key);
2364	umtxq_insert(uq);
2365	umtxq_unlock(&uq->uq_key);
2366
2367	/*
2368	 * The magic thing is we should set c_has_waiters to 1 before
2369	 * releasing user mutex.
2370	 */
2371	suword32(__DEVOLATILE(uint32_t *, &cv->c_has_waiters), 1);
2372
2373	umtxq_lock(&uq->uq_key);
2374	umtxq_unbusy(&uq->uq_key);
2375	umtxq_unlock(&uq->uq_key);
2376
2377	error = do_unlock_umutex(td, m);
2378
2379	umtxq_lock(&uq->uq_key);
2380	if (error == 0) {
2381		if ((wflags & UMTX_CHECK_UNPARKING) &&
2382		    (td->td_pflags & TDP_WAKEUP)) {
2383			td->td_pflags &= ~TDP_WAKEUP;
2384			error = EINTR;
2385		} else if (timeout == NULL) {
2386			error = umtxq_sleep(uq, "ucond", 0);
2387		} else {
2388			getnanouptime(&ets);
2389			timespecadd(&ets, timeout);
2390			TIMESPEC_TO_TIMEVAL(&tv, timeout);
2391			for (;;) {
2392				error = umtxq_sleep(uq, "ucond", tvtohz(&tv));
2393				if (error != ETIMEDOUT)
2394					break;
2395				getnanouptime(&cts);
2396				if (timespeccmp(&cts, &ets, >=)) {
2397					error = ETIMEDOUT;
2398					break;
2399				}
2400				tts = ets;
2401				timespecsub(&tts, &cts);
2402				TIMESPEC_TO_TIMEVAL(&tv, &tts);
2403			}
2404		}
2405	}
2406
2407	if (error != 0) {
2408		if ((uq->uq_flags & UQF_UMTXQ) == 0) {
2409			/*
2410			 * If we concurrently got do_cv_signal()d
2411			 * and we got an error or UNIX signals or a timeout,
2412			 * then, perform another umtxq_signal to avoid
2413			 * consuming the wakeup. This may cause supurious
2414			 * wakeup for another thread which was just queued,
2415			 * but SUSV3 explicitly allows supurious wakeup to
2416			 * occur, and indeed a kernel based implementation
2417			 * can not avoid it.
2418			 */
2419			if (!umtxq_signal(&uq->uq_key, 1))
2420				error = 0;
2421		}
2422		if (error == ERESTART)
2423			error = EINTR;
2424	}
2425	umtxq_remove(uq);
2426	umtxq_unlock(&uq->uq_key);
2427	umtx_key_release(&uq->uq_key);
2428	return (error);
2429}
2430
2431/*
2432 * Signal a userland condition variable.
2433 */
2434static int
2435do_cv_signal(struct thread *td, struct ucond *cv)
2436{
2437	struct umtx_key key;
2438	int error, cnt, nwake;
2439	uint32_t flags;
2440
2441	flags = fuword32(&cv->c_flags);
2442	if ((error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &key)) != 0)
2443		return (error);
2444	umtxq_lock(&key);
2445	umtxq_busy(&key);
2446	cnt = umtxq_count(&key);
2447	nwake = umtxq_signal(&key, 1);
2448	if (cnt <= nwake) {
2449		umtxq_unlock(&key);
2450		error = suword32(
2451		    __DEVOLATILE(uint32_t *, &cv->c_has_waiters), 0);
2452		umtxq_lock(&key);
2453	}
2454	umtxq_unbusy(&key);
2455	umtxq_unlock(&key);
2456	umtx_key_release(&key);
2457	return (error);
2458}
2459
2460static int
2461do_cv_broadcast(struct thread *td, struct ucond *cv)
2462{
2463	struct umtx_key key;
2464	int error;
2465	uint32_t flags;
2466
2467	flags = fuword32(&cv->c_flags);
2468	if ((error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &key)) != 0)
2469		return (error);
2470
2471	umtxq_lock(&key);
2472	umtxq_busy(&key);
2473	umtxq_signal(&key, INT_MAX);
2474	umtxq_unlock(&key);
2475
2476	error = suword32(__DEVOLATILE(uint32_t *, &cv->c_has_waiters), 0);
2477
2478	umtxq_lock(&key);
2479	umtxq_unbusy(&key);
2480	umtxq_unlock(&key);
2481
2482	umtx_key_release(&key);
2483	return (error);
2484}
2485
2486static int
2487do_rw_rdlock(struct thread *td, struct urwlock *rwlock, long fflag, int timo)
2488{
2489	struct umtx_q *uq;
2490	uint32_t flags, wrflags;
2491	int32_t state, oldstate;
2492	int32_t blocked_readers;
2493	int error;
2494
2495	uq = td->td_umtxq;
2496	flags = fuword32(&rwlock->rw_flags);
2497	error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
2498	if (error != 0)
2499		return (error);
2500
2501	wrflags = URWLOCK_WRITE_OWNER;
2502	if (!(fflag & URWLOCK_PREFER_READER) && !(flags & URWLOCK_PREFER_READER))
2503		wrflags |= URWLOCK_WRITE_WAITERS;
2504
2505	for (;;) {
2506		state = fuword32(__DEVOLATILE(int32_t *, &rwlock->rw_state));
2507		/* try to lock it */
2508		while (!(state & wrflags)) {
2509			if (__predict_false(URWLOCK_READER_COUNT(state) == URWLOCK_MAX_READERS)) {
2510				umtx_key_release(&uq->uq_key);
2511				return (EAGAIN);
2512			}
2513			oldstate = casuword32(&rwlock->rw_state, state, state + 1);
2514			if (oldstate == state) {
2515				umtx_key_release(&uq->uq_key);
2516				return (0);
2517			}
2518			state = oldstate;
2519		}
2520
2521		if (error)
2522			break;
2523
2524		/* grab monitor lock */
2525		umtxq_lock(&uq->uq_key);
2526		umtxq_busy(&uq->uq_key);
2527		umtxq_unlock(&uq->uq_key);
2528
2529		/* set read contention bit */
2530		while ((state & wrflags) && !(state & URWLOCK_READ_WAITERS)) {
2531			oldstate = casuword32(&rwlock->rw_state, state, state | URWLOCK_READ_WAITERS);
2532			if (oldstate == state)
2533				goto sleep;
2534			state = oldstate;
2535		}
2536
2537		/* state is changed while setting flags, restart */
2538		if (!(state & wrflags)) {
2539			umtxq_lock(&uq->uq_key);
2540			umtxq_unbusy(&uq->uq_key);
2541			umtxq_unlock(&uq->uq_key);
2542			continue;
2543		}
2544
2545sleep:
2546		/* contention bit is set, before sleeping, increase read waiter count */
2547		blocked_readers = fuword32(&rwlock->rw_blocked_readers);
2548		suword32(&rwlock->rw_blocked_readers, blocked_readers+1);
2549
2550		while (state & wrflags) {
2551			umtxq_lock(&uq->uq_key);
2552			umtxq_insert(uq);
2553			umtxq_unbusy(&uq->uq_key);
2554
2555			error = umtxq_sleep(uq, "urdlck", timo);
2556
2557			umtxq_busy(&uq->uq_key);
2558			umtxq_remove(uq);
2559			umtxq_unlock(&uq->uq_key);
2560			if (error)
2561				break;
2562			state = fuword32(__DEVOLATILE(int32_t *, &rwlock->rw_state));
2563		}
2564
2565		/* decrease read waiter count, and may clear read contention bit */
2566		blocked_readers = fuword32(&rwlock->rw_blocked_readers);
2567		suword32(&rwlock->rw_blocked_readers, blocked_readers-1);
2568		if (blocked_readers == 1) {
2569			state = fuword32(__DEVOLATILE(int32_t *, &rwlock->rw_state));
2570			for (;;) {
2571				oldstate = casuword32(&rwlock->rw_state, state,
2572					 state & ~URWLOCK_READ_WAITERS);
2573				if (oldstate == state)
2574					break;
2575				state = oldstate;
2576			}
2577		}
2578
2579		umtxq_lock(&uq->uq_key);
2580		umtxq_unbusy(&uq->uq_key);
2581		umtxq_unlock(&uq->uq_key);
2582	}
2583	umtx_key_release(&uq->uq_key);
2584	return (error);
2585}
2586
2587static int
2588do_rw_rdlock2(struct thread *td, void *obj, long val, struct timespec *timeout)
2589{
2590	struct timespec ts, ts2, ts3;
2591	struct timeval tv;
2592	int error;
2593
2594	getnanouptime(&ts);
2595	timespecadd(&ts, timeout);
2596	TIMESPEC_TO_TIMEVAL(&tv, timeout);
2597	for (;;) {
2598		error = do_rw_rdlock(td, obj, val, tvtohz(&tv));
2599		if (error != ETIMEDOUT)
2600			break;
2601		getnanouptime(&ts2);
2602		if (timespeccmp(&ts2, &ts, >=)) {
2603			error = ETIMEDOUT;
2604			break;
2605		}
2606		ts3 = ts;
2607		timespecsub(&ts3, &ts2);
2608		TIMESPEC_TO_TIMEVAL(&tv, &ts3);
2609	}
2610	if (error == ERESTART)
2611		error = EINTR;
2612	return (error);
2613}
2614
2615static int
2616do_rw_wrlock(struct thread *td, struct urwlock *rwlock, int timo)
2617{
2618	struct umtx_q *uq;
2619	uint32_t flags;
2620	int32_t state, oldstate;
2621	int32_t blocked_writers;
2622	int32_t blocked_readers;
2623	int error;
2624
2625	uq = td->td_umtxq;
2626	flags = fuword32(&rwlock->rw_flags);
2627	error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
2628	if (error != 0)
2629		return (error);
2630
2631	blocked_readers = 0;
2632	for (;;) {
2633		state = fuword32(__DEVOLATILE(int32_t *, &rwlock->rw_state));
2634		while (!(state & URWLOCK_WRITE_OWNER) && URWLOCK_READER_COUNT(state) == 0) {
2635			oldstate = casuword32(&rwlock->rw_state, state, state | URWLOCK_WRITE_OWNER);
2636			if (oldstate == state) {
2637				umtx_key_release(&uq->uq_key);
2638				return (0);
2639			}
2640			state = oldstate;
2641		}
2642
2643		if (error) {
2644			if (!(state & (URWLOCK_WRITE_OWNER|URWLOCK_WRITE_WAITERS)) &&
2645			    blocked_readers != 0) {
2646				umtxq_lock(&uq->uq_key);
2647				umtxq_busy(&uq->uq_key);
2648				umtxq_signal_queue(&uq->uq_key, INT_MAX, UMTX_SHARED_QUEUE);
2649				umtxq_unbusy(&uq->uq_key);
2650				umtxq_unlock(&uq->uq_key);
2651			}
2652
2653			break;
2654		}
2655
2656		/* grab monitor lock */
2657		umtxq_lock(&uq->uq_key);
2658		umtxq_busy(&uq->uq_key);
2659		umtxq_unlock(&uq->uq_key);
2660
2661		while (((state & URWLOCK_WRITE_OWNER) || URWLOCK_READER_COUNT(state) != 0) &&
2662		       (state & URWLOCK_WRITE_WAITERS) == 0) {
2663			oldstate = casuword32(&rwlock->rw_state, state, state | URWLOCK_WRITE_WAITERS);
2664			if (oldstate == state)
2665				goto sleep;
2666			state = oldstate;
2667		}
2668
2669		if (!(state & URWLOCK_WRITE_OWNER) && URWLOCK_READER_COUNT(state) == 0) {
2670			umtxq_lock(&uq->uq_key);
2671			umtxq_unbusy(&uq->uq_key);
2672			umtxq_unlock(&uq->uq_key);
2673			continue;
2674		}
2675sleep:
2676		blocked_writers = fuword32(&rwlock->rw_blocked_writers);
2677		suword32(&rwlock->rw_blocked_writers, blocked_writers+1);
2678
2679		while ((state & URWLOCK_WRITE_OWNER) || URWLOCK_READER_COUNT(state) != 0) {
2680			umtxq_lock(&uq->uq_key);
2681			umtxq_insert_queue(uq, UMTX_EXCLUSIVE_QUEUE);
2682			umtxq_unbusy(&uq->uq_key);
2683
2684			error = umtxq_sleep(uq, "uwrlck", timo);
2685
2686			umtxq_busy(&uq->uq_key);
2687			umtxq_remove_queue(uq, UMTX_EXCLUSIVE_QUEUE);
2688			umtxq_unlock(&uq->uq_key);
2689			if (error)
2690				break;
2691			state = fuword32(__DEVOLATILE(int32_t *, &rwlock->rw_state));
2692		}
2693
2694		blocked_writers = fuword32(&rwlock->rw_blocked_writers);
2695		suword32(&rwlock->rw_blocked_writers, blocked_writers-1);
2696		if (blocked_writers == 1) {
2697			state = fuword32(__DEVOLATILE(int32_t *, &rwlock->rw_state));
2698			for (;;) {
2699				oldstate = casuword32(&rwlock->rw_state, state,
2700					 state & ~URWLOCK_WRITE_WAITERS);
2701				if (oldstate == state)
2702					break;
2703				state = oldstate;
2704			}
2705			blocked_readers = fuword32(&rwlock->rw_blocked_readers);
2706		} else
2707			blocked_readers = 0;
2708
2709		umtxq_lock(&uq->uq_key);
2710		umtxq_unbusy(&uq->uq_key);
2711		umtxq_unlock(&uq->uq_key);
2712	}
2713
2714	umtx_key_release(&uq->uq_key);
2715	return (error);
2716}
2717
2718static int
2719do_rw_wrlock2(struct thread *td, void *obj, struct timespec *timeout)
2720{
2721	struct timespec ts, ts2, ts3;
2722	struct timeval tv;
2723	int error;
2724
2725	getnanouptime(&ts);
2726	timespecadd(&ts, timeout);
2727	TIMESPEC_TO_TIMEVAL(&tv, timeout);
2728	for (;;) {
2729		error = do_rw_wrlock(td, obj, tvtohz(&tv));
2730		if (error != ETIMEDOUT)
2731			break;
2732		getnanouptime(&ts2);
2733		if (timespeccmp(&ts2, &ts, >=)) {
2734			error = ETIMEDOUT;
2735			break;
2736		}
2737		ts3 = ts;
2738		timespecsub(&ts3, &ts2);
2739		TIMESPEC_TO_TIMEVAL(&tv, &ts3);
2740	}
2741	if (error == ERESTART)
2742		error = EINTR;
2743	return (error);
2744}
2745
2746static int
2747do_rw_unlock(struct thread *td, struct urwlock *rwlock)
2748{
2749	struct umtx_q *uq;
2750	uint32_t flags;
2751	int32_t state, oldstate;
2752	int error, q, count;
2753
2754	uq = td->td_umtxq;
2755	flags = fuword32(&rwlock->rw_flags);
2756	error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
2757	if (error != 0)
2758		return (error);
2759
2760	state = fuword32(__DEVOLATILE(int32_t *, &rwlock->rw_state));
2761	if (state & URWLOCK_WRITE_OWNER) {
2762		for (;;) {
2763			oldstate = casuword32(&rwlock->rw_state, state,
2764				state & ~URWLOCK_WRITE_OWNER);
2765			if (oldstate != state) {
2766				state = oldstate;
2767				if (!(oldstate & URWLOCK_WRITE_OWNER)) {
2768					error = EPERM;
2769					goto out;
2770				}
2771			} else
2772				break;
2773		}
2774	} else if (URWLOCK_READER_COUNT(state) != 0) {
2775		for (;;) {
2776			oldstate = casuword32(&rwlock->rw_state, state,
2777				state - 1);
2778			if (oldstate != state) {
2779				state = oldstate;
2780				if (URWLOCK_READER_COUNT(oldstate) == 0) {
2781					error = EPERM;
2782					goto out;
2783				}
2784			}
2785			else
2786				break;
2787		}
2788	} else {
2789		error = EPERM;
2790		goto out;
2791	}
2792
2793	count = 0;
2794
2795	if (!(flags & URWLOCK_PREFER_READER)) {
2796		if (state & URWLOCK_WRITE_WAITERS) {
2797			count = 1;
2798			q = UMTX_EXCLUSIVE_QUEUE;
2799		} else if (state & URWLOCK_READ_WAITERS) {
2800			count = INT_MAX;
2801			q = UMTX_SHARED_QUEUE;
2802		}
2803	} else {
2804		if (state & URWLOCK_READ_WAITERS) {
2805			count = INT_MAX;
2806			q = UMTX_SHARED_QUEUE;
2807		} else if (state & URWLOCK_WRITE_WAITERS) {
2808			count = 1;
2809			q = UMTX_EXCLUSIVE_QUEUE;
2810		}
2811	}
2812
2813	if (count) {
2814		umtxq_lock(&uq->uq_key);
2815		umtxq_busy(&uq->uq_key);
2816		umtxq_signal_queue(&uq->uq_key, count, q);
2817		umtxq_unbusy(&uq->uq_key);
2818		umtxq_unlock(&uq->uq_key);
2819	}
2820out:
2821	umtx_key_release(&uq->uq_key);
2822	return (error);
2823}
2824
2825static int
2826do_sem_wait(struct thread *td, struct _usem *sem, struct timespec *timeout)
2827{
2828	struct umtx_q *uq;
2829	struct timeval tv;
2830	struct timespec cts, ets, tts;
2831	uint32_t flags, count;
2832	int error;
2833
2834	uq = td->td_umtxq;
2835	flags = fuword32(&sem->_flags);
2836	error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &uq->uq_key);
2837	if (error != 0)
2838		return (error);
2839	umtxq_lock(&uq->uq_key);
2840	umtxq_busy(&uq->uq_key);
2841	umtxq_insert(uq);
2842	umtxq_unlock(&uq->uq_key);
2843
2844	count = fuword32(__DEVOLATILE(uint32_t *, &sem->_count));
2845	if (count != 0) {
2846		umtxq_lock(&uq->uq_key);
2847		umtxq_unbusy(&uq->uq_key);
2848		umtxq_remove(uq);
2849		umtxq_unlock(&uq->uq_key);
2850		umtx_key_release(&uq->uq_key);
2851		return (0);
2852	}
2853
2854	/*
2855	 * The magic thing is we should set c_has_waiters to 1 before
2856	 * releasing user mutex.
2857	 */
2858	suword32(__DEVOLATILE(uint32_t *, &sem->_has_waiters), 1);
2859
2860	umtxq_lock(&uq->uq_key);
2861	umtxq_unbusy(&uq->uq_key);
2862	umtxq_unlock(&uq->uq_key);
2863
2864	umtxq_lock(&uq->uq_key);
2865	if (timeout == NULL) {
2866		error = umtxq_sleep(uq, "usem", 0);
2867	} else {
2868		getnanouptime(&ets);
2869		timespecadd(&ets, timeout);
2870		TIMESPEC_TO_TIMEVAL(&tv, timeout);
2871		for (;;) {
2872			error = umtxq_sleep(uq, "usem", tvtohz(&tv));
2873			if (error != ETIMEDOUT)
2874				break;
2875			getnanouptime(&cts);
2876			if (timespeccmp(&cts, &ets, >=)) {
2877				error = ETIMEDOUT;
2878				break;
2879			}
2880			tts = ets;
2881			timespecsub(&tts, &cts);
2882			TIMESPEC_TO_TIMEVAL(&tv, &tts);
2883		}
2884	}
2885
2886	if (error != 0) {
2887		if ((uq->uq_flags & UQF_UMTXQ) == 0) {
2888			if (!umtxq_signal(&uq->uq_key, 1))
2889				error = 0;
2890		}
2891		if (error == ERESTART)
2892			error = EINTR;
2893	}
2894	umtxq_remove(uq);
2895	umtxq_unlock(&uq->uq_key);
2896	umtx_key_release(&uq->uq_key);
2897	return (error);
2898}
2899
2900/*
2901 * Signal a userland condition variable.
2902 */
2903static int
2904do_sem_wake(struct thread *td, struct _usem *sem)
2905{
2906	struct umtx_key key;
2907	int error, cnt, nwake;
2908	uint32_t flags;
2909
2910	flags = fuword32(&sem->_flags);
2911	if ((error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &key)) != 0)
2912		return (error);
2913	umtxq_lock(&key);
2914	umtxq_busy(&key);
2915	cnt = umtxq_count(&key);
2916	nwake = umtxq_signal(&key, 1);
2917	if (cnt <= nwake) {
2918		umtxq_unlock(&key);
2919		error = suword32(
2920		    __DEVOLATILE(uint32_t *, &sem->_has_waiters), 0);
2921		umtxq_lock(&key);
2922	}
2923	umtxq_unbusy(&key);
2924	umtxq_unlock(&key);
2925	umtx_key_release(&key);
2926	return (error);
2927}
2928
2929int
2930_umtx_lock(struct thread *td, struct _umtx_lock_args *uap)
2931    /* struct umtx *umtx */
2932{
2933	return _do_lock_umtx(td, uap->umtx, td->td_tid, 0);
2934}
2935
2936int
2937_umtx_unlock(struct thread *td, struct _umtx_unlock_args *uap)
2938    /* struct umtx *umtx */
2939{
2940	return do_unlock_umtx(td, uap->umtx, td->td_tid);
2941}
2942
2943static int
2944__umtx_op_lock_umtx(struct thread *td, struct _umtx_op_args *uap)
2945{
2946	struct timespec *ts, timeout;
2947	int error;
2948
2949	/* Allow a null timespec (wait forever). */
2950	if (uap->uaddr2 == NULL)
2951		ts = NULL;
2952	else {
2953		error = copyin(uap->uaddr2, &timeout, sizeof(timeout));
2954		if (error != 0)
2955			return (error);
2956		if (timeout.tv_nsec >= 1000000000 ||
2957		    timeout.tv_nsec < 0) {
2958			return (EINVAL);
2959		}
2960		ts = &timeout;
2961	}
2962	return (do_lock_umtx(td, uap->obj, uap->val, ts));
2963}
2964
2965static int
2966__umtx_op_unlock_umtx(struct thread *td, struct _umtx_op_args *uap)
2967{
2968	return (do_unlock_umtx(td, uap->obj, uap->val));
2969}
2970
2971static int
2972__umtx_op_wait(struct thread *td, struct _umtx_op_args *uap)
2973{
2974	struct timespec *ts, timeout;
2975	int error;
2976
2977	if (uap->uaddr2 == NULL)
2978		ts = NULL;
2979	else {
2980		error = copyin(uap->uaddr2, &timeout, sizeof(timeout));
2981		if (error != 0)
2982			return (error);
2983		if (timeout.tv_nsec >= 1000000000 ||
2984		    timeout.tv_nsec < 0)
2985			return (EINVAL);
2986		ts = &timeout;
2987	}
2988	return do_wait(td, uap->obj, uap->val, ts, 0, 0);
2989}
2990
2991static int
2992__umtx_op_wait_uint(struct thread *td, struct _umtx_op_args *uap)
2993{
2994	struct timespec *ts, timeout;
2995	int error;
2996
2997	if (uap->uaddr2 == NULL)
2998		ts = NULL;
2999	else {
3000		error = copyin(uap->uaddr2, &timeout, sizeof(timeout));
3001		if (error != 0)
3002			return (error);
3003		if (timeout.tv_nsec >= 1000000000 ||
3004		    timeout.tv_nsec < 0)
3005			return (EINVAL);
3006		ts = &timeout;
3007	}
3008	return do_wait(td, uap->obj, uap->val, ts, 1, 0);
3009}
3010
3011static int
3012__umtx_op_wait_uint_private(struct thread *td, struct _umtx_op_args *uap)
3013{
3014	struct timespec *ts, timeout;
3015	int error;
3016
3017	if (uap->uaddr2 == NULL)
3018		ts = NULL;
3019	else {
3020		error = copyin(uap->uaddr2, &timeout, sizeof(timeout));
3021		if (error != 0)
3022			return (error);
3023		if (timeout.tv_nsec >= 1000000000 ||
3024		    timeout.tv_nsec < 0)
3025			return (EINVAL);
3026		ts = &timeout;
3027	}
3028	return do_wait(td, uap->obj, uap->val, ts, 1, 1);
3029}
3030
3031static int
3032__umtx_op_wake(struct thread *td, struct _umtx_op_args *uap)
3033{
3034	return (kern_umtx_wake(td, uap->obj, uap->val, 0));
3035}
3036
3037static int
3038__umtx_op_wake_private(struct thread *td, struct _umtx_op_args *uap)
3039{
3040	return (kern_umtx_wake(td, uap->obj, uap->val, 1));
3041}
3042
3043static int
3044__umtx_op_lock_umutex(struct thread *td, struct _umtx_op_args *uap)
3045{
3046	struct timespec *ts, timeout;
3047	int error;
3048
3049	/* Allow a null timespec (wait forever). */
3050	if (uap->uaddr2 == NULL)
3051		ts = NULL;
3052	else {
3053		error = copyin(uap->uaddr2, &timeout,
3054		    sizeof(timeout));
3055		if (error != 0)
3056			return (error);
3057		if (timeout.tv_nsec >= 1000000000 ||
3058		    timeout.tv_nsec < 0) {
3059			return (EINVAL);
3060		}
3061		ts = &timeout;
3062	}
3063	return do_lock_umutex(td, uap->obj, ts, 0);
3064}
3065
3066static int
3067__umtx_op_trylock_umutex(struct thread *td, struct _umtx_op_args *uap)
3068{
3069	return do_lock_umutex(td, uap->obj, NULL, _UMUTEX_TRY);
3070}
3071
3072static int
3073__umtx_op_wait_umutex(struct thread *td, struct _umtx_op_args *uap)
3074{
3075	struct timespec *ts, timeout;
3076	int error;
3077
3078	/* Allow a null timespec (wait forever). */
3079	if (uap->uaddr2 == NULL)
3080		ts = NULL;
3081	else {
3082		error = copyin(uap->uaddr2, &timeout,
3083		    sizeof(timeout));
3084		if (error != 0)
3085			return (error);
3086		if (timeout.tv_nsec >= 1000000000 ||
3087		    timeout.tv_nsec < 0) {
3088			return (EINVAL);
3089		}
3090		ts = &timeout;
3091	}
3092	return do_lock_umutex(td, uap->obj, ts, _UMUTEX_WAIT);
3093}
3094
3095static int
3096__umtx_op_wake_umutex(struct thread *td, struct _umtx_op_args *uap)
3097{
3098	return do_wake_umutex(td, uap->obj);
3099}
3100
3101static int
3102__umtx_op_unlock_umutex(struct thread *td, struct _umtx_op_args *uap)
3103{
3104	return do_unlock_umutex(td, uap->obj);
3105}
3106
3107static int
3108__umtx_op_set_ceiling(struct thread *td, struct _umtx_op_args *uap)
3109{
3110	return do_set_ceiling(td, uap->obj, uap->val, uap->uaddr1);
3111}
3112
3113static int
3114__umtx_op_cv_wait(struct thread *td, struct _umtx_op_args *uap)
3115{
3116	struct timespec *ts, timeout;
3117	int error;
3118
3119	/* Allow a null timespec (wait forever). */
3120	if (uap->uaddr2 == NULL)
3121		ts = NULL;
3122	else {
3123		error = copyin(uap->uaddr2, &timeout,
3124		    sizeof(timeout));
3125		if (error != 0)
3126			return (error);
3127		if (timeout.tv_nsec >= 1000000000 ||
3128		    timeout.tv_nsec < 0) {
3129			return (EINVAL);
3130		}
3131		ts = &timeout;
3132	}
3133	return (do_cv_wait(td, uap->obj, uap->uaddr1, ts, uap->val));
3134}
3135
3136static int
3137__umtx_op_cv_signal(struct thread *td, struct _umtx_op_args *uap)
3138{
3139	return do_cv_signal(td, uap->obj);
3140}
3141
3142static int
3143__umtx_op_cv_broadcast(struct thread *td, struct _umtx_op_args *uap)
3144{
3145	return do_cv_broadcast(td, uap->obj);
3146}
3147
3148static int
3149__umtx_op_rw_rdlock(struct thread *td, struct _umtx_op_args *uap)
3150{
3151	struct timespec timeout;
3152	int error;
3153
3154	/* Allow a null timespec (wait forever). */
3155	if (uap->uaddr2 == NULL) {
3156		error = do_rw_rdlock(td, uap->obj, uap->val, 0);
3157	} else {
3158		error = copyin(uap->uaddr2, &timeout,
3159		    sizeof(timeout));
3160		if (error != 0)
3161			return (error);
3162		if (timeout.tv_nsec >= 1000000000 ||
3163		    timeout.tv_nsec < 0) {
3164			return (EINVAL);
3165		}
3166		error = do_rw_rdlock2(td, uap->obj, uap->val, &timeout);
3167	}
3168	return (error);
3169}
3170
3171static int
3172__umtx_op_rw_wrlock(struct thread *td, struct _umtx_op_args *uap)
3173{
3174	struct timespec timeout;
3175	int error;
3176
3177	/* Allow a null timespec (wait forever). */
3178	if (uap->uaddr2 == NULL) {
3179		error = do_rw_wrlock(td, uap->obj, 0);
3180	} else {
3181		error = copyin(uap->uaddr2, &timeout,
3182		    sizeof(timeout));
3183		if (error != 0)
3184			return (error);
3185		if (timeout.tv_nsec >= 1000000000 ||
3186		    timeout.tv_nsec < 0) {
3187			return (EINVAL);
3188		}
3189
3190		error = do_rw_wrlock2(td, uap->obj, &timeout);
3191	}
3192	return (error);
3193}
3194
3195static int
3196__umtx_op_rw_unlock(struct thread *td, struct _umtx_op_args *uap)
3197{
3198	return do_rw_unlock(td, uap->obj);
3199}
3200
3201static int
3202__umtx_op_sem_wait(struct thread *td, struct _umtx_op_args *uap)
3203{
3204	struct timespec *ts, timeout;
3205	int error;
3206
3207	/* Allow a null timespec (wait forever). */
3208	if (uap->uaddr2 == NULL)
3209		ts = NULL;
3210	else {
3211		error = copyin(uap->uaddr2, &timeout,
3212		    sizeof(timeout));
3213		if (error != 0)
3214			return (error);
3215		if (timeout.tv_nsec >= 1000000000 ||
3216		    timeout.tv_nsec < 0) {
3217			return (EINVAL);
3218		}
3219		ts = &timeout;
3220	}
3221	return (do_sem_wait(td, uap->obj, ts));
3222}
3223
3224static int
3225__umtx_op_sem_wake(struct thread *td, struct _umtx_op_args *uap)
3226{
3227	return do_sem_wake(td, uap->obj);
3228}
3229
3230typedef int (*_umtx_op_func)(struct thread *td, struct _umtx_op_args *uap);
3231
3232static _umtx_op_func op_table[] = {
3233	__umtx_op_lock_umtx,		/* UMTX_OP_LOCK */
3234	__umtx_op_unlock_umtx,		/* UMTX_OP_UNLOCK */
3235	__umtx_op_wait,			/* UMTX_OP_WAIT */
3236	__umtx_op_wake,			/* UMTX_OP_WAKE */
3237	__umtx_op_trylock_umutex,	/* UMTX_OP_MUTEX_TRYLOCK */
3238	__umtx_op_lock_umutex,		/* UMTX_OP_MUTEX_LOCK */
3239	__umtx_op_unlock_umutex,	/* UMTX_OP_MUTEX_UNLOCK */
3240	__umtx_op_set_ceiling,		/* UMTX_OP_SET_CEILING */
3241	__umtx_op_cv_wait,		/* UMTX_OP_CV_WAIT*/
3242	__umtx_op_cv_signal,		/* UMTX_OP_CV_SIGNAL */
3243	__umtx_op_cv_broadcast,		/* UMTX_OP_CV_BROADCAST */
3244	__umtx_op_wait_uint,		/* UMTX_OP_WAIT_UINT */
3245	__umtx_op_rw_rdlock,		/* UMTX_OP_RW_RDLOCK */
3246	__umtx_op_rw_wrlock,		/* UMTX_OP_RW_WRLOCK */
3247	__umtx_op_rw_unlock,		/* UMTX_OP_RW_UNLOCK */
3248	__umtx_op_wait_uint_private,	/* UMTX_OP_WAIT_UINT_PRIVATE */
3249	__umtx_op_wake_private,		/* UMTX_OP_WAKE_PRIVATE */
3250	__umtx_op_wait_umutex,		/* UMTX_OP_UMUTEX_WAIT */
3251	__umtx_op_wake_umutex,		/* UMTX_OP_UMUTEX_WAKE */
3252	__umtx_op_sem_wait,		/* UMTX_OP_SEM_WAIT */
3253	__umtx_op_sem_wake		/* UMTX_OP_SEM_WAKE */
3254};
3255
3256int
3257_umtx_op(struct thread *td, struct _umtx_op_args *uap)
3258{
3259	if ((unsigned)uap->op < UMTX_OP_MAX)
3260		return (*op_table[uap->op])(td, uap);
3261	return (EINVAL);
3262}
3263
3264#ifdef COMPAT_IA32
3265int
3266freebsd32_umtx_lock(struct thread *td, struct freebsd32_umtx_lock_args *uap)
3267    /* struct umtx *umtx */
3268{
3269	return (do_lock_umtx32(td, (uint32_t *)uap->umtx, td->td_tid, NULL));
3270}
3271
3272int
3273freebsd32_umtx_unlock(struct thread *td, struct freebsd32_umtx_unlock_args *uap)
3274    /* struct umtx *umtx */
3275{
3276	return (do_unlock_umtx32(td, (uint32_t *)uap->umtx, td->td_tid));
3277}
3278
3279struct timespec32 {
3280	u_int32_t tv_sec;
3281	u_int32_t tv_nsec;
3282};
3283
3284static inline int
3285copyin_timeout32(void *addr, struct timespec *tsp)
3286{
3287	struct timespec32 ts32;
3288	int error;
3289
3290	error = copyin(addr, &ts32, sizeof(struct timespec32));
3291	if (error == 0) {
3292		tsp->tv_sec = ts32.tv_sec;
3293		tsp->tv_nsec = ts32.tv_nsec;
3294	}
3295	return (error);
3296}
3297
3298static int
3299__umtx_op_lock_umtx_compat32(struct thread *td, struct _umtx_op_args *uap)
3300{
3301	struct timespec *ts, timeout;
3302	int error;
3303
3304	/* Allow a null timespec (wait forever). */
3305	if (uap->uaddr2 == NULL)
3306		ts = NULL;
3307	else {
3308		error = copyin_timeout32(uap->uaddr2, &timeout);
3309		if (error != 0)
3310			return (error);
3311		if (timeout.tv_nsec >= 1000000000 ||
3312		    timeout.tv_nsec < 0) {
3313			return (EINVAL);
3314		}
3315		ts = &timeout;
3316	}
3317	return (do_lock_umtx32(td, uap->obj, uap->val, ts));
3318}
3319
3320static int
3321__umtx_op_unlock_umtx_compat32(struct thread *td, struct _umtx_op_args *uap)
3322{
3323	return (do_unlock_umtx32(td, uap->obj, (uint32_t)uap->val));
3324}
3325
3326static int
3327__umtx_op_wait_compat32(struct thread *td, struct _umtx_op_args *uap)
3328{
3329	struct timespec *ts, timeout;
3330	int error;
3331
3332	if (uap->uaddr2 == NULL)
3333		ts = NULL;
3334	else {
3335		error = copyin_timeout32(uap->uaddr2, &timeout);
3336		if (error != 0)
3337			return (error);
3338		if (timeout.tv_nsec >= 1000000000 ||
3339		    timeout.tv_nsec < 0)
3340			return (EINVAL);
3341		ts = &timeout;
3342	}
3343	return do_wait(td, uap->obj, uap->val, ts, 1, 0);
3344}
3345
3346static int
3347__umtx_op_lock_umutex_compat32(struct thread *td, struct _umtx_op_args *uap)
3348{
3349	struct timespec *ts, timeout;
3350	int error;
3351
3352	/* Allow a null timespec (wait forever). */
3353	if (uap->uaddr2 == NULL)
3354		ts = NULL;
3355	else {
3356		error = copyin_timeout32(uap->uaddr2, &timeout);
3357		if (error != 0)
3358			return (error);
3359		if (timeout.tv_nsec >= 1000000000 ||
3360		    timeout.tv_nsec < 0)
3361			return (EINVAL);
3362		ts = &timeout;
3363	}
3364	return do_lock_umutex(td, uap->obj, ts, 0);
3365}
3366
3367static int
3368__umtx_op_wait_umutex_compat32(struct thread *td, struct _umtx_op_args *uap)
3369{
3370	struct timespec *ts, timeout;
3371	int error;
3372
3373	/* Allow a null timespec (wait forever). */
3374	if (uap->uaddr2 == NULL)
3375		ts = NULL;
3376	else {
3377		error = copyin_timeout32(uap->uaddr2, &timeout);
3378		if (error != 0)
3379			return (error);
3380		if (timeout.tv_nsec >= 1000000000 ||
3381		    timeout.tv_nsec < 0)
3382			return (EINVAL);
3383		ts = &timeout;
3384	}
3385	return do_lock_umutex(td, uap->obj, ts, _UMUTEX_WAIT);
3386}
3387
3388static int
3389__umtx_op_cv_wait_compat32(struct thread *td, struct _umtx_op_args *uap)
3390{
3391	struct timespec *ts, timeout;
3392	int error;
3393
3394	/* Allow a null timespec (wait forever). */
3395	if (uap->uaddr2 == NULL)
3396		ts = NULL;
3397	else {
3398		error = copyin_timeout32(uap->uaddr2, &timeout);
3399		if (error != 0)
3400			return (error);
3401		if (timeout.tv_nsec >= 1000000000 ||
3402		    timeout.tv_nsec < 0)
3403			return (EINVAL);
3404		ts = &timeout;
3405	}
3406	return (do_cv_wait(td, uap->obj, uap->uaddr1, ts, uap->val));
3407}
3408
3409static int
3410__umtx_op_rw_rdlock_compat32(struct thread *td, struct _umtx_op_args *uap)
3411{
3412	struct timespec timeout;
3413	int error;
3414
3415	/* Allow a null timespec (wait forever). */
3416	if (uap->uaddr2 == NULL) {
3417		error = do_rw_rdlock(td, uap->obj, uap->val, 0);
3418	} else {
3419		error = copyin(uap->uaddr2, &timeout,
3420		    sizeof(timeout));
3421		if (error != 0)
3422			return (error);
3423		if (timeout.tv_nsec >= 1000000000 ||
3424		    timeout.tv_nsec < 0) {
3425			return (EINVAL);
3426		}
3427		error = do_rw_rdlock2(td, uap->obj, uap->val, &timeout);
3428	}
3429	return (error);
3430}
3431
3432static int
3433__umtx_op_rw_wrlock_compat32(struct thread *td, struct _umtx_op_args *uap)
3434{
3435	struct timespec timeout;
3436	int error;
3437
3438	/* Allow a null timespec (wait forever). */
3439	if (uap->uaddr2 == NULL) {
3440		error = do_rw_wrlock(td, uap->obj, 0);
3441	} else {
3442		error = copyin_timeout32(uap->uaddr2, &timeout);
3443		if (error != 0)
3444			return (error);
3445		if (timeout.tv_nsec >= 1000000000 ||
3446		    timeout.tv_nsec < 0) {
3447			return (EINVAL);
3448		}
3449
3450		error = do_rw_wrlock2(td, uap->obj, &timeout);
3451	}
3452	return (error);
3453}
3454
3455static int
3456__umtx_op_wait_uint_private_compat32(struct thread *td, struct _umtx_op_args *uap)
3457{
3458	struct timespec *ts, timeout;
3459	int error;
3460
3461	if (uap->uaddr2 == NULL)
3462		ts = NULL;
3463	else {
3464		error = copyin_timeout32(uap->uaddr2, &timeout);
3465		if (error != 0)
3466			return (error);
3467		if (timeout.tv_nsec >= 1000000000 ||
3468		    timeout.tv_nsec < 0)
3469			return (EINVAL);
3470		ts = &timeout;
3471	}
3472	return do_wait(td, uap->obj, uap->val, ts, 1, 1);
3473}
3474
3475static int
3476__umtx_op_sem_wait_compat32(struct thread *td, struct _umtx_op_args *uap)
3477{
3478	struct timespec *ts, timeout;
3479	int error;
3480
3481	/* Allow a null timespec (wait forever). */
3482	if (uap->uaddr2 == NULL)
3483		ts = NULL;
3484	else {
3485		error = copyin_timeout32(uap->uaddr2, &timeout);
3486		if (error != 0)
3487			return (error);
3488		if (timeout.tv_nsec >= 1000000000 ||
3489		    timeout.tv_nsec < 0)
3490			return (EINVAL);
3491		ts = &timeout;
3492	}
3493	return (do_sem_wait(td, uap->obj, ts));
3494}
3495
3496static _umtx_op_func op_table_compat32[] = {
3497	__umtx_op_lock_umtx_compat32,	/* UMTX_OP_LOCK */
3498	__umtx_op_unlock_umtx_compat32,	/* UMTX_OP_UNLOCK */
3499	__umtx_op_wait_compat32,	/* UMTX_OP_WAIT */
3500	__umtx_op_wake,			/* UMTX_OP_WAKE */
3501	__umtx_op_trylock_umutex,	/* UMTX_OP_MUTEX_LOCK */
3502	__umtx_op_lock_umutex_compat32,	/* UMTX_OP_MUTEX_TRYLOCK */
3503	__umtx_op_unlock_umutex,	/* UMTX_OP_MUTEX_UNLOCK	*/
3504	__umtx_op_set_ceiling,		/* UMTX_OP_SET_CEILING */
3505	__umtx_op_cv_wait_compat32,	/* UMTX_OP_CV_WAIT*/
3506	__umtx_op_cv_signal,		/* UMTX_OP_CV_SIGNAL */
3507	__umtx_op_cv_broadcast,		/* UMTX_OP_CV_BROADCAST */
3508	__umtx_op_wait_compat32,	/* UMTX_OP_WAIT_UINT */
3509	__umtx_op_rw_rdlock_compat32,	/* UMTX_OP_RW_RDLOCK */
3510	__umtx_op_rw_wrlock_compat32,	/* UMTX_OP_RW_WRLOCK */
3511	__umtx_op_rw_unlock,		/* UMTX_OP_RW_UNLOCK */
3512	__umtx_op_wait_uint_private_compat32,	/* UMTX_OP_WAIT_UINT_PRIVATE */
3513	__umtx_op_wake_private,		/* UMTX_OP_WAKE_PRIVATE */
3514	__umtx_op_wait_umutex_compat32, /* UMTX_OP_UMUTEX_WAIT */
3515	__umtx_op_wake_umutex,		/* UMTX_OP_UMUTEX_WAKE */
3516	__umtx_op_sem_wait_compat32,	/* UMTX_OP_SEM_WAIT */
3517	__umtx_op_sem_wake		/* UMTX_OP_SEM_WAKE */
3518};
3519
3520int
3521freebsd32_umtx_op(struct thread *td, struct freebsd32_umtx_op_args *uap)
3522{
3523	if ((unsigned)uap->op < UMTX_OP_MAX)
3524		return (*op_table_compat32[uap->op])(td,
3525			(struct _umtx_op_args *)uap);
3526	return (EINVAL);
3527}
3528#endif
3529
3530void
3531umtx_thread_init(struct thread *td)
3532{
3533	td->td_umtxq = umtxq_alloc();
3534	td->td_umtxq->uq_thread = td;
3535}
3536
3537void
3538umtx_thread_fini(struct thread *td)
3539{
3540	umtxq_free(td->td_umtxq);
3541}
3542
3543/*
3544 * It will be called when new thread is created, e.g fork().
3545 */
3546void
3547umtx_thread_alloc(struct thread *td)
3548{
3549	struct umtx_q *uq;
3550
3551	uq = td->td_umtxq;
3552	uq->uq_inherited_pri = PRI_MAX;
3553
3554	KASSERT(uq->uq_flags == 0, ("uq_flags != 0"));
3555	KASSERT(uq->uq_thread == td, ("uq_thread != td"));
3556	KASSERT(uq->uq_pi_blocked == NULL, ("uq_pi_blocked != NULL"));
3557	KASSERT(TAILQ_EMPTY(&uq->uq_pi_contested), ("uq_pi_contested is not empty"));
3558}
3559
3560/*
3561 * exec() hook.
3562 */
3563static void
3564umtx_exec_hook(void *arg __unused, struct proc *p __unused,
3565	struct image_params *imgp __unused)
3566{
3567	umtx_thread_cleanup(curthread);
3568}
3569
3570/*
3571 * thread_exit() hook.
3572 */
3573void
3574umtx_thread_exit(struct thread *td)
3575{
3576	umtx_thread_cleanup(td);
3577}
3578
3579/*
3580 * clean up umtx data.
3581 */
3582static void
3583umtx_thread_cleanup(struct thread *td)
3584{
3585	struct umtx_q *uq;
3586	struct umtx_pi *pi;
3587
3588	if ((uq = td->td_umtxq) == NULL)
3589		return;
3590
3591	mtx_lock_spin(&umtx_lock);
3592	uq->uq_inherited_pri = PRI_MAX;
3593	while ((pi = TAILQ_FIRST(&uq->uq_pi_contested)) != NULL) {
3594		pi->pi_owner = NULL;
3595		TAILQ_REMOVE(&uq->uq_pi_contested, pi, pi_link);
3596	}
3597	thread_lock(td);
3598	td->td_flags &= ~TDF_UBORROWING;
3599	thread_unlock(td);
3600	mtx_unlock_spin(&umtx_lock);
3601}
3602